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Author Response to the Editor’s comment on the manuscript "Estimation of 

predictive hydrologic uncertainty using quantile regression and UNEEC methods 

and their comparison on contrasting catchments" by Dogulu et al. 2014  

 

Dear Editor, 

We appreciate your insightful comments. We also would like to thank for your patience throughout the 

review process of this manuscript. Please find below our point-by-point replies.  

 

EC: Recently, in writing a chapter on predictive uncertainty for a forthcoming edition of the 

Handbook of Hydrology, I have listed, including the UNEEC approach (Solomatine and Shrestha, 2009), 

up to 10 alternative ways for assessing predictive uncertainty. Some of these approaches, the Hydrological 

Uncertainty Processor (HUP) (Krzysztofowicz,1999; Reggiani et al., 2009), the Quantile Regression (QR) 

(Koenker, 2005; Weerts et al., 2011), Bayesian Model Averaging (BMA) (Raftery,1993; Vrugt and 

Robinson, 2007), the Model Conditional Processor (MCP) (Todini, 2008; Coccia and Todini, 2011) have 

been extensively applied on theoretical as well as on real operational cases. 

AC: We have checked if the mentioned references to other methods have been adequately cited in 

the manuscript, and indeed, the relevant ones are. We have updated the way how the BFS (HUP) and MCP 

are cited (being now attributed to the “first group” of methods). However, since the mentioned methods 

have been extensively covered in the suggested papers, in this paper we are not giving a review of the 

known popular methods and have chosen to stay with the “second group” of methods which are used less 

(to which QR and UNEEC belong). 

 

EC: Therefore, I fully concur with both reviewers when they say that the presented comparison of 

UNEEC (Solomatine and Shrestha, 2009) to QR (Koenker, 2005; Weerts et al., 2011) has limited 

informative value, particularly because the theoretical limitations of each approach have not been fully set 

in evidence, as for instance the fact that QR is advantageous when patterns can be observed in the quantiles 

(Coccia and Todini, 2011). 

AC: We could not actually find such statements in the reviewers’ comments. What Referee # 1 

actually say, is that  

“The paper in its current form shows a misunderstanding of uncertainty assessment capability of the 

methodology and informative level of the predictors.” 

We are addressing this comment in our Reply to Reviewers (this is “Main Comment (1)”).  

Additionally, we can say the following: In terms of comparison, we agree we could have gone further and 

indeed consider the theoretical limitations of each approach, as you suggest. The aim of this paper was less 

ambitious, and indeed, it would be interesting and useful in the future studies to consider relative 

performance of the methods in a wider set of various hydrometeorological conditions and possibly analyse 

the theoretical limitations of each approach using theoretical distributions and synthetic data sets. In this 

paper we decided to limit ourselves with the cases we considered and the analysis we carried out, and still 

think the presented results could be useful for the readers of HESS.  
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The reference to the fact that Coccia and Todini (2011) have mentioned the dependency of the QA’s 

performance on (non)existence of patterns in quantiles is very much correct; we have added this observation 

to the revised manuscript in Introduction. 

 

EC: An interesting work would be the comparison of several available approaches (not just two) 

showing both on theoretical data as well on case studies their advantages, their effectiveness and most of 

all their limitations. 

AC: Indeed, fully agreed. Comparisons also could have been made to the other methods - HUP and 

MCP. Yes. However, in every study there are limitations of effort and time one is forced to observe. This 

paper summarizes a particular research effort with these limitations, and the space limitations for the paper 

itself were taken into account as well – so only UNEEC and QR have been considered here. We take this 

suggestion and plan to extend the comparisons in the future studies. In the revised manuscript we have 

added yet another limitation (see Conclusions) – related to the lack of comparison to HUP and MCP 

mentioned above. 

 

EC: As pointed out by Reviewer #1, there are several points that have not been dealt rigorously in 

this work. For instance, in the literature and in particular in the meteorological literature, several measures 

of sharpness (measuring the spread of the predictive densities) and calibration (measuring the consistency 

between the forecasted densities and what can be verified from actual observations) have been proposed 

and used for the case of discrete quantiles (such as QR and UNEEC) or continuous predictive densities 

(such as HUP, BMA, MCP). In particular, the PICP is extended to several values of probability threshold 

𝛼 using the Talgrand diagram (Talgrand et al. 1997) in the discrete case or the reliability diagram (Wilks, 

1995), the latter being also recently proposed in hydrological applications by Laio and Tamea (2007). 

AC: We gratefully acknowledge the suggestion (by both the Editor and the Anonymous Reviewer 

#1) of including more validation measures so as to increase rigorousness of verification in the current 

comparative analysis study. The problem with the accurate evaluation of the performance (for each time 

step and not the average one) is of course the fact that the distribution of the observation is not known (since 

for each time step we have only one realisation with P = 1). So we are left with the aggregated measures 

like PICP. In this context the reference to Laio and Tamea (2007) is really good (it is the Section 3.2. of 

their paper where they cover the very relevant material which was not known to us initially plus the 

references to Berkowitz, 2001; Christoffersen, 1998), potentially allowing to go beyond PICP. 

Unfortunately, in the framework of the current study we will not be able to extend the number of measures 

used, so we will have to limit ourselves to PICP, MPI and ARIL. However in the revised manuscript we 

have added yet another limitation of this study in the Conclusions related to what is suggested by Laio and 

Tamea (2007). 

 

EC: (…) Therefore, since I do not think that the authors replies were fully satisfactory at 

acknowledging the reviewers comments, it is my view that the manuscript should be extensively revised 

along the suggested lines prior to being reconsidered for publication. 

AC: We have revised the original manuscript considerably in line with the comments provided 

during the interactive discussion period, and very much taking into account the Editor’s comments.  

Again, we would like to thank the handling Editor for the really useful suggestions.  
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Final remarks by the authors 

We would like to thank both Prof. Ezio Todini and the two anonymous reviewers for their thorough review 

and valuable comments. We believe that addressing all these comments have helped improving the quality 

of the original manuscript significantly.  

The manuscript has been revised in accordance with the author comments, 

o AC C6148: 'Response to Anonymous Referee #1 (revised Final Author Comments)', 

submitted by Nilay Dogulu, on 21 Jan 2015 

o AC C6150: 'Response to Anonymous Referee #2 (revised Final Author Comments)', 

submitted by Nilay Dogulu, on 21 Jan 2015  

provided during the interactive discussion period. Please see the marked-up manuscript version (showing 

the changes made) uploaded in the system.  

Below is a quick overview of the changes made on the figures and tables: 

 Fig. 15: We now show examples of zoomed images from Fig. 14 in a new figure (Fig. 15) for the 

reader to be able to follow the relevant discussion (in Sect. 4.2.2), especially regarding the medium 

water levels in the Upper Severn catchments – which is also supported by the MPI, ARIL and PICP 

values (provided in a table form, new Table 4). 

 

 Figures: 

o Except the first four figures, all the figures are now much better in quality. 

o Fig. 6, 8 and 9: the corresponding graphs for validation are added. The relevant 

explanations (now in Sect. 4.1.1 and 4.2.2) are revised accordingly.  

o Fig. 12 and 13 (previously Fig. 13 and 12): the corresponding graphs for calibration are 

added. The relevant explanations (now in Sect. 4.2.2) are revised accordingly. 

o Fig. 7 and 10: probability plots for all the clusters are included. The relevant discussion is 

updated in the revised manuscript (Sect. 4.1.1 and 4.1.2, respectively) as well. 

o Fig. 14:  It has a much higher resolution (600 dpi, previously it was 150 dpi). 

o Fig. 15: This figure is new. Instead of providing the zoomed images in the current plot we 

have decided to include them in a new figure. 

 Tables: 

o Table 1: The information of highest river level recorded is added as a separate column. 

o Table 2: We added the MPI, PICP and ARIL values corresponding to the medium and 

highest peak events shown in Fig. 11. The relevant explanations are added in the revised 

manuscript (Sect. 4.2.1) as well. 

o Table 3: Since NUE values are excluded from the analysis, they are removed from the table 

too. 

o Table 4: This table is new. It provides the MPI, ARIL and PICP values for the medium 

water levels in Yeaton, Llanyblodwel and Llanerfyl catchments. The relevant explanations 

are added in Sect. 4.2.2. 

o Table 5 (previously Table 4):  no change. 
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Abstract 1 

In operational hydrology, estimation of predictive uncertainty of hydrological models used for 2 

flood modelling is essential for risk based decision making for flood warning and emergency 3 

management. In the literature, there exists a variety of methods analyzing and predicting 4 

uncertainty. However, studies devoted to comparing performance of the methods to predict 5 

uncertainty are limited. This paper focuses on the methods predicting model residual 6 

uncertainty that differ in methodological complexity: quantile regression (QR) and 7 

UNcertainty Estimation based on local Errors and Clustering (UNEEC). The comparison of 8 

the methods is aimed at investigating how well a simpler method using less input data 9 

performs over a more complex method with more predictors (which can be less acceptable by 10 

practitioners in flood forecasting). We test these two methods on several catchments from UK 11 

that vary in hydrological characteristics and the models used. Special attention is given to the 12 

methods’ performance at different hydrological conditions. Furthermore, normality of model 13 

residuals in data clusters (identified by UNEEC) is analysed. It is found that basin lag time 14 

and forecast lead time have large impact on quantification of uncertainty and the presence of 15 

normality in model residuals’ distribution. In general, it can be said that both methods give 16 

similar results. At the same time, it is also shown that UNEEC method provides better 17 

performance than QR for small catchments with the changing hydrological dynamics, i.e. 18 

rapid response catchments. It is recommended that more case studies of catchments of distinct 19 

hydrologic behaviour, with diverse climatic conditions, and having various hydrological 20 

features be considered. 21 

22 
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1 Introduction 1 

Importance of accounting for uncertainty in hydrological models used in flood early warning 2 

systems is widely recognised (e.g. Krzysztofowicz, 2001; Pappenberger and Beven, 2006). 3 

Such an uncertainty in the model prediction stems mainly from the four important sources: 4 

perceptual model uncertainty, data uncertainty, parameter estimation uncertainty, and model 5 

structural uncertainty (e.g. Solomatine and Wagener, 2011). Analysis of predictive 6 

uncertainty (Todini, 2008) of hydrological models used for flood modelling enable 7 

hydrologists and managers to achieve better risk based decision making and thus has the 8 

potential to increase the reliability and credibility of flood warning. Therefore, the necessity 9 

of estimating predictive uncertainty of rainfall-runoff models is broadly acknowledged in 10 

operational hydrology, and the management of uncertainty in hydrologic predictions has 11 

emerged as a major focus of interest in both research and operational modelling (Wagener and 12 

Gupta, 2005; Liu and Gupta, 2007; Montanari, 2007; Todini, 2008). In this respect comparing 13 

different methods, which are often developed and tested in isolation, receives attention of 14 

researchers, e.g. as suggested within the HEPEX framework (see van Andel et al., 2013). 15 

While the discussions on the necessity of evaluating the contribution of various sources of 16 

errors to the overall model uncertainty are going for a long time (see, e.g. Gupta et al., 2005; 17 

Brown and Heuvelink, 2005; Liu and Gupta, 2007), there have been also attempts to estimate 18 

the residual uncertainty. By residual uncertainty, we understand the remaining model 19 

uncertainty assuming that other sources were accounted for (for example by calibrating the 20 

parameters), or not considered (all other sources like inaccurate rating curve, inputs, etc.) 21 

(Solomatine and Shrestha, 2009). We recognize that there are many sources of uncertainty 22 

leading to uncertainty in the model output (their influence is typically explored by running 23 

Monte Carlo experiments). However in this paper we consider the uncertainty of model 24 

outputs, assuming that parameters, inputs and the data used for model calibration are known 25 

(so we don’t consider their uncertainty explicitly). Within this context, a (residual) model 26 

error is seen as a manifestation of the (residual) model uncertainty. 27 

In this context, two classes of uncertainty analysis methods can be considered. The first one 28 

relates to the Bayesian framework with the meta-Gaussian transformation of data as its 29 

important part; these methods are based on a rigorous statistical framework. The following 30 

techniques and papers can be mentioned: the original Bayesian forecasting system (BFS) and 31 

the Hydrological Uncertainty Processor as its part (Krzysztofowicz, 1999; Krzysztofowicz 32 
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and Kelly, 2000); its implementations and variations described in Montanari and Brath, 2004; 1 

Reggiani and Weerts, 2008; Reggiani et al., 2009; Bogner and Pappenberger, 2011; and the 2 

Model Conditional Processor (Todini, 2008; Coccia and Todini, 2011).  3 

The other class of methods (of which two are dealt with in this paper) includes more 4 

“straightforward” ones which are directly oriented at predicting the properties (quantiles) of 5 

the residual error distribution by linear or non-linear regression (machine learning) 6 

techniques: quantile regression (QR) (Koenker and Basset, 1978) with its applications in 7 

hydrology reported by Solomatine and Shrestha, 2009; Weerts et al., 2011; López López et 8 

al., 2013); UNcertainty Estimation based on local Errors and Clustering (UNEEC) that uses 9 

machine learning techniques (Shrestha and Solomatine, 2006; Solomatine and Shrestha; 10 

2009); dynamic uncertainty model by regression on absolute error (DUMBRAE) (Pianosi and 11 

Raso, 2012). In this paper we consider two methods from this class that differ in their 12 

methodological complexity: quantile regression (QR) and UNcertainty Estimation based on 13 

local Errors and Clustering (UNEEC). 14 

Quantile regression (Koenker and Basset, 1978; Koenker and Hallock, 2001; Koenker, 2005) 15 

is basically a set of linear regression models (typically, two) where predictands (response 16 

variables) are the selected quantiles of the conditional distribution of some variables 17 

(discharge or water level in the present research study), and predictors are lagged values of 18 

the same variable. This methodology allows for examining the entire distribution of the 19 

variable of interest rather than a single measure of the central tendency of its distribution 20 

(Koenker, 2005). QR models have been used in a broad range of applications, such as 21 

economics and financial market analysis (Kudryavtsev, 2009; Taylor, 2007), agriculture 22 

(Barnwal and Kotani, 2013), meteorology (Bremnes, 2004; Friederichs and Hense, 2007; 23 

Cannon, 2011), wind forecasting (Nielsen et al., 2006; Møller et al., 2008), the prediction of 24 

ozone concentrations (Baur et al., 2004; Munir et al., 2012), etc. In hydrological modelling 25 

the QR method has been applied as an uncertainty post-processing technique in previous 26 

research studies with different configurations.  27 

The configurations of QR differ mainly in two aspects: treatment of quantiles crossing 28 

problem (a problem when quantiles of the lower order appear to be larger than those of the 29 

higher order) and the quantiles derivation in Normal space using the Normal Quantile 30 

Transformation (NQT). Solomatine and Shrestha (2009) make use of the classical QR 31 

approach, without considering quantiles crossing and NQT. Weerts et al. (2011), Verkade and 32 
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Werner (2011), and Roscoe et al. (2012) apply QR to various deterministic hydrologic 1 

forecasts. QR configuration investigated in these studies uses the water level or discharge 2 

forecasts as predictors to estimate the distribution quantiles of the model error. It includes a 3 

transformation into Normal space using the NQT and the quantile crossing problem is 4 

addressed imposing a fixed distribution of the predictand in the crossing domain. Singh et al. 5 

(2013) make use of a similar configuration differentiating two cases based on the similarities 6 

in information content between calibration and validation data periods. Coccia and Todini 7 

(2011) observe that QR’s usefulness and performance depend on the assumed patterns in 8 

quantiles, e.g. lack of linear variation of the error variance with the magnitude of the forecasts 9 

hinders reasonable estimation of the quantiles, especially for high flows/water levels. López 10 

López et al. (2014) apply QR to predict the quantiles of the environmental variables itself 11 

(water level) rather than the quantiles of the model error, and the four different configurations 12 

of QR are compared and extensively verified. It should be noted that by design, the only 13 

predictor in QR is the deterministic model output for discharge/water level, and the quantiles 14 

of observed discharge/water level are estimated through linear regression. 15 

UNEEC method was introduced 10 years ago (Shrestha and Solomatine, 2006; Shrestha et al., 16 

2006). The method builds a non-linear regression model (machine learning, e.g. an artificial 17 

neural network) to estimate the quantiles of the error distribution, and it assumes that residual 18 

uncertainty depends on the modelled system state characteristics so that any variable can be 19 

used as a predictor. A notable characteristic of UNEEC is special attention to achieve 20 

accuracy by local modelling of errors (by clustering and treating clusters separately) so that 21 

particularities of different hydrometeorological conditions, i.e. heterogeneities inherent to 22 

rainfall-runoff process, are represented through different error pdfs. Shrestha and Solomatine 23 

(2006) tested the UNEEC method on Sieve catchment in Italy based on the estimates of lower 24 

and upper prediction limits corresponding to 90% confidence level (CL). The method was 25 

also applied to a different catchment (Brue, in UK; HBV model) and it was compared to the 26 

Bayesian meta-Gaussian approach (Montanari and Brath, 2004), as well as the version of 27 

Monte Carlo technique GLUE (Beven and Binley, 1992). It was reported that the uncertainty 28 

estimates obtained by UNEEC were in fact more acceptable and interpretable than those 29 

obtained by the other methods. UNEEC was further extended to estimate several quantiles 30 

(thus approximating full pdf of the error distribution) and applied to Bagmati catchment in 31 

Nepal (Solomatine and Shrestha, 2009), and it was compared to several other methods 32 

including QR. It was found that UNEEC method generated consistent and interpretable results 33 
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which are more accurate and reliable than QR. In the further study (Pianosi et al., 2010) 1 

UNEEC was extended so as to include parametric uncertainty (UNEEC-P), however local 2 

features of uncertainty were not considered. Nasseri et al. (2013) compared UNEEC with 3 

methods which are mainly based on the fuzzy extension principle: IMFEP (Incremental 4 

Modified Fuzzy Extension Principle) and MFEP (Modified Fuzzy Extension Principle). It has 5 

been shown that the methods provided similar performance on the two monthly water balance 6 

models for the two basins in Iran and France. 7 

Solomatine and Shrestha (2009) presented their initial experiments to compare QR and 8 

UNEEC on one case study, and Weerts et al. (2011) discussed the experience with QR on 9 

another one. In this paper we go further and test the newer variants of these methods on 10 

several contrasting catchments that cover a wide range of climatic conditions and 11 

hydrological characteristics. The motivation here is to identify possible advantages and 12 

disadvantages of using QR and UNEEC methods based on their comparative performance, 13 

especially during flooding conditions (i.e. for the data cluster associated with high flow/water 14 

level conditions). The knowledge gaps regarding the use of the methods with different 15 

parameterizations are addressed. For example, we now incorporate in UNEEC the 16 

autoregressive component by considering past error values (in addition to discharge and 17 

effective rainfall) in one case study, and model outputs for the state variables soil moisture 18 

deficit (SMD) and groundwater level (GW) are used as predictors (in addition to water level) 19 

in another case study. In the QR version implemented, the linear regression model was 20 

established to predict the quantiles of observed water levels conditioned on 21 

simulated/forecasted water levels. Furthermore, we present results of statistical analysis of 22 

error time series to better understand (hydrological) models’ quality in relation to its effect on 23 

uncertainty analysis results, and to discuss the assumption of normality in the model residuals, 24 

particularly in view of the clustering approach employed within the framework of UNEEC 25 

method. We apply methods to estimate predictive uncertainty in Brue catchment (southwest 26 

UK) and Upper Severn catchments - Yeaton, Llanyblodwel, and Llanerfyl (Midlands, UK).  27 

It should be noticed that by design UNEEC uses a richer set of predictors than QR and a more 28 

sophisticated non-linear regression model, so the comparison between simple and complex 29 

models may seem unfair. However, more predictors may not bring more information needed 30 

for accurate prediction. Only experiments can allow for stating that for each particular case. 31 

Our experience with the data-driven models (and both QR and UNEEC are such) showed that 32 
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adding more predictors does not necessarily mean higher accuracy on unseen data. Parsimony 1 

(Box, Jenkins, and Reinsel, 2008) often leads to better generalization. In this study we 2 

compare the two uncertainty prediction methods, with the aim of investigating if a simpler 3 

method using less input data may possibly perform better than the more complex method with 4 

more predictors (which can be less acceptable by practitioners in flood forecasting). Overall, 5 

selection of the most appropriate uncertainty processor for a specific catchment is a matter of 6 

compromise between its complexity and accuracy in consideration of the data availability and 7 

also the characteristics of the catchment, and we believe the findings of such a comparative 8 

analysis could be useful for the operational hydrology community. 9 

The remainder of the paper is structured as follows. The next section describes the residual 10 

uncertainty analysis methods (QR and UNEEC) and the validation measures used. Section 3 11 

describes the studied catchments and the experimental setup. The results for error and 12 

uncertainty analyses are presented and discussed in Section 4. In Section 5 the main 13 

conclusions from the study and recommendations for future work are presented. 14 

 15 

2 Methodology 16 

2.1 Uncertainty analysis methods 17 

2.1.1 Definitions 18 

As in Solomatine and Shrestha (2009) and Weerts et al. (2011), we consider a deterministic 19 

(hydrological) model M of a catchment predicting a system output variable  ŷ  given the input 20 

data vector x (x  X), and the vector of model parameters  . There are various sources of 21 

error associated with the model output (e.g. discharge), so the system response (i.e. actual 22 

discharge) can be expressed as: 23 

exMeyy LTt  ),(ˆ          (1) 24 

where e  is the total residual error (in the remainder of the text, the terms “model error” and 25 

“model residual” is used interchangeably to refer to e ); t  is the (discrete) time. The model M 26 

can be used in two modes depending on the relation between the lead time ( LT : the duration 27 

between time of forecast and time for which the forecast is made) of interest and the model 28 

time step ( t ): 29 
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Given the model structure M, and the parameter set  , the uncertainty analysis methods used 2 

in this study, namely QR and UNEEC, estimate the residual uncertainty of a calibrated 3 

hydrological model whose parameters and inputs are assumed to be known exactly. In this 4 

setup the different sources of uncertainty are not distinguished explicitly. In both methods, the 5 

uncertainty model U predicts the quantile value q and is calibrated for different quantiles (τ), 6 

and for various lead times ( LT ) separately: 7 

),(  IUq LTt            (3) 8 

where I  is the input data vector, and   is the vector of model parameters. In a simplest case 9 

when number of quantiles is 2, they form the CL (e.g. 90%) and the corresponding confidence 10 

interval, CI. The quantiles computed in this study are τ = 0.05, 0.25, 0.75, and 0.95 allowing 11 

for forming the 50% and 90% confidence intervals. 12 

2.1.2 Quantile regression 13 

As mentioned, several QR configurations have been previously investigated for estimating the 14 

residual uncertainty. In López López et al. (2014) (in open access) the four alternative 15 

configurations of QR for several catchments at the Upper Severn River have been compared 16 

and verified. The comparative analysis included different experiments on the derivation of 17 

regression quantiles in original and in normal space using NQT, a piecewise linear 18 

configuration considering independent predictand domains and avoiding the quantiles 19 

crossing problem with a relatively recent technique (Bondell et al., 2010). The 20 

intercomparison showed that the reliability and sharpness vary across configurations, but in 21 

none of the configurations do these two forecast quality aspects improve simultaneously. 22 

Further analysis reveals that skills in terms of the various verification metrics (i.e. Brier skill 23 

score, BSS; mean continuous ranked probability skill core, CRPSS; and the relative operating 24 

characteristic score, ROCS) are very similar across the four configurations. Therefore, noting 25 

also the main idea behind the current study (which is to investigate how well a simpler 26 

method using less input data performs over a more complex method with more predictors), 27 

the simplest QR configuration (termed there the “QR1: non-crossing Quantile Regresssion”) 28 

was applied in this study. QR1 estimates the quantiles of the distribution of water level or 29 

discharge in the original domain, without any initial transformation and avoids the quantiles 30 
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crossing problem. A brief description of the QR configuration used in the present work is 1 

given below (for details the reader is referred to López López et al., 2014). 2 

For every quantile  , we assume a linear relationship between the forecasted (or predicted) 3 

value, ŝ , and the real observed value, s , 4 

 bsas  ˆ           (4) 5 

where a  and b  are the parameters of linear regression. By minimising the sum of residuals, 6 

one can find the parameters a  and b : 7 
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jj bsas          (5)  8 

where js  and jŝ  are the jth paired samples from a total of J samples and   is the quantile 9 

regression function for the quantile  : 10 
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Eqn. 6 is applied for the error ( j ), which is defined as the difference between the observation 12 

( js ) and the linear QR estimate (  bsa j ˆ ) for the selected quantile  .  13 

Fig. 1 illustrates the estimation of a selection of quantiles, including 0.95, 0.75, 0.25 and 0.05 14 

quantiles. To obtain the QR function for a specific quantile, e.g. 05.0 , Eqns.(5) and (6) 15 

are applied as follows: 16 
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In case of an ideal model, the 95 % of observed-forecasted pairs would be located above 18 

05.0  quantile linear regression line, and 5 % would remain below it. Considering the two 19 

observed-forecasted pairs of the total of J  samples, 1j  and 2j , their corresponding 20 

errors, 1  and 2 , are:  21 
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Introducing both values in Eqn. (5), QR allows for solving the minimization problem 1 

calculating the regression parameters 05.0a  and 05.0b  for this particular quantile 05.0 : 2 

))(...05.095.0min( 05.021 J        (9) 3 

The procedure explained here can be applied for any quantile,  . 4 

 5 

Figure 1. Quantile regression example scheme considering different quantiles. 6 

 7 

 8 

2.1.3 UNEEC 9 

In UNEEC, a machine learning model, e.g. an artificial neural network, instance-based 10 

learning (e.g. k-nearest neighbours) or a M5 model tree, is built to predict uncertainty 11 

associated with the model outputs corresponding to the future inputs to a (hydrological) 12 

model. The steps involved in UNEEC are summarized below: 13 

 Identify the set of predictor variables (e.g. the lagged rainfall data, soil moisture, flow, 14 

etc.) that describe the flow process based on their effect on the model error. These 15 

predictors can be selected using Average Mutual Information (AMI) and correlation 16 

analysis. Using AMI brings the advantage of detection of nonlinear relationships 17 

(Battiti, 1994).  18 

 Identify the fuzzy clusters in the data set in the space of predictor variables (using, e.g.  19 

fuzzy c-means method) (Fig. 2). The optimal number of clusters can be determined 20 

using the methods described, e.g. in Xie and Benie, 1991; Halkidi et al. 2001; Nasseri 21 

and Zahraie, 2011.  22 

 For each cluster c, calculate the quantiles, 
cq , of the empirical distribution of the 23 

model error, taking into account however the membership degree of each data vector 24 

to a considered cluster. 25 

 For each data vector, calculate the "global" estimate of the quantile q using the 26 

quantiles calculated for each cluster 
cq . This is done by weighting them by the 27 

corresponding degree of membership of the given data vector to this cluster. 28 
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Calculated q  values for each quantile τ are used as outputs for the uncertainty model 1 

U.  2 

 Train a machine learning model (U) (e.g. ANN or M5 model tree) using the set of 3 

predictors as inputs, and the data prepared at the previous step as the output. U will be 4 

able to predict the quantile value q  for the new input vectors.  5 

Various machine learning models can be employed; in this study M5 model tree (Quinlan, 6 

1992) has been used for all case studies. A model tree is a tree-like modular model which is in 7 

fact equivalent to a piecewise linear function. At non-terminal nodes there are rules that 8 

progressively split data into subsets, and finally the linear regression equations in the leaves 9 

of the tree built on the data subset that reached this particular leaf. Main reasons for using this 10 

technique are its accuracy, transparency (analytical expressions for models are obtained 11 

explicitly) and speed in training. Model trees have shown high accuracy in our previous 12 

studies (e.g. Solomatine and Dulal, 2003). 13 

 14 

Figure 2. An example to fuzzy clustering of input data (the predictors are past rainfall at lag t-2 and past flow at 15 
lag t-1) during training of the uncertainty model, U (adapted from Solomatine, 2013).  16 

 17 

2.2 Validation methods 18 

In this study we use several statistical measures of uncertainty to evaluate and to some extent 19 

to compare performances of QR and UNEEC. These are, namely, prediction interval coverage 20 

probability (PICP; Shrestha and Solomatine, 2006), mean prediction interval (MPI; Shrestha 21 

and Solomatine, 2006), and average relative interval length (ARIL; Jin et al., 2010). PICP has 22 

been also used by other authors (e.g. Laio and Tamea, 2007) as an important performance 23 

measure to estimate the accuracy of probabilistic forecasts.  24 

PICP should be seen as the most important measure since it shows how many observations 25 

fall into the estimated interval. PICP is the probability that the observed values ( ty ) lie within 26 

the estimated prediction limits computed for a significance level of 1  (e.g. 90%): 27 
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Ideally, PICP value should be equal or close to the specified CL.  29 
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MPI computes the average width of uncertainty band (or prediction interval), i.e. the distance 1 

between upper and lower prediction limits ( upper

tPL  and lower

tPL , respectively): 2 
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       (11) 3 

MPI = 0 means there is no uncertainty at all. MPI is rather simple indicator giving an idea 4 

about the distribution sharpness.  5 

ARIL is similar to MPI and considers average width of uncertainty bounds in relation to the 6 

observed value: 7 
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Having the observed value in denominator accounts for the fact that uncertainty (and MPI) is 9 

usually higher for higher values of flow and thus has a “normalization” effect. A problem 10 

with ARIL is that if the flow is zero or close to zero, ARIL will be infinity or very high. This 11 

problem could be helped by removing all observations above a certain threshold from the 12 

calculations (a suggestion of one of the reviewers of this paper); we leave this idea for further 13 

testing in the future research. 14 

A possibility to combine PICP and ARIL is to use the NUE indicator proposed by Nasseri and 15 

Zahraie (2011): 16 

ARILw

PICP
NUE


          (13) 17 

Nasseri and Zahraie (2013) recommend that methods with the higher NUE should be 18 

preferred over those with the lower NUE, however we do not think this is a universally 19 

applicable recommendation: if for two methods PICP is equal and close to the confidence 20 

interval (90%) and ARIL for one method is higher (which is not good), then NUE for this 21 

method will be actually lower. 22 

There is no single objective measure of the quality of an uncertainty prediction method (since 23 

the “actual” uncertainty of the model (error pdf) at each time step is not known). Closer PICP 24 

is to the CL, higher the trust in a particular uncertainty prediction method should be. In 25 

principle, a reliable method should lead to reasonably low values of MPI (and ARIL). 26 

However, a wide MPI does not mean that a method estimating prediction interval is 27 
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inaccurate – it could simply mean that the main model is not very accurate and the high MPI 1 

shows that. 2 

PICP indeed evaluates if the expected percentage of observations fall into the predicted 3 

interval, and should be seen as an important average indicator of the predictor’s performance. 4 

However, in case of high noise in the model error (aleatoric uncertainty) the fact that PICP is 5 

far from 90% could mean simply that none of the data-driven predictive models can capture 6 

the input-output dependencies and to predict quantiles accurately. For comparative studies 7 

however, PICP can very well be used: the method with PICP closest to 90% should be seen as 8 

the best (with some tolerance). Additional analysis may be carried out to see if the methods 9 

developed for the assessment of the probabilistic forecasts quality can be used (Laio and 10 

Tamea, 2007) (it is not exactly the same as the residual uncertainty analysed here but the 11 

mathematical apparatus seems could be transferrable). In this paper, however, we have not 12 

considered these so they can be recommended for exploration and testing in the future studies. 13 

It is also worth mentioning that all considered measures are averages so should be used 14 

together with the uncertainty bound plots which visual analysis reveals more information on 15 

the capacity of different uncertainty prediction methods during particular periods. 16 

 17 

3 Application 18 

3.1 Case studies 19 

3.1.1 Brue catchment 20 

Located in the southwest of England, the Brue River catchment has a history of severe 21 

flooding. Draining an area of 135 km2 to its river gauging station at Lovington (Fig. 3a), the 22 

catchment is predominantly rural and of modest relief and gives rise to a responsive flow 23 

regime due to its soil properties. The major land use is pasture on clay soil. The mean annual 24 

rainfall in the catchment is 867 mm and mean river flow is 1.92 m3/s (basin average, 1961-25 

1990) (Table 1). This catchment has been extensively used for research on weather radar, 26 

quantitative precipitation forecasting and rainfall-runoff modelling, as it has been facilitated 27 

with a dense rain gauge network (see, e.g. Moore et al., 2000; Bell & Moore, 2000) 28 

The flow in Brue River was simulated by HBV-96 model (Lindström et al., 1997), which is 29 

an update version of the HBV rainfall-runoff model (Bergström, 1976). This lumped 30 
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conceptual hydrological model consists of subroutines for snow accumulation and melt 1 

(excluded for Brue), soil moisture accounting procedure, routines for runoff generation, and a 2 

simple routing procedure (Fig. 3b). The input data used are hourly observations of 3 

precipitation (basin average), air temperature, and potential evapotranspiration (estimated by 4 

modified Penmann method) computed from the 15 minutes data. Model time step is one hour 5 

( t  = 1 hr). The model is calibrated automatically using adaptive cluster covering algorithm 6 

(ACCO) (Solomatine et al., 1999). The data sets used for calibrating and validating the HBV-7 

96 model are based on Shrestha and Solomatine (2008). It should be mentioned that the 8 

discharge data on calibration has many peaks which are higher in magnitude compared to 9 

those in the validation data. 10 

 11 

Figure 3. (a) The Brue catchment showing dense rain gauges network and its river gauging station, Lovington, 12 
where the discharge is measured, and (b) Schematic representation of HBV-96 model (Lindström et al., 1997) 13 
with routine for snow (upper), soil (middle), and response (bottom) (Shrestha and Solomatine, 2008). 14 
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The uncertainty analyses conducted for Brue catchment are based on one-step-ahead flow 16 

estimates, i.e. LT =1 hour (simulation mode). Effective rainfall (rainfall minus 17 

evapotranspiration) values were used instead of using rainfall data directly.  18 

3.1.2 Upper Severn catchments: Yeaton, Llanyblodwel, and Llanerfyl 19 

Flowing from Cambrian Mountains (610 meters) in Wales, the River Severn is the longest 20 

river in Britain (about 354 km). It forms the border between England and Wales and flows 21 

into the Bristol Channel. The river drains an area of approximately 10500 km2 above the 22 

monitoring station at Upton on Severn. Mean annual precipitation ranges from approximately 23 

2500 mm in the west to less than 700 mm in the south (EA, 2009). The Upper Severn includes 24 

rock formations classified as non-aquifers as well as loamy soils characterised by their high 25 

water retention capacity (for more detailed description of the Upper Severn, see Hill and Neal, 26 

1997). Flooding is a major problem at the downstream due to excessive rainfall at the 27 

upstream (the Welsh hills), early 2014 floods being the most recent significant floods that 28 

occurred.  29 

In this work, the three sub-catchments of Upper Severn River are analysed: Yeaton, 30 

Llanyblodwel, and Llanerfyl (Fig. 4). The area, elevation, mean flow, mean annual rainfall 31 

and basin lag time (time of concentration) information of the catchments are presented in 32 
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Table 1. Yeaton catchment is located at a lower elevation and over a flat area compared to 1 

Llanerfyl and Llanyblodwel. This catchment has also the longest basin lag time. The smallest 2 

catchment in terms of drainage area is Llanerfyl, which also has the shortest basin lag time 3 

(approx. 3-5 hours) leading to flash floods, so that the predictive uncertainty information on 4 

flood forecast for this catchment has especially high importance. 5 

 6 

Figure 4. The Upper Severn catchments: Yeaton, Llanyblodwel and Llanerfyl. 7 

 8 

Table 1. Summary of the main basin characteristics. 9 

 10 

In Midlands Flood Forecasting System (MFSS; a Delft-FEWS forecast production system as 11 

described in Werner et al., 2013), the Upper Severn catchment is represented by a 12 

combination of numerical models for: rainfall-runoff modelling (MCRM; Bailey and Dobson, 13 

1981), hydrological routing (DODO; Wallingford, 1994), hydrodynamic routing (ISIS; 14 

Wallingford, 1997), and error correction (ARMA). The input data used within MFSS includes 15 

(a) Real Time Spatial data (observed water level and raingauge data as well as air temperature 16 

and catchment average rainfall); (b) Radar Actuals, (c) Radar Forecasts, and (d) Numerical 17 

Weather Prediction data (all provided by the UK Meteorological Office). The data available 18 

was split into two parts for calibration (7 March 2007 08:00 – 7 March 2010 08:00) and 19 

validation (7 March 2010 20:00 – 7 March 2013 08:00), preserving similar statistical 20 

properties in both data sets. 21 

The forecasting system issues two forecasts per day (08:00 and 20:00 UTC) with a time 22 

horizon of two days. First, the estimates of internal states are obtained running the models 23 

(which are forced with observed precipitation, evapotranspiration and temperature) in 24 

historical mode over the previous period. The state variables for the (hydrological) model are 25 

soil moisture deficit (SMD, the amount of water required to bring the current soil moisture 26 

content to field capacity in the root zone), groundwater level (GW), snow water equivalent 27 

(SWE), and snow density (SD). Using a standalone version of MFSS, the system (forced by 28 

the forecasted precipitation) is then run forward with a time step of 1 hour.  29 

It is important to note that this case study, unlike Brue catchment, includes errors in the 30 

meteorological forecast and the back transformation of discharge to water level – via rating 31 

curve – in a lumped manner. Therefore, the effects of rating curve uncertainty (Di 32 
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Baldassarre and Montanari, 2009; Sikorska et al., 2013; Coxon et al., 2014; Mukolwe et al., 1 

2014) and precipitation forecast uncertainty (Kobold and Sušelj, 2005; Shrestha et al., 2013) 2 

are accommodated as well.  3 

The uncertainty analysis is aimed at estimating predictive uncertainty for the forecast time 4 

series ( t  = 12 hrs) corresponding to the lead time of interest. In this study, we consider the 5 

lead times LT =1, 3, 6, 12, and 24 hours only. 6 

 7 

3.2 Experimental setup 8 

In all case studies the QR uncertainty prediction method employs a linear regression model. 9 

While in Brue catchment the linear regression model estimates the quantile τ of observed 10 

discharge conditioned on simulated discharge, in Upper Severn catchments the linear 11 

regression model estimates the quantile τ of observed water level conditioned on forecasted 12 

water level. In UNEEC the M5 model tree is employed as the prediction model. Selection of 13 

best set of the input variables for UNEEC is based on AMI and correlation analysis, and the 14 

number of clusters is identified by the model-based optimization. UNEEC is configured 15 

differently for each case, as described below. 16 

3.2.1 Brue catchment 17 

Shrestha and Solomatine (2008) tested UNEEC method on Brue catchment to assess residual 18 

uncertainty of the one-step-ahead flow estimates. The predictors of model error identified 19 

using AMI and correlation analysis were only lagged discharge (Qt-1, Qt-2, Qt-3) and effective 20 

rainfall (REt-8, REt-9, REt-10) values. In this study, however, we try a different set of predictors. 21 

In addition to the mentioned variables, we consider also the two most recent past error values 22 

(et-1, et-2), allowing thus for incorporating the autoregressive features (for this case study it 23 

paid off - MPI values decreases (< 5%) during both training and test periods). As in the 24 

previous study the number of clusters used was 5.  25 

3.2.2 Upper Severn catchments: Yeaton, Llanyblodwel, and Llanerfyl 26 

In the Upper Severn case studies, a variety of predictors are considered for the model, e.g. 27 

observed and modelled water level, forecasted precipitation, and state variables (GW, SMD, 28 

SWE, SD). Although the benefits of using the soil moisture (observed or modelled) and 29 

groundwater level information for modelling rainfall-runoff processes and predicting runoff is 30 
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well known in the literature (Aubert et al., 2003; Lee and Seo, 2011; Tayfur et al., 2014), we 1 

cannot cite any studies exploring the possible advantages of using such information for 2 

improving predictive capabilities of uncertainty analysis methods. Therefore, the dependence 3 

of model residuals on variables expressing internal state of the catchments is also analysed. 4 

Among the state variables, the most significant correlation with the model error was shown by 5 

GW and SMD. While GW was found to be positively correlated with model residuals (i.e. as 6 

GW increases, error increases too), SMD and model error had a negative correlation. The 7 

positive correlation between GW and model residuals can be explained by the fact that high 8 

groundwater levels are associated with excessive precipitation during which model error are 9 

higher in magnitude. High soil moisture deficit, on the other hand, indicates that there has 10 

been no excessive precipitation and the soil is not filled up with infiltrated water. High 11 

evaporation rates (causing soil to dry up) can also result in high soil moisture deficit. It should 12 

be noted that the latter is less likely to be valid for the Upper Severn catchments considering 13 

the prevailing climate in the region. Accordingly, lower soil moisture deficit is linked with 14 

excessive precipitation events such that soil moisture deficit is negatively correlated with the 15 

model error. 16 

Eventually, on the basis of studying the correlations and AMI between various candidate 17 

predictors and the output, and using expert judgement, the following variables have been 18 

chosen to serve as candidate predictors: 19 

 the most recent precipitation (Pt-1),  20 

 the observed water level (Hobs, t-1),  21 

 error (et-1),  22 

 state variables GW and SMD.     23 

It should be noted that subscript t-1 denotes the 12 hours delay since the data sets analysed 24 

has a time step of 12 hours (see Sect. 3.1.2).  25 

In an attempt of removing least influential inputs, the set of variable above was then subjected 26 

to the model-based optimization: the degree of influence of various inputs has been explored 27 

by running the UNEEC predictor for different sets of inputs and comparing the resulting PICP 28 

and MPI. It was found that there were only negligible changes (and mostly no change) when 29 

Pt-1 and et-1 were included or not. Based on this analysis these two variables have been 30 

excluded from the further experiments, and only the variables GW, SMD, Hobs, t-1 have been 31 

used as predictors. Inclusion of GW was important since this variable provides more 32 
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explainable results in terms of PICP and MPI. It should be noted that using GW and SMD can 1 

be considered as a proxy for using the rainfall information. 2 

Fuzzy clustering in UNEEC is carried out by the fuzzy c-means method and employs 6 3 

clusters with the fuzzy exponential coefficient set to 2. The number of clusters was chosen 4 

based on computation of Partition Index (SC), Separation Index (S) and Xie and Beni Index 5 

(XB) (Bensaid et al., 1996; Xie and Beni, 1991). (It should be mentioned that the sensitivity 6 

of PICP and MPI to different number of clusters supports the choice of 6 clusters.)  7 

Within the variables considered in clustering, GW is the most influential one. Fig. 5 shows 8 

fuzzy clustering of GW, SMD, and Hobs, t-1 data for Llanyblodwel catchment (lead time = 6 9 

hrs). This figure contains also the plot of model residuals against GW where one can observe 10 

heteroscedasticity of model residuals with respect to GW. As can be easily seen, while cluster 11 

2 is associated with very high groundwater levels, clusters 4 is associated with the low 12 

groundwater level conditions, which might occur due to the low water levels in the river 13 

and/or high soil moisture deficit.  14 

 15 

Figure 5. Fuzzy clustering of: GW (left, top) and its relation with the model residuals (right), SMD (left, middle) 16 
and Hobs, t-, (left, bottom) for calibration period (7 March 2007 08:00 – 7 March 2010 08:00) - Llanyblodwel, 17 
lead time = 6 hrs. 18 
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It must be noted that in this study the hydrological model output is not included as yet another 20 

input to UNEEC (along with the observed discharge/water level) in all case studies. However 21 

it may be worth exploring this idea in the further studies.   22 

 23 

4 Results and discussion 24 

This part focuses on statistical error analysis (Sect. 4.1) and comparison of uncertainty 25 

analysis results (Sect. 4.2). 26 

4.1 Statistical error analysis 27 

Understanding the quality of hydrological model quality (e.g. water level forecasts) is 28 

important in order to discuss uncertainty analysis results provided by any method. For this 29 

purpose we analyse the error time series statistically. We also check the homoscedasticity (the 30 

assumption which simplifies the mathematical and computational treatment of random 31 
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variables) of the model residuals. Furthermore, we investigate the normality of model 1 

residuals through probability plots of the normal distribution and the t location-scale 2 

distribution, which pdf is given by Eqn. 14 and Eqn. 15, respectively  3 
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where µ: location parameter (mean), σ: scale parameter (standard deviation), ν: shape 6 

parameter (i.e., the number of degrees of freedom), and Γ: gamma function. The t location-7 

scale distribution is similar to the normal distribution but has heavier tails making it more 8 

prone to outliers. Within this study outliers refer to very high model residuals occurring 9 

during extreme precipitation and flow events. In case of normality of data its analysis 10 

becomes much simpler, however often this is not the case.  11 

Residual uncertainty varies in time and with the changing hydrometeorological situation, so in 12 

this paper we investigate the residuals distribution for different hydrometeorological 13 

conditions represented by clusters found within the UNEEC method (on the training dataset). 14 

4.1.1 Brue catchment 15 

The observed discharge plotted against simulated discharge during calibration and validation 16 

periods can be seen in Fig. 6a and 6c, respectively. During calibration although the model 17 

residuals are lower at flows higher than 35 m3/s compared to at flows less than 35 m3/s (in 18 

Fig. 6a) it can be seen from Fig. 6c that the HBV-96 model is less accurate in simulating high 19 

flows compared to low flows. It is also noteworthy to mention that in calibration (Fig. 6a) 20 

there is higher dispersion around the diagonal line than in validation (Fig. 6c.) 21 

Fig. 6b and 6d shows how model residuals change with increasing discharge values during 22 

calibration and validation periods, respectively. Clearly, model residuals' of Brue catchment 23 

are heteroscedastic, that is to say, the variance of model residuals vary with the effect being 24 

modelled, i.e. observed discharge. 25 

 26 

Figure 6.  Observed discharge, simulated discharge and model residuals during calibration and validation (Brue 27 
catchment). 28 
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 1 

Fig. 7 presents probability plots for model residuals during training. The top left plot 2 

compares the two selected distributions (normal distribution and t location-scale distribution). 3 

The estimated parameters for the best fit to data are µ = 0.0363 m3/s and σ = 0.7619 m3/s for 4 

normal distribution - same with the empirical parameters. On the other hand, the best fit 5 

parameters for t location-scale distribution are different: µ = 0.0607 m3/s, σ = 0.2351 m3/s and 6 

ν = 1.5833. From this figure, one can conclude that the model residuals’ distribution is far 7 

from being close to normal even though the parameters of the fitted normal distribution are 8 

the same with those obtained from the empirical distribution. It is obvious that t location-scale 9 

distribution provides better fit as it is able to enclose the data at the tails much better 10 

compared to fitted normal distribution. Yet, the outliers are still not represented fully. 11 

 12 

Figure 7. Probability plots for model residuals (during training) for Brue catchment: comparison of the two 13 
fitted distributions:  normal vs. t location-scale distribution (top left), and the clusters.   14 
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Normality of model residuals' distribution is further investigated for different 16 

hydrometeorological conditions as identified by clustering in the space of the predictor 17 

variables. Analysis of probability plot for each cluster formed indicates that there is no 18 

significant departure from normality (with regard to the fitted normal distribution) unlike in 19 

the overall model residuals. The most striking result among all clusters is achieved in the one 20 

representing very high flow and high rainfall (Cluster 4, 0.95% of total data) (Fig. 7, bottom 21 

middle). The distribution of all the other clusters (Cluster 1, 2, 3, and 5) was found to be more 22 

or less equally close to normal. When visually compared these distributions were only slightly 23 

less close to normal with respect to Cluster 4.  24 

4.1.2 Upper Severn catchments: Yeaton, Llanyblodwel, and Llanerfyl 25 

The quality of (water level) forecasts is assessed based on standard deviation of model error. 26 

The results are comparatively presented for different lead times in Fig. 8. It can be clearly 27 

seen that during both calibration and validation as lead time increases, the standard deviation 28 

of error increases as well. Also, it should be noticed that there is a direct increasing effect of 29 

shorter basin lag time on standard deviation. For example, catchment with shortest basin lag 30 

time, that is Llanerfyl, has always larger standard deviation for all lead times. On the contrary, 31 

the smallest standard deviation always occurs in the catchment having the longest basin lag 32 
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time, which is Yeaton. This is mainly due to the fact that the basin lag time represents 1 

memory of a catchment. Hence, flood forecasting capability of a hydrological model is 2 

affected negatively when the basin lag time is short. 3 

 4 

Figure 8. Standard deviation of model error during calibration and validation (Upper Severn catchments). 5 

 6 

The observed water levels are plotted against forecasted water levels in Llanyblodwel 7 

catchment during calibration and validation for lead time = 6 hrs in Fig. 9a and 9c, 8 

respectively. Fig. 9b and 9d shows model error plotted against observed water level on the 9 

logarithmic scale. Although it is not very clear from Fig. 9a (and Fig. 9c), it is evident from 10 

Fig. 9c (and Fig. 9d) that the model error increases with higher water levels, as expected. This 11 

confirms the heteroscedasticity of model residuals. 12 

 13 

Figure 9.  Observed water level, forecasted water level and model residuals during calibration and validation 14 
(Llanyblodwel, lead time = 6 hrs). 15 

 16 

Normality of model residuals for Llanyblodwel catchment for all lead times was investigated 17 

(see Fig. 10, top left). Visual inspection of probability plots, superimposed on which the line 18 

joining the 25th and 75th percentiles of the fitted normal distributions, reveals that errors are 19 

not normally distributed, i.e. the data does not fall on the straight line as it is especially the 20 

case for the tails. It should be realized that the departure from normality increases with longer 21 

lead times. The top right plot in Fig. 10 compares the two selected distributions (normal 22 

distribution and t location-scale distribution) for model residuals during training. It can be 23 

concluded that neither the normal distribution nor the t location-scale distribution provides a 24 

good fit to the data. 25 

 26 

Figure 10. Probability plots for model residuals (during training) for Llanyblodwel catchment: comparison of 27 
fitted normal distributions for all the lead times (top left), comparison of the two fitted distributions: normal vs. t 28 
location-scale distribution (top right) and the clusters (lead time = 6 hrs).  29 

 30 

Furthermore, a normality check for model residuals' distribution is made individually for the 31 

data clusters corresponding to particular hydrometeorological conditions. The variables used 32 
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for clustering are groundwater level (GW), soil moisture deficit (SMD), and observed water 1 

level (Hobs, t-1). It is seen that the level of achieving normality in model residuals' distribution 2 

for each cluster is substantially poorer if compared to the Brue catchment. This can be 3 

explained by the fact that the error time series data being analysed has a time step of 12 hrs 4 

which is long enough to hinder effects of varying water levels on error. Another reason can be 5 

related to the nature of model residuals, e.g. forecasted precipitation is used to predict water 6 

levels. This brings a great amount of uncertainty and a higher difference between the actual 7 

and the predicted water levels (i.e. higher model residuals). It is also worth mentioning that 8 

the distribution closest to normal is found in the data cluster representing high groundwater 9 

levels, high water levels, and low soil moisture deficit (Cluster 2, comprising 4.6% of the total 10 

data set) (Fig. 10, middle). Distributions of Clusters 1, 3, 4, 5, and 6 are far from normal.   11 

Both Brue and Llanyblodwel case studies indicate that it is not possible to understand the 12 

origin of the model error in uncertainty assessment looking at the probability plots of model 13 

residuals for each cluster. However, what is worthwhile to mention that it is mostly the 14 

extreme events making the overall distribution non-Gaussian. Classifying data so that 15 

different hydrometeorological conditions (most importantly, the extreme events), are 16 

separated helps to achieve homogeneity, and thus normality in model residuals' distribution. 17 

Therefore clustering can be suggested as an alternative to transformation of model residuals 18 

before applying any statistical methods on them. 19 

4.2 Uncertainty prediction by QR and UNEEC 20 

Uncertainty analysis results from both methods are evaluated and compared employing the 21 

validation measures explained in Section 2.2. 22 

4.2.1 Brue catchment 23 

Validation measures PICP, MPI, and ARIL are provided in Table 2. In terms of PICP, even 24 

though QR provides PICP values slightly closer to 90% and 50% during training, UNEEC 25 

was found to be more reliable in validation especially for the 90% CL. While the narrowest 26 

prediction interval on average is given by UNEEC during training for both 90% and 50% CL, 27 

comparable MPI values are obtained during validation. QR has smaller ARIL values 28 

particularly for the 90% CL. However on aggregate UNEEC yields better results over QR, 29 

especially in validation. 30 



 23 

 1 

Table 2. Uncertainty analysis results for 90% and 50% confidence levels (Brue catchment). 2 

 3 

Looking at Fig. 11a, visual analysis of 90% prediction intervals for the highest flow period in 4 

validation reveals that neither UNEEC nor QR is perfectly able to enclose the observations of 5 

high flows. Overall, in validation the analysis results from UNEEC and QR are comparable 6 

for the highest peak event (Table 2). For medium peaks in validation, however, QR produces 7 

wider uncertainty bounds in comparison to UNEEC. This is illustrated in Fig. 11b. For this 8 

medium peak event it should be noted that the higher MPI (and ARIL) value by QR is not 9 

manifested in PICP – both methods have very close PICP values (Table 2). One of the reasons 10 

for this may relate to the fact that by design UNEEC uses more predictors that explain the 11 

(past) catchment behaviour and hence is able to “memorize” catchment behaviour better, and 12 

this is especially pronounced during the longer periods of medium flows rather than during 13 

high flows having shorter duration. 14 

 15 

Figure 11. Comparison of prediction limits for 90% confidence level during validation: (a) for the highest peak 16 
event (16 December 1995 04:00 – 28 December 1995 16:00), and (b) for a medium peak event (6 January 1996 17 
00:00 – 18 January 1996 12:00). 18 

 19 

We have also compared performance of QR and UNEEC for each cluster found by UNEEC 20 

during training. Unlike for the whole data set (which is highly heterogeneous due to extremes 21 

in rainfall-runoff process) analysis for each individual cluster focuses on more homogeneous 22 

data sets. Table 3 shows the corresponding PICP, MPI and ARIL. In general, it is difficult to 23 

decide which method is better – results are mixed. However there is one observation that can 24 

be made. For most clusters there is a dependency between PICP and MPI: typically the higher 25 

MPI corresponds to PICP being closer to the CL (90%). This may be explained by the fact 26 

that for narrow MPIs PICP would be under “pressure” and be lower (however it would be 27 

difficult to generalize). For example, for the high flow cluster (Cluster 4) QR appears to be 28 

better in terms of PICP, whereas UNEEC ends up with very narrow MPI and this is probably 29 

the reason why its PICP could not reach 90% CL.  30 

The reported comparison was done for the clusters found by UNEEC during training. In 31 

principle a similar comparison can be also made for the homogeneous groups of data in the 32 
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validation set, however this may not have much sense since this set imitates the model in 1 

operation, and in operation all models are run for individual input vectors at each time step of 2 

the model run, and not for the whole set of data (so the “validation set” in operation will never 3 

exist). 4 

 5 

Table 3. PICP, MPI, and ARIL values for each cluster (training, 90% confidence level, Brue): UNEEC vs. QR. 6 

 7 

4.2.2 Upper Severn catchments: Yeaton, Llanyblodwel, and Llanerfyl 8 

For these catchments, in order to reflect performance for different lead times better, we are 9 

using the graphical representation of results.  10 

Fig. 12 shows the PICP values plotted against the MPI for the calibration and validation 11 

periods. The most important general conclusion is that both methods show excellent results in 12 

terms of PICP for 90% CL. For the 50% CL the results seem to be worse, especially for 13 

UNEEC – but the reader should take into account that for the low lead times the hydrological 14 

models are very accurate, hence MPI is extremely narrow (especially for 50% CL) and it is no 15 

surprise PICP cannot be accurately calculated. Further, for the 90% CL, the following can be 16 

said: for Yeaton QR does slightly better than UNEEC; for Llanyblodwel both methods are 17 

equally good; for Llanerfyl: UNEEC method is a bit better than QR. 18 

 19 

Figure 12. Comparison of UNEEC and QR based on both PICP and MPI during calibration period (7 March 20 
2007 08:00 – 7 March 2010 08:00) and validation period (7 March 2010 20:00 – 7 March 2013 08:00) for 90% 21 
and 50% confidence level (The size of the marker represents the lead time, i.e. bigger the marker, longer the lead 22 
time). 23 

 24 

For the further analysis, Fig. 13 presents MPI and ARIL values for the 90% CL on calibration 25 

and validation data sets. It can be seen that with the increase of the lead time, the forecast 26 

error obviously increases, and the values of both indicators follow. In view of the (high) 27 

model accuracy, the relatively low MPI values in Yeaton catchment are not surprising for 28 

both methods. Overall, the results are mixed: for some catchments QR is marginally better, 29 

for other catchments UNEEC has higher performance. 30 

 31 



 25 

Figure 13. MPI (left) and ARIL (right) values obtained during calibration period (7 March 2007 08:00 – 7 1 
March 2010 08:00) and validation period (7 March 2010 20:00 – 7 March 2013 08:00) for 90% confidence level. 2 

 3 

For the further comparison of estimated prediction limits through uncertainty plots, three 4 

cases are selected based on the relationship between basin lag time and lead time. These cases 5 

are (1) Yeaton, lead time = 3 hrs (lead time < basin lag time), (2) Llanyblodwel, lead time = 6 6 

hrs (lead time ≈ basin lag time), and (3) Llanerfyl, lead time = 12 hrs (lead time > basin lag 7 

time). The fundamental idea here is to understand how well the residual uncertainty is 8 

assessed with regard to forecast lead time and its relation to basin lag time. The catchment 9 

with the longest basin lag time (Yeaton) is considered for Case 1, where the effect of a very 10 

short lead time is to be investigated. Here on this decision, there is the deliberate intention to 11 

combine the condition of having more accurate model outputs (i.e. extremely small residuals) 12 

as well. Case 3, on the other hand, is important to understand lead time-basin lag time 13 

relationship for the worst situation: relatively poor quality of forecasting model and the 14 

longest lead time. This is the most critical case since the performance of predictive 15 

uncertainty method's performance has a bigger role in operational decision making process. 16 

Apart from these two extreme cases, Case 2 represents a balanced situation where the lead 17 

time of interest and basin lag time are approximately equal. Llanyblodwel catchment is 18 

chosen for this case as its model has a moderate predictive accuracy. Fig. 14 compares the 19 

computed prediction limits by QR and UNEEC for these cases during the latest 11 months 20 

period of validation (April 2012 - February 2013). It was during late 2012 that Upper Severn 21 

catchment suffered from serious flooding and this period corresponds to the right half of the 22 

plots. The most salient observations from Fig. 14 are as follows:  23 

 In Llanerfyl, one can notice a strange behaviour of the model causing sharp changes in 24 

forecasted water levels (unstable model outputs), and thus in prediction limits. 25 

Considering that Llanerfyl catchment has a basin lag time of ~3-5 hrs, hydrological 26 

conditions in the catchment, e.g. water levels, can change significantly in 12 hrs ( t , 27 

time step of the data set). Therefore, it is not surprising that the sharpest changes occur 28 

in this catchment's hydrograph as compared to Yeaton and Llanyblodwel. One can 29 

observe even more significant changes in the second half period of the hydrograph. It 30 

is necessary to mention that these oscillating changes appear as a consequence of the 31 

forecasting model's extremely poor performance. 32 
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 For the low water levels in Yeaton and Llanyblodwel, UNEEC gives wider prediction 1 

intervals as compared to QR. A possible explanation for this can be encapsulation of 2 

groundwater level information in UNEEC. Groundwater levels remains at higher 3 

levels for longer periods than water levels in the river (i.e. due to slow and long 4 

response time of groundwater levels to changing hydrometeorological conditions). 5 

Thus, using GW as an input variable in its nonlinear model, UNEEC has the potential 6 

to provide uncertainty band of larger widths for water levels when the groundwater 7 

level is high.  8 

 For the medium water levels in Yeaton and Llanybldowel, QR gives wider prediction 9 

intervals as compared to UNEEC, which is confirmed by the higher MPI and ARIL 10 

(without any significant improvements in PICP) values for QR (Table 4) obtained for 11 

medium water levels. This is particularly true on falling limb part of the hydrographs 12 

as exemplified in Fig. 15a and Fig. 15b (for Yeaton and Llanyblodwel, respectively). 13 

The average of the MPI values corresponding to three examples shown from Yeaton 14 

and Llanyblodwel, respectively, are 0.0204 and 0.0201 meters for UNEEC whereas 15 

for QR it is 0.0418 and 0.0295 meters.                                                                                                                                        16 

 For peak water levels in Yeaton and Llanyblodwel catchments, it is mostly QR that 17 

produces higher upper prediction limit than UNEEC. Yet, this does not contribute to 18 

the overall performance of the method significantly. On the contrary, it is seen in some 19 

cases that such high upper prediction limits makes the uncertainty band unnecessarily 20 

too wide. 21 

 Continuous peaks prevail in Llanerfyl catchment (as its basin lag time is way shorter 22 

than the forecast lead time of interest). Such continuous peaks occur during certain 23 

periods in Llanyblodwel catchment too. In most of these cases, UNEEC gives 24 

narrower uncertainty band, and wider prediction interval computed by QR is 25 

redundant. That is to say, it doesn't contribute QR method's performance (as measured 26 

by PICP) at all in terms of its ability to enclose more observations within the band. For 27 

peak water levels, however, QR is slightly more informative than UNEEC.  28 

 Noticeably, upper prediction limits obtained by QR in Llanerfyl catchment for the 29 

long-lasting falling limb part of the hydrograph (indicated by arrows in Fig. 14c) are 30 

too high, e.g. even greater than those provided by UNEEC. QR (in this study, by 31 

design) is a method building simple linear regression models considering only 32 
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observed water levels on forecasted water levels. Having rather simple mathematical 1 

formulation, it might be that sensitivity of the computed upper prediction limit to the 2 

magnitude of water level increases, and shows an amplifying effect on uncertainty 3 

band width. 4 

 5 

Figure 14. Comparison of prediction limits for 90% confidence level during validation (1 April 2012 – 7 March 6 
2013): (a) Yeaton, lead time = 3 hrs, (b) Llanyblodwel, lead time = 6 hrs, (c) Llanerfyl, lead time = 12 hrs. 7 

 8 

Figure 15. Comparison of prediction limits for falling limb part of the hydrographs (medium water levels) for 9 
90% confidence level during validation: (a) Yeaton, lead time = 3 hrs, (b) Llanyblodwel, lead time = 6 hrs, (c) 10 
Llanerfyl, lead time = 12 hrs. 11 

 12 

Table 4. PICP, MPI, and ARIL values for MEDIUM water levels (validation, 90% confidence level): UNEEC 13 
vs. QR. 14 

 15 

Table 5 shows the values of validation measures (PICP, MPI, and ARIL) for each cluster 16 

(obtained during training) for Llanyblodwel catchment (lead time = 6 hrs). For flood 17 

management the cluster 2 (4.6% of all data) – with the high groundwater levels, and hence 18 

potentially corresponding to flood conditions – could be the most interesting one. In UNEEC, 19 

the highest MPI value was obtained for this cluster with a relatively bad PICP value compared 20 

to the other clusters. Similar to UNEEC, the largest MPI was obtained for this cluster with QR 21 

method also. Both methods provide equally bad PICP values. Giving a wider uncertainty band 22 

than UNEEC on average, QR is less capable of estimating reasonable prediction limits for 23 

very high groundwater levels. This is also supported by its greater (12%) ARIL value 24 

compared to UNEEC.  25 

PICP and MPI values for the cluster 4 should be mentioned as well. This cluster represents 26 

the situations with the very low water levels, very low groundwater levels, and very high soil 27 

moisture deficit, and constitutes 16.6% of the whole data. In comparison to UNEEC, QR 28 

provides a PICP value very close to 90% CL despite its slightly lower MPI. Thus, one can say 29 

that UNEEC fails in providing reliable uncertainty estimates for the extreme condition 30 

associated to very low water and groundwater levels. This can be due to the effect of using 31 

state variables as predictors. All in all, the state variables are calculated by the model and they 32 

cannot reflect real catchment conditions accurately, especially when the (hydrological) model 33 
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is not very accurate. That is particularly true for the extreme events considering that models 1 

mostly fail in simulating such events.  2 

Overall, UNEEC is worse than QR on for one cluster but better or equal on all other clusters, 3 

however, in general, both methods in terms of PICP show reasonably good results. 4 

 5 

Table 5. PICP, MPI, and ARIL values for each cluster (training, 90% confidence level, Llanyblodwel, lead time 6 
= 6 hrs): UNEEC vs. QR. 7 

 8 

 9 

5 Conclusions and recommendations 10 

This study should be seen as accompanying the study by López López et al. (2014) (and 11 

earlier work on UNEEC and QR) and presents a comparative evaluation of uncertainty 12 

analysis and prediction results from QR and UNEEC methods on the four catchments that 13 

vary in hydrological characteristics and the models used: Brue catchment (simulation mode) 14 

and Upper Severn catchments - Yeaton, Llanyblodwel, and Llanerfyl (forecasting mode). The 15 

latter set of case studies is important from a practical perspective in that the effect of lead time 16 

on uncertainty analysis results and its relation with basin lag time is demonstrated. For both 17 

QR and UNEEC different model configurations than their previous applications are 18 

considered. One of reasons to compare these two methods was to understand if a simpler 19 

linear method (QR) using less input data performs well compared to a more complex (non-20 

linear) method (UNEEC) with more predictors. The following conclusions can be drawn from 21 

the results of this study: 22 

 In terms of easiness of setup (data preparation and calibration), preference should be 23 

given to QR simply because it is a simpler linear method with one input variable (in 24 

this study), whereas UNEEC has more steps and requires more data analysis. 25 

However, the model setup is carried out only once, and in operation both methods can 26 

be easily used and both have very low running times (a fraction of a second on a 27 

standard PC) since they are based on algebraic calculations.  28 

 In almost all case studies both methods adequately represent residual uncertainty and 29 

provide similar results consistent with understanding of the hydrological picture of the 30 

catchment and the accuracy of the (hydrological) models used. We can recommend 31 

both methods for the use in flood forecasting.  32 
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 In one case study, Llanerfyl, we found that UNEEC was giving more adequate 1 

estimates than QR. This catchment has a shorter basin lag time and the model outputs 2 

for this catchment were characterized by a relatively high error, so our conclusion was 3 

that probably in such a rapid response catchment the UNEEC’s more sophisticated 4 

non-linear models were able to capture relationships between the hydrometeorological 5 

and state variables, and the quantiles better than the QR’s linear model.  6 

 A useful finding is that inclusion of a variable representing groundwater level (GW) as 7 

a predictor in UNEEC improves its performance for the Upper Severn catchments. 8 

This can be explained by the fact that this variable has a high level of information 9 

content about the state of a catchment. However, it should be noted that in other 10 

catchments using such information can be misleading due to slow (and long) response 11 

time of groundwater levels to changing hydrometeorological conditions. Yet, overall, 12 

it can be advised to make use of variables which can be representative of the 13 

hydrological response behaviour of a catchment for improving the predictive capacity 14 

of data-driven methods. 15 

There are limitations of the presented research (aspects that have not been taken into account 16 

in this paper due to the time and project settings constraints), which can be also seen as 17 

recommendations for the future research. 18 

We recommend comparing the two presented methods (QR and UNEEC) with more 19 

predictive uncertainty methods which use different methodologies, such as HUP 20 

(Krzysztofowicz, 1999), the more recent MCP (Todini 2008) and DUMBRAE (Pianosi and 21 

Raso, 2012). Yet another recommendation (induced by the referee’s and the Editor’s 22 

suggestions) is to extend the list of the possible performance measures and to test the 23 

applicability of the methods developed for the assessment of the probabilistic forecasts quality 24 

(Laio and Tamea, 2007) which mathematical apparatus is transferrable to the problem of 25 

residual uncertainty prediction. 26 

It can be also recommended to test capabilities of different predictive uncertainty methods on 27 

theoretical cases with the known distributions, as well as on the catchments of distinct 28 

hydrologic behaviour, with diverse climatic conditions, and having various hydrological 29 

features. In this study, we found that the basin lag time is a notable characteristic of a 30 

catchment having great influence on uncertainty analysis results (as measured by PICP and 31 
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MPI). When the lag time is longer, the catchment memorizes more information regarding its 1 

hydrological response characteristics.  2 

On the other hand, exploring the performance of different methods on similar catchments 3 

(Huang et al., 2012; Toth, 2013; Gregor et al., 2013; Laaha et al., 2013) and finding bases for 4 

generalized guidelines on the selection of most appropriate predictive uncertainty method in 5 

operational flood forecasting practices is also important and could be considered in the further 6 

studies as well. 7 

When different predictive uncertainty methods are evaluated based on their comparative 8 

performance, it is more important to have validation measures incorporating certain aspects of 9 

rainfall-runoff process, i.e. varying flow conditions. For example, the accuracy of the 10 

hydrological model decreases during high flow events, and thus the amount of residual 11 

uncertainty increases. This necessitates exploring validation measures linking the prediction 12 

interval to the (hydrological) model quality, e.g. by employing the weighted mean prediction 13 

interval (Dogulu et al., 2014). 14 

There are other possibilities for further improvements in the both presented methods. For 15 

example, the different configurations of QR, the alternative clustering techniques for UNEEC, 16 

as well as using in it instance-based learning (e.g. locally weighted regression) as the 17 

predicting model can be explored further. 18 
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FIGURES AND TABLES 2 

 3 

 4 

Figure 1. Quantile regression example scheme considering different quantiles. 5 
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 3 
Figure 2. An example to fuzzy clustering of input data (the predictors are past rainfall at lag t-2 and past flow at 4 
lag t-1) during training of the uncertainty model, U (adapted from Solomatine, 2013).  5 
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Figure 3. (a) The Brue catchment showing dense rain gauges network and its river gauging station, Lovington, 3 
where the discharge is measured, and (b) Schematic representation of HBV-96 model (Lindström et al., 1997) 4 
with routine for snow (upper), soil (middle), and response (bottom) (Shrestha and Solomatine, 2008). 5 
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Figure 4. The Upper Severn catchments: Yeaton, Llanyblodwel and Llanerfyl. 3 
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 3 

Figure 5. Fuzzy clustering of: GW (left, top) and its relation with the model residuals (right), SMD (left, middle) 4 
and Hobs, t-1 (left, bottom) for calibration period (7 March 2007 08:00 – 7 March 2010 08:00) - Llanyblodwel, 5 
lead time = 6 hrs. 6 
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 1 

Figure 6.  Observed discharge, simulated discharge and model residuals during calibration and validation (Brue 2 
catchment). 3 
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Figure 7. Probability plots for model residuals (during training) for Brue catchment: comparison of the two 2 
fitted distributions:  normal vs. t location-scale distribution (top left), and the clusters.   3 
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 1 

Figure 8. Standard deviation of model error during calibration and validation (Upper Severn catchments). 2 
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Figure 9.  Observed water level, forecasted water level and model residuals during calibration and validation 2 
(Llanyblodwel, lead time = 6 hrs). 3 
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 3 

Figure 10. Probability plots for model residuals (during training) for Llanyblodwel catchment: comparison of 4 
fitted normal distributions for all the lead times (top left), comparison of the two fitted distributions: normal vs. t 5 
location-scale distribution (top right) and the clusters (lead time = 6 hrs).  6 
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Figure 11. Comparison of prediction limits for 90% confidence level during validation: (a) for the highest peak 4 
event (16 December 1995 04:00 – 28 December 1995 16:00), and (b) for a medium peak event (6 January 1996 5 
00:00 – 18 January 1996 12:00). 6 
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Figure 12. Comparison of UNEEC and QR based on both PICP and MPI during calibration period (7 March 4 
2007 08:00 – 7 March 2010 08:00) and validation period (7 March 2010 20:00 – 7 March 2013 08:00) for 90% 5 
and 50% confidence level (The size of the marker represents the lead time, i.e. bigger the marker, longer the lead 6 
time). 7 
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 2 

Figure 13. MPI (left) and ARIL (right) values obtained during calibration period (7 March 2007 08:00 – 7 3 
March 2010 08:00) and validation period (7 March 2010 20:00 – 7 March 2013 08:00) for 90% confidence level. 4 
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 4 

Figure 14. Comparison of prediction limits for 90% confidence level during validation (1 April 2012 – 7 March 5 
2013): (a) Yeaton, lead time = 3 hrs, (b) Llanyblodwel, lead time = 6 hrs, (c) Llanerfyl, lead time = 12 hrs. 6 
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 4 

Figure 15. Comparison of prediction limits for falling limb part of the hydrographs (medium water levels) for 5 
90% confidence level during validation: (a) Yeaton, lead time = 3 hrs, (b) Llanyblodwel, lead time = 6 hrs, (c) 6 
Llanerfyl, lead time = 12 hrs. 7 
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Table 1. Summary of the main basin characteristics for the catchments selected. 2 

Catchment        

name 

Drainage 

area              

(km2) 

Elevation         

(m) 

Mean 

flow 

(m3/s) 

Mean 

annual 

rainfall 

(mm) 

Highest 

river level 

recorded 

(m) 

Basin lag time 

(hr) 

Brue 135 20 1.92* 867* 4.45*** 8 - 9 

Yeaton 180.8     61.18 †1.60 †767 1.13*** 15 - 20 

Llanyblodwel 229 77.28 †6.58 †1267 2.68*** 7 - 10 

Llanerfyl 100 151 > 10** > 1300** 3.59*** 3 - 5   
* Basin average for the period 1961-1990. 3 
** Rough estimates based on the data available for 2006-2013. 4 
*** http://apps.environment-agency.gov.uk/river-and-sea-levels/  5 
† Computed for the periods 1963-2005 and 1973-2005 for Yeaton and Llanyblodwel, respectively and taken from UK 6 
Hydrometric Register (Marsh and Hannaford, 2008). 7 
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Table 2. Uncertainty analysis results for 90% and 50% confidence levels (Brue catchment). 3 

Confidence       

level 

 PICP (%)  MPI (m3/s)  ARIL (-) 

 UNEEC QR  UNEEC QR  UNEEC QR 

TR 

90%  91.19 90.00  1.58 1.69  1.86 1.47 

50%  51.28 50.01  0.54 0.58  0.55 0.46 

VD 

90%  88.29 82.33  1.37 1.39  2.35 1.83 

50%  30.29 32.75  0.45 0.47  0.67 0.57 

VD 

(highest peak event) 

90%  57.14 62.79  2.86 3.47  0.66 0.78 

50%  27.91 30.90  1.06 1.28  0.24 0.27 

VD 

(medium peak event) 

90%  88.04 87.04  2.36 2.75  0.51 0.61 

50%  55.81 50.50  0.90 1.00  0.20 0.22 

            TR: Training, VD: Validation 4 
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Table 3. PICP, MPI, and ARIL values for each cluster (training, 90% confidence level, Brue): UNEEC vs. QR. 3 

Cluster 

No 

 Number 

of  

data 

 UNEEC  QR 

  PICP 

(%) 

MPI 

(m3/s) 

ARIL 

(-) 

 PICP 

(%) 

MPI 

(m3/s) 

ARIL 

(-) 

1a  
 5447 

(62.3%) 

 
92.12 1.14 2.67 

 
88.16 0.88 1.96 

2 
 787 

(9.0%) 

 
82.08 2.98 0.50 

 
84.5 3.51 0.57 

3 
 2167 

(24.7%) 

 
94.46 1.44 0.53 

 
96.72 1.94 0.71 

4b  
 83 

(0.95%) 

 
74.70 7.55 0.33 

 
90.36 12.00 0.49 

5 
 266 

(3.05%) 

 
77.44 5.96 0.48 

 
89.47 7.58 0.58 

a Low flows, low rainfall. 4 
b High Flows, high rainfall. 5 
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Table 4. PICP, MPI, and ARIL values for MEDIUM water levels (validation, 90% confidence level): UNEEC 3 
vs. QR. 4 

  
Water 

level range 

(medium)  

 Number 

of  

data 

 UNEEC  QR 

Catchment    PICP 

(%) 

MPI 

(m) 

ARIL 

(-) 

 PICP 

(%) 

MPI 

(m) 

ARIL 

(-) 

Yeation  
0.3 - 0.6 m 

 281 

(13%) 

 
82.56 0.0212 0.054 

 
86.48 0.0299 0.074 

Llanyblodwel  
0.5 - 0.8 m 

 540 

(25%) 

 
89.63 0.1377 0.223 

 
93.52 0.1680 0.269 

Llanerfyl  
1.3 - 1.6 

 570 

(26.5%) 

 
84.91 0.4156 0.297 

 
85.09 0.5572 0.398 

 5 
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 3 

Table 5. PICP, MPI, and ARIL values for each cluster (training, 90% confidence level, Llanyblodwel, lead time 4 
= 6 hrs): UNEEC vs. QR. 5 

Cluster 

No 

 Number 

of  

data 

 UNEEC  QR 

  PICP 

(%) 

MPI 

(m) 

ARIL 

(-) 

 PICP 

(%) 

MPI 

(m) 

ARIL 

(-) 

1 
 413 

(19.1%) 

 
88.62 0.1492 0.271 

 
93.95 0.1506 0.250 

2a 
 100 

(4.6%) 

 
85.00 0.2964 0.288 

 
95.00 0.3538 0.326 

3 
 336 

(15.5%) 

 
90.18 0.1798 0.249 

 
94.94 0.2283 0.287 

4b  
 359 

(16.6%) 

 
93.04 0.0518 0.182 

 
89.14 0.0305 0.100 

5 
 535 

(24.8%) 

 
89.53 0.1128 0.308 

 
85.79 0.0742 0.179 

6 
 416 

(19.2%) 

 
90.38 0.0920 0.212 

 
92.31 0.1021 0.208 

a High groundwater levels 6 
b Low groundwater levels  7 
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