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Abstract 12 

Precipitation measurements exhibit large cold-season biases due to under-catch in windy 13 

conditions. These uncertainties affect water balance calculations, snowpack monitoring and 14 

calibration of remote sensing algorithms and land surface models. More accurate data would 15 

improve the ability to predict future changes in water resources and mountain hazards in 16 

snow-dominated regions.  17 

In 2010, a comprehensive test site for precipitation measurements established on a mountain 18 

plateau in Southern Norway. Automatic precipitation gauge data are compared with data from 19 

a precipitation gauge in a Double Fence Intercomparison Reference (DFIR) wind shield 20 

construction which served as the reference. A large number of other sensors are provided 21 

supporting data for relevant meteorological parameters.  22 

In this paper, data from three winters are used to study and determine the wind-induced 23 

under-catch of solid precipitation. Qualitative analyses and Bayesian statistics are used to 24 

evaluate and objectively choose the model that best described the data. A continuous 25 

adjustment function and its uncertainty are derived for measurements of all types of winter 26 

precipitation (from rain to dry snow).  A regression analysis does not reveal any significant 27 

misspecifications for the adjustment function, but shows that the chosen model does not 28 
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describe the regression noise optimally. The adjustment function is operationally usable 1 

because it is based only on data available at standard automatic weather stations.  2 

The results show a non-linear relationship between under-catch and wind speed during winter 3 

precipitation events and there is a clear temperature dependency, mainly reflecting the 4 

precipitation type. The results allow, for the first time, derivation of an adjustment function 5 

based on measurements above 7 ms-1. This extended validity of the adjustment function 6 

shows a stabilisation of the wind-induced precipitation loss for higher wind speeds. 7 

 8 

 9 

1 Introduction 10 

 11 

In addition to rising global temperatures, climate models also predict significant changes to 12 

the hydrological cycle. Water and the availability of water are indispensable to life. More than 13 

one-sixth of Earth’s population gets most of their water supply from glaciers and seasonal 14 

snow packs and many of these are in jeopardy (Barnett 2005). Precipitation observations are 15 

important for describing the hydrological cycle quantitatively. Their accuracy needs to be 16 

improved further to allow for a better evaluation and verification of numerical weather 17 

forecast, hydrological, and climate models and thereby enhance these models’ capabilities to 18 

predict short and long term changes as well as the variability of the world’s water budget with 19 

greater confidence (Seneviratne et al., 2012).      20 
 21 
It has been known for a long time that especially measuring precipitation in the form of snow 22 

is difficult. The fact that wind induces a bias on solid precipitation measurements is well 23 

established. For example, Brown and Peck (1962) addressed the challenges of precipitation 24 

measurements related to exposure in 1962. This systematic under-catch can be somewhat 25 

reduced by shielding the gauge, and various types of windshield configurations have been 26 

developed for this purpose (e.g Alter, Tretyakov). However, even with a windshield applied, a 27 

wind bias still remains evident in snow measurements and requires an adjustment. In the 28 

1980s, methods for correcting systematic errors in precipitation measurements for operational 29 

use are suggested, as described in Sevruk (1982). 30 
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The most recent comprehensive study of the problem has been organized by the WMO Solid 1 

Precipitation Intercomparison Committee between 1987 and 1993 (Goodison et al., 1998). 2 

One outcome of that study is the recommendation of the Double Fence Intercomparison 3 

Reference (DFIR) as the reference snow measurement. The study assessed and derived 4 

adjustment functions for solid precipitation measurement configurations used at that time, 5 

which to a large extent are manual observations.  6 

Førland et al. (1996) developed and described a more operational method for correcting 7 

precipitation measurements in the Nordic countries based on the findings of the Jokioinen test 8 

site in Finland, as described in Goodison et al. (1998). This method, or variations on it 9 

(e.g. Hansen-Bauer et al. (1996)), are in wide use by Norway’s hydropower companies whose 10 

budget calculations depend on accurate precipitation measurements.  11 

Another large scale application of the adjustment functions from Goodison et al. (1998) for 12 

daily observations of Nordic precipitation stations (north of 45° N) across national boundaries 13 

is performed by Yang et al. (2005). The applied bias corrections enhanced monthly 14 

precipitation amounts by 5-20%, depending on the season and the local climate. Yang et al. 15 

(2005) suggested reviewing the current understanding of the Arctic fresh water budget and its 16 

change based on their findings. 17 

Førland and Hansen-Bauer (2000) analysed and adjusted precipitation measurements at 18 

Svalbard. Temperatures are rising significantly in the Arctic, altering the annual distribution 19 

of solid and liquid precipitation events. Today, a higher percentage of the annual precipitation 20 

is falling as rain. This results in a fictitious increase of precipitation amount, as rain is less 21 

affected by the wind induced bias than snow. Førland and Hansen-Bauer (2000) could show 22 

that this artifactual increase of precipitation amount is of a similar magnitude as the expected 23 

real increase of precipitation amount due to climate change. 24 

Rasmussen et al. (2012) present recent efforts to understand the relative accuracies of 25 

different instrumentation, gauges, and windshield configurations to measure snowfall that 26 

have been developed since the WMO Intercomparison Test of Solid Precipitation (1989-93), 27 

at the National Center for Atmospheric Research (NCAR) Marshall Field Site. 28 

In recent years, an increasing number of stations are automated. However, information 29 

regarding measurement uncertainty for automatic measurements is lacking. While there are 30 

several studies on measurements of solid precipitation, only a few focus on the accuracy of 31 

automatic precipitation measurements (Rasmussen et al., 2012). This problem is also given 32 
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attention in the IPCC AR5 (Bindoff et al., 2013) which states that observational uncertainties, 1 

in addition to challenges in precipitation modelling, limit confidence in the assessment of 2 

climatic changes in precipitation. 3 

From 2008 to 2009, the performance of a large number of precipitation gauges and windshield 4 

configurations is evaluated against a DFIR at Environment Canada’s CARE and Bratt’s Lake 5 

sites (Smith and Yang (2010) and Rasmusssen et al. (2012)). A survey is conducted by Nitu 6 

and Wong (2010) to develop a summary of current methods and instruments for measuring 7 

solid precipitation. They found that the variation in gauges and windshield configurations is 8 

much larger for automatic stations than for manual stations. The results indicated further that 9 

a review of the current state-of-the-art methodologies is required to increase the precipitation 10 

measurement accuracy. Following that, the Commission for Instruments and Methods of 11 

Observations (CIMO) within WMO took on a leadership role for evaluating gauges for solid 12 

precipitation measurements in cold and Alpine climates within the WMO-CIMO Solid 13 

Precipitation Intercomparison Experiment (WMO-SPICE).  WMO-SPICE is a multi-site 14 

effort with 20 host-sites world-wide.  A wide range of today’s automated precipitation gauges 15 

and configurations are evaluated at these sites. More information about SPICE can be found 16 

on the SPICE website: 17 

http://www.wmo.int/pages/prog/www/IMOP/intercomparisons/SPICE/SPICE.html . 18 

This paper presents the results from the Norwegian test site located on a mountain plateau in 19 

Southern Norway. The site is established in 2010, as an initiative from Norway’s hydropower 20 

companies in need of accurate snow measurements for predicting water resources. Besides its 21 

original purpose, the site also became a host-site for WMO SPICE in 2013 and will continue 22 

operating as a long-term reference station for monitoring changes in precipitation amount in 23 

Norway. The station is also part of a newly established national network for improved 24 

avalanche forecasting. 25 

The objective of this study is to determine the wind-induced under-catch of solid precipitation 26 

and develop a continuous adjustment function for measurements of all types of winter 27 

precipitation (from rain to dry snow), which can be used for operational measurements based 28 

on data available at standard automatic weather stations. Qualitative analyses and Bayesian 29 

statistics are used to evaluate and objectively choose the model best describing the data. 30 

http://www.wmo.int/pages/prog/www/IMOP/intercomparisons/SPICE/SPICE.html
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The chosen locality has proven to be ideal for this purpose. The site receives a lot of snow, 1 

often accompanied by high winds, which provides many events suitable for studying the wind 2 

influence on solid precipitation. The high wind speeds encountered  contribute to making a 3 

unique dataset when compared to other test-sites, where such strong winds are less common.  4 

The measurement site and its climate are described in Section 2. Section 3 describes the data 5 

preparation performed in advance of the main analysis, as well as the analyses methods used. 6 

Results are presented in Section 4, followed by a discussion and conclusions in Sections 5 and 7 

6, respectively. 8 

 9 

2 Measurement site 10 

2.1 Site description  11 

Haukeliseter test-site is situated on a mountain plateau in Southern Norway (59.82 °N and 12 

7.21 °E at 991 m a.s.l.), see Figure 1.  All instruments are placed on a 5000 m2 flattened area, 13 

surrounded by topographic variations up to 20 m in the immediate vicinity and then slowly 14 

increasing to the surrounding mountain tops which are between 100 and 500 m higher.  15 

The area is situated between two lakes and the closest mountaintop (distance 1 km) has an 16 

altitude of 1162 m a.s.l., located towards north-east. The mountains to the east are 17 

ca. 1250 m a.s.l. at a distance of 2 km. The terrain is more open towards the south and the 18 

west, with the mountains 4 km and 3 km away, respectively.  19 

Precipitation sensors are mounted side by side perpendicular to the prevailing wind directions 20 

from easterly and westerly directions in order to minimize mutual disturbances. The reference 21 

configuration at Haukeliseter consists of an automatic precipitation gauge (Geonor T200-BM, 22 

1000 mm, 3 transducers; Geonor AS, Norway) and an Alter wind shield, both centred in an 23 

octagonal double fence (DF) construction that effectively minimizes the influence of the on 24 

the precipitation measurements.  The DF is similar to the Double Fence Intercomparison 25 

Reference (DFIR) of the first WMO intercomparison (Goodison et al., 1998) where it is used 26 

with a Tretyakov manual gauge. The combination of the DF and the automated gauge at 27 

Haukeliseter also fulfils the specifications for the official DFAR (Double Fence Automated 28 

Reference) of the ongoing WMO-SPICE (WMO/CIMO, 2012). 29 
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Additionally, measurements of numerous other meteorological parameters are performed to 1 

support the analysis of the precipitation data. Air-temperature is measured with a pt100 2 

element (1/10 DIN) protected by a standard Norwegian radiation screen, installed at gauge 3 

height on a tower close to the DFIR.  4 

Wind is measured by different sensors at several places around the measurement site. 5 

Standard 10 m wind measurements are performed at the tower close to the DFIR with an 6 

ultrasonic wind sensor from Gill (Windobserver II with extended heating). Three wind 7 

sensors are directly mounted to the precipitation gauges for measuring wind at gauge height 8 

(Windobserver II at precipitation gauge inside DFIR, and Young Wind Monitor SE at the two 9 

closest precipitation sensors (X1 and X2, see layout)). In 2013, a Thies Ultrasonic Wind 10 

Anemometer 3D is installed on a separate mast at 4.5 m (gauge height) to allow 11 

measurements undisturbed by the precipitation sensor installations (see section 3.1.2). 12 

Several optical precipitation detectors (Thies modelname) are placed at the two 10 m masts at 13 

the site. In the described even selection, one of these sensors (selected because of its stability 14 

over the course of the experiment) is used for the event selection, see Section 3.1.1.  15 

Furthermore, one forward scatter instrument (Vaisala PWD 21) and two disdrometer type 16 

instruments (Thies LPM and Ott Parsivel) are installed at the meteorological mast close to the 17 

DFIR, providing additional information on the precipitation type, see Section 3.3.3.   18 

Further information about the test-site, including an evaluation of the homogeneity and a list 19 

of instruments, can be found in Wolff et al., 2010 and Wolff et al., 2013. 20 

2.2 Climate 21 

The Haukeliseter testsite is chosen because of its significant number of snow events often 22 

paired with high wind speeds during the 6 to 7 month-long winters. Solid precipitation is 23 

commonly observed between October and May, but can also occur during the summer 24 

months. The mean annual air temperature (MAAT, 1961-1990) for the site is 0.6 °C. Mean 25 

monthly temperatures are below 0 °C for the period November to April, with an estimated 26 

mean air temperature (1961-1990) of −5.4 °C. The estimated, uncorrected annual precipitation 27 

(1961-1990) is approximately 800 mm whereof more than 50% is solid precipitation. In a 28 

normal winter, the average snow depth reaches approximately 1.5 - 2.0 m. 29 
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Further, 10 years of winter observations from the nearby manual station “Haukeliseter 1 

Brøytestasjon” (800 m distance) operating between 1984 and 1995 reported a significant 2 

number of snow events with maximum wind speed above 15 ms-1. These observations also 3 

contain a frequent occurrence of blowing and drifting snow, a significant number of these 4 

below eye-height. The precipitation gauges at Haukeliseter are therefore mounted relatively 5 

high - 4.5 m – in order to minimize the influence of blowing and drifting snow on the 6 

measurements. 7 

Data for this study are collected over the course of three winters, from early 2011 until May 8 

2013. Figure 2 shows the monthly precipitation and mean temperature anomaly with respect 9 

to the normal period 1961-1990 for all measurement months, based on data from the official 10 

nearby meteorological station Vågsli (821 m a.s.l., located 10 km to the eastward). Months 11 

not identified as “measurement months” are used for maintenance and upgrades of the 12 

equipment at the test site.  13 

All three months of the first period in 2011 are characterized by a higher precipitation amount 14 

than normal. Whereas February 2011 is relatively cold, March and April 2011 are rather 15 

warm. April 2011, with a mean temperature of 4.8 °C above the normal monthly mean 16 

temperature, is registered as the warmest April since 1900 in large areas of Southern Norway.  17 

The second winter (November 2011 - April 2012) is continuously mild (with the exception of 18 

April 2012) and a higher precipitation amount than usual is registered (with the exception of 19 

March 2012). In December 2011, more than double of the normal monthly precipitation 20 

amount is observed. March 2012 is the warmest March ever recorded in Western and Eastern 21 

Norway. The mean temperature at Vågsli is 6.2 °C above the normal monthly temperature.   22 

The third winter is characterized by low temperatures. Whereas during February and March 23 

2013 very little precipitation occurred, April and May 2013 are characterized by very high 24 

precipitation amounts.  25 

 26 

 27 

3 Data and methods 28 

Measurements from all precipitation instruments and meteorological auxiliary measurements 29 

are monitored every minute from two combined data loggers (SM5049 by Scanmatic AS, 30 

Norway). Data are transferred hourly to the Norwegian Meteorological Institute (MET 31 
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Norway) and stored in the official Climate Data Base, assuring long term storage and 1 

availability for data analysis.  2 

At MET Norway, the data of all instruments are human quality controlled. A more detailed 3 

analysis of the wind measurements revealed disturbances caused by the nearby installations. 4 

Therefore, selected wind sectors are excluded from the further data analysis (further details in 5 

Section 3.1.2).   6 

 7 

3.1 Data preparation 8 

3.1.1 Precipitation events 9 

An algorithm has been developed to guarantee an objective method for identifying 10 

precipitation periods with significant and for the most part continuous accumulation. The 11 

algorithm is applied on the complete dataset containing 10 minutes running averages of the 12 

measurements by the DF-Geonor and a precipitation detector (Yes/No).   13 

The following thresholds are used to check for (a) continuity and (b) significance of the 14 

precipitation periods: 15 

(a) 8 out of 10 minutes must contain registered precipitation (from precipitation detector). 16 

(b) Accumulation must be more than 0.1 mm per 10 minutes or, in case of event duration 17 

longer than 100 min, more than 1 mm for the entire event period.  18 

The resulting precipitation periods are of various lengths and are divided into 10 and 60-19 

minute events, respectively, creating two versions of the event data set. The complete event 20 

data set contains the identified periods (of either 10 min or 60 min duration), accumulation 21 

measured in all precipitation gauges, mean and standard deviation of temperature, wind 22 

speed, wind direction and humidity, net precipitation time in minutes and typical weather 23 

codes as measured from the present weather sensor. 24 

The introduction of thresholds implies that events interrupted by breaks or characterized by a 25 

very low accumulation rate are ignored.  Furthermore, an event might start and/or end with a 26 

lower rate and might therefore not being registered over its full length. The described method, 27 

however, guarantees that only unambiguous events are used in the following analysis and thus 28 

determine dependencies with higher accuracy.  29 
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The qualitative analysis is performed on both 10 and 60-minute events, but no significant 1 

differences are found. The quantitative analysis is performed on the 60-minute events only 2 

because that time interval is similar to the operational measurement frequency in Norway.  3 

 4 

3.1.2 Wind measurements at 10 m height and gauge height  5 

Wind measurements at the test site are recorded by different sensors, ultra sonic and 6 

mechanical (propel), mounted at 10 m (standard height) and gauge height. Before 2013, gauge 7 

height wind measurements are solely performed from sensors mounted to the pedestal of the 8 

precipitation gauges, placing the wind sensors in direct vicinity to the wind shields around the 9 

gauges. Comparisons with a gauge-height wind sensor on a separate mast (installed in 2013) 10 

confirm the expected impact of the precipitation gauge and wind shield on the wind 11 

measurements of the anemometers mounted near the shield. Wind directions between 0° and 12 

240° are affected.   13 

For the analysis with the gauge-height wind data, only precipitation events with wind 14 

directions from non-affected sectors are considered. Analysis is also performed with the 15 

undisturbed wind data from the 10 m sensor, mounted separately on top of a mast. For these 16 

data no filtering is necessary and the analysis is performed with the undisturbed data set.  17 

These two data sets are hereafter referred to as “gauge-height-wind data set” and “10-m-wind 18 

data set”. 19 

3.2 Data filtering 20 

Catch ratios between standard Geonor configurations and the DF-Geonor for all identified 21 

events are calculated. Figure 3 shows the results for the southern Geonor precipitation gauge 22 

X2 (see layout in Figure 1), as this sensor provides the most stable dataset. The large amount 23 

of scatter visible in panel a (all events), including some very clear outliers, makes it necessary 24 

to evaluate the influence of various parameters in more detail. 25 

A few negative catch ratios are visible in panel a, which are mainly due to only small 26 

accumulation inside the DF-Geonor and no significant accumulation in the X2-Geonor. For 27 

these cases the noise of the transducers dominates the X2-signals. They subsequently vary 28 

around zero, thus resulting in negative catch ratios. For panel b an additional threshold is 29 

introduced, accepting only events for which the X2-Geonor collected more than 0.1 mm, and 30 
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thus removing the unrealistic very small or negative catch ratios. About 5% of the recorded 1 

events inside the DF at Haukeliseter show no significant accumulation in the gauges outside.  2 

Since the installations are optimized for minimized influence under prevailing wind directions 3 

(installation along a line, see site layout in Figure 1), are shadowing effects on the 4 

precipitation measurements likely for other wind directions. Precipitation measurements by 5 

the Geonor X2 will be mostly affected by shadowing for wind directions between 355° and 6 

55°. Panel c shows all events where these wind directions are removed using data from the 7 

wind sensor at 10 m height. The resulting data points show little less scatter for lower wind 8 

speeds. The effect is more visible when considering only snow events. Panels g and h are 9 

based on the same data as in panel c, but the data are filtered for temperature < 0 °C and 10 

temperature < −2 °C, respectively.  11 

Variations of both temperature and wind speed during an event are evaluated. Events with a 12 

standard deviation smaller than 0.2°C during the event period are shown in panel d, although 13 

other thresholds are tested (not shown). It seems most natural to weight wind speed variations 14 

by the mean wind speed. The maximum ratio between the standard deviation of wind speed 15 

and the mean wind speed is set to 0.2 for the events shown in panel e. The same filters are 16 

applied in panel f as for panel e, however only events with mean temperature below −2 °C are 17 

shown. These latter filter methods for temperature and wind speed variations, do not improve 18 

the catch ratio dataset from Haukeliseter. Removed data points are evenly spread and no 19 

significant noise reduction is achieved. Therefore, no thresholds for limiting temperature and 20 

wind speed variations are used for the further analysis.  21 

 22 

3.3 Qualitative analysis 23 

In a further step, the data set is analysed qualitatively in order to get a more detailed 24 

understanding of how the catch ratio is influenced by various parameters. For this purpose, 25 

the dataset is divided into classes for temperature, wind, precipitation type and intensity.  26 

3.3.1 Temperature  27 

Figure 4 shows the catch ratio for different temperature classes in  1 K steps. For temperatures 28 

above 2 °C, where precipitation is mainly falling as rain, the catch ratio is not influenced 29 

significantly by the wind. For temperatures below -2 °C, where precipitation is mainly falling 30 
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as snow, the catch ratio curve has a characteristic shape, indicating a clear dependence on the 1 

wind speed. This relationship does not change significantly for further decreasing 2 

temperatures.  3 

For temperatures between 2 °C and – 2 °C, where snow, rain and mixed precipitation can 4 

occur, an increased scatter is visible in the data, obviously depending on the precipitation type 5 

for each individual event. The four temperature classes in this region, however, still suggest a 6 

continuous change from higher to lower temperatures. That is consistent with the expectation 7 

of a gradual change of the distribution of liquid and solid precipitation particles during a 8 

mixed phase event.  9 

3.3.2 Wind 10 

Concentrating only on snow data, in order to reduce the scatter due to varying precipitation 11 

types, data are divided into wind speed classes. The average catch ratios for stepwise 12 

increasing wind speed classes are shown in Figure 5 and suggest a non-linear dependence on 13 

the wind speed. After a steep slope with increasing wind, the catch ratio seems to stabilize 14 

around 20% for wind speeds higher than 7-8 ms-1. No obvious temperature dependence for 15 

these lower temperature classes can be seen.  16 

3.3.3 Precipitation type  17 

One forward scatter type instrument and two disdrometers are partly available for the 18 

determination of the precipitation type. Figure 6 shows a histogram displaying the number of 19 

events with different precipitation types and temperatures as observed from the 20 

Vaisala PWD 21 (forward scatter type instrument, Vaisala Oyj, Finland). 21 

The data include snow events between +5°C and –17°C, with a maximum at –1 °C and a 22 

second smaller maximum around –15 °C. Rain is reported at temperatures down to –1 °C and 23 

mixed precipitation is observed between –1 °C and 5 °C.  24 

A closer look at the snow events (as determined by the Vaisala PWD, not shown) reveals that 25 

a robust and consistent result is not possible without further information. The temperature 26 

data set and the data from the disdrometer type instruments (where available) suggest that a 27 

significant amount of the detected snow events are rather rain events. 28 
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This study does not use the precipitation type information further for the development of the 1 

adjustment equation.  Beside the need for improving the reliability, these data are presently 2 

not available for the majority of the Norwegian standard weather stations.  3 

Further analysis of these data and an optimized use of the instruments and their capacities in 4 

order to determine the precipitation type will be performed in the framework of WMO-5 

SPICE.  6 

3.3.4 Precipitation intensity 7 

Based on the observed intensity of the precipitation events a simple analysis has been 8 

performed to detect any dependency of the catch ratio on the precipitation intensity.  No 9 

significant influence of the precipitation intensity can be identified. 10 

 11 

3.4 Quantitative analysis 12 

The qualitative analysis indicates a clear temperature dependence of the catch ratio and a non-13 

linear relationship on the wind speed. Precipitation events which are clearly identified as rain 14 

or dry snow show two very different catch ratio relationships.  It is, however, desirable to 15 

develop only one transfer equation considering a continuous transfer from dry snow over 16 

mixed precipitation to rain based on data available at standard weather stations: precipitation, 17 

wind and temperature.  18 

3.4.1 Existing adjustment functions used in Norway 19 

The literature on the mechanistic relationship between true and measured solid precipitation, 20 

given other determinants, is quite scant. Most studies propose relationships that are, to a large 21 

extent, empirical, and probably not generic. Førland et al (1996) suggested the most widely 22 

used set of transfer functions for Geonor gauges in cold climate used in the Nordic countries. 23 

The solid form formula has the form: 24 

 25 

( ) ( )VTbTbVbb
MMT epTVgpp 3210,1

+++==  ,       (1) 26 

 27 



 13 

where Tp is true precipitation, Mp is measured precipitation, T is air temperature, V is wind 1 

speed at gauge height and ( )3210 ,,, bbbb are parameters. In the same report a related 2 

relationship for liquid precipitation is presented: 3 

 4 

 ( ) ( ) ( )[ ]IVbIcVcc
MMT epTVgpp loglog

2
3210, +++== ,      (2) 5 

  6 

where I is intensity, which in most practical applications must be approximated with Mp . If 7 

the exponents in Equations (1) and (2) become negative, it is set to zero (no adjustment).  8 

The criteria for using the different transfer functions for the different precipitation types are 9 

dependent on temperature: 10 
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 13 

One immediate criticism of the aforementioned framework of formulae is the lack of 14 

continuity between segments when the temperature varies over the limits during an event. 15 

Furthermore, the limit criteria in Eq. (3) also exclude the possibility of solid precipitation 16 

when the temperature is above 2 °C. Similarly, it is assumed that liquid or mixed precipitation 17 

does not occur in cases where the temperature is below 0 °C.  18 

Eq. (2) includes intensity for mixed and liquid precipitation. Especially during summer, a 19 

wide spectrum of very different precipitation events may occur, also including large 20 

differences of typical drop sizes. Therefore, liquid and mixed precipitation catch ratios might 21 

be influenced by intensity, which is an indirect measure of drop size. Unfortunately, the true 22 

intensity cannot be measured directly since measured precipitation is intrinsically affected by 23 

wind-induced loss. The approximation becomes especially inaccurate when the temperature is 24 

in the interval where mixed precipitation occurs.  25 

snow 
mixed precipitation 
rain 
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The equations have a validity limited to events with wind speeds lower than 7 ms-1 and 1 

temperatures higher than −12 °C , as no data beyond this range were available at the time of 2 

derivation.   3 

3.4.2  Preparative assumptions  4 

Based on: (i) a study of the characteristics of similar data in other studies (e.g. Rasmussen et 5 

al., 2012); (ii) consideration of existing adjustment functions (e.g. Goodison et al., 1998); (iii) 6 

results from theoretical fluid mechanical studies on rain gauges in wind fields (e.g. Thériault 7 

et al., 2012; Nešpor and Sevruk, 1999); (iv) data that are commonly available at a typical 8 

meteorological station; and (v) an analysis of the collected data at Haukeliseter during winter, 9 

the following attributes of an adjustment function for a given temperature are proposed:   10 

a. The ratio between true and observed precipitation is a function of only wind 11 

speed, V.  12 

b. The ratio is monotonically decreasing from unity at V = 0 to a limit greater or 13 

equal to zero as V approaches infinity.     14 

c. The ratio decreases exponentially as a function of wind speed. 15 

d. The rate of change of ratio varies significantly as a function of wind speed, and 16 

can take the value of zero in parts of the domain.   17 

Based on these criteria, a natural choice is a version of Eq. (1) which is non-linear in 18 

logarithmic space for a given temperature: 19 

 20 
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 22 

where ( )θβτϕ ,,=  is the vector of parameters dictating the shape of the relationship.    23 

  24 

Eq. (4) can be characterised as a bell function, and is generally able to emulate monotonically 25 

decreasing functions in the first quadrant. The derivation dR/dV approaches zero in the two 26 

endpoints for 1>β (which is assumed to be the case), and can have this property in a large 27 

part of the actual domain, if necessary.  28 



 15 

Furthermore, it is assumed that each of the characteristics of Eq. (4) can vary with 1 

temperature. But for each property we also consider whether it might be constant for all 2 

temperatures. Generally, this can be achieved by formulating the three parameters as 3 

functions of temperature, i.e.:  4 

 5 
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           7 

The next intuitive question would be: what are the plausible characteristics of the parameter 8 

functions ( )Tϕ ? An immediate assumption is that the value of the parameters goes from one 9 

limit to another when the temperature increases/decreases. Next, it is proposed that the rate of 10 

change is at its greatest when the temperature passes through the transition area from dry 11 

snow to mixed precipitation. This assumption implies that the parameter functions reach 12 

stable values as the temperature moves away from the phase-shift area. These assumptions fit 13 

with the pre-analysis of the collected data. They also correspond with Eq. (1).  14 

Furthermore, a continuous transition from dry snow precipitation to mixed precipitation, and 15 

perhaps also towards liquid precipitation is needed. In this context, the question of whether 16 

intensity could be a significant determinant arises. As this study focusses on winter 17 

precipitation only, intensity is assumed to be negligible.  18 

The aforementioned assumptions imply that the parameter functions are well described by 19 

sigmoid functions: 20 
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 23 

This type of function has the property of approaching the left limit φ1 when T<<Tφ, and the 24 

right limit φ2 when T>>Tφ. The parameter Tφ decides the location of the transition between 25 

the two limits, while sφ dictates the fuzziness of the transition. A small sφ indicates a rapid 26 

change, whereas a large value gives an approximately linear transition. For generality, the 27 

number of limits can be increased by using higher order functions. This study applies only 28 
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two and three-level functions. The three-level expressions are constructed using two non-1 

normalised normal distribution functions having the same mode to ensure a continuous 2 

transition. Hence this function has a parameter formulating the middle level and two scale 3 

parameters determining the fuzziness in the transition between the levels. Mathematically, 4 

that can be expressed by:  5 
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The letter I symbolises an indicator function that becomes zero if the inequality inside the 8 

parenthesis is false and one otherwise. Furthermore, the left and right hand limits are given by 9 

1ϕ and 3ϕ , while the mode of the middle segment is given by 2ϕ .  10 

 11 

3.4.3 Statistical inference method 12 

In general, multi-level parameter functions allow for a lot of plausible model forms. A priori, 13 

no combination can be ruled out. A statistical model selection method is thus warranted. The 14 

Bayesian machinery is attractive in this respect, since it allows the use of prior knowledge. 15 

Given a dataset D from the Haukeliseter test site that contains ( )ni ,,1∈  concurrent 16 

observations of ratio, wind speed and temperature, a general regression is given by: 17 
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where ie  is normally distributed noise with zero expectancy and unity variance andσ is an 19 

unknown parameter governing the variance of the measurement error. Considering up to 20 

three-level sigmoid functions on each of the four parameters in Eq. (7), this yields 81 possible 21 

sub-models. The simplest is of course the one where all parameters are fixed, and the most 22 

complex one is where all four parameters are formulated as three-level sigmoid functions. The 23 

latter involves 24 unknown parameters that have to be estimated. 24 

Bayesian Model Likelihood (BML) is used as a model selection tool in this study. In applying 25 

BML, it is assured that the simplest possible model is chosen, because the Bayesian model 26 
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comparison prefers more parsimonious models to more complicated ones (i.e. Jefferys et al., 1 

1992). Mathematically, the BML is given by: 2 

MMMM dMfMDfMDfBML ΩΩΩ=≡ ∫ )|(),|()|( ,         (8) 3 

where D represents the dataset, M denotes one of the 81 possible models, i.e. ( )81,,1∈M , 4 

and MΩ symbols the set of parameters associated with model M. The quantity )|( Mf MΩ  is 5 

the prior distribution of parameter set, summarizing our knowledge of what constitutes 6 

reasonable parameter values prior to the data. The BMLs give the probability of the data for 7 

each proposed model. Those can be used for producing model probabilities or be compared 8 

directly between models. In this study, the latter approach is used. The integral in Eq. (8) 9 

cannot be evaluated analytically. Therefore numerical methods have to be used. This study 10 

applies an importance-sampling technique described in Reitan and Petersen-Øverleir (2008) 11 

where it was used to select segmentation models in hydraulic rating curve analysis.  12 

For each model, Bayesian methods are used for evaluating the model parameters. The 13 

posterior distributions of the parameters express the knowledge concerning the parameters 14 

after analysing the data. They are numerically calculated from the prior distribution and the 15 

likelihood, Eq. (7), using a MCMC (Markov Chain Monte Carlo) scheme. The algorithm is 16 

based on a relatively general random walk Metropolis algorithm along with an adaptive burn-17 

in routine and a parallel tempering approach, Chib and Greenberg (2001). More details on 18 

Bayesian data analysis and methods are given in textbooks such as Gelman et al. (2013). 19 

 20 

The overall distribution for the parameter set is constructed by assuming prior independence 21 

for each parameter logit(τ), log(θ), log(β) and log(σ). The logit function logit(τ)=log(τ/(1-τ)) 22 

is used in order to restrict τ to be a number between 0 and 1. The aforementioned re-23 

parameterisation assumes that all parameters are positive a priori. All parameters take values 24 

from -∞ to +∞ in logarithmic space. A mathematically tractable and also plausible assumption 25 

of normal prior distributions can then be made, presupposing that the parameters are 26 

statistically independent a priori. All priors are given mean 0 and standard deviation 10. This 27 

constitutes a set of very wide priors that allows for both very small and very large parameter 28 

values on the original scale. The reason for this is to avoid the effect of prior information in 29 

the subsequent model choice procedure.   30 
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The three favoured models from this initial run are chosen and fine-tuned in a second step, in 1 

which information from other datasets (i.e. Rasmussen, et al., 2012 and Thériault et al., 2012) 2 

and parameters of associated estimated adjustment functions (of different form) are used to 3 

derive more informative priors. Still, the priors are constructed relatively widely to avoid 4 

misspecifications. Normal distributions are used for the transformed parameters with means 5 

and the following 95% credibility intervals; θ∈(1, 20), β∈(0.25, 5), σ∈(0.001, 1), 6 

τ∈(0.001, 0.999). For the two-level temperature dependence, more specific priors 7 

τ1∈(0.001, 0.5) and τ2∈(0.5, 0.999) are defined, assuming an asymptotic limit for R as a 8 

function of velocity to be larger for high temperatures than for low.  9 

 10 

4 Results 11 

 12 

The BML analysis quite clearly favours a model with constantθ and β parameters, and two-13 

level sigmoid functions describing the zero-plane-displacement parameterτ and the regression 14 

noise standard deviationσ . This means that the following regression is considered with the 15 

previously described informative prior: 16 
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where the associated standard deviation of the regression noise is given by 21 
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Equation (10), describing the noise, shows some signs of unequal noise variance when plotted 23 

against true precipitation.  24 

 25 
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The posterior results in the form of histograms of MCMC samples are shown in Figure 7. 1 

Parameter estimates, in the form of the means of the marginal posterior distributions, along 2 

with associated 95 % credibility intervals, are displayed in Tables (1a) and (1b). The posterior 3 

distributions are much narrower than the corresponding prior distributions, suggesting that the 4 

choice of prior has little influence on the parameter estimates. The posteriors show little sign 5 

of complexities like multimodality and heavy tails. Further, the parameters, which are 6 

invariant of the height of the wind speed measurements ( )ττττ sT ,,, 21 , do not show any 7 

practical difference. Performing the same analysis with an unfiltered data set, however, shows 8 

a noticeable difference in these parameters, implying that the filtering of the data is a 9 

justifiable procedure. The posterior results of that analysis are also listed in Table (1).  10 

As expected, both parameters ( )θ  and ( )β  seem to increase as a function of wind speed 11 

measurement height. Finally, the analysis with 10 m wind speed data yields a higher BML 12 

than the analysis using wind speed measured at gauge height. This fact indicates that the 13 

Bayesian analysis favours the 10 m wind speed data set for the chosen model form. A 14 

possible reason might be the better data quality of the 10 m wind speed measurements than of 15 

the gauge-height measurements despite the applied filtering.  In any case, the adjustment 16 

functions (ignoring the noise term) are explicitly given by 17 
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for wind speed measured at gauge height and 21 
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for wind speed measured at 10 meters. 25 
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The results for both adjustment equations are shown in Figures 8 and 9, respectively.  1 

 2 

4.1 Analysis of residuals 3 

How well the derived function and associated covariates described the actual catch ratio is 4 

evaluated by analysing the residuals. Standardised residuals, which are the original residuals 5 

normalised to have zero expectation and unit variances, are plotted in Figure 10.  6 

No signs of model misspecification can be seen for the wind speed and temperature 7 

covariates. Plotting the residuals against the true precipitation, measured in the DFIR, yields a 8 

trumpet shape, which may indicate that the noise variance is dependent on the amount of true 9 

precipitation. The panel showing the theoretical quantiles of a normal distribution versus the 10 

actual sample quantiles reveals that the residuals have a heavier tail than a normal 11 

distribution, which also indicates a non-sufficient description of the noise or uncertainty of the 12 

adjusted values.  13 

     14 

 15 

   16 

5 Discussion and Outlook   17 

 18 

Three winters with precipitation data have been collected and analysed during the study. 19 

Precipitation events are identified and afterwards filtered in order to pick only those events 20 

which are not disturbed by not-controllable parameters, such as for example compromised 21 

wind measurements. The classification of the dataset using key parameters that possibly 22 

influence precipitation loss gives a good idea of the shape of possible adjustment functions. 23 

Bayesian statistics are then used to more objectively choose the model describing the data set 24 

best. The derived adjustment function depends only on wind speed and air temperature. It 25 

calculates the catchment efficiency of a Geonor with Alter windshield compared to a Geonor 26 

inside a double fence construction. 27 

It needs to be mentioned that also a DF-shielded precipitation gauge experiences a wind loss.   28 

A bush-gauge - a precipitation gauge surrounded by equally distributed bushes of similar 29 



 21 

height - is generally regarded as the best method to measure true precipitation (Goodison et 1 

al., 1998). Yang et al. (2014) presents transfer functions between precipitation data from a 2 

DFIR to a bush gauge. For lower wind speeds, these relationships suggests that the DFIR 3 

catch is very close to true snowfall for the low winds, and about 93% of “true snowfall” for 4 

wind speeds up to 6-7 ms-1. However, the transfer functions by Yang et al. (2014) are only 5 

valid for wind speeds below 9 ms-1 as no data for higher wind speeds exist. Therefore, no 6 

further adjustments are performed in this study.  7 

 8 

5.1 Representativeness 9 

The precipitation events from 13 effective measurement months contain a large range of event 10 

average wind speeds. For the first time, an adjustment function can be derived from a 11 

sufficient number of events with wind speeds larger than 7-9 m/s. The derived transfer 12 

function is valid for event average wind speeds up to 15-20 m/s, which occurred frequently at 13 

Haukeliseter. The data clearly support the assumption of a stabilisation of the precipitation 14 

loss for higher wind speeds. It seems therefore possible to apply the transfer function for even 15 

higher wind speeds, since an extrapolation beyond the area of validity does not change the 16 

catchment efficiency any further. 17 

In this study, wind speed is measured with sensors mounted at 10 m height (WMO standard) 18 

as well as at gauge height (4.5 m for all gauges).  As described in section 3.1.2, gauge height 19 

wind measurements are partly affected by nearby installations and only unaffected 20 

measurements are used for the analysis Two different versions of the adjustment functions are 21 

determined, to be used with 10 m or gauge height wind, respectively.Both datasets are used 22 

and two different versions of the adjustment function are determined, to be used with 10 m or 23 

gauge height wind, respectively. The resulting adjusted precipitation amounts, calculated with 24 

either version of the transfer function, agree extremely well. That might be different for 25 

gauges at another installation height. A lower gauge height, for example, would result in a 26 

larger difference between 10 m and gauge height winds. The use of wind data at gauge height 27 

is therefore recommended wherever possible.  28 

The developed adjustment function is solely based on winter data. Nevertheless, quite mild 29 

events are also part of the analysis (up to ca. 6-7 °C monthly average temperature), thus 30 

covering all three major precipitation types: snow, mixed precipitation, and rain. The results 31 
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for the analysed warmer rain events are very clear and consistent. Summer precipitation, 1 

however, is typically characterized by a larger variety of rain types, covering very light long 2 

lasting drizzle to heavy rain or hail showers. That might create quite different precipitation 3 

intensities than those observed during this study. An application for temperatures larger than 3 4 

°C is therefore not recommended, until studies evaluating explicitly summer precipitation are 5 

available.  6 

Non-systematic scatter can be reduced significantly by means of relevant filters before the 7 

Bayesian statistic is applied. The necessity of this method can be confirmed by trying to 8 

retrieve the adjustment function based on the unfiltered data set. Some of the derived 9 

parameters defining the adjustment function are significantly different and less able to 10 

reproduce the real data set. The catch ratios at higher wind speeds, for example, stabilized at a 11 

higher value than the adjustment functions based on the filtered data sets suggest.  12 

The scatter, however, is not eliminated completely. The catch efficiency still varies for 13 

individual events, especially for mixed precipitation events. Consequently, the resulting 14 

adjustment function does not correct the measured precipitation amount perfectly, i.e. 15 

adjusting individual events can result in over or underestimation of the true amounts. An 16 

application of the adjustment functions over a longer period, however, should balance out 17 

these errors.  18 

Precipitation data sets from operational stations can contain accumulation records not related 19 

to precipitation. Wind measurements from wind sensors which are not adequately mounted, 20 

might lack the necessary quality for a successful use of the adjustment function. This study 21 

shows the importance of an extensive quality control of the observations before the 22 

application of the adjustment function.   23 

As a matter of course, trace events, i.e., with non-measureable precipitation, cannot be 24 

corrected by the presented function. During the course of this study about 5% of the recorded 25 

events (compared to measurements inside the DF) at Haukeliseter are showing no significant 26 

accumulation in the standard gauges outside the DF. The accumulated sum of these events 27 

adds up to 10% of the observed precipitation at Haukeliseter. These values depend highly on 28 

the local climate and are probably very site-specific; they may add up to a considerable 29 

amount. When correcting precipitation data from a climate perspective, a separate 30 

consideration of these trace amounts is necessary, as for example done by Mekis and Vincent, 31 

2011.  32 
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In Norway, as well as in other countries, the most usual reporting interval at automated 1 

weather stations is one hour and the adjustment functions are optimized for that time interval. 2 

Historically, larger time intervals (12 and 24 h) are widely used. The adjustment function has 3 

been applied, successfully, for these longer time intervals for the available data from 4 

Haukeliseter in preliminary tests. The length of the precipitation events does not, of course, 5 

always match the longer time periods represented by the average wind speed and temperature 6 

observations. Precipitation might occur at temperatures and wind speeds quite different from 7 

the averages and thus larger uncertainties have to be taken into account when correcting the 8 

precipitation loss.  9 

The precipitation event averages of both temperature and wind speed in the present data set 10 

cover the climate variations commonly expected in the Norwegian mountains, suggesting that 11 

the presented adjustment functions can also be applied to data from other Norwegian sites. 12 

However, the influence of other parameters, as humidity or pressure, has not been studied and 13 

no systematic evaluation of the adjustment functions with data from other sites is performed 14 

yet. It is therefore not known to what extent the present adjustment study is valid for sites in 15 

other climates and at other altitudes. The cooperation within WMO SPICE, with 20 sites in 16 

very different climates, will help to answer this question.  17 

5.2 Comparison with former model 18 

The new adjustment function is based on sufficient data covering low and high wind speeds, 19 

thus allowing an extension of the validity beyond 7 ms-1 up to 15-20 ms-1. Furthermore, it is 20 

suitable for all precipitation types, hence avoiding discontinuities resulting from the use of 21 

different equations for each phase. Comparisons with the old equation set by 22 

Førland et al. (1996) do not show significant differences for the adjustment of snow events, 23 

given that the wind speed is below 7 ms-1 and the temperature not very low. It can easily be 24 

seen that the old equation quickly approaches zero as the wind speed grows beyond 7 ms-1, 25 

yielding unrealistically large amounts of precipitation. A truncation, where wind speeds above 26 

7 ms-1 are set to 7 ms-1, is therefore commonly applied in Norway. Even then, the framework 27 

by Førland et al. (1996) differs significantly from the one presented in this study. Figure 11 28 

shows that, for temperatures close to 0 °C and wind speeds above 7 ms-1, the truncated 29 

version of the old equation adjusts up to 50 % more precipitation than the new one. This over-30 

correction is still present for wind speeds below 7 ms-1 and decreases with further decreasing 31 
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wind speeds. A comparison for temperatures above zero is not performed since this involves a 1 

third determinant, intensity, in the old correction method.  2 

It should be mentioned that the results from Førland et al. (1996) are based on a manual 3 

reference, with a Tretyakov gauge inside the DF. The aerodynamical characteristics of a 4 

Tretyakov are surely different from those of a Geonor/Alter shield configuration as used in 5 

this study. However, it can be assumed, that the effect of the double fence around these 6 

different gauges will dominate the overall aerodynamics of the reference system. Therefore, 7 

no large deviations are expected. The possible effect of this difference will probably be 8 

quantified during SPICE using data from those sites, which are equipped with both references 9 

 10 

5.3 Regression noise and uncertainty analysis  11 

As seen in the residual analysis, the regression noise is not optimally described with 12 

Equation (10). There are quite clear indications of heteroscadasticity in the residuals for 13 

increasing true precipitation. Heteroscedasticity is not expected to create any bias, but it does 14 

indicate that the uncertainty analysis could be inaccurate. Heavy-tailed residual distributions 15 

are also noted. This suggests that the residual distribution belongs to another family than the 16 

normal distribution, though symmetric around zero. Uncertainty analysis therefore becomes 17 

imprecise and adds to the problems caused by heteroscadasticity.  18 

A further, and perhaps more important, source of inaccuracy is how the regression result is 19 

used in this study. It is applied in an inverted form to derive the true precipitation from the 20 

ratio. The statistical properties of this quantity, which in the Bayesian formulation is a 21 

distribution, are not clear. Adding the fact that the noise is subject to misspecification, makes 22 

uncertainty analysis about the true precipitation estimate substantially unreliable at this stage.     23 

While it may be sensible to model the distributional properties of the measured precipitation 24 

as a function of wind speed, temperature and the true precipitation, the objective is to use this 25 

to predict true precipitation given wind speed, temperature and measured precipitation, like 26 

formulated in in Eq. (11) and Eq. (12). These formulae however, only relate to estimates of R 27 

and the measured precipitation, and do not consider the distributional aspects. A multivariate 28 

model for true and measured precipitation would allow for expressing one as a distribution of 29 

the other, whether true or measured precipitation is of interest. It is also worth noting that 30 

even with a normally distributed R as the denominator, the resulting distribution will be the 31 
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rather unfamiliar reciprocal normal distribution, which is heavy-tailed and bimodal. The 1 

bimodality might not be a problem as long as we require a positive R, but the tails are so 2 

heavy that the expectation is not available, making it difficult to evaluate bias. If a distribution 3 

with heavier tails is considered for the noise terms, such as the t-distribution, even more 4 

inflated tails can be expected. Medians are however preserved during monotone 5 

transformations, which should make Eq. (11) and Eq. (12) valid as median estimates.                      6 

The two aforementioned statistical issues - the distribution of the inversion and specification 7 

of the regression noise - are beyond the scope of this study, the main objective of which is to 8 

develop an adjustment function for measured precipitation. Further investigations with 9 

alternative regression models able to deliver a more reliable framework for the uncertainty 10 

analysis are currently in progress.        11 

5.4 Application of the adjustment function 12 

A thorough evaluation of the validity of the adjustment functions and a quantification of the 13 

actual improvement of the precipitation data, require a detailed study of a large number of 14 

individual events as well as time series of various lengths, and would also include data from 15 

other sites. The datasets from the similarly equipped WMO SPICE host sites will form a 16 

unique database for this kind of study and parts of it will surely be performed within the 17 

SPICE effort. 18 

At the time of writing, only a very limited set of data that could be used for evaluation is 19 

available. Most of the data are already used in the derivation, and thus do not constitute an 20 

independent data set. Therefore, only a few preliminary results can be shown here to illustrate 21 

the effects of an application of the adjustment functions.   22 

The adjustment function is applied to precipitation data from two individual events, 23 

representing a snow and a mixed precipitation event, respectively, see Figure 12. In addition, 24 

data from two longer periods of time in March 2011 and March 2012 are analysed. The 25 

results are summarized in Table (2). In all four cases a significant improvement is achieved. 26 

Differences between the adjusted precipitation amount and the reference value (measured 27 

inside DFIR) are both positive and negative, which might indicate that the remaining 28 

differences are actually representing the uncertainty of the method. For the two cases where 29 

the original difference was 32 %, the adjusted precipitation amounts differed by less than 30 
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± 10 % from the DFIR measurements. The remaining differences after adjustment of the two 1 

cases with the larger original differences (52 % and 74 %) are 20 % and 16 %, respectively.  2 

6  Conclusions 3 

Extensive measurements over three winter seasons have given new insight in under-catch of 4 

solid precipitation due to wind. Also, a better understanding of the sources of error for 5 

measuring precipitation is gained. The measurements performed at Haukeliseter are unique, 6 

given the wide range of wind speeds and snow amounts which have been observed. 7 

Clear differences are seen for precipitation classified as dry snow, mixed precipitation and 8 

rain when analysing wind-induced under-catch. The under-catch has a pronounced relation to 9 

temperature and a non-linear relation to wind speed. For solid precipitation at –2 °C or below, 10 

only 80 % of the assumed true precipitation is caught at wind speeds of 2 ms-1, and only 40 % 11 

at 5 ms-1. The slope of the catch ratio then levels off markedly and stabilizes at 20 % at 12 

7-8 ms-1. This base line level is confirmed with data up to 15-20 ms-1 and will most likely not 13 

change for even higher wind speeds.  14 

This is the first time that under-catch of snow at these very high wind speeds in mountainous 15 

areas has been documented with observed data.  Previous studies assumed a stabilization of 16 

the catch ratio for wind speeds above 7 ms-1, but have up to now not been able to show this 17 

explicitly due to poor data coverage. 18 

Because of the variation in the aerodynamical properties for wet snow and mixed 19 

precipitation, the results are less unambiguous at temperatures between −2 °C to 2 °C.  20 

Results for the precipitation events at even higher temperatures, above 2-3 °C, and thus rain, 21 

show a quite small under-catch, especially for wind speeds below 11 ms-1. 22 

Based on this broadly based data set, a new adjustment function for winter precipitation 23 

measured by an automatic precipitation gauge (Geonor) equipped with a single Alter wind 24 

shield, is proposed. By means of Bayesian statistics, the model that best describes the 25 

observations is selected. The result is one continuous equation which describes the wind-26 

induced under-catch for snow, mixed precipitation and rain events for wind speeds up to at 27 

least 20 ms-1 and temperatures up to 3 °C. Input parameters are wind speed and air 28 

temperature, thus allowing for easy application at operational weather stations only equipped 29 

with basic sensors. 30 
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Analyses show the importance of good data quality for successfully retrieving and applying 1 

the adjustment functions. Some of the wind measurements at Haukeliseter can be shown to be 2 

highly influenced by nearby installations, which has a negative impact on the analysis. Before 3 

installing a less disturbed wind sensor at gauge height, a significant amount of data had to be 4 

rejected for the analysis.  It is therefore highly recommended to use only wind measurements 5 

from sensors installed separately and undisturbed when applying the adjustment functions on 6 

precipitation measurements.  7 

In this study, the adjustment function is developed for hourly precipitation measurements. 8 

However, first tests of the function show promising results for 12 and 24 hour measurements 9 

as well.  10 

Residual analysis of the adjustment function does not reveal any signs of misspecifications of 11 

the chosen model. The accompanying noise model, however, seems unable to adequately 12 

describe the uncertainty of the adjustment and requires further investigation. Preliminary 13 

analysis, however, suggests that an improvement of the noise model will be possible without 14 

changes in the adjustment function itself.    15 

Besides its original purpose, the study site is also a host site for WMO-SPICE. Furthermore, 16 

the Norwegian Meteorological Institute will operate the DFIR at Haukeliseter as a long-term 17 

reference to monitor the changes in precipitation amount in Norway. The station is also part 18 

of an increasing network for supporting improved avalanche forecasting in Norway. 19 

 20 

 21 
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Table 1. Estimated parameters for the adjustment function, Eq. (9) and the standard deviation 1 

of the regression noise, Eq. (10), for three data sets. Each parameter is represented with three 2 

values: upper and lower 95% confidence interval and the best estimate in the middle. The 3 

parameters for Eq. (9) are shown in (a), whereas the parameters for Eq.(10) are shown in (b). 4 

(a)  5 
 θ β τ1 τ2 Tτ sτ 

Gauge-height-wind data set  (2.89, 3.41, 4.18) (1.19, 1.58, 2.20) (0.10, 0.18, 0.27) (0.96, 0.99, 1.00) (0.29, 0.69, 1.09) (0.89, 1.15, 1.50)  

10-m-wind data set  (4.02, 4.24, 4.48) (1.62, 1.81, 2.03) (0.14, 0.18, 0.22) (0.98, 0.99, 1.00) (0.48, 0.66, 0.84)  (0.93, 1.07, 1.21) 

Gauge-height-wind data set  
(unfiltered) 

(3.57, 4.55, 5.75) (1.05, 1.43, 1.87) (0.26, 0.36, 0.43) (0.97, 0.99, 1.00) (0.94, 1.14, 1.32) (0.30, 0.44, 1.60)  
 

 6 

(b) 7 

 σ1 σ2 Tσ sσ 

Gauge-height-wind data set  (0.21, 0.23, 0.25) (0.10, 0.13, 0.16) (1.17, 2.03, 2.74) (0.02, 0.40, 1.04) 

10-m-wind data set (0.17, 0.18,0.19) (0.09, 0.11, 0.12) (2.16, 2.35, 2.83) (0.00, 0.12, 0.42) 

  8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 



 33 

Table 2 Precipitation observations from two longer periods and two individual events are 1 

adjusted with the presented adjustment function and compared to the data measured by the 2 

reference gauge inside the double fence. 3 

 4 

 5 

 6 

Period Temp 
(hourly 

averages) 

Wind 
(hourly averages) 

Observed 

accum. 
DFIR 

Observed 
accum. 

Corrected 
accum. 

Diff. 
 before 

Diff. 
after 

Improve- 
ment 

03/2011 
30 days 

-25°C- +5°C On average 5-15 m/s, 
>20 m/s for some events 

78.8 53.2 
(X1) 

80.5 25.6 
(32%) 

-1.7 
(-2%) 

30% 
 

03/2012 
20 days 

-10°C- +7°C 5 – 25 m/s 29.3 14.0 
(X1) 

23.6 15.3 
(52%) 

5.7 
(20%) 

32% 

19.-20.3.2014 
37 hours 

-2°C- +3°C 6-13 m/s 
 

20.7 14.0 
(X2) 

19.2 6.7 
(32%) 

1.5 
(7%) 

25% 

21.-22.3.2014 
27 hours 

<-2°C 8-15 m/s 14.6 3.8 
(X2) 

17.0 10.8 
(74%) 

-2.4 
(-16%) 

57% 
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 1 

Figure 1. Localisation of the test site Haukeliseter in southern Norway (upper left). The lower 2 

left panel shows the layout of the site and a wind rose showing the statistical distribution of 3 

wind directions. The layout is orientated in the same way as the wind rose. The two 4 

photographs show the test site. The picture in the upper right is taken by Ole Jørgen Østby 5 

from aboard a helicopter. The picture in the lower right is taken by Roy Rasmussen. 6 

 7 

8 
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 1 

 2 

Figure 2. Temperature (top) and precipitation (bottom) anomaly in respect to normal period 3 

(1961-90) at Vågsli, the closest official weather station to Haukeliseter. 4 

5 
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 1 

Figure 3. Catch ratio between Geonor South (X2) and DF-Geonor versus wind speed 2 

(measured at gauge height). Different filters are applied on all one-hour precipitation events 3 

from three winter seasons (2011-2013). Panel a shows all precipitation events without filter. 4 

Panel b shows events where the accumulation measured by Geonor South (X2) is larger than 5 

0.1 mm within the last hour. In panel c, an additional filter cut all events with an average wind 6 

direction between 355° and 55°, corresponding to the sector where a shadowing effect of the 7 

DFIR construction can be expected. Panel d has an additional filter cutting all events where 8 

temperature standard deviation is exceeding 0.2 °C. Panel e shows only event with additional 9 



 37 

low wind speed variations. The threshold is set to a maximum of 0.2 for the ratio between 1 

standard deviation and mean wind speed. On the data in panel f are the same filters applied as 2 

for data in panel e, only events with mean temperature below −2 °C are shown. Panels g and h 3 

show data with the same filter applied as in panel c, for temperatures lower than 0 °C (g) and 4 

lower than –2 °C (h).  5 

6 
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 1 

 2 

Figure 4. Catch efficiency of the south Geonor (X2) compared to DFIR for different wind 3 

speeds (10 m height), classified for temperature (color coded, see legend). Data are from 4 

2011-2012. Data are filtered: a significant (> 0.1 mm) accumulation in the south Geonor is 5 

required; events with possible affected wind directions are neglected. The colored areas 6 

visualize the continuous temperature dependent change in the shape of the catch ratio curve.  7 

 8 

9 
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 1 

 2 

Figure 5. Catch ratio between the south Geonor (X2) and the DFIR-Geonor versus windspeed. 3 

Only temperature classes where precipitation is expected as snow are shown. The overlaid 4 

curves show data collected into 1 ms-1 wind speed classes. Data from 2011-2013 are shown 5 

and filtered according to description of panel c in Figure 3 6 

7 
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 1 

 2 

Figure 6. Number of events with different precipitation types and temperatures. Precipitation 3 

type is measured by a forward scatter type instrument (Vaisala PWD 21). Event data from 4 

2011- 2012 are shown. 5 

6 
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 1 

Figure 7. Plots showing the posterior distributions for the parameters in the analysis of the 2 

gauge-height wind data set.   3 
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 1 

Figure 8. Adjustment function for wind in gauge height for various temperature classes. 2 

Adjustment function is calculated with the mean temperature of the individual classes.  3 

 4 

 5 

6 
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 1 

Figure 9. Adjustment function for wind in in 10 m for various temperature classes. 2 

Adjustment function is calculated with the mean temperature of the individual classes.  3 

4 
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 1 

Figure 10. Standardised residuals, which are the raw residuals divided by their estimated 2 

standard deviation (bottom and top right) versus wind speed (upper right), temperature (lower 3 

left) and precipitation amount (lower right). In the upper left panel the theoretical percentiles 4 

from the standard normal distribution are plotted versus the empirical percentiles from the 5 

standardised residual distribution.   6 

7 
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 1 

 Figure 11. Contour plot showing the ratio between the former and commonly applied 2 

correction factor by Førland et al. (1996) and the correction factor presented in this paper. The 3 

correction factor is the factor which needs to be applied to the measured precipitation to 4 

obtain the true precipitation. Contours higher than one indicate that the method by Førland et 5 

al. gives more precipitation than the new adjustment equation. Note that the analysis by 6 

Førland et al. (1996) sets wind speeds above 7 ms-1 to 7 ms-1.  7 

 8 

 9 

 10 

 11 

 12 
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 1 

Figure 12. Observed and adjusted accumulation from two precipitation events (a and b), 2 

compared to the accumulation observed in the reference gauge (inside DFIR). Temperature 3 

and wind speed during the events are shown in the middle and lower panel, respectively.  4 
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