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Abstract 

Understanding large-scale patterns in flow intermittence is important for effective water resourceriver 

management. The duration and frequency of zero-flow periods are associated with the ecological 

characteristics of rivers and have important implications for water resources management. We used daily 

flow records from 628 gauging stations on rivers with minimally modified flows distributed throughout 

France to predict regional patterns of flow intermittence. For each station we calculated two annual times-

series describing flow intermittence; the frequency of zero-flow periods (consecutive days of zero-flow) in 

each year of record (FREQ; year
-1

), and the total number of zero-flow days in each year of record (DUR; 

days). These time series were used to calculate two indices for each station, the mean annual frequency of 

zero-flow periods (mFREQ; year
-1

), and the mean duration of zero-flow periods (mDUR; days). 

Approximately 20% of stations had recorded at least one zero-flow period in their record. Dissimilarities 

between pairs of gauges calculated from the annual times-series (FREQ and DUR) and geographic distances 

were weakly correlated, indicating that there was little spatial synchronization of zero-flow. A flow-regime 

classification for the gauging stations discriminated intermittent and perennial stations, and an intermittence 

classification grouped intermittent stations into three classes based on the values of mFREQ and mDUR. We 

used Random Forest (RF) models to relate the flow-regime and intermittence classifications to several 

environmental characteristics of the gauging station catchments. The RF model of the flow-regime 

classification had a cross-validated Cohen's kappa of 0.47, indicating fair performance and the intermittence 

classification had poor performance (cross-validated Cohen's kappa of 0.35). Both classification models 

identified significant environment-intermittence associations, in particular with regional-scale climate 

patterns and also catchment area, shape and slope. However, we suggest that the fair-to-poor performance of 

the classification models is because intermittence is also controlled by processes operating at scales smaller 

than catchment scales, such as groundwater-table fluctuations and seepage through permeable channels. We 

suggest that high spatial heterogeneity in these small-scale processes partly explains the low spatial 
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synchronization of zero-flows. While 20 % of gauges were classified as intermittent, the flow-regime model 

predicted 39% of all river segments to be intermittent, indicating that the gauging station network under-

represents intermittent river segments in France. Predictions of regional patterns in flow intermittence 

provide useful information for applications including environmental flow-setting, estimating assimilative 

capacity for contaminants, designing bio-monitoring programs and making preliminary estimates predictions 

of the effects of climate change on flow intermittence. 

 

Keywords: intermittence, river, stream, flow-regime, hydrology, classification, regionalization, random 

forest  
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1. Introduction  

A large proportion of the river segments on Earth are intermittent, i.e., they periodically cease to flow 

(Larned et al., 2010ab). Most river networks include intermittent segments, which may be concentrated in 

headwater, mid-catchment, or downstream areas, or interspersed over entire networks (Lake, 2003) (Turner 

and Richter, 2011a). Many river networks in arid regions are entirely intermittent (Jacobson and Jacobson, 

2012; Meirovich et al., 1998). Temporal patterns of flow intermittence range from near-perennial flow-

regimes with infrequent, short periods of zero-flow to episodic flow-regimes with rare flow events separated 

by long zero-flow periods (Crocker et al., 2003; Houston, 2006; Larned et al., 2011; Meirovich et al., 1998). 

In turn, the duration and frequency of zero-flow periods are increasingly viewed as the primary determinants 

of river ecosystem processes (Corti et al., 2011; Datry et al., 2011; Dieter et al., 2011) and biotic 

communities (Arscott et al., 2010; Datry, 2012; Davey and Kelly, 2007).  

Many intermittent rivers support diverse plant and animal communities, particularly when viewed at time-

scales that encompass periods of river flow, standing water, and no water. Aquatic and terrestrial species 

colonize and emigrate from intermittent rivers in response to shifts between wet and dry habitat (Acuña et 

al., 2005; Corti and Datry, 2012; Datry et al., 2012; Davey and Kelly, 2007; Steward et al., 2011). A smaller 

number of intermittent river specialists persist through multiple wet-dry cycles; this group includes 

aestivating fish and encysting invertebrates (Kikawada et al., 2005; Perry et al., 2008; Sayer, 2005). The 

alternating occupation of habitat by aquatic and terrestrial species means that the time-averaged biodiversity 

of intermittent segments can exceed that of perennial segments (Katz et al., 2012). In addition to their 

ecological values, intermittent rivers provide numerous ecosystem services, including flood irrigation, flood 

control, and waste-water conveyance (Angel et al., 2010; Larned et al., 2010a). In the Mediterranean region 

and other water-scarce areas, intermittent rivers represent an important source or the sole source of 

freshwater for consumptive human use (e.g., Jacobson and Jacobson, 2012; Ji et al., 2006). Understanding 
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large-scale patterns in flow intermittence in these regions is a prerequisite for effective water resources 

management.  

The last decade has seen rapid growth in ecological and water resources research focused on intermittent 

rivers (Datry et al., 2011). This research has been accompanied by a widespread acknowledgment that 

intermittent rivers require careful management to protect biological and socio-economic values (Jacobson 

and Jacobson, 2012; Larned et al., 2010a; Nadeau and Rains, 2007). However, current management 

practices and natural resources policies are often inadequate. For example, there are fewer restrictions 

imposed on the use or alteration of intermittent rivers in the United States compared with perennial rivers 

(Leibowitz et al., 2008). In much of the world, alterations of intermittent river channels and flow-regimes 

are entirely unrestricted (Elmore and Kaushal, 2008; Gómez et al., 2005; Hughes, 2005). Effective 

management of intermittent rivers is impeded by the scarcity of information about their abundance, 

distribution patterns, patterns of flow variability, and the environmental conditions that produce those 

patterns (Datry et al., 2011; Fritz et al., 2008; Hansen, 2001). 

Identifying intermittent rivers and river segments, and characterizing intermittent flow-regimes at scales 

larger than individual catchments pose several challenges. Small-scale river maps (> 1:25,000) produced 

from digital elevation models, aerial photography or airborne laser scanning omit many intermittent 

segments (Hansen, 2001; Leopold, 1994). More intermittent segments are included in detailed maps based 

on field surveys (e.g., Brooks and Colburn, 2011), but large-scale field-surveys are prohibitively laborious. 

As alternatives to surveys and remote sensing, empirical models have been used to predict the locations of 

intermittent river segments based on catchment characteristics (Bent and Steeves, 2006; Heine et al., 2004, 

Wood et al., 2009). These models perform moderately well in the areas for which they are defined and 

provide information about intermittence-environment associations over large, environmentally 

heterogeneous areas. For example, an empirical model used to predict the occurrence of streams identified 

as intermittent or perennial based on visual observation during low-flow periods in the state of 
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Massachusetts was reasonably accurate, with a misclassification rate of approximately 20%, (Bent et al., 

2006). In another empirical modeling study, intermittent segments in forested headwater streams were 

distinguished from perennial segments using field survey data (Fritz et al., 2008). However, survey data 

alone are insufficient for further subdividing intermittent segments on the basis of intermittent flow patterns 

(i.e., grouping segments with similar frequencies and durations of zero-flow); this step requires flow time-

series that field surveys cannot provide.  

Grouping gauging stations into flow-regime classes based on time-series data is an important component of 

large-scale river management and research (Olden et al., 2011). Flow-regime classifications serve as spatial 

frameworks for environmental monitoring, and they simplify water allocation decisions and environmental 

flow-setting (Kennard et al., 2010; Olden et al., 2011; Snelder et al., 2009). Most flow-regime classifications 

are based on hydrological indices calculated from time-series recorded at gauging stations. Hydrological 

indices describe the magnitude, timing, duration, rate-of-change and frequency of flow events. Statistical 

similarities in hydrological indices are then used to group gauging stations with similar flow-regimes (Olden 

et al., 2011). The utility of a flow-regime classification is maximized when class membership can be 

extrapolated to ungauged locations. In several recent studies, flow time-series have been combined with 

spatial data describing environmental conditions in statistical classifications that were used to predict river 

flow-regimes at ungauged locations (e.g., Kennard et al., 2010; Snelder et al., 2009). To our knowledge, 

there have been no comparable studies that focused specifically on flow intermittence. 

In this study we used daily flow records from 628 gauging stations on rivers in France with unmodified or 

minimally modified flows regimes to study regional patterns of flow intermittence. Our study had two 

objectives: 1) to characterize flow intermittence in terms of the spatial distribution of intermittent segments, 

and the frequency and duration of zero-flow periods in those segments; 2) to determine the extent to which 

flow intermittence patterns are associated with environmental conditions. 
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2. Materials and methodsf 

2.1 Study Area 

The study area was continental France, which extends from 42°19’ to 51°5’ N latitude and from 4°46’ O to 

8°14’ E longitude and has an area of 550,000 km
2
. The study area was continental France, which extends 

from 50° to 43°N latitude and from xx to yy °E longitude and has an area of 550,000 km
2
. Environmental 

variation within France that is pertinent to hydrological patterns is summarized by the Hydro-Ecoregions 

(HER) framework (Wasson et al., 2002). The HER is a regionalization developed for river management in 

accordance with the European Water Framework Directive. The first level of the HER divides France into 

21 regions based primarily on variation in climate, topography and geology. Climate conditions in the 

Hydro-Ecoregions hydro-ecoregions range from mediterranean in the "Méditerranéen" and "Cévennes" 

regions to temperate maritime in the "Armoricain" region, to cold and wet in the alpine "Alpes internes" 

(Fig. 1). Geological conditions range from calcareous in the "Jura-Préalpes" regions to alluvial in the "Plaine 

Saône" and "Alsace" regions (Fig.1). Topographic conditions range from plains in the "Alsace" regions to 

high mountains in the "Alpes internes" and "Pyrénéees" regions.  

2.2 Hydrological data 

We started our analysis with a hydrology dataset composed of time-series of daily mean flow from over 

3,800 gauging stations distributed throughout France, acquired from the HYDRO database 

(http://www.hydro.eaufrance.fr/). We removed stations from the dataset that lacked quality-assured data as 

defined by the HYDRO database managers, and for which the flow records were coded as modified due to 

the presence of reservoirs, diversions or significant abstractions in the upstream catchment. From the 

remaining stations, we selected those for which flow data were available in the 35-year period from 1975 to 

2009. We searched these records for gaps longer than 20 days and removed the year of record in which these 
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gaps occurred. This resulted in an average removal of 1.2 (std dev = 1.7) years per station. After these steps, 

628 stations with 23-35 years of record were retained (Fig. 2).  

2.3 Flow variables and indices 

We used the daily flow data for each gauging station to produce two annual times-series describing flow 

intermittence; the frequency of zero-flow periods (consecutive days of zero-flow) in each calendar year of 

record (FREQ; year
-1

), and the total number of zero-flow days in each calendar year of record (DUR; days). 

From these time-series we calculated two inter-annual indices for each station, the mean annual frequency of 

zero-flow periods (mFREQ; year
-1

), and the mean duration of zero-flow periods (mDUR; days). To 

determine whether zero flows may have been recorded at some gauging stations due to freezing, we also 

calculated mFREQ and mDUR separately for the winter season, December to February.  

2.4 River network and environmental variables 

Our spatial analysis used a digital representation of France’s river network that was derived from a Digital 

Elevation Model (DEM) with 50-m resolution, made by Institut Géographique National (IGN) (Pella et al., 

2012). The minimum catchment size used to define river segments in the DEM was 2.5 km
2
; smaller 

catchments and the low-order segments in them were omitted from our analyses. This minimum area was 

consistent with the minimum area of the gauged catchments (Table 1). The network comprised 

approximately 115,000 uniquely identified segments (mean length 2.5 km) defined by upstream and 

downstream confluences with tributaries (Pella et al., 2012). Our spatial analysis used a digital 

representation of France’s river network that was derived from a Digital Elevation Model (DEM) with 50-m 

resolution, made by Institut Géographique National (IGN) (Pella et al., 2011). The minimum catchment size 

used to define river segments in the DEM was 2.5 km
2
; smaller catchments and the low-order segments in 

them were omitted from our analyses. This minimum area was consistent with the minimum area of the 
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gauged catchments (Table 1). The network comprised approximately ~ 115,000 uniquely identified 

segments (mean length 2.5 km) defined by upstream and downstream confluences with tributaries (Pella et 

al., 2011). We obtained available GIS layers comprising climatic, topographic and geological data for 

France and used these to define several environmental variables for each segment of the river network that 

have been shown previously to be associated with hydrological patterns (Snelder et al., 2009) (see Table 1 

for variable definitions). For each segment, the catchment area (the total area upstream; Area) and the 

unique subcatchment area (the area draining laterally into the segment) were delineated using the DEM.  

Rainfall and air temperatures were measured by Météo-France at meteorological stations during the period 

1961-1990 and were interpolated onto a 1-km grid (resolution 1 km) using the method of Benichou and Le 

Breton (1987). The climatic layers included average annual rainfall, mean monthly rainfall, average 

maximum daily temperature in the warmest month (July) and average minimum daily temperature in the 

coldest month (January). The temperature and rainfall data were then used to calculate values of the 

following variables for the catchment of each segment: average annual rainfall (Rain), the difference 

between average summer and winter rainfall divided by annual average rainfall (SumWinRain), average 

minimum January air temperature (Tmin), and average maximum July air temperature (Tmax) (Table 1). We 

derived two additional climate variables that described periods without rainfall: the catchment average of the 

mean annual number of days without rain (nDryDays), and the catchment average of the mean annual 

maximum duration of consecutive days without rain (dDry). The data used for these predictors were 

available only for stations, not for the entire network. Values of nDryDays and dDry were obtained from a 

rainfall time-series for the period 1970 to 2005 generated for the catchment of each gauging station derived 

from the high-resolution Safran atmospheric reanalysis over France (Quintana-Seguí et al., 2008) using 

methods described by Sauquet and Catalogne (2011).  

Topographic data consisted of a slope grid that we derived from the DEM, and mapped river channels 

represented on the 1:250,000 scale BD Carthage® map obtained from IGN. We used the river-channel map 
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to derive an estimate of the observed drainage density that was independent of our DEM-based network. We 

considered that the observed network density may reflect relevant soil and geological characteristics such as 

perviousness of the surficial material and that this may provide a useful predictor variable. We calculated the 

catchment average values of slope and drainage density for each segment to define the variables Slope and 

Drain (Table 1). We also used the DEM to estimate the distance from each segment to the most distant point 

of its upstream catchment. This distance divided by catchment area was defined as the variable Shape. 

Elongated catchments have high values of Shape, and round catchments have low values. 

Geological data were derived from a 1:1,000,000-scale digital geological map of France obtained from 

Bureau des Recherches Géologiques et Minières (BRGM, 1996). The map defined 22 categories and 

comprised approximately ~ 18,000 individually categorized polygons with a mean area of 40 km
2
. The map 

was used to develop two GIS layers describing physical hardness (i.e., resistance to erosion) and 

permeability. For each layer, each of the 22 geological categories was assigned an ordinal value 

corresponding to relative hardness and permeability (Table 2). For detailed methods, see (Snelder et al., 

2008). We computed the catchment surface -area weighted average mean of the ordinal values representing 

physical hardness (Hard) and permeability (Perm) of geological categories. We also computed the 

proportions of each catchment occupied by the broad geological categories chalk (Chalk), limestone (Lime) 

and alluvium (Alluv) (Table 2). We also derived the average segment subcatchment values of the ordinal 

values representing hardness and permeability (segHard and segPerm) and the geological categories chalk 

(segChalk, segLime and segAlluv) to address the possibility that local geological conditions affect flow 

intermittence. 

2.5 Flow-regime and intermittence classifications 

We classified the 628 gauging stations retained for analysis into a flow-regime classification that separated 

intermittent and perennial stations, and a classification of the intermittent stations based on the frequency 
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and duration of zero flow. For the flow-regime classification, stations with values of mFreq and mDur 

greater than zero were assigned to the intermittent class, and the remainder to the perennial class. In tThe 

intermittence classification grouped , the intermittent stations from the previous classification were grouped 

into three subclasses that corresponded to subdivisions of a scatter plot of mFREQ versus mDUR. We 

grouped the 123 intermittent stations gauging stations on intermittent segments into three approximately 

equal-sized intermittence subclasses based on nominal thresholds for mFREQ and mDUR of 0.5 and 5 

respectively. Subclass 1 was characterized by low-frequency (mFREQ < 0.5), short-duration (mDUR < 5) 

zero-flow periods. Subclass 2 was characterized by low-frequency (mFREQ < 0.5), long-duration (mDUR > 

5) zero-flow periods. Subclass 3 was characterized by high-frequency (mFREQ > 0.5), long-duration 

(mDUR > 5) zero-flow periods.  

2.6 Spatial synchronization of intermittence patterns 

To better understand the spatial scale of observed intermittence patterns, we evaluated the degree of spatial 

synchronization of the variables FREQ and DUR at the gauging stations on intermittent segments using the 

Mantel statistic r (Mantel, 1967). The Mantel statistic is the Pearson correlation coefficient between two 

matrices of dissimilarities and is used to quantify spatio-temporal clustering (i.e., spatially organized 

synchronization). Our first dissimilarity matrix described the dissimilarity in annual intermittence patterns 

between pairs of stations. Our second dissimilarity matrix defined the geographic (Euclidian) distance 

between pairs of stations. The significance of the statistic is established by permutation based on the null 

hypothesis of ‘no correlation’ (Legendre and Legendre, 1998). The procedure made random permutations of 

the rows in one matrix and recomputed the correlation. The observed correlation was compared to the 

distribution of values derived from 10 000 permutations and measures the probability of obtaining higher 

than observed correlation by chance (Legendre and Legendre, 1998). 
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Dissimilarities in the two annual times-series describing flow intermittence (FREQ and DUR) between pairs 

of stations were calculated as (1-, where is the rank (Spearman) correlation of the time series. Therefore, 

stations were compared on the basis of the relative frequency and duration of zero flow in each year, rather 

than the absolute magnitudes of the events. The calculation of dissimilarities was complicated by missing 

data for some years in the analysis period (1975 – 2009) dueas a result of to gaps or because the station 

records had differing durations within the analysis periodrecord had not commenced or had ended. Thus, we 

calculated the correlation between each pair of stations for the years in which data were available at both 

stations.  

The assumption of linearity is implicit in Mantel tests and consequently, the tests will not detect spatial 

structures if there are non-linear relationships between space and synchronous behavior. For example, 

gauging stations in close proximity may have similar temporal behavior, but the behavior of widely 

separated pairs of stations may be unrelated. We used a Mantel correlogram to determine the level of 

synchrony among the gauging stations at different spatial scales (Goslee and Urban, 2007). The Mantel 

correlogram used Mantel tests to determine the correlations between geographic distance and the indices 

FREQ and DUR for subsets of stations belonging to several distance classes. The distance classes 

subdivided the log-transformed distances between stations into nine equi-distant categories. Because of the 

multiple comparisons made by the Mantel correlogram, Bonferroni corrections were applied before 

interpreting the significance of the correlations (Goslee and Urban, 2007). 

2.7 Statistical modeling of classifications 

We used statistical classification models to relate the flow-regime and intermittence classifications to the 

environmental variables. First, we fitted a model that discriminated the 628 gauging stations on the basis of 

flow-regime class (perennial and intermittent) using the environmental variables as predictors. The statistical 

model was used to assess the degree to which intermittence was related to different environmental variables, 
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and to make predictions of the flow-regime class for all segments (gauged and ungauged) in the digital river 

network. Second, we fitted a model that used the environmental variables to discriminate intermittence 

subclasses of the gauging stations classed as intermittent. This second model was used to assess the degree 

to which different temporal patterns in flow intermittence were related to different environmental variables. 

We used Random Forest (RF) models to relate the flow-regime and intermittence classifications to the 

environmental variables. Recent studies have shown that RF models predict spatial patterns in river 

characteristics better than more conventional methods such as linear regression (Booker and Snelder, 2012; 

Snelder et al., 2012). For a detailed description of RF models see (Breiman, 2001) and (Cutler et al., 2007). 

Briefly, an RF model comprises an ensemble of individual Classification and Regression Trees (CART, 

Breiman et al., 1984) that can be used in a classification mode to model the probability that each case 

belongs to some set of categories (here flow-regime and intermittence classes). In a classification context, 

CART partitions observations into groups that minimise the misclassification rate based on a series of binary 

rules (splits) constructed from the predictor variables (here the environmental variables). CART models 

have two desirable features for modelling complex relationships: they are free from distributional 

assumptions, and they automatically fit non-linear relationships and high order interactions. However, 

CART models have two limitations, they do not produce an optimal tree structure and they are sensitive to 

small changes in input data (Hastie et al., 2001).  

The limitations in CART models can be reduced by using RF models (Breiman, 2001). A final prediction of 

the probability that each case belongs to each category is based on the average of all the individual 

predictions obtained from the ensemble of trees (the forest). An important feature of RF models is that each 

tree is grown with a bootstrap sample of the training data. In addition, at each node only small, random 

samples of the predictors are used to define the split. The introduction of these random components, 

combined with averaging individual predictions over an ensemble of trees, increases the prediction accuracy 

of RF models while retaining the desirable features of CART. 
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RF models produce a limiting value of the generalization error (Breiman, 2001). As the number of trees (k) 

increases, the generalization error always converges to the minimum. Thus, RF models cannot be over-fitted 

(Cutler et al., 2007). The number of trees needs to be set sufficiently high to ensure that convergence occurs 

and this number depends on the number of variables that are used at each split. Model performance can be 

optimized by altering the number of trees and variables that are used at each split. However, we used the 

recommended default values (the square root of the total number of predictors) and a large number of trees 

(500; Cutler et al., 2007). 

The structure of RF models can be examined using importance measures and partial dependence plots. 

Importance measures indicate the contribution of the predictors to model accuracy and are calculated from 

the degradation in model performance (i.e., the increase in misclassification rate) when a predictor is 

randomly permuted (Breiman, 2001). Importance represents the increase in the misclassification rate that 

could be expected for new cases (i.e., cases not used to fit the model) if the predictor was excluded from the 

model (Breiman, 2001). Partial dependence plots show the marginal contribution of a predictor to the 

response (i.e., the response as a function of the predictor when the other predictors are held at their mean 

value; Friedman and Meulman, 2003). These plots are not a perfect representation of the effects of each 

predictor, particularly if there are interactions or predictors are strongly correlated, but they provide useful 

information for interpretation (Friedman and Meulman, 2003). 

Predictors in an RF model may have positive importance values, even when their removal from the model 

does not cause a significant reduction in model performance. We used the procedure of Svetnik et al. (2004) 

to reduce the RF models to the most parsimonious set of predictors. The procedure uses a cross-validation 

process that recursively removes the least-important predictors from the model and tests if the reduced 

model has significantly lower prediction performance than the full model. We used the “1 standard error 

rule” (Breiman et al., 1984) to select the reduced model with the highest prediction performance that was not 

different, within the error generated from the cross-validation process, from the model with the best 
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performance. The reduced models were considered to be the most parsimonious and we used these to 

interpret the relationships between predictors and the classifications.  

We used a leave-one-out cross-validation procedure to estimate the performance of the models and to 

optimize the probability threshold for the flow-regime model. In the cross-validation step, we fitted RF 

models to as many subsets of the data as there were gauging stations. For each subset, we withheld one 

gauging station in turn from the training data used to fit the RF models. We then used the RF model to 

independently predict the probability of the withheld station belonging to each of the classes represented by 

the classification. The cross-validated probabilities were then converted into predictions of class 

membership for each station based on a chosen probability threshold. 

The performance of a classification model is sensitive to the probability threshold that is applied (Freeman 

and Moisen, 2008). We used receiver operating curves (ROCs) to provide a method of evaluating the 

performance of the flow-regime model that was independent of the threshold. ROC plots show the true 

positive rate (sensitivity) against the false positive rate (1−specificity) as the threshold varies from 0 to 1 

(Hanley and McNeil, 1982). Good models have high true positive rates and relatively small false positive 

rates and, therefore, have curves that rise steeply at the origin, and level off near the maximum value of 1. 

The ROC plot for a poor model lies near the diagonal, where the true positive rate equals the false positive 

rate for all thresholds. The area under the ROC plot (AUC) is a measure of overall model performance that 

is independent of the threshold, with good models having an AUC near 1, while a poor models will have an 

AUC near 0.5 (Hanley and McNeil, 1982). 

We used the cross-validation predictions for the flow-regime classification to derive ROC statistics to select 

the best threshold for assigning gauging stations to the perennial or intermittent class. There are several 

criteria that can be used to define the best threshold (Freeman and Moisen, 2008) including minimizing the 

misclassification rate maximising the percent correctly classified (PCC) and that maximising Cohen's kappa 
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(Cohen, 1960). Kappa measures the agreement between two classifications, each of which classify N items 

into C mutually exclusive categories. We chose Kappa because it adjusts for chance agreement and is 

therefore a more robust measure than misclassification rate when observed occurrence is low (Freeman and 

Moisen, 2008). Kappa takes a value between 0 (no agreement) and 1 (complete agreement). 

We also used the results of the cross-validation predictions and Kappa to characterise the performance of the 

intermittence classification model. We did not optimise the probability threshold for the intermittence 

classification and simply assigned stations to the intermittence sub-class with the highest probability.  

3. Results 

3.1 Zero-flows and indices 

Of the 628 gauging stations, 123 had at least one zero-flow period in the period of record. Gaps (i.e. days 

with missing data) made up a very small proportion (0.14%) of all time series used in the analysis. For the 

intermittent sites the proportion of gaps was 0.2% of all the days represented in the time series. The majority 

of zero flows (85%) occurred during the summer and autumn months (June to October Fig. 3). No gauging 

stations had zero-flow periods exclusively in winter, indicating that freezing was not the sole cause of 

intermittence at any station. Zero-flows at the gauging stations used for our analysis were most frequent and 

longest in duration in years of broad-scale drought conditions that occurred during 1976, followed by 1989-

1991,  and 2003 and 2005 (Fig. 43). However, the year in which the highest zero-flow frequencies or longest 

zero-flow durations occurred at each station was variable and there was no common year in which the 

highest frequencies or longest durations occurred (. At least one station had its highest zero-flow frequency 

or longest zero-flow duration in almost every year (i.e., at least one value of 100% occurs in most years in 

Fig. 43).  
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The index mFREQ varied between 0 and 7.5 year
-1

 across all 628 gauging stations. For stations on 

intermittent segments, mFREQ ranged from 0.03 to 7.5 with a mean of 0.6 and a median of 0.3, indicating 

that most intermittent segments had low zero-flow frequencies. For stations on intermittent segments, 

mDUR ranged from 1 to 128 days with a mean of 15 and a median of 7.3. 

The two flow-intermittence indices mFREQ and mDUR were weakly, positively correlated (r = 0.19, p = 

0.03; Fig. 54). The intermittence subclasses 1,2 and 3 comprised 41, 40 and 42 stations respectively. Three 

stations that fell just outside the ranges of mFREQ and mDUR that defined the subclasses and were assigned 

to the closest subclasses (lower right quadrant in Fig.4Fig. 5). Gauging stations on intermittent river 

segments occurred across France; the highest densities were located near the southern and western coasts 

(Fig.2). There was no clear geographic pattern evident in the spatial distribution of the three flow 

intermittence types (Fig.2). 

3.2 Spatial synchronization 

The correlation coefficients (Mantel r) between dissimilarities corresponding to FREQ and DUR values for 

gauging stations on intermittent segments, and their spatial separation were 0.1 and 0.14 respectively (p < 

0.0001; 10,000 permutations), indicating weak spatial synchronization. Mantel correlograms for both FREQ 

and DUR indicated that correlations were weak at all spatial scales (Fig.5Fig. 6). The largest correlations 

were negative and occurred between stations with the largest separation (i.e., mean distances of 700 km).  

3.3 Discrimination of intermittent and perennial gauging stations 

The RF model that related the flow-regime classification of 628 gauging stations to environmental variables 

had a cross-validated AUC of 0.77. The performance of the RF model as measured by misclassification rate 

and Cohen's kappa was sensitive to the probability value used as the threshold for assigning stations to either 

class (Fig.6Fig. 7). The minimum misclassificationmaximum percent correctly classified  rate was 14.8% 
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and occurred at a probability threshold of 0.49 (Fig. 7). The maximum Cohen's kappa was 0.47 and occurred 

at a threshold of 0.35 (Fig.6Fig. 7).  

The eight environmental variables retained by the reduced model, in order of importance, were Tmin, Rain, 

Tmax, Slope, WinSumRain, Shape, Area and the geological variable Perm (Fig.7Fig. 8). The partial 

dependence plots indicated that the probability that a segment is intermittent increased with increasing 

Tmax, Tmin, and Shape, decreased with increasing Rain, Area, and Slope, and had a U-shaped response to 

Winsumrain andPerm (Fig.7Fig. 8). The importance measures for the environmental variables retained by 

the reduced model varied from 0.6% to 1.1% (Fig.7Fig. 8), indicating that the influence of each variable on 

model performance was similar, compared to the overall misclassification rate of 16%. The environmental 

variables Drain, nDryDays and dDry and the subcatchment geology variables (subHard, subPerm, 

subChalk, subLime, subAlluv) did not contribute significantly to model performance. 

When a probability threshold for the flow-regime model that maximised Cohen's kappa (0.35) was used, 

39% of river the digital river network segments represented by our river network were predicted to be 

intermittent (Fig.8Fig. 10). When these predictions were aggregated into Hydro-Ecoregionshydro-

ecoregions, the proportion of intermittent segments in each region well predicted by the model had a high 

level of accuracy. The regression of observed proportion of intermittent segments versus predicted 

proportion of intermittent segments had an r
2
 value of 0.73 (Fig.9Fig. 10, panel A).  

The mapped predictions of the flow-regime model and the aggregation of these predictions into Hydro-

Ecoregions hydro-ecoregions highlighted a broad gradient in the probabilities of flow intermittence that 

corresponded to large-scale climate patterns (Fig.8Fig. 9, Fig.9Fig. 10 B). Regions with the highest 

proportion of intermittent segments tended to those with the lowest annual rainfall (Rain) < 800 mm, the 

highest winter temperature (Tmin) > 5
o 

C (Fig.9Fig. 10 B) and the highest summer temperatures (Tmax) > 20
 

o 
C. Regions with high probabilities of flow intermittence were located along the Mediterranean and central 
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Atlantic coasts, in the Midi-Pyrénées region (Fig.8Fig. 9). In contrast, regions with higher annual rainfall 

(Rain) > 1100mm, lower summer air temperature (Tmax) < 16
 o 

C and lower winter air temperatures (Tmin) 

< 1
o
C had high probabilities of perennial flow (Fig.8Fig. 10, panel B). There were additional, smaller 

regions in which river segments had high probabilities of flow intermittence. These regions were 

characterized by low values of hardness (Hard) and low slopes (Slope). There was also a general tendency 

for segments along large river mainstems to have low probabilities of belonging to the intermittent class 

(Fig.8Fig. 9). Mainstem segments had large values of catchment area (Area) and generally had low values of 

Shape, both of which were associated with low probabilities of flow intermittence (Fig.8Fig. 8 and Fig. 9).  

3.4 Discrimination of flow-intermittence patterns 

The RF model of the intermittence classification (classification of intermittent segments into three 

subclasses), had independent misclassification rates of 51%, 47% and 31% for classes 1, 2 and 3, 

respectively, and an overall misclassification rate of 46% (Fig. 5). The value of kappa for the comparison of 

predicted and actual membership of gauged river segments to the three intermittence types was 0.32.  

The six significant environmental variables in the reduced intermittence classification model, in order of 

importance, were Area, Shape, Tmin, Tmax, Rain, and Slope (Fig.10Fig. 11). The importance values for the 

six environmental variables retained in the reduced model ranged from 1% to 2%, indicating that the 

influence of each variable on model performance was similar, compared to the overall misclassification rate 

of 46%. The environmental variables nDryDays and dDry and the subcatchment geology variables 

(subHard, subPerm, subChalk, subLime, subAlluv) did not contribute significantly to model performance. 

The partial plots indicated that the intermittence subclasses were discriminated based on differences in 

catchment characteristics (Fig.10Fig. 11). Subclass 1 (low-frequency, short-duration zero-flow periods) had 

highest probability of occurrence in large catchments with relatively high rainfall (Rain) and slope (Slope), 

cool summers (Tmax), cold winters (Tmin) and low Shape (i.e., rounded catchments). In Subclass 2 (low-
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frequency, long-duration zero-flow periods), the relationships with catchment characteristics were similar to 

those in Subclass 1, except the probability of occurrence decreased with increasing rainfall (Rain), and 

increasing Slope. Subclass 3 (high-frequency, long-duration zero-flow periods) had highest probability of 

occurrence in small catchments (Area) with low rainfall (Rain), high summer and winter air temperatures 

(Tmax and Tmin), and high Shape (i.e., elongated catchments).  

4. Discussion 

In this study we used statistical models to identify relationships between flow intermittence and catchment 

characteristics. To our knowledge, there have been no comparable studies that attempted to classify types of 

flow intermittence and predict its spatial distribution. Random forest models of the flow-regime and 

intermittence classifications had cross-validated kappa values of 0.47 and 0.32, respectively. that indicated 

only fair and poor performance respectively, bBased on the guidelines of Fleiss (1981)., these kappa values 

indicate that the performance of the flow-regime classification model was fair, and that of the intermittence 

classification model was poor . However, both classification models identified associations between 

intermittence and environmental variables and provided some useful insights into the occurrence of flow 

intermittence. 

The RF model of the flow-regime classificationOur models indicated that there were significant associations 

and expected relationships between intermittence and catchment rainfall, air temperature and catchment size, 

shape, slope and geologyand environmental variables (Fig. 7Fig. 8 and 9). Regions with high probabilities of 

intermittent river segments are those with low annual rainfall, warm air temperatures, , and steep, small, 

elongated catchments. The probability of intermittence t river segments had significant but more complex 

relationships with the environmental variables SumWinRain and Perm. was also higher in catchments with 

either high or low rainfall in winter compared to summer, and high or low permeability. The environmental 

variables retained in the RF model of the flow-regime classification had similar importance values, i.e., they 
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made comparable contributions to model performance. The similarity in importance values for the 

environmental variables retained in the RF model suggests that intermittence is caused by multiple physical 

factors, each of which has a moderate influence.  

The RF model of the intermittence classification identified associations between environmental variables 

and different combinations of zero-flow frequency and duration (Fig.10Fig. 11). Based on its relationship 

with the environmental variables, intermittence Subclass 3 appears to represent headwater streams in warm 

and dry locations that have frequent zero-flow periods. In contrast, Subclasses 1 and 2 appear to represent 

larger, cooler, and wetter catchments that have infrequent zero-flow periods (on average less than once per 

year (mFREQ < 0.5, Fig.4Fig. 5). River segments in Subclasses 1 and 2 differed in that they had short- and 

long-duration zero-flow periods (mDur >5 days and mDur <5 days, Fig.4Fig. 5), respectively. The most 

obvious environmental difference between Subclasses 1 and 2 was that sites in Subclass 1 had higher 

probability of occurrence in steeper catchments with higher annual rainfall (Slope and Rain, Fig.10Fig. 11). 

It is likely that the low frequencies of zero-flow periods in Subclasses 1 and 2 are attributable to sustained 

base flows for most of each year, which are in turn associated with large catchment areas and relatively wet, 

cool climates. We suggest that zero-flow periods in these two sub-classes occur when the water table drops 

below the channel elevation and surface flow ceases. The difference in zero-flow duration between 

Subclasses 1 and 2 may be associated with differences in storage, release and recharge of groundwater. Sites 

in Subclass 1 are likely to have small groundwater storage volumes due to steep slopes and small catchment 

areas. These volumes are rapidly depleted, but they are also recharged rapidly by rainfall, which keeps the 

duration of zero-flow periods short. The reverse applies to sites in Subclass 2, which generally had lower 

slopes and lower annual rainfall, producing zero-flow periods of long duration. We note that differences in 

the intermittence subclasses may have been due to differences in geological conditions. However, our study 

was equivocal in this regard as no geological variable was retained by the RF model of the intermittence 

classification.  
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Our classification models indicated that the probability of intermittence in France is only broadly associated 

with large-scale climate patterns (Fig. 8Fig. 9, Fig. 9Fig. 10B). Flow intermittence is at least partly 

controlled by processes acting at smaller-scales than climate, such as local groundwater-table fluctuations 

and seepage through permeable channels (Fleckenstein et al., 2006; Larned et al., 2010a; Larned et al., 

2010b). The proximate cause of flow intermittence in many river segments is water table fluctuation relative 

to river channel elevation; flow occurs when the water table intersects the channel, and ceases when the 

water table drops below the channel (Konrad, 2006; Larned et al., 2010a; von Schiller et al., 2011). In areas 

where channels are permanently perched above the water table, intermittence is controlled by run-off from 

upstream and by transmission losses (Morin et al., 2009; Sharma and Murthy, 1994). Interactions between 

these local processes and the climatic processes that generate runoff and rainfall-recharge determine where 

and when flow intermittence occurs. Two results lend support to the suggestion that intermittence, and in 

particular, the timing of zero-flow periods, are only partly influenced by large-scale climatic processes. First, 

the plots of annual zero-flow behavior (Fig. 3Fig. 4) and low values of Mantel statistics (Fig. 5Fig. 6) 

indicate that there was weak spatial synchronization in zero-flow frequency and duration. Although there 

was a general tendency for the frequency and duration of zero-flow periods to peak in the driest years of the 

time series (1976, 1989/90, 2003), many sites did not follow this temporal pattern (Fig. 3Fig. 4). Second, the 

variables nDryDays and dDry represent rainfall patterns that we expected to be more relevant to the duration 

and frequency of zero flows than mean annual rainfall, which was included in the RF models. However, 

these variables did not improve the classification models. 

In contrast to the present study, a flow-regime classification of France reported by Snelder et al. (2009) 

discriminated river network segments on the basis of a variety of hydrological indices including the 

frequency of zero flow and others that described the frequency, timing and duration of high and low flows, 

and the frequency of changes in flow. A predictive model of this classification performed well and was 

based on similar statistical methods, and used the same river network and environmental variables used in 
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the present study. We suggest that most of the flow-regime components described by the classification of 

Snelder et al., (2009) result predominantly from variation in large-scale processes such as rainfall, 

evaporation, catchment storage and runoff. Variation in these processes over large spatial scales was 

reflected in relatively strong discrimination of flow-regime classes using the environmental variables.  

The contrasting performance of the models in the present study with the model of the flow-regime 

classification of Snelder et al. (2009) indicates that different suites of environmental variables are needed to 

model intermittent flows and whole flow-regimes (in which zero-flow frequency is only one of many 

components). Aquifer structure and riverbed permeability are probably among the factors that influence the 

small-scale processes that determine intermittence and were represented in our models by variables such as 

catchment slope, shape and permeability. These variables had similar levels of importance in the RF models 

as the variables representing broad-scale climate, which supports our contention that processes at a range of 

scales are involved. However, it is likely that, although these variables acted as surrogates for local 

processes, they were too broad-scale and insufficiently representative of the actual causes of intermittency to 

achieve good predictive performance. The inclusion of predictor variables that described subcatchment (i.e. 

local) geology (Hard, Perm, Chalk, Lime, Alluv) was intended to provide better surrogates for small-scaled 

processes; however, these did not improve model performance. It is likely that the 1:1,000,000 scale of the 

geological map used to define the geological predictor variables was too coarse to discriminate geological or 

hydrogeological variation at segment-scales. If flow intermittence is related to groundwater dynamics, 

spatial data corresponding to aquifer structure, riverbed permeability and other small-scale factors are may 

improve our ability needed to model intermittent flows accurately, but these data are rarely available. Until 

that data scarcity is alleviated, predictive models of regional or national patterns in flow intermittence will 

have limited accuracy.  

Our predictions of the abundance and distribution of intermittent rivers in France will have several potential 

practical applications. First, the Water Framework Directive requires the ecological status of all surface and 
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ground waters to be assessed (Chave, 2001), and this includes intermittent rivers. However, partly because 

they have been considered “atypical” and rare in France, intermittent rivers have been often ignored by 

water managers. Our predictions may increase awareness of the prevalence of intermittent rivers among 

scientists and water managers by showing they are abundant and occur in most regions of France and are not 

restricted to the dry Mediterranean region. 

Our flow-regime classification predictions indicate that the gauging station network under-represents 

intermittent river segments in France (i.e., 19.6 % of gauges were classified as intermittent whereas 39% of 

segments in the river network are predicted to be intermittent). More accurate predictions of the abundance 

and distribution intermittent segments could be achieved by reconfiguring supplementing the gauging 

network. Alternative methods of monitoring flow intermittence, such as the use of electrical resistance 

arrays (Jaeger and Olden, 2012) or citizen-observation networks (Turner and Richter, 2011) could also 

increase the representation of intermittence in future studies at less effort than is required to operate 

permanent gauging stations.  

The predicted proportion of intermittent segments by our study is particular to the spatial resolution of the 

analysis (i.e., the minimum catchment area to define a segment was 2.5 km
2
 and the minimum catchment 

area of our gauging stations was 3 km
2
). Based on the relationship between catchment area and intermittent 

segments (Fig.7Fig. 8), a finer-resolution analysis would likely result in higher estimates of the proportion of 

intermittent segments. Other studies have also concluded that lower order streams are more likely to be 

intermittent and represent a large proportion of river networks by length (Meyer et al., 2007).  

Although predictions of intermittence were not accurate at the segment scale, when aggregated by HER they 

accurately predictedproduced good estimates of the proportion of intermittent segments at regional scales 

(Fig.9Fig. 10). Regional estimates of the proportion of intermittent segments provide important information 

for several management applications including environmental flow-setting (Hughes, 2005), estimating 
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assimilative capacity for contaminants (Tsagarakis et al., 2004) and designing bio-monitoring programs that 

are representative of the full range of river environments (Steward et al., 2011).  

Finally, predictive models describing intermittence can be used to provide preliminary estimates of the how 

climate change could change the frequency of intermittence (e.g., Benito et al., 2011). Our results suggest 

that the probability of intermittence in France would typically increase by approximately ~2% with each 1
o 

C rise in summer air temperature (Tmax) and by 3% for each 100-mm reduction in mean annual rainfall 

(Rain) (Fig.7Fig. 8). 
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Table 1 Environmental variables used as predictors in statistical classification models. Values 

are means and ranges (in brackets) for the gauging stations (i.e., the data used to fit the models) and 

the network (i.e., the entire domain to which the models were extrapolated). Variables were the 

catchment average for each segment of the river network. The geological descriptors; Hard, Perm, 

Allu, Chalk and Lime were also derived for the sub-catchment of each segment.  

Variable Description Stations Network 

Tmin 
Average minimum air temperature of 

catchment in January (°C). 
-1, (-12 ; 5) -0.5, (-15 ; 7) 

Tmax 
Average maximum air temperature of 

catchment in July (°C). 
24, (11 ; 31) 24, (9 ; 32) 

Rain Average annual rainfall (mm). 1030, (606 ; 2060) 944, (507 ; 2536) 

SumWinRain 

Difference of average winter (December, 

January and February) and summer 

(June, July and August) rainfall, divided 

by the average annual rainfall. 

0.1, (-0.1 ; 0.2) 0.1, (-0.2 ; 0.3) 

Area Area of catchment (km
2
). 1010, (3 ; 108893) 684, (3 ; 117500) 

Slope Mean hill slope of the catchment (m/km). 15, (1 ; 75) 11, (0 ; 103) 

Drain 
Mean drainage density of the catchment 

(km/km
2
). 

1, (0.7 ; 2.7) 0.9, (0.5 ; 3.3) 

Hard Catchment averaged value of hardness  3.9, (1 ; 5) 3.5, (10 ; 5) 

Perm 
Catchment averaged value of 

permeability  
2, (1 ; 4) 2.3, (10 ; 4) 

Allu 
Proportion of catchment with alluvium 

surface geology  
0.06 (0 ; 0.97) 0.09 (0 ; 1) 

Chalk 
Proportion of catchment with alluvium 

chalk surface geology  
0.06 (0 ; 0.99) 0.11 (0 ; 1) 

Lime 
Proportion of catchment with alluvium 

limestone surface geology  
0.03 (0 ;0.99) 0.05 (0 ; 1) 

Shape 
Distance to head of catchment divided 

by catchment area (km/km
2
 * 10

3
) 

0.18 (0.101 ; 0.8) 0.3 (0.1 ; 3.5) 

nDryDays 
Mean annual number of days without 

rain. 
229 (194 ; 301) NA 

dDry 
Mean annual maximum duration without 

rain 
21.6 (17 ; 41) NA 
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Table 2 Geological categories represented on the 1:1,000,000 scale geological map of France 

(BRGM, 1996). Ordinal values of physical hardness range from 1 (soft) to 5 (hard); ordinal values of 

permeability range from 1 (impermeable) to 4 (permeable). The fourth column shows the geological 

categories that were also included independently as environmental variables in our analysis (as 

proportion of the catchment in category). The sum of three categories was used to define alluvium 

(Allu). 

 

Geological category Physical hardness Permeability Catchment geological category 

Fluvial alluvium  1 3 Allu 

Quaternary alluvium 1 3 Allu 

Clay and sand 1 1  

Limestone 5 4 Lime 

Chalk 3 4 Chalk 

Glacial deposit 1 1  

Sedimentary flysch 3 2  

Marls 3 1  

Marls with evaporates 3 1  

Molasse 2 3  

Basaltic rock 5 1  

Igneous rock 5 1  

Calcareous detrial rock 4 2  

Cystaline detrial rocks 5 1  

Noncalcareous detrial rock  5 3  

Metamorphic rocks 5 1  

Volcanic rocks  5 2  

Sand 1 3 Allu 

Carbonaceous schist 3 2  

Metamorphic schist 3 2  

Sedimentary schist 3 2  

Stratified calcareous rocks 3 2  
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Figure Fig. Captions 

Figure Fig. 1. France showing the Hydro-EcoregionR (HER) boundaries (Wasson et al., 2002). The number 

of gauging stations included in this study in each region is shown in parentheses in the legend. 

Figure Fig. 12. Map of the location of the gauging stations used in this study. Stations on perennial segments 

are indicated by closed circles. Stations on intermittent segments are classified into three intermittence 

subclasses (see text for class descriptions). 

Fig. 3. Monthly variation in the occurrence of zero flow days. The days with zero flow in each month was 

computed from the flow records for all 123 intermittent gauges.  

Figure 3Fig. 4. Box plots of the annual variables (FREQ and DUR) for all years. The plots show data for 

only the gauging stations on intermittent segments. The variables have been standardized within stations by 

expressing them as the frequency that the index was less. Plotted values therefore indicate the severity of the 

zero-flow events in each year relative to the extremes observed at each station. The box contains the inter-

quartile range, the dot shows the median value, whiskers indicate 1.5 times interquartile range and the 

circles indicate outliers. 

Figure 4Fig. 5. Intermittence index values for gauging stations on intermittent segments. Three intermittence 

subclasses are indicated by different symbols. Subclasses were defined using threshold values of mFREQ 

and mDUR (dashed lines). Sites that were misclassified by the RF model are indicated with grey circles. 

Figure 5Fig. 6. Mantel correlograms of FREQ and DUR for gauging stations on intermittent segments in nine 

distance classes. The plots indicate the Mantel r values for each distance class plotted against the mean 

separation of gauging stations in the class. Solid dots indicate significant Mantel r values (p<0.05) after 

Bonferroni correction. 
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Figure 6Fig. 7. Receiver operating curves (ROC) plot (left) and threshold plot (right) for the flow-regime 

classification. The black circles on the threshold plot indicate the probabilities thresholds that maximize the 

classification performance as measured by Cohen's kappa and the percent correctly classified (PCC).  

Figure 7Fig. 8. Partial dependence of the probability of intermittence for each of significant environmental 

variables retained in the reduced model. The variables are shown in order of importance from the top-right 

to the bottom left. The plots show the marginal contribution to probability of flow intermittence (y-axis) as a 

function of the variables (i.e. the other contributing variables were held at their mean). The rug plots on the 

horizontal axes show deciles of the predictors. The value in brackets on the horizontal axis is the importance 

measure. 

Figure 8Fig. 9. Predictions of the probability of being intermittent made by the RF model of the flow-regime 

classification for the entire river network. Based on maximising Cohen’s kappa (Fig. 7), network segments 

whose probabilities are greater than 0.35 are intermittent and those less than 0.35 are perennial.   

Figure 9Fig. 10. A: Observed and predicted proportions of gauging stations on intermittent segments 

in Hydro-Ecoregionshydro-ecoregions. The dashed line is the regression of observed versus predicted 

gauges on intermittent segments B: Scatter plot of the mean values of the most important predictor variables 

(Tmin and Rain) in each HER. The symbol sizes indicate the percentage of gauges on intermittent segments 

each region. 

Figure 10Fig. 11. Partial dependence plots for the three flow intermittence subclasses for the six 

environmental variables retained in the reduced model, in order of importance from the top-right to the 

bottom left. The plots show the marginal contribution to probability of class membership (y-axis) as a 

function of the variable (i.e. the other contributing variables were held at their mean). The rug plots on the 

horizontal axes show deciles of the predictors. The value in brackets on the horizontal axis is the importance 

measure. 
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Figure Fig. 21. 
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Figure Fig. 2. 
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Fig. 3. 
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Figure Fig. 34. 
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Figure Fig. 45. 
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Figure Fig. 56. 
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Figure Fig. 67.  
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Figure Fig. 78.  
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Figure Fig. 89.  
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Figure Fig. 910.  
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Figure Fig. 1011. 
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