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Abstract

Fine scale rainfall observations for modeling exercises are often not available, but rather coarser
data derived from a variety of sources are used. Effectively using these data sources in models
often requires the probability distribution of the data at the applicable scale. Although numerous
models for scaling distributions exist, these are often based on theoretical developments, rather5

than on data. In this study, we develop a model based on the α-stable distribution of rainfall
fields, and tested on 5-minute radar data from a Belgian weather radar. We use these data to
estimate functions that describe parameters of the distribution over various scales. Moreover,
we study how the mean of the distribution and the intermittency change with scale, and validate
and design functions to describe the shape parameter of the distribution. This information was10

combined into an effective model of the distribution.

1 Introduction

Rainfall is one of the most important drivers of hydrological processes and is an important data
source for hydrological modelling. These models typically operate on a spatial scale of less than
100 km (Ferraris et al., 2003), and a temporal scale of about an hour, requiring data at a similar15

spatio-temporal scale. The availability of suitable data, especially for prediction, is often not
guaranteed as the output of Circulation Models and weather prediction models are typically of
a much coarser resolution. Furthermore, the variability beneath the scale of simulation has been
found to be important in hydrological modelling (Harris and Foufoula-Georgiou, 2001; Gires
et al., 2012a).20

Whenever suitable data are not available, the scaling behavior in rainfall can be exploited to
yield a statistical estimate of the rainfall at a finer scale. At a very basic level, this behavior
leads to a cascade of scales

εn = ε0

n∏
j=1

µεj , (1)
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where ε0 is a coarse scale field or the field average, and µε are multiplicative increments drawn
from some distribution. To increase the number of pixels, each pixel at scale n is split into
several pixels at scale n+1, as illustrated in figure 1. A variety of such cascades have been pro-
posed, starting from Kolmogorov (1941) who described homogenous turbulence based on the
Navier-Stokes equation, often referred to as simple scaling. These scaling laws have been mod-5

ified in a variety of ways, leading to more complex scaling fields such as isotropic multifractal
cascades (Parisi and Frisch, 1985) and their anisotropic counterpart, generalized scale invari-
ance (Lovejoy and Schertzer, 2013). Furthermore, the parametrization of these models has been
eased by innovations such as the universal multifractal model (cascade) (Schertzer and Lovejoy,
1987) and the fractionally integrated flux (Schertzer and Lovejoy, 1987, 1997). Various other10

models and methods exist, based on different generators (roughly the increments µε), such as
log-poisson generators (Deidda, 2000), log-beta generators (Menabde and Sivapalan, 2000) and
a other simulatio methods including wavelets (Venugopal et al., 2006). More of these models
can be found in Gupta and Waymire (1993); Menabde et al. (1997); Koutsoyiannis et al. (2010)
and a good general introduction to these methods can be found in Schertzer et al. (2002) and15

Tchiguirinskaia et al. (2000).
The above multifractal models can be employed to simulate (non-zero) rainfall according to

a few parameters (i.e. they are universal, see section 2). Generally, these models assume that µε
is identically and independently distributed (i.i.d.). That is, the distribution of µε is the same
at every scale, and the draws are independent of other variables within the large scale cascade.20

However, in recent years some criticism on these models has arisen, stating that real rainfall
does not ”perfectly” scale, but violates the underlying assumption of the i.i.d. µε. Empirical
investigation of the scaling behavior does indeed show that not all rainfall fields obey the basic
assumption that the increments of ε between scales are i.i.d.. Divergences from this behavior
were described by various authors who observed that the increments were dependent on fac-25

tors such as large scale rainfall intensity (Deidda, 2000; Over and Gupta, 1994) and pixel size
(Menabde et al., 1997; Over and Gupta, 1994; Paulson and Baxter, 2007). Additionally, scaling
behavior was found to differ with the intensity of storms (Venugopal et al., 2006), and with
that the non-raining intervals do not scale (Olsson, 1998). These deviations from perfect scaling
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are further examined in Veneziano et al. (2006), Serinaldi (2010), and Rupp et al. (2009), who
showed that it is possible to model these imperfections in scaling through empirical functions
of the parameters of various downscaling models.

In previous investigations, imperfect scaling has been studied by fitting and refitting various
cascade models and studying the dependence of the parameters on coarse scale intensity and5

other variables ( e.g. Serinaldi (2010); Rupp et al. (2009); Veneziano et al. (2006)). Some other
studies have investigated the dependence of breakdown coefficients, i.e. under the assumption
that µε ∈ [0,1] splitting the mass at the coarse scale at each scale step (see e.g. Rupp et al.
(2009)). In this study we directly investigate the dependence of the empirically observed dis-
tributions of the increments on scale and coarse scale intensity. To do this, we investigate the10

empirically found distributions of logµε and log ε for variations between scales. Furthermore,
we investigate how between scale correlations and scale variance behave, for a variety of storms,
by characterizing them with a suitable set of equations.

We start by explainig the simulation of rainfall (section 2), followed by a description of
the data and some investigation into its basic scaling behavior (section 3. Then, the α-stable15

distribution is described in some detail in section 4. This is followed by the methodology in
section 5 and the result (section 6). Finally, we conclude with some discussion and conclusions.

2 Simulating and investigating multifractals

Scale invariant processes and their generation are perhaps easiest understood in the context of
discrete-in-scale (discrete) cascades (Parisi and Frisch, 1985; Schertzer and Lovejoy, 1987). In20

the discrete cascade, a multifractal process is constructed at n discrete scales by perturbing a
coarse scale field ε0 with i.i.d. multiplicative increments µεj , cfr. equation 1. The increments
µε ”inject” energy into the ”flux” causing the field to become more volatile at finer scales. Due
to its multiplicative nature, this field is highly singular, having many small values and only a
few (very) large values. The moments of the cascade behave as (Schertzer and Lovejoy, 1987)25

〈εqλ〉= λK(q) , (2)
4
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with K(q) a moment scaling function and λ= Leff/l with l = 2n. Here, Leff is an outer scale
at which the moments converge. Furthermore, 〈·〉 denotes a field or ensemble average.

The field described above is multifractal and no longer has a single fractal dimension, but
rather an infinity of fractal dimensions, each associated with a specific singularity. Evidently,
this is problematic, requiring and infinity of parameters to describe the behavior. In practice,5

these cascades converge to a universal multifractal if the increments µε are from a log-stable
distribution (Veneziano and Furcolo, 1999; Schertzer and Lovejoy, 1987), i.e. logµε∼ Sα(·)
where Sα(·) is the (Levy) α-stable distribution (see section 4). If this is the case, K(q) has the
form

K(q) =
C1

α− 1
(qα− q) , (3)10

where there are only two parameters, the co-dimension of the mean C1 and a parameter α
which controls the tail of the α-stable distribution, where α= 2 leads to a normal distribution
for logµε and decreasing values for α lead to increasingly heavy tails.

Fields simulated with the above method are ”conservative”: they are the direct outcome of
multiplicative cascades and the realizations themselves are scale invariant. However, for most15

observed rainfall fields only the fluctuations of the field scale, i.e. |ε(x)− ε(x+ ∆x)| (in one
dimension) scale rather than the direct realizations ε themselves. Such fields are termed non-
conservative and have an additional scaling component. This additional component can be mod-
elled as

ϕλ =D−Hελ , (4)20

i.e. the field is fractionally integrated to an order of H , the non-conservation parameter. The
fluctuations of this field scale with (Davis et al., 1994)

〈|∆ϕλ(∆x)|q〉= ∆xζ(q) . (5)
5
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where the structure function ζ(q) has a direct relation to K(q):

ζ(q) = qH −K(q) , (6)

if the field is isotropic. Since K(1) = 0, the non-conservation can easily be estimated from the
first-order structure function.

A further convenient way to diagnose whether measured fields are non-conservative is the re-5

lation to the slope of the Fourier power spectrum. The power spectrum of scaling fields behaves
as

E(k) = |k|−β , (7)

where k is the wave number, and the exponent β relates to K(q) and H as

β = 1 + 2H −K(2) . (8)10

Since K(2)≥ 0, conservative fields will always have β ≤ 1, and non-conservative fields gen-
erally have 1≤ β ≤ 3 since H is generally between 0 and 1 for rainfall fields (Lovejoy and
Schertzer, 2013; Davis et al., 1994).

Multifractal fields generated with the above model produce non-zero values everywhere, and
thus they are only appropriate to simulate regions where it is raining everywhere. To overcome15

this, rainfall is often assumed to be the result of two separate processes, one to determine where
it is raining, the support of the rainfall field, and another to determine the observed rain rates.
Several different methods of introducing zero values have been proposed in literature, generally
there are those which simulate a separate (mono-)fractal rainfall support (e.g. Rebora et al.
(2006)) and those that set values below a certain threshold to zero (e.g. Ferraris et al. (2002)).20

Both methods have their merit, however, practical analysis has proven difficult and it remains
unclear whether the methods are correct or which is best. In this paper, we assume that the
support of the rainfall is a monofractal field and analyze it as such.

6
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Evidently, the above fields are simulated only to a finite scale. In contrast, if the observed
fields were simulated according to such a model, they would be developed to an infinite scale
and then integrated back up by the radar. This distinction is referred to as a dressed cascade,
i.e. it has been developed to an infinite scale and then integrated back up. Fields simulated only
to a finite scale, without integration, are referred to as bare cascades with fields in between5

being partially dressed. This difference is shown in figure 1. Although important for a variety
of statistical measures, it is impossible to remove these effects (and thus get a direct view of the
bare process) and we are left with having to estimate the bare process from the dressed cascade.
Lovejoy and Schertzer (2013) showed that, for a variety of approaches, this is indeed valid.

3 Data10

The data for this study were acquired by a C-band weather radar near Wideumont, Belgium,
operated by the Belgian Royal Meteorological Institute (RMI). This installation covers a circular
area with a radius of 240 km, producing a multi-level scan every five minutes. The region
covered includes coastal landscapes to the west, and a low mountain range, the Ardennes, to the
east with land cover mostly composed of forests, urban development and agriculture. The entire15

region has a temperate climate and receives about 800 mm of rain annually, almost uniformly
distributed throughout the year (De Jongh et al., 2006) and a mean monthly temperature which
varies between 18 ◦C in June and 3 ◦C in January.

The actual 5-minute radar images are taken from large events during 2009, with 9 winter
storms and 17 summer storms. These images were extracted from a 6-month time series during20

which larger storm episodes were selected to ensure sufficient data. These images correspond
to the basic 5-minute interval images, however, to reduce the data load, we opted to use only
the first image of each hour. The images used were not aggregated in order to retain the basic
spatial scaling behavior as well as to avoid ripple effects (Delobbe et al., 2006) and possible
temporal scaling.25

The raw radar data are produced by a 5-elevation scan performed every 5 minutes. Measure-
ments are collected up to 240 km with a resolution of 250 m in range and 1 degree in azimuth.

7



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

A time-domain Doppler filtering is applied for ground clutter removal. An additional treatment,
based on a static clutter map, is applied to eliminate residual permanent ground clutter (e.g.
buildings). The radar data are then stored as digital numbers representing the reflectivity val-
ues ranging from -31.5 dB to 95.5 dB in steps of 0.5 dB. A two-dimensional radar product
is then extracted from the three-dimensional polar data on a Cartesian grid with a resolution5

of 0.6 km× 0.6 km (Goudenhoofdt and Delobbe, 2009). Reflectivity values are then converted
into precipitation rates using the Marhsall-Palmer relation

ϕobs =
b

√
100.1·ZdB

a
, (9)

where ZdB is the reflectivity in [dB] and a and b are dimensionless parameters, respectively
equal to 200 and 0.6.10

As with all weather radars, not all measurements are suitable for quantitative analysis. Firstly,
the radar cannot accurately measure rain rates below ∼ 0.1 mm/hr, dependent on distance from
the radar. Moreover, the measurements within 60 km of the radar were found to be strongly
corrupted with speckle as well as those further than 180 km from the radar. Because of this, the
rain rates below 0.1 mm/hr were set to zero, and values closer than 60 km or further than 18015

km were discarded. An example of a rainfall field together with the radii between which points
were kept is shown in figure 2.

3.1 Power Density Spectrum and Multiaffine analysis

We analyzed the rainfall fields both individually and for each of the storms (by averarging the
power spectra of each image in the storm), prior to any changes made to the image, i.e. the raw20

fields ϕobs. The spectra of all storms are shown in Figure 3, together with a straight line fitted
to the linear portion of the power spectrum. In each of these storms, linear behavior is easily
visible, with a break at about 15 km for summer storms and no clear observed scaling break for
winter storms. This difference in the range over which the image scales is easily explained by

8
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the generally smaller scale of convective summer storms, in contrast to the large scale stratiform
systems typical of winter precipitation.

Furthermore, the summer storms tend to have a β in excess of 3, suggesting that the non-
conservation coefficient H is larger than 1 (see eq. 8). Although not often observed, this is
possible in the sense that a fractional integration is not restricted to H ≤ 1. However, the ob-5

served images contain a lot of noise, and generally only relatively few images were available in
these series, suggesting that these results lay be spurious.

To find corroboration for the slopes with β ≥ 3, the first order structure functions were com-
puted. The slope of these functions, up to a break, is equal to the non-conservation coefficient
H . These slopes are shown in figure 4, for each storm as a whole and for all images individually.10

Note that even though the summer storms do have a higher H , they do not exceed one. This
lends creedence to the notion that the overly large β are due to speckle and other problems, and
not due to characteristics of the rainfall.

3.2 Singular Moment Analysis

The moment scaling functions of the rainfall images and storms ϕ were analyzed to determine15

the parameter α. The co-dimension of the mean C1 is dependent on the outer scale Leff . How-
ever, the truncation of the field due to the lower detection limit introduces a spurious outer scale
(Lovejoy and Schertzer, 2013), and thus C1 cannot be determined accurately. As it holds no
importance for the remainder of the paper, it was not generally determined.

Instead of the regular Double Trace Moment, the fields were analyzed using the Weighted20

Multifractal Analysis (WMA) (see Gires et al. (2012b); Verrier et al. (2011)). This is the usual
Double Trace Moment analysis, with the following differences

– The averages taken in upscaling, are only over raining pixels.

– Each pixel has a weight associated with it the fraction of rainy pixels within the disjoint
boxes at the finest scale level.25

9
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This analysis is similar to the scaling described by equation 13, but over disjoint boxes rather
than a moving average. This results in an over-weighting of the pixels with more rainy values
providing more accurate values for α and C1.

The results of this analysis are shown in figures 5 for the entire first storm. First, the resulting
moments have been taking over a range over scales with η = 1 to determine the scaling of the5

moments. It is easily observed that most of these moments do indeed show a straight line for
a large portion of their entire scaling range. The fit to the empirical moment scaling function
K(q) is shown in figure 6. The moment scaling function appears to be well captured by the
theoretical form of equation 3, suggesting that the field is indeed multifractal. The parameters
α for all storms (not shown) are all close to 2. Hence, it appears that the cascade is log-normal10

and multifractal in nature for all storms.

4 α-stable distributions

As mentioned in the introduction and section 2, the logarithm of the rainfall fields ελ and their
increments µελ are assumed to be distributed according to the α-stable distribution. The α-
stable family of distributions allows for a large variety in behavior, including right- and left-15

skewed behavior, as well as symmetric behavior. Furthermore, the distribution allows either
a heavy tail or a light, vanishing, tail on either side, or on both sides, of the mode. Due to
this highly flexible behavior, it includes several well-known distributions such as the Normal
distribution and the Cauchy distribution. The α-stable distribution does not have a closed form,
but rather expresses its density as an integral of the characteristic (moment-generating) function20

over all moments ranging from −∞ to +∞. This would result in an indefinite integral that
only has a closed form in a few special cases. Hence, an approximation is required. Although
different approximations exist, they are all roughly equivalent and here we used that of Nolan
(1997), as implemented in the R-package stabledist (Wuertz et al., 2012).

There are a number of different parametrizations available for the α-stable distribution, all25

suitable for different purposes; we opted for the S1 parametrization of Nolan (2012). In this
parametrization, α determines the heaviness of the the tail, a parameter β (note that this is not

10
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the same β as in eq. 8) determines the skewness, and two parameters γ and δ determine shape
and location. If two distributions X and Y have the same α and both have β =−1, their sum is
also an α-stable distribution, Z, with shape and location parameters

γαZ = γαX + γαY , (10)

δZ = δX + δY . (11)5

When α= 2, the α-stable distribution becomes the normal distribution. As a result, the effect
of the parameter β diminishes as α→ 2 and has no effect when α= 2 as the normal distribution
is necessarily symmetric. Additionally, when α= 2, the shift parameter δ is equal to the mean,
and the shape parameter relates to the variance as σ2 = 2γ2. Additionally, the distribution only
has moments that are smaller than α, hence, if α≥ 1 the shift parameter is equal to the mean.10

Moreover, when β =−1, the distribution is entirely left-skewed, meaning that it only has a
”fat” tail towards the left (negative numbers). Consequentially, the positive moments converge,
whereas the negative moments do not. Fortunately, as we generally only deal with positive
moments in rainfall analysis, this property allows for an easy analysis.

The α-stable distribution can be fitted in a variety of ways, including the well-known Maxi-15

mum Likelihood method. Nevertheless, fitting α-stable distributions is still a difficult exercise,
partly due to the lack of a closed form. Despite these difficulties, numerous different approaches
are available and a summary of these approaches can be found in Nolan (2001). For this study,
the method of McCulloch (1986) is used together with general maximum likelihood fitting. Al-
though faster methods do exist (e.g. Koutrouvelis (1980)), maximum likelihood fitting affords20

more flexibility such as taking into account the truncation in the rainfall fields. The method of
McCulloch (1986) was used to generate an initial starting point for a Boxed Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm used in the optimization. Although an in depth explanation
is not within the scope of this paper, the method of McCulloch (1986) relies on a look up ta-
ble of quantiles and associated parameter values, which are interpolated to obtain a crude first25

guess estimate of the parameters for the maximum likelihood fitting. For more details on the
Maximum Likelihood fitting of the α-stable distribution, please refer to Nolan (2001).

11
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5 Methodology

The starting point for any analysis is the rainfall intensity field ϕobs. Prior to scaling the field,
any local trends were first removed by normalizing the field over disjoint boxes

ϕnormobs (B100) =
ϕobs(B100)

〈ϕobs(B100)〉
(12)

where B100 is used to denote the disjoint box of 100 by 100 pixels, or 60 by 60 km. This5

approach to scaling is similar to that used in Detrended Fluctuation analysis (Kantelhardt et al.,
2002). The size of the boxes was chosen such that the distributions scaled properly without
bimodality, but that the size of the boxes was as large as possible to avoid effects on the scaling
behavior.

Subequently, the data were coarse-grained for analysis. This scaling was done using a moving10

average (low-pass) filter using a box with sides of length l rather than the disjoint boxes common
to multifractal analysis to allow for more points at higher scales and avoid spurious correlations
due to a lack of points. This scaling is performed as

ϕl(i, j) =
1

#Rain(i, j)

i+l/2∑
x=i−l/2

j+l/2∑
y=j−l/2

ϕobs(x,y) , (13)

where #Rain denotes the number of active pixels in ϕobs within the region over which the sum15

is performed. Each point has a weight associated with it, equal to the fraction of rainy pixels
within the area of averaging, i.e.

ωl(i, j) =
l2

#Rain(i, j)
. (14)

To determine the distributions and correlation, only points with more than 90% rainy pixels
were selected for the analysis to further reduce the effects of non-rainy areas on the analysis.20

12
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The resulting set of rainfall images ϕl with l ∈ 2(0..K) with increasing (coarsening) scale
were then used to extract the increments. The log-increments µϕ are extracted as

log(µϕl) = log(ϕl+1)− log(ϕl) (15)

where l+ 1 is used to indicate the coarser scale. The resulting cascades can then be analyzed
by fitting an α-stable distribution to each of the fields log(µϕl) and log(ϕl) for each scale using5

the fitting method described in section 4.
Moreover, as mentioned earlier, the parameter α should be the same for all these distributions.

Therefore, the fit is done in two steps, first a preliminary step where all distributions are fitted
separately resulting in a set αl=20..K , which contains all values α for both the increments and
the fields. Then, the distributions are fitted a second time, forcing α= 〈αl=20..K 〉. Although no10

formal relationship exists between distributions with different α, it was found that the mean of
a set was in good agreement with optimized values of α. Hence, this analysis results in a set
of parameters (αµϕl

,−1,γµϕl
, δµϕl

) for each scale level l, where it should be noted that δµϕl
is

forced to be equal to 〈log(µϕl)〉. A similar set is found for each rainfall field log(ϕl), denoted
by subscript ϕl.15

Besides the basic parameters of the distribution, we are also interested in establishing whether
or not the fields and their increments are actually i.i.d.. A simple test would be to use the cor-
relation to assess whether or not these distributions are uncorrelated. However, the α-stable
distribution with stability parameter α does not admit moments q > α, hence, if α < 2 the
(Pearson) correlation does not exist. As a result, using raw correlations is not feasible, and a20

difficult problem in α-stable analysis arises. Many different measures have been suggested, but
to the authors’ knowledge all of these pertain to symmetric distributions, i.e. those with β = 0.
Nonetheless, we adopt the correlation value of Garel and Kodia (2009) as it offers important
benefits and presents a conceptually simple framework.

The basis of the correlation value of Garel and Kodia (2009) relies on the notion that,25

for properly scaled variables with finite second order moments, the slope of the regression
E[ϕ|µϕ] = E[µϕ|ϕ] (note that the logarithm and the scale indicators have been dropped for

13
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notational convenience) is equal to the Pearson correlation ρ. However, the regression line and
its slope always exist, in contrast to the Pearson correlation coefficient, even though we cannot
generally say that it is finite or exchangeable (i.e. it could be that E[ϕ|µϕ] 6= E[µϕ|ϕ]). Hence,
an appealing correlation measure is

ρ(ϕ,µϕ) = sign(θϕ|µϕ)
√
θϕ|µϕθµϕ|ϕ , (16)5

where θϕ|µϕ is the slope of the regression line E[ϕ|µϕ], and similarly for θµϕ|ϕ. Use of the
square root is to ensure that if the second order moment exists, the metric coincides with the
Pearson correlation. Finally, the sign function is used to ensure that negative and positive cor-
relations are differentiated. A proof for this metric is beyond scope of the paper, rather, we will
investigate its practical skill. Furthermore, weighted and partial correlations are easily imple-10

mented by using either weighted regression, or by determining the correlation on residuals.
The relationship between the shape parameters of the rainfall field and its increments, γµϕ

and γϕ, with ρ(ϕ,µϕ) 6= 0 is dependent on the entire bivariate distribution (Nolan, 2012). How-
ever, modeling such a distribution is highly cumbersome and not at all evident as multivariate
stable distributions are an area of ongoing research; Therefore, a simplification is needed. We15

observe that if α= 2 the relationship between γµϕ and γϕ is

γαϕ+µϕ = γαϕ + γαµϕ + ρ(2σαϕ)(1/α)(2σαµϕ)(1/α) , (17)

where ρ denotes the Pearson correlation coefficient. The above is dependent on the notion that
if α= 2 the α-stable distribution becomes a normal distribution, with variance 2γα. Therefore,
to simulate the effects of the summation of a correlated distribution, we use equation 17 where20

we substitute the pearson correlation coefficients with the measure in equation 16. The effects
of using this equation are investigated in figure 7 by comparing shape parameters fitted to the
empirical distribution with shape parameters computed according to equation 17 over a single
scale. Note that, in general, the errors appear to be mild, however, at lower values of α, several

14
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large errors can be observed. Fortunately, few rainfall images have distributions with low α,
making this a tenable approximation.

To investigate the behavior of the scaling of the α-stable parameters through time, we first
need to characterize this behavior for each of the images. This is done by fitting a set of scale
dependent functions to the α-stable parameters for each image and its increments. The mean5

behavior of the α-stable parameters for all images was used as a guideline for the function
forms, shown in figures 8 to 10. These empirical functions all admit linear or stable behavior,
and thus we fitted

δλ = aδ , (18)

γλ = aγ + bγ · log2(l) , (19)10

ρλ = aρ + bρ · log2(l) . (20)

Note that the subscripts identifying that these parameters apply to log(µϕl) have been dropped
for notational convenience. The fit of the above functions is examined in figures 8 to 10, for
each of the parameters respectively. First, the mean of the increments shows relatively erratic
behavior close to zero and was thus modelled as the mean over each of the scales. Secondly,15

γ showed a split behavior where at smaller scales linear behavior is observed, which flattens
out at the larger scales and start to behave somewhat erraticaly. Similar behavior is observed in
the correlations where the extreme scales are different in nature to the intermediate scales. It is
more than likely that this is related to the scaling breaks observed in section 3, nonetheless, we
fit a linear function to both for the middle of their range.20

Finally, the number of dry pixels are modeled based on the fractal box counting dimension
(Rupp et al., 2009). As the boxcounting dimension is directly based on the number of dry pixels
at each scale, it suffices to invert this relationship yielding

P (Y > 0)l = (
1

lk
)Df ·P (Y > 0)lk=kmax , (21)
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where Df is the fractal dimension and lk is the side length of the pixel at scale k expressed in
elementary pixels. This relationship performs nearly perfect (figure 11). Note that this equation
does not perform on a pixel-by-pixel basis, but rather attempts the total fraction of zeros in the
field.

6 Results5

The assumption that the both the distribution of ε and µε (i.e. the conservative cascade) are
of a log-stable family is common, as it is vital to the universal behavior. However, empirical
investigation of these fields is difficult, as removal of the effects of H can result in suprious
scaling (Veneziano and Furcolo, 1999) and hence we operate on the non-conservative fields
requiring some investigation as to whether this assumption is tenable.10

After appropriate normalization, the distribution of the increments µϕ is well approximated
by an α-stable distribution as shown in figure 12. The distribution of ϕ itself is somewhat
more difficult to approximate due to the truncation of the lower tail at 0.1 mm/hr. Despite
this, a truncated distribution shows an excellent fit in figure 13, over all scales. The parameters
found after free-fitting (i.e. without any preset parameters), shows that the α changes somewhat15

throughout the scaling range and between µϕ and ϕ, evidently, the α’s and β’s fitted for the
truncated distribution ϕ are unreliable, as both are strongly determined by the missing tail. It
is likely that the changes in α are due to noise, and in part due to the truncation of the lower
tail, causing both β and α to rise (i.e. the distribution to become more symmetric and normal).
Moreover, the mean of the field is reasonably stable around zero, as would be expected of a20

normalized field.
In figure 14 all the correlations for each of the scales are shown, summarized as a boxplot.

From this plot, it is evident that almost all storms exhibit a positive correlation between the
increments and the rainfall field. This pattern is also seen in rank correlation measures (not
shown), further corroborating that there is indeed a correlation. Taking this correlation into ac-25

count according to equation 17 indeed results in a decrease in error, as is evidenced by the
lower relative difference for the correlated than for the uncorrelated error (figure 15). The ef-
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fects of this correction are evidently less at the higher scales, possibly due to the more erratic
behavior. Moreover, the significant changes in the shape parameter, γ further suggest that the
iid assumption is, for these storms, incorrect.

The functions 18 to 20 are used to characterize the scaling behavior. These functions exhibit
a reasonably good fit for all storms, as determined through the relative error (figure 16). The5

resulting parameters are shown for each storm in figures 17 to 19. The mean of the increments
is evidently below zero for the summer storm whereas it is generally positive for winter storms.
The parameters for γ show a higher intercept for summer storms, but a lower slope. Moreover,
some of these slopes are negative for the summer storms and their spread is higher. This behavior
is reversed for ρ, with lower intercepts for summer storms and higher slopes.10

The analyses confirm the common finding that summer storms tend to be more energetic with
higher variances and higher mean rainfall. Moreover, summer storms appear to exhibit a smaller
decrease in correlations, resulting in a stronger correlation at the lower scale levels.

Figure 20 shows the relative difference between the γ of the modeled distributions and the
direct fitted distributions, propagated over the four scale levels. It can be seen that the model15

error increases as the number of scale levels increases over which we propagate the scaling.
Nonetheless, the error remains relatively low, showing that the model captures the scaling be-
havior quite well. The fractal model for the dry pixels works very well, as should be expected
due to the direct relation with the actual number of dry pixels.

7 Conclusions20

In this paper, we investigated the scaling behavior of the distributions of rainfall. To this end,
a novel scaling model was introduced that only relies on the basic assumptions regarding the
cascade structure responsible for the fractal nature of rainfall. Furthermore, this framework is
based on direct empirical comparison with the observed distributions. In contrast, most previous
work relied on theoretical considerations and indirect use of the scaling distributions. Therefore,25

this framework allows for a more direct and empirical investigation into the scaling behavior of
rainfall, and provides a more adaptable framework to be used for practical purposes.
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Rainfall was found not to be the result of an i.i.d. cascade, but rather of a cascade where
the distribution changed and the increments are dependent on their coarse scale parents. The
changes in distribution, as described by the shape parameter of the α-stable distribution, were
observed to change up to a scale of about 32 km. After this, the behavior became erratic, possi-
bly due to the large scale relative to the size of the images. Nonetheless, this lack of scaling at5

large scales has also been observed in similar studies on rainfall time series (Olsson, 1995). Fur-
thermore, as the scales grow larger, the inclusion of non-rainy areas becomes unavoidable and
more than likely affect the scaling behavior (Olsson, 1998). Furthermore, the summer storms
were observed to have increments with a higher variance, suggesting they are more energetic.
This is in line with expectations, as well as the findings of other authors, e.g. (Venugopal et al.,10

2006) who suggested that the scaling behavior is different dependent on the intensity of the
storm.

The correl ations found in the cascade were positive for almost all storms, and were shown to
depend only on the large scale values and not on the season. However, these correlations were
clearly dependent on the scale of averaging, where larger scales resulted in larger correlations,15

up to the point were scaling became erratic. These dependencies have also been observed by
other authors in time series (Rupp et al., 2009).

The inclusion of correlations into the distributional model showed only moderate improve-
ments, in part due to the small magnitude of the scale parameters where the correlations were
found. None the less, the deviation from identical distributions, as evidenced through the change20

in γ should be incorporated and gives strong improvements.
In future research, the full dependence structure will need to be evaluated to allow for a more

accurate representation of the dependence between scale levels and their increments. This will
allow for a deeper investigation into this aspect of imperfect scaling and possible a better way
of representing the scaling behavior. Moreover, it was observed that local trends were present in25

all rainfall images, not only in the mean of the field, but also in the correlations, this will need
to be investigated further. Finally, the difference with respect to the scaling behavior, between
convective and stratiform storms will need further investigation, using a classification algorithm
such as the Steiner algorithm (Steiner et al., 1995). A careful analysis of the behavior of such
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algorithms will be required before using them to investigate the difference in scaling behaviour
between stratiform and convective precipitation.
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Fig. 1. A basic rainfall model, graphically illustrated. The left hand side of the image is the dressing
procedure, whereas the right hand side is the generation.
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Fig. 2. A log-transformed rainfall field, together with the radius of reliable observations (circles) at 60
km and 180 km.
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Fig. 3. The power spectra of all rainstorms, up to a range of 180 km from the radar, for images which
have more than 10% active pixels and storms with at least 10 valid images. The storm spectra are found
by averaging together the spectra of each of the images. The number at the end of each line is the slope
β, whereas the number at the beginnging is an ID number for each of the storms. Summer storms show
a higher slope β, and a short range of scaling than do winter storms. This is possibly explained by the
generally smaller scale of convective summer precipitation. The short scaling break at the smallest scales
is likely a result of non-raining areas.
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Fig. 4. A boxplot of the non-conservation parameter H for all images. The overall parameter for each
storm is marked as a black square. Summer storms show a higher non-conservation parameter than winter
storms, suggesting a smoother behavior within the storm (as structure functions are computed only over
raining areas).
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starts to diverge from the empirical function, suggesting that above q = 1.5 the scaling breaks and the
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Fig. 7. The difference between the parameter γ as fitted, and as predicted with correlations versus the tail
parameter α. The few very large values are due to the largest scales, but generally the approximations
appears to behave without bias or response to deviations from normal when α� 2.
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Fig. 8. The empirical means of the increments, averaged over all images, and its fit. The errorbars denote
the 25th and 75th percentiles. There does appear to be some steady behavior, but it appears highly com-
plex, but with relatively small values suggesting that the mean might be sufficient to model its behavior.
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Fig. 9. The empirically fitted γ of the increments, averaged over all images, and its fit. The errorbars
denote the 25th and 75th percentiles. The behavior of the function is linear in the middle of the scaling
range, but breaks above log2 l ≈ 6 or 30 km, and for the first scale, which is roughly in agreement with
the scaling range found in the power spectrum.
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Fig. 10. The empirical ρ of the increments, averaged over all images, and its fit.The errorbars denote the
25th and 75th percentiles. Almost the exact same pattern is observed as for γ.
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Fig. 11. The difference between the probability of dry pixels as predicted, and as observed.
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Fig. 12. The weighted histograms of a rainfall field increments at a range of scales. The lines are the
fitted distributions without any preset parameters.
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Fig. 13. The weighted histograms of a rainfall field at a range of scales. The lines are the fitted distribu-
tions without any preset parameters. Note that the observed tail is a result of the local normalization, not
a natural feature of the rainfall field.
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Fig. 14. The correlations of all scales for each of the storms. Note that almost all rainfall fields exhibit
correlations, and that almost all of them are positive.
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Fig. 15. The difference between the relative error of the distribution without correlation, and that with
correlation propagated from the largest scale. The inclusion of correlations leads to small, but consistent,
improvements (i.e. negative values). It is immediately clear that the coarsest scale is not well captured
by the functions, evidenced by the large relative error.
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Fig. 16. The relative errors of the mean, shape and correlation functions. All functions appear to behave
relatively stable troughout winter and summer, with the exception of γ where the summer storms have a
smaller error, but more outliers.
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Fig. 17. The parameter for the mean of the increment, shown as boxplots for each storm. Summer storms
clearly have lower increments.
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Fig. 18. The parameters for the γ of the increment, shown as boxplots for each storm. The intercepts are
higher for summer storms, suggesting more energy in the flux, but with smaller slopes, i.e. the scales are
more similar. Winter storms show the exact opposite behavior.
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Fig. 19. The parameters for the correlation of the increment, shown as boxplots for each storm. The
functions for the correlation appear stable throughout winter and summer, and have a high intercept, but
a low slope suggesting that the correlation are somewhat the same for all scales.
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Fig. 20. The difference between the relative error of the distribution without correlation, and that with
correlation propagated from the largest scale. The inclusion of correlations leads to small, but consistent,
improvements (i.e. negative values). It is immediately clear that the coarsest scale is not well captured
by the functions, evidenced by the large relative error.
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