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 15 

ABSTRACT 16 

A substantial number of models, predicting the Soil Moisture Characteristic Curve (SMC) from 17 

Particle Size Distribution (PSD) data, underestimate the dry range of the SMC especially in soils with high 18 

clay and organic matter contents. In this study, we applied a continuous form of the PSD model to predict 19 

the SMC and subsequently, we developed a physically based scaling approach to reduce the model’s bias 20 

at the dry range of the SMC. The soil particles packing parameterdensity, obtained from the porosity was 21 

considered as a metric of soil structure and used to asacharacteristic length define a soil particle packing 22 

scaling factor. This factor was subsequently integrated in the conceptual SMC prediction model. The 23 

model was tested by using on eighty-two soils samples, selected from the UNSODA database. The results 24 

showed show that the scaling approach properly estimates the SMC for all soil samples. In comparison to 25 

i) the formerly used physically based the original conceptual SMC model without scaling, the scaling 26 

proposed approach improved improves the model estimations by anon average of by 30% for all soil 27 

samples. However, the advantage of this new approach was larger Improvements were particularly 28 

significant for the fine and medium textured soilsthan that for the coarse textured soil. In view that in 29 

Since this the scaling approach is parsimonious and there is do not rely on  no further need for additional 30 
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empirical parameters, we conclude that this approach may be used for could become applicable for 1 

estimating SMC at the larger field scale from basic soil data. 2 

 3 

1 Introduction 4 

Increasing contamination of the groundwater resources, have profoundly accentuated the need 5 

for accurate predictions of subsurface flow and chemical transport.Water flow and subsequent 6 

chemical transport are largely determined by the soil hydraulic properties, such as the Soil 7 

Moisture Characteristics curve (SMC) (Wang et al, 2002;Mohammadi et al., 2009). Measuring 8 

the soil hydraulic properties is still difficult, labor intensive, and expensive. Therefore, many 9 

researchers havemade an attempt to develop an indirect method as an alternative to the direct 10 

measurement of hydraulic properties. For the SMC, indirect methods are classified into 11 

conceptual methods(Nimmo et al., 2007; Mohammadi and Vanclooster, 2011),semi-physical 12 

methods(e.g. Arya and Paris, 1981; Haverkamp and Parlange, 1982; Wu et al. 1990; Smetten and 13 

Gregory, 1996) and empirical methods (e.g. Saxton et al. 1986; Schaap et al. 1998). 14 

The semi-physical methods are mainly based on shape similarity between the SMC and the 15 

Particle Size Distribution (PSD) curve (Zhung et al., 2001; Schaap, 2005; Haverkamp et al., 16 

2005; Hwang and Choi, 2006), implying that the pore size distribution (PoSD) is closely related 17 

to the PSD (Arya et al., 2008). Arya and Paris (1981) did a pioneering work (AP model) for the 18 

development of ing semi-physical models. They showed that, the pore size, which is associated 19 

with a pore volume, is determined by scaling the pore length, using a scaling factor, α. They 20 

demonstrated that, an average value of 1.38 for α, scales the pore lengths based on spherical 21 

particles to natural pore lengths properly. However, later investigations by Arya et al. (1982), 22 

Tyler and Wheatcraft (1989), Basile and D’Urso (1997) and Vaz et al. (2005) revealed that α 23 

value varies between 1.02 - 2.97 for fine and coarse textured soils, respectively. A slight error in 24 

the estimation of  α may result in considerable error in predicting the SMC (Schuh et al. 1988). 25 

Schuh et al. (1988) found that the value of α varies with soil texture and suction head, especially 26 

in the wet range of sandy soils. Using three formulations of α, Arya et al. (1999) modeledthe 27 

parameter α as a function of particle sizes and showed that α was not constant. .  and therefore iIt 28 

decreased with increasing particle size, especially for the coarse fractions. Tyler and 29 
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Wheatcraft(1989) showed that the parameter α is equivalent to the fractal dimension of a tortuous 1 

fractal pore. 2 

Although, the empirical methods have been developed extensively (e.g. Puhlmann and von 3 

Wilpert, 2012), the performance of an empirical method will depend on the databases, being used 4 

for the model calibration and testing (Tietje and Tapkenhinrichs, 1993; Kern, 1995; Schaap and 5 

Leij, 1998; Schaap et al., 2004; Haverkamp et al., 2005; Hwang and Choi, 2006, Weynants et al., 6 

2009). Moreover, direct measurementsof SMC are often integrated as predictor variables of the 7 

continuous SMC function. Many attempts have so far been made to reduce the sensitivity of the 8 

indirect methods to empirical and database-dependent parameters. For instance, Mohammadi and 9 

Vanclooster (2011), proposed a conceptual robust model (MV) that, does not included an 10 

empirical parameter and is independent of the databases that are being used. The disadvantages of 11 

the most semi-physical or conceptual models such as the AP and MV models are, the use of 12 

“bundle of cylindrical capillaries” (BCC) concept to represent the pore space geometry and the 13 

lack of consideration of surface forces (Or and Tuller, 1999; Tuller et al., 1999; Mohammadi and 14 

Meskini-Vishkaee, 2012). These conceptual problems often  which leads to the underestimation 15 

of the dry range of the SMC (Arya et al., 1999; Hwang and Choi, 2006; Mohammadi and 16 

Vanclooster, 2011). Such underestimations would result in large error in modeling errors of 17 

hydraulic dependent soil functions such of as mechanical properties of unsaturated soil resistance 18 

functions (Gras et al., 2010),  and biological processes including plant water uptake functions 19 

(Ryel et al., 2002) and microbial activity functions (Jamieson et al., 2002; Santamarı´a and 20 

Toranzos, 2003) , in particular in especially in arid environments. 21 

To predict continuous SMC, Naveed et al. (2012) parameterized the van Genuchten model 22 

based on the SMC data points predicted by their proposed model using from organic matter, clay, 23 

silt,  and fine sand and coarse sandssand content. Mohammadi and Meskini-Vishkaee (2013) 24 

integrated the MV model with the van Genuchten (VG) model (van Genuchten, 1980) to predict 25 

the continuous SMC curve (MV-VG model) from PSD data. They and found that ignoring the 26 

residual moisture content (θr) is the main source of systematic error resulted fromthe in the MV 27 

model. They further tested and compared four approaches to predict the θr, and showed that the 28 

incorporation of the safely estimated value of the predicted θr, will improve the MV-VG 29 

prediction results considerably. However, the estimation of θr has some limitations, due to the 30 
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lack of a conceptual underpinning and the poor predictability of θr (Leij et al., 2002). Tuller and 1 

Or (2005) suggested that, the introduction of θr as a fitting parameter in most SMC models often 2 

makes the physical representation of key processes in the dry soils vague. Moreover, they pointed 3 

out that, the dry range of the SMC shows remarkable scaling behavior. In recent years, the 4 

scaling theory has been widely used as an effective tool to describe the variation of the soil 5 

hydraulic properties (Sharma and Luxmoore, 1979; Ahuja et al., 1984; Eching et al., 1994; 6 

Kosugi and Hopmans, 1998; Oliveira et al., 2006; Nasta et al., 2009). The concept of geometric 7 

similitude and similar media was used to develop scaling theory in soil physics (Miller and 8 

Miller, 1956). Scaling methods provide a means to relate hydraulic properties of different soils to 9 

those of a reference soil, using scaling factors (Nasta et al., 2009). On the other hand, some 10 

attempts have been made to modify the original scaling method (Warrick et al., 1977; Vogel et 11 

al., 1991; Deurer and Duijnisveld, 2000; Das et al., 2005). Arya et al. (2008) developed a 12 

procedure to scale natural pore lengths, directly from straight pore lengths. They exhibited 13 

showed that the, scaling approach is less sensitive to uncertainties in model parameters and 14 

provides better predictions of the SMC, compared with the original AP model. 15 

Kosugi (1996) showed that the SMC can be expressed by a lognormal pore-size distribution 16 

function, while Kosugi and Hopmans (1998) found that the set of scaling factors is lognormally 17 

distributed when PoSD curve is lognormal. Hayashi et al. (2007) used the Kosugi model (Kosugi, 18 

1996) to evaluate the effectiveness of three kinds of scaling factors obtained by the microscopic 19 

characteristic length, standard deviation of pore-size distribution and the porosity. They indicated 20 

that in the natural forested hillslope soils, the variability in the SMC is characterized by 21 

variability in the effective soil pore volume. Nasta et al. (2009) concluded that the scaling of the 22 

PSD curves provides for adequate characterization of the mean and variance of SMCs, which 23 

allows for characterization of the soil spatial variability.  24 

Many researchers developed empirical models for expressing the SMC; since the parameters 25 

of these models do not address the physical significance of the medium. Hence the spatial 26 

variability in the pore structure of soils is not fully understood (Hayashi et al., 2007). Likewise, 27 

the conventional scaling approaches are based on empirical curve fitting, without considering the 28 

physical meaning of the scaling factor (Perfect, 2005; Milla´n and Gonzalez-Posada, 2005). To 29 

apply these models, one needs to determine the scaling factor, where the complexity of 30 
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measurements of the pore–size and pore–volume distributions easily nullifies the estimation of 1 

the scaling factors. Nevertheless, some efforts have been made to relate the scaling factor to the 2 

soil texture (Tuli et al., 2001; Milla´n et al., 2003).  3 

From this brief review, we conclude that although the scaling approaches improvesthe 4 

modeling and prediction of the SMC. Yet, most scaling approaches imply empirical parameters 5 

and a robust fully conceptual approach for the estimation of the SMC from easily measurable 6 

properties is still lackings.  7 

The MV model, underestimatesd the moisture content in the dry range of the SMC, because of 8 

the simplified conceptualization of the pore geometric conceptsyy., iIn particular the packing 9 

parameter which does not effectively reflect the pore geometry. The general aim of our current 10 

work on th this study is subject is to augment and is to improve the accuracy of the model 11 

proposed by Mohammadi and Meskini-Vishkaee (2013) using a scaling approach. 12 

Therefore the objectives of this study were are (i) to formulate a robust and physically-based 13 

model to scale the SMC from the PSD and porosity, and (ii) to compare the model performance 14 

with the results from the existing MV-VG model, using soils documented in the UNSODA 15 

database (Nemes et al., 2000). We also evaluate the overall model performance with the results 16 

from the full empirically SMC prediction software, ROSETTA (Schaap et al., 2001). 17 

 18 

2 Theory 19 

Because of the close similarity between the shapes of the PSD and SMC curves, many 20 

researchers expressed aSMC model in terms of a PSD model (Haverkamp and Parlange, 1982; 21 

Fredlund et al., 2000; Zhuang et al., 2001). The SMC model developed by van Genuchten (1980) 22 

is very flexible, widely used and given by: 23 
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where θ (L3 L-3) is the soil moisture content, Se (-) is effective saturation degree and θs (L
3 L-3) 26 

and θr (L
3 L-3) are saturated and residual soil moisture contents, respectively. The parameters n, 27 

m, θr and α (L-1) are fitting coefficients, and h (L) is the suction head.  28 
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The suction head, hi(L), corresponding to the particle radius of the i-th fraction Ri (L) is given 1 

by (Mohammadi andVanclooster, 2011): 2 
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where ζ ( -) is a coefficient depending on the state of soilparticles packing and is defined as: 4 
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where e (-) is the void ratio given by: 6 
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where the ρs(ML -3)and ρb (ML -3) are soil particle and bulk densities respectively. 8 

Arya and Paris (1981) suggested that the moisture content, θi (L
3L-3), can be obtained from PSD 9 

and θs (L
3L-3), as: 10 
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would result in: 14 

Ssi =θθ /     (8) 15 

where S(-) is the saturation degree and Pi (-) is the cumulative mass fraction of soil particles. It is 16 

obvious, that if θr=0 then, Se=S and subsequently S=Pi.Arya and Paris (1981) however, ignored 17 

the residual moisture content, while it may be a considerable value for many types of soil and 18 

clayey soils in particular. Combining Eq. (1) and (3) with Eq. (7) yields:  19 
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In Eq. (9), the cumulative mass fraction, Pi, is substituted with the Se in Eq. (1). Hence, fitting of 21 

the Eq. (9) to the PSD data, enables one to directly predict the SMC parameters (n, m and α). 22 

Moreover, these coefficients allow expression of the continuous form of predicted SMC. Since, 23 
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assuming that θr=0 would result in model underestimation in dry range of the SMC (Mohammadi 1 

and Meskini-Vishkaee, 2013), we developed a conceptual scaling approach to reduce the model 2 

bias. 3 

2.1 Scaling approach 4 

Following the Miller and Miller (1956) scaling theory, we assume that, the geometrically-5 

identical soils are characterized bythe similarity of PoSD and PSD, but differ in their microscopic 6 

length scale, which is defined as follows (Nasta et al., 2009): 7 

γ
γβ =                (10)

 8 

where β is a scaling factor, γ  and γ represent the microscopic characteristic lengths of the 9 

reference soil and actual soil respectively. For instance, Kosugi and Hopmans (1998) proposed 10 

the median suction head, as the macroscopic characteristic length to scale SMC. 11 

 12 

Following Hayashi et al. (2007), we suggest that the porosity is an appropriate property for 13 

inferring a characteristic lengthscaling factor. Since, the soil porosity is linked to the packing 14 

parameter, ζξ, in the MV model (Eq. (4)), we hypothesize that ζξ is the characteristic length scale 15 

of the soil. 16 

We assume that the reference soil is the one, which consists of uniform-size spherical particles 17 

that are arranged in random close packing state, leading to minimum porosity (known as the 18 

Kepler conjecture in literature of crystallography). Literature suggests that the porosity of this 19 

packing state is 0.259 (Hopkins and Stillinger, 2009). Subsequently, the maximum value of 20 

packing parameter, ζmax, would equal to 1.41432 for reference soil. Hence the scaling factor, λ, 21 

for each soil sample can be defined suggested by: 22 

maxζ
ζλ =

                   (1011)
 23 

In general, the values of the pore size distribution index, n, (Eqs. (1) and (9)) and ζ are large for 24 

the coarse-textured soils and small for the fine-textured soils. We suggest that the λ can scale the 25 

parameter ‘n’, obtained from fitting Eq. (9) to the PSD data, to the index manifested by ‘n’ 26 

parameter in  the SMC model (Eq. (1)) (hereafter n*) as follows: 27 
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n*= λ ×n                                                                   (1112) 1 

where n* is scaled to the PoSD index in VG model. Hence, the modified model is  2 
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In summary, given a known θswe can calculate ζξ and subsequently λ using Eq. (1011). The 4 

soil parameter ‘α’ and ‘m’ are obtained from fitting Eq. (9) to the PSD data and, n*, is estimated 5 

by Eq. (1112), and consequently the SMC is predicted directly by Eq. (1213). 6 

 7 

3 Material and Methods  8 

Eighty-two soil samples, with a wide range of physical properties that contained at least five 9 

PSD data, were selected from the UNSODA hydraulic properties database (Nemes et al., 10 

2000).UNSODA is a database of basic soil and hydraulic properties from 790 samples, gathered 11 

from all over the world, and compiled by the U.S. Department of Agriculture. All soils are 12 

summarized in Table 1.  13 

In this procedure, volumetric moisture contents corresponding to the i-th fraction were 14 

computed, using Eq. (6) and suction heads were predicted, using Eq. (3), in which the parameter 15 

ζ was calculated with Eq. (4). In this study, we assumed that, the porosity is equivalent to θs. For 16 

soils, that neither provide a porosity nor a θs, the first point of the SMC data that corresponds to 17 

the lowest suction head were used as θs (Chan and Govindaraju, 2004). 18 

We fitted Eq. (9) to the PSD data. We used nonlinear regression analysis to fit Eq. (9) to the 19 

PSD, using Matlab7.1 software (Matlab 7.1, The Mathworks Inc., Natick, MA) and the 20 

Marquardt–Levenberg algorithm (Marquardt, 1963). We calculated for each soil the scaling 21 

factor, using either the bulk density or the available saturated soil moisture content, and predicted 22 

the SMC.  23 

 24 

((Table 1)) 25 

 26 
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For each prediction, the agreement between the predicted moisture content θi(p) and measured 1 

moisture content θi(m) was expressed in terms of the root mean square errors (RMSEs), given by: 2 

( )∑
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n
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1 θθ  (1314) 3 

in which Nn is the number of observed data points. The relative improvement (RI) resulted from 4 

the scaling approach rather than MV-VG model was calculated as follows (Minasny and 5 

McBartney, 2002): 6 

 7 
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 9 

where, RI is the Relative Improvement, RMSEM and RMSEs are RMSE values of the MV-VG 10 

model and the current scaled model respectively. Obviously, the a negative RI values indicates 11 

that the scaling approach would diminish the accuracy level of the prediction of the SMC in 12 

comparison with the MV-VG model. 13 

Wealso fitteda cubic polynomial function to the overall predicted data and,calculated the area 14 

between the fitted polynomial and the 1:1 line fromthe difference of the numerical integrals of 15 

these two functions (do Carmo, 1976). 16 

Moreover, to consider and compare the reliability of the scale MV-VG model scaling approach 17 

with a fully-empirical SMC prediction methodmodel, we compared the estimations of scaled 18 

MV-VG model recent approach with the estimations of the ROSETTA software. In this software, 19 

we used the (M SSCBD model option, i.e. we used: SSCBD, textural percentages and bulk 20 

density as model predictors) (Schaap et al., 2001). 21 

4 Results and Discussion  22 

To analyze the performance of the proposed scaling approach, the RMSE was used as an 23 

index, to compare models for each soil and textural class. Table 2depicts  gives this the 24 

comparison between the MV-VG model, the ROSETTA model and the scaled MV-VG model in 25 

terms of RMSE, R2 and RI. Table 2and demonstrates the significant improved accuracy of the 26 

presented scaled MV-VG approach as compared to the original MV-VG model and ROSETTA. 27 

The RMSEs of the predicted and measured moisture contents, ranged from 0.0223 to 0.1502 for 28 
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the original MV-VG model (average 0.086), and from 0.0169 to 0.1122 (average 0.0601) for the 1 

scaled approach and from 0.0188 to 0.2453 (average 0.745) for the ROSETTA software. In terms 2 

of RMSEs, the scaled approach performed better than Schaap et al., 1998 and the Schaapp and 3 

Leij (1998) models with similar predictor variables.The results showed that there is a significant 4 

difference between performance of scaled MV-VG approach and ROSETTA (p=0.05). Despite 5 

the pure statistical and empirical nature of the ROSETTA approach, it provides worse results than 6 

the approach based on the current scaling technique. The improvement of the scaled approach is 7 

also reflected by RI in Table 2. Except for soils no. 3033 (Clay loam) and 3090 (Silt loam), the 8 

scaling approach resulted in more accurate predictions for all soils. Table 2 also indicates that the 9 

scaling approach can improve the model estimations of the original MV-VG model by 30 %. 10 

For the fine and medium textured soils, the values of RI are larger than for the coarse textured 11 

soil. This result was expected, because the MV and MV-VG models underestimate the dry range 12 

moisture content for the fine texture soils (Mohammadi and Vanclooster, 2011; Mohammadi and 13 

Meskini, 2013) and subsequently the scaling approach was more effective for these soils.  14 

We examined the possible relations between the RI and soil physical properties. Among all 15 

parameters, the saturated moisture content and scaling factor show strong relations with the RI. 16 

Fig. 1a shows that the RI values increase significantly with the saturated moisture content of the 17 

soils, i.e. the scaling approach would more effectively improve the model accuracy for the fine 18 

texture soils with higher θs. This result can be confirmed with Fig. 1b, which exhibits shows that 19 

the scaling factor is inversely correlated with the IR factor (Fig. 1b). Indeed, the soils with high 20 

porosity commonly have abundant amount of clay materials and organic matter, characterized 21 

with high surface energy. These attributes are the main sources of errors of the MV and MV-VG 22 

models.  23 

Typical examples of measured vs. predicted SMCs with the MV-VG model, and the scaling 24 

approach and ROSETTA for clay, sandy loam, loam, and silt loam textures are presented in Fig. 25 

2 (a-f). For the clay (codes: 2340 and 4681), sandy loam (code: 3180 and 3200), loam (code: 26 

3191) and silt loam (code: 3090) soils, the scaling approach fits the data well and out-performs 27 

better than the MV-VG model at entire range of the SMC. For the silt loam soil (code:3090), the 28 

scaling approach slightly overestimates the moisture content through the entire range of suction 29 

heads and the MV-VG model underestimates the moisture content at low suction heads.As  Fig 2 30 
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(a-f) shows that the ROSETTA software performs worse in the wet part of SMC. Overall, the 1 

scaling approach performs better than MV-VG model and ROSETTA software for all soil 2 

samples (Table 2 and Fig.3) but, the performance of scaling approach did not suitably respond for 3 

two soil samples (codes: 3033, 3090). The residual model error may be related to the simplified 4 

representation of the total porosity which is considered equal to the saturated volumetric moisture 5 

content. The swelling properties and high organic carbon content of these soils (>4%, 3.85% 6 

respectively) may partially be a source of these errors. We further suspect that the complexity of 7 

the relationship between PSD, PoSD and pore connectivity can be effective in the model 8 

performance (Zhang et al., 2001). The assumption of the similarity between PSD and PoSD does 9 

not perform equally well to all soils.    10 

We tentatively conclude that the scaling of the PSD curves using the parameter ζ generally 11 

performs better in predicting the SMC as compared to the original MV-VG model. The un-scaled 12 

MV-VG model underestimates the moisture content at high suction heads.  13 

The most semi-physical based methods for predicting SMC rely on the use of empirical 14 

parameters to improve the SMC estimates from PSD (Lilly and Lin, 2004). Hydraulic properties 15 

are indeed affected by both the soil texture and the soil structure (Haverkamp et al., 2002). The 16 

MV-VG model uses the packing parameter, ζ, derived from soil bulk density as a metric of soil 17 

structure. Moreover, the scaling parameter that is inferred from the packing state is integrated in 18 

the scaled MV-VG model. Hence the soil structural features are integrated in the MV-VG model 19 

at two levels. First at the MV-VG model to convert moisture into pressure head, and second, to 20 

correct the SMC model prediction. The good performance of scaling approach in the wet range 21 

and dry range of SMC suggests a convenient of soil structural features in the SMC prediction. 22 

Fig. 3 compares all estimated moisture contents, using MV-VG model and scaling approach, 23 

respectively, with the measured soil moisture content for all the 82 soil samples. The overall 24 

predictability of the two methods is evaluated by comparing the experimental data and the 25 

predicted soil moisture content on a 1:1 plot. Linear regression of the measured and estimated 26 

moisture contents, using the two methods for all the soil samples showed that the slope values 27 

were 0.7675 and 0.8484 and the coefficients of determination (R2) between the estimated results 28 

and measured data for all soils were 0.765 and 0.8565 for MV-VG model and scaling approach, 29 

respectively. Hence, the MV-VG model and the scaling approach, underestimate the moisture 30 

content by about 23% and 15% respectively, while the bias of the scaling approach is smaller less 31 
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than the MV-VG model. Since, it has been reported that usual measurement method of SMC 1 

(pressure plate apparatus) is susceptible to some errors at high soil suction heads (Campbell, 2 

1988; Gee et al., 2002 and Cresswell et al., 2008). We suggest that a part of the underestimation 3 

in the dry range of SMC of our method is partially related to limitation of this method for 4 

measuring the SMC (Solone et al., 2012). Regarding the R2, the scaling method still remains the 5 

most preferable method. Comparing the overall predictability of the two methods, the correlation 6 

coefficient of linear regression, as a statistical summary, cannot exclusively should not replace 7 

the visual examination of the data. We therefore, use the cubic polynomial function to adequately 8 

express the data variations. The fitted polynomial functions are drawn as shadowed red curves in 9 

Fig. 3(a, b). We further suggest that the area between the fitted curve and the 1:1 line (AE), is an 10 

expression of the systematic error. The values of AE were 0.0369 and 0.0250 for the MV-VG 11 

model and the scaling approach respectively. It confirms that the level of systematic errors of the 12 

scaling approach is about 33% less than that of MV-VG model. This result can be confirmed by 13 

the comparison of the R2 values obtained when predicting the SMC for each soil with two 14 

methods (Table 2 columns 5 and 6). We conclude that the scaled PSD curve will result in a more 15 

accurate prediction of the SMC as compared to the un-scaled PSD data. Moreover, the physically 16 

based scaling approach allows the upscaling of the physically based parameters which is essential 17 

forthe parameterization of the soil hydraulic properties for large study areas from individual soil 18 

samples (Kosugi and Hopmans, 1998). 19 

 20 

To scale the SMC, Tuller and Or (2005) used the soil specific surface area (SA) and the 21 

thickness of water film to express the moisture content in dry range of the SMC. Despite, their 22 

reasonable model performance, the application of their procedure was limited, due to difficulty in 23 

the measurement or the estimation of SA. 24 

Hayashi et al. (2007) found that in natural forested hillslope soils, the variability in the SMC is 25 

scaled and characterized by the variability in effective porosity. Nevertheless, the determination 26 

of the effective porosity is also difficult. 27 

The scaling factor proposed in current study is defined by using the index of packing state 28 

which can be determined easily from the bulk density of soil and particle density. As compared to 29 

prediction models that rely on the measured attributes as suggested above, or prediction models 30 

that rely on measured SMC data, our approach is based on a robust metric of the soil structure: 31 
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the packing density. It does not rely on any other additional empirical parameter. The scaled MV-1 

VG model is therefore very parsimonious and robust. We therefore conclude that the scaled MV-2 

VG model may be appropriate for predicting SMC from basic soil data. 3 

 4 

5 Conclusion 5 

Using a new scaling approach, the current study showed that the continuous form of SMC 6 

curve can be predicted from knowledge of PSD, as modeled by the van Genuchten (1980) model 7 

and particle packing state. In this approach it was assumed that the scaling factor can be defined 8 

as the ratio of packing state of a soil sample and the packing state of a reference soil. Results 9 

showed that the proposed approach can adequately predict the SMC of 82 soil samples selected 10 

from the UNSODA database. It was further found further that the scaling approach provides 11 

better predictions of the SMC than MV-VG model and ROSSETA software, especially in the dry 12 

range of the SMC. For soils for which the error was important, we attributed the proposed scaling 13 

approach error to high organic carbon content and swelling properties of the soil. Indeed, in these 14 

soils the soil pore structure and porosity is changing in time, leading to uncertainty in the scaling 15 

factor based on the soil porosity.  16 

In summary, we concluded that the main advantages of the proposed scaling approach as 17 

compared to many SMC prediction models are: i) the applied scaling factor is determined easily 18 

from soil bulk and particle densities; ii) the scaling factor has physical meaning, which doesn’t 19 

depend on soil database and empirical parameters; iii) the proposed approach predicts a 20 

continuous form of the SMC; and, iv) this approach estimates the SMC more appropriately in 21 

comparison with many other models. Considering that, there is no further need for empirical 22 

parameters, we conclude that this approach may be useful in estimating the SMC at larger for 23 

regional scale soil hydrological studies field scales. 24 

 25 

References 26 

Ahuja, L. R., Nancy, J. W., and Nielsen, D. R.: Scaling soil water properties and infiltration 27 

modeling, Soil Sci. Soc. Am. J., 48, 970-973, 1984. 28 



14 
 

Arya, L. M., Bowman, D. C., Thapa, B. B., and Cassel, D. K.: Scaling soil water characteristics 1 

of golf course and athletic field sands from particle-size distribution, Soil Sci. Soc. Am. J., 72, 2 

25-32, 2008. 3 

Arya, L. M., Leij, F. J., van Genuchten, M. T., and Shouse, P. J.: Scaling parameter to predict the 4 

soil water characteristic from particle-size distribution, Soil Sci. Soc. Am. J., 63, 510-519, 1999. 5 

Arya, L. M., and Paris, J. F.: A physicoempirical model to predict the soil moisture characteristic 6 

from particle-size distribution and bulk density data, Soil Sci. Soc. Am. J., 45, 1023-1030, 1981. 7 

Arya, L. M., Ritchter, J. C., and Davidson, S. A.: A comparison of soil moisture characteristic 8 

predicted by the Arya–Paris model with laboratory-measured data, AgRISTARS Tech. Rep. SM-9 

L1-04247, JSC-17820, NASA-Johnson Space Center: Houston, TX, 1982. 10 

Basile, A., and D’Urso, G.: Experimental corrections of simplified methods for predicting water 11 

retention curves in clay-loamy soils from particle-size determination, Soil Technol., 10, 261-272, 12 

1997. 13 

Campbell, G. S.: Soil water potential measurement: an overview, Irrig. Sci., 9, 265-273, 1988. 14 

Chan, T. P., and Govindaraju, R. S.: Soil water retention curves from particle-size distribution 15 

data based on polydisperse sphere systems, Vadose Zone J., 3, 1443-1454, 2004. 16 

Cresswell, H. P., Green, T. W., McKenzie, N. J.: The adequacy of pressure plateapparatus for 17 

determining soil water retention. Soil Sci. Soc. Am. J., 72, 41-49, 2008. 18 

Das, B.S., Haws, N.W., andRao, P.S.C.:Defining geometric similarity in soils, Vadose Zone J.,4, 19 

264-270, 2005. 20 

Deurer, M., andDuijnisveld, W.H.M.:Spatial analysis of water characteristic functions in a sandy 21 

podzol under pine forest, Water Resour. Res.,36, 2925-2935, 2000. 22 

do Carmo, M.: Differential geometry of curves and surfaces, Prentice-Hall, pp.98, 1976. 23 

Eching, S., Hopmans, J., and Wallender, W.: Estimation of in situ unsaturated soil hydraulic 24 

functions from scaled cumulative drainage data,Water Resour. Res., 30, 2387-2394, 1994. 25 

Fredlund, M. D., Fredlund, D. G., and Wilson, G. W.: An equation to represent grain-size 26 

distribution, Canadian Geotechnology J., 37, 817-827, 2000. 27 

Gee, G. W., Ward, A. L., Zhang, Z. F., Campbell, G. S., and Mathison, J.: The influence of 28 

hydraulic nonequilibrium on pressure plate data, Vadose Zone J., 1, 172-178. 2002. 29 

Gras, J-P., Delenne, J-Y., Soulie, F., and ElYoussoufi, M. S.: DEM and experimental analysis of 30 

the water retention curve in polydisperse granular media, Power Tech., 12, 231-238, 2010. 31 



15 
 

Havayashi, Y., Kosugi, K., and Mizuyama, T.: Soil water retention curves characterization of a 1 

natural forested hillslope using a scaling technique based on a lognormal pore-size distribution, 2 

Soil Sci. Soc. Am. J., 73, 55-64, 2007. 3 

Haverkamp, R., and Parlange, J. Y.: Comments on "A physicoemperical model to predict the soil 4 

moisture characteristic from particle-size distribution and bulk density data", Soil Sci. Soc. Am. 5 

J., 46, 1348-1349, 1982. 6 

Haverkamp, R., Reggiani, P., Nimmo, J. R.: Property-Transfer Models. In:Methods of soil 7 

analysis, Part 4,Dane, J. H.andTopp, G. C. (Eds.) SSSA Book Series No. 5, SSSA, Madison, WI, 8 

759–782, 2002. 9 

Haverkamp, R., Leij, F. J., Fuentes, C., Sciortino, A., and Ross, P. J.: Soil water retention: I. 10 

Introduction of a shape index, Soil Sci. Soc. Am. J., 69, 1881-1890, 2005. 11 

Hopkins, A. B., and Stillinger, F. H.: Dense sphere packings from optimized correlation 12 

functions, Phys. Rev.E., 79, 031123, doi:10.1103/PhysRevE.79.031123, 2009. 13 

Hwang, S. I., and Choi, S. I.: Use of a lognormal distribution model for estimating soil water 14 

retention curves from particle-size distribution data, J. Hydrol., 323, 325-334, 2006. 15 

Jamieson, R. C., Gordon, R. J., Sharples, K. E., Stratton, G. W., and Madani, A.: Movement and 16 

persistence of fecal bacteria in agricultural soils and subsurface drainage water: A review, Can. 17 

Biosyst. Eng., 44, 1-9, 2002. 18 

Kern, J. S.: Estimation of soil water retention models based on soil physical properties, Soil Sci. 19 

Soc. Am. J., 59, 1134-1141, 1995. 20 

Kosugi, K.: Lognormal distribution model for unsaturated soil hydraulic properties,WaterResour. 21 

Res., 32, 2697-2703, 1996. 22 

Kosugi, K., and Hopmans, J. W.: Scaling water retention curves for soils with lognormal pore-23 

size distribution, Soil Sci. Soc. Am. J., 62, 1496-1505, 1998. 24 

Leij, F. J., Schaap, M. G., and Arya, L. M.: Indirect methods, in: Methods of Soil Analysis, Part 25 

4, Dane, J. H. and Topp, C. G. (Eds.), SSSA Book Series 5, SSSA, Madison, 1009-1045. 2002. 26 

Lilly, A., and Lin, H.: Using soil morphological attributes and soil structure in pedotransfer 27 

functions, in: Development of pedotransfer functions in soil hydrology, Pachepsky, Ya., and 28 

Rawls, W. (Eds.), Dev. Soil Sci. 30. Elsevier, Amsterdam, 115–141. 2004. 29 

Marquardt, D. W.: An algorithm for least-squares estimation of nonlinear parameters. SIAM 30 

Journal on Applied Mathematics, 431-441, 1963. 31 



16 
 

Milla´n, H., and Gonza´lez-Posada, M.: Modelling soil water retention scaling. Comparison of a 1 

classical fractal model with a piecewise approach, Geoderma, 125, 25-38, 2005. 2 

Milla´n, H., Gonza´lez-Posada, M., Aguilar, M., Domınguez, J., and Cespedes, L.: On the fractal 3 

scaling of soil data. Particle-size distributions, Geoderma, 117, 117-128, 2003. 4 

Miller, E. E., and Miller, R. D.: Physical theory of capillary flow phenomena,J. SOC. Induster. 5 

Apple. Math., 27, 324-332, 1956. 6 

Minasny, B., and McBartney, A. B.: The neuro-m method for fitting neural network parametric 7 

pedotransfer functions, Soil Sci. Soc. Am. J., 66, 352-361, 2002. 8 

Mohammadi, M. H., and Meskini-Vishkaee, F.: Predicting the film and lens water volume 9 

between soil particles using particle size distribution data, J. Hydrol., 475, 403-414, 2012. 10 

Mohammadi, M.H., and Meskini-Vishkaee, F.: Evaluation of soil moisture characteristics curve 11 

from continuous particle size distribution data, Pedosphere, 23(1), 70-80, 2013. 12 

Mohammadi, M. H., and Vanclooster, M.: Predicting the soil moisture characteristic curve from 13 

particle size distribution with a simple conceptual model, Vadose Zone J., 10, 594-602, 2011. 14 

Mohammadi, M. H., Neishabouri, M. R., and Rafahi, H.: Predicting the solute breakthrough 15 

curve from soil hydraulic properties, Soil Sci., 174, 165-173, 2009. 16 

Nasta, P., Kamai, T., Chirico, G. B., Hopmans, J. W., and Romano, N. :Scaling soil water 17 

retention functions using particle-size distribution, J. Hydrol., 374, 223-234, 2009.Naveed, M., 18 

Moldrup, P., Tuller, M., Ferre, T. P. A., Kawamato, K., Komatso, T., and de Jong, L. W.: 19 

Prediction of the soil water characteristic from soil particle volume fractions,Soil Sci. Soc. Am. 20 

J., 76, 1946–1959, doi:10.2136/sssaj2012.0124, 2012. 21 

Nemes, A., Schaap, M. G., and Leij, F. J.: The UNSODA unsaturated soil hydraulic property 22 

database, version 2.0, available at: http://www.ars.usda.gov/Services/docs.htm?docid=8967 23 

(last access: November 2013), 2000. 24 

Nimmo, W., Herkelrath, N., and Luna, A. M. L.: Physically based estimation of soil water 25 

retention from textural data: general framework, new models, and streamlined existing models, 26 

Vadose Zone J., 6, 766-773, 2007. 27 

Oliveira, L. I., Demond, A. H., Abriola, L. M., and Goovaerts, P.: Simulation of solute transport 28 

in a heterogeneous vadose zone describing the hydraulic properties using a multistep stochastic 29 

approach,Water Resour. Res.,42, W05420, doi:10.1029/2005WR004580, 2006. 30 



17 
 

Or, D., and Tuller, M.: Liquid retention and interfacial area in variably saturated porous media: 1 

Upscaling from single-pore to sample-scale model, Water Resour. Res., 35(12), 3591-3605, 2 

1999. 3 

Perfect, E.: Modeling the primary drainage curve of prefractal porous media, Vadose Zone J., 4, 4 

959-966, 2005. 5 

Puhlmann, H., and von Wilpert, K.: Pedotransfer functions for water retention and unsaturated 6 

hydraulic conductivity of forest soils, J. Plant Nutr. Soil Sci., 175(2), 221-235, 2012. 7 

Ryel, R. J., Caldwell, M. M., Yoder, C. K., Or, D., and Leffler, A. J.: Hydraulic redistribution in 8 

a stand of Artemisia tridentata: Evaluation of benefits to transpiration assessed with a simulation 9 

model, Oecologia, 130, 173-184, 2002. 10 

Santamarı´a, J., and Toranzos, G. A.: Enteric pathogens and soil: A short review, Int. 11 

Microbiology, 6, 5-9, doi:10.1007/s10123-003-0096-1, 2003. 12 

Saxton, K. E., Rawls, W. J., Romberger, J. S., and Papendick, R. I.: Estimating generalized soil-13 

water characteristics from texture, Soil Sci. Soc. Am. J., 50, 1031-1036, 1986. 14 

Schaap, M. G.: Models for indirect estimation of soil hydraulic properties, in: Encyclopedia of 15 

Hydrological Sciences, Anderson, M. G. (Ed.), Wiley, pp.1145-1150, 2005. 16 

Schaap, M. G., and Leij, F. J.: Database related accuracy and uncertainty of 17 

pedotransferfunctions, Soil Sci., 163, 765-779, 1998. 18 

Schaap, M. G., Leij, F. J., and van Genuchten, M. Th.: Neural network analysis for hierarchical 19 

prediction of soil water retention and saturated hydraulic conductivity, Soil Sci. Soc. Am. J., 62, 20 

847-855, 1998. 21 

Schaap, M.G., Leij, F. J., and van Genuchten, M. Th.: ROSETTA: A computer program for 22 

estimating soil hydraulic parameters with hierarchical pedotransfer functions, J. Hydrol., 251, 23 

163–176, 2001. 24 

Schaap, M. G., Nemes, A., and van Genuchten, M. Th.: Comparison of models for indirect 25 

estimation of water retention and available water in surface soils, Vadose Zone J., 3, 1455-1463, 26 

2004. 27 

Schuh, W. M., Cline, R. L., and Sweeney, M. D.: Comparison of a laboratory procedure and a 28 

textural model for predicting in situ soil water retention, Soil Sci. Soc. Am. J., 52, 1218-1227, 29 

1988. 30 



18 
 

Sharma, M. L., and Luxmoore, R. J.: Soil spatial variability and its consequences on simulated 1 

water balance, Water Resour. Res., 15, 1567-1573, 1979. 2 

Smettem, K. R. J., and Gregory, P. J.: The relation between soil water retention and particle-size 3 

distribution parameters for some predominantly sandy Western Australian soils, Aust. J. Soil 4 

Res., 34, 695-708, 1996. 5 

Solone, R., Bittelli M., Tomei, F., and Morari, F.: Errors in water retention curves determined 6 

with pressure plates: Effects on the soil water balance. Journal of Hydrology, 470–471, 65-74, 7 

2012. http://dx.doi.org/10.1016/j.jhydrol.2012.08.017.  8 

Teitje, O., and Tapkenhinrichs, M.: Evaluation of pedo-transfer functions, Soil Sci. Soc. Am. J., 9 

57, 1088-1095, 1993. 10 

Tuli, A., Kosugi, K., and Hopmans, J. W.: Simultaneous scaling of soil water retention and 11 

unsaturated hydraulic conductivity functions assuming lognormal pore-size distribution, Adv. 12 

Water Resour., 24, 677-688, 2001. 13 

Tuller, M., and Or, D.: Water films and scaling of soil characteristic curves at low water contents, 14 

Water Resour. Res., 41, W09403, doi:10.1029/2005WR004142, 2005. 15 

Tuller, M., Or, D., and Dudley, L. M.: Adsorption and capillary condensation in porous media: 16 

liquid retention and interfacial configurations in angular pores, Water Resour. Res., 35, 1949-17 

1964, 1999. 18 

Tyler, S., and Wheatcraft, S.: Application of fractal mathematics to soil water retention 19 

estimation, Soil Sci. Soc. Am. J., 53, 987-996, 1989. 20 

van Genuchten, M. Th.: A closed-form equation for predicting the hydraulic conductivity of 21 

unsaturated flow, Soil Sci. Soc. Am. J., 44, 892-898, 1980. 22 

Vaz, C., lossi, M. D. F., Naimo, J. d. M., Macero, A., Reichert, J. M., Reinert, D. J., and Cooper, 23 

M.: Validation of the Arya and Paris water retention model for Brazilian soils, Soil Sci. Soc. Am. 24 

J., 69, 577-583, 2005. 25 

Vogel, T., Cislerova, M., and Hopmans, J.: Porous media with linearly variable hydraulic 26 

properties,Water Resour. Res., 27, 2735-2741, 1991. 27 

Wang, Q. J., Horton, R., and Lee, J. A.: Simple model relating soil water characteristic curve and 28 

soil solute breakthrough curve, Soil Sci., 167, 436-443, 2002. 29 

Warrick, A. W., Mullen, G. J., and Nielsen, D. R.: Scaling field-measurement soil hydraulic 30 

properties using a similar media concept,Water Resour. Res., 13, 355-362, 1977. 31 



19 
 

Weynants, M., Vereecken, H., and Javaux, M.: Revisiting Vereecken Pedotransfer Functions: 1 

Introducing a Closed-Form Hydraulic Model, Vadose Zone J., 8(1), 86-95, 2009. 2 

Wu, L., Vomocil, J. A., and Childs, S. W.: Pore size, particle size, aggregate size, and water 3 

retention, Soil Sci. Soc. Am. J., 54, 952-956, 1990. 4 

Zhuang, J., Jin, Y., and Miyazaki, T.: Estimating water retention characteristic from soil particle-5 

size distribution using a non-similar media concept, Soil Sci., 166, 308-321, 2001. 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 



20 
 

Symbols and Abbreviations 1 
SMC: Soil Moisture Characteristics curve 2 
PSD: Particle Size Distribution. 3 
PoSD: Pore Size Distribution. 4 
MV: Mohammadi and Vanclooster (2011) model 5 
BCC: Bundle of Cylindrical Capillaries 6 
VG model: van Genuchten model 7 
MV-VG model: integrated the MV model with the van Genuchten model  8 
AP: Arya and Paris (1981) 9 
PTF: Pedotransfer Function. 10 
RMSE: Root Mean Square Error. 11 
θ: the soil moisture content 12 
Se: effective saturation degree  13 

θs: saturated moisture contents 14 

θr: residual moisture contents 15 
n: fitting coefficients 16 
m: fitting coefficients 17 
α: fitting coefficients 18 
h: suction head 19 
ξ: a coefficient depending on the state of soilparticles packing 20 
e: the void ratio 21 
ρs: soil particle density 22 
ρb: soil bulk density 23 
wj: the mass fraction of particles in the jth particle-size fraction 24 
S: saturation degree 25 
Pi: cumulative mass fraction of soil particles 26 
Ri: particle radius of the ith fraction 27 

β: scaling factor 28 

γ : microscopic characteristic lengths of the reference 29 

γ: microscopic characteristic lengths of the subjected soil 30 
ξmax: maximum value of packing parameter  31 
n: pore size distribution index 32 
λ: scaling factor 33 
n*: scaled the PoSD index in VG model 34 
θi(p): predicted moisture content  35 
θi(m): measured moisture content  36 
RI: relative improvement  37 
RMSEM:RMSE values of MV-VG model 38 
RMSEs: RMSE values of scaling approach 39 
AE: area between the fitted curve and 1:1 line  40 

 41 

 42 

 43 
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Table1. Textural classes and UNSODA codes for soils used for testing and evaluating the approach. 1 
Textural 
class 

C
la

y 

C
la

y lo
am

 

L
o

am
 

S
ilt loa

m
 

S
ilty cla

y 

S
ilty cla

y loam
 

L
o

am
y sa

nd 

S
a

n
d 

S
a

n
dy cla

y lo
am

 

S
a

n
dy lo

am
 

UNSODA 
codes 

1400 
2340 
2361 
2362 
4120 
4680 
4681 
2360 

3033 3221 
1211 
1260 
1261 
2530 
3190 
3191 
3222 

2000,3090 
3213,3261 
4042,4070 
4180,4181 
2464,1341 
1342,1350 
1351,1352 
2001,2002 
2010,2011 
2012, 

3030 
1360 

3100 
3101 
1371 

1160 
2102 
2103 
3130 
3150 
3152 
3160 
3161 
3170 
3171 
4251 

1050,1240,1460 
1464,1466,2100 
3133,3134,3140 
3141,3144,3155 
3162,3163,3164 
3165,3172,3340 
4051,4152,4263 
4272,4282,4441 
4520,4650,4000 

3202 
 

1130 
3180 
3200 
3290 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 
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Table2. Average Root Mean Square Error (RMSE), coefficients of determination (R2), Relative 1 
Improvement (RI) compared to the MV-VG model  and hydraulic parameters for each soil textural group, 2 
with standard deviations in parentheses. 3 
Soil 
texture 

Number 
of soil  

 RMSE  R2 RI 
value 
(%) 

Hydraulic parameters 

MV-
VG 
model 

Scaling 
approac
h 

ROSETTA MV-
VG 
model 

Scaling 
approac
h 

ROSETTA  θs          

(L3 L-3) 
α 
  (L-1) 

m  
 (-) 

n 
 (-) 

n* 
(-) 

λ 
 (-) 

Clay 8 0.088 
(0.014) 

0.041 
(0.020) 

0.1150 
(0.0403) 

0.973 
(0.017) 

0.977 
(0.020) 

0.9153 
(0.0710) 

53.87 
(16.74) 

0.51 
(0.04) 

0.043 
(0.085) 

0.128 
(0.104) 

2.457 
(2.195) 

1.467 
(1.127) 

0.6228 
(0.0706) 

Clay 
loam 

1 0.027 0.017 0.1468 0.725 0.872 0.9790 38.15 0.58 0.002 0.248 1.634 1.040  0.6365 

Loam 8 0.078 
(0.019) 

0.045 
(0.015) 

0.0546 
(0.0333) 

0.896 
(0.100) 

0.913 
(0.088) 

0.8986 
(0.0667) 

41.04 
(17.74) 

0.45 
(0.06) 

0.042 
(0.030) 

0.157 
(0.079) 

3.115 
(1.452) 

2.187 
(1.100) 

0.6970 
(0.0389) 

Silt 
loam 

19 0.082 
(0.026) 

0.059 
(0.020) 

0.0512 
(0.0222) 

0.922 
(0.043) 

0.950 
(0.033) 

0.9598 
(0.0230) 

25.63 
(20.28) 

0.44 
(0.04) 

0.019 
(0.011) 

0.233 
(0.365) 

4.937 
(2.593) 

3.637 
(1.982) 

0.7189 
 (0.0414) 

Silty 
clay 

2 0.076     
(0.056) 

0.061 
(0.022) 

0.0868 
(0.0427) 

0.932 
(0.040) 

0.941 
(0.010) 

0.9166 
(0.0348) 

3.01   
(43.07) 

0.51 
(0.09) 

0.040 
(0.028) 

0.195 
(0.157) 

1.573 
(1.402) 

1.091 
(1.039) 

0.6628 
(0.0699) 

Silty 
clay 
loam 

1 0.129 0.093 0.1080 0.887 0.924 0.9083 28.15 0.43 0.020 0.116 2.548 1.870 0.7339 

Loamy 
sand 

11 0.093 
(0.037) 

0.060 
(0.022) 

0.0862 
(0.0359) 

0.893 
0.062 

0.926 
(0.038) 

0.9067 
(0.0537) 

32.63 
(11.64) 

0.40 
(0.07) 

0.067 
(0.038) 

0.179 
(0.058) 

5.488 
(1.357) 

4.048 
(1.088) 

0.7339 
(0.0445) 

Sand 27 0.093 
(0.030) 

0.073 
(0.024) 

0.0254 
(0.0626) 

0.854 
(0.102) 

0.893 
0.081 

0.8853 
0.0760 

20.74 
(7.51) 

0.37 
(0.04) 

0.052 
(0.033) 

0.458 
(0.444) 

5.592 
(2.018) 

4.380 
(1.531) 

0.8228 

Sandy 
clay 
loam 

1 0.084 0.065 0.0653 0.957 0.967 0.9702 23.07 0.36 0.043 0.054 8.000 6.582  0.7031 
(0.0630) 

Sandy 
loam 

4 0.073 
(0.014) 

0.035 
(0.015) 

0.0776 
(0.0547) 

0.950 
(0.028) 

0.971 
(0.008) 

0.9364 
(0.0278) 

51.63 
(18.12) 

0.46 
(0.05) 

0.066 
(0.020) 

0.093 
(0.032) 

5.676 
(1.526) 

3.980 
(1.137) 

0.7641 
(0.0444) 

Averag
e 

82 0.086 a 
(0.028) 

0.060 b 
(0.024) 

0.0745 a 
(0.0417) 

0.898 
(0.084) 

0.927 
(0.065) 

0.9276 
(0.064) 

30.14 
(18.88) 

0.42 
(0.07) 

0.044 
(0.040) 

0.272 
(0.338) 

4.726 
(2.329) 

3.519  
(1.816) 

0.7177 
(0.0532) 

a Different lowercase letters indicate significant differences at P< 0.05 4 
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Figure captions 1 

Figure 1.The efficiency of scaling approach, % RI, defined with RMSE (Eq. (1514)) as function of (a) the 2 

saturated moisture content and (b) scaling factor for all soil samples. ** : significant at P= 0.01. 3 

 4 

Figure 2. Examples of measured vs. predicted soil moisture characteristics curve (SMC) for each texture 5 
using the integrated MV-VG model (Eq. (9)), scaling approach (Eq. (123)) and ROSETTA: for (a) clay 6 
soil, (b) sandy loam soil, (c) loam soil, (d) sandy loam soil, (e) clay soil and (f) silt loam soil.   7 
 8 
Figure 3. Comparisons of the measured and estimated moisture contents for 82 selected soils using the 9 
MV-VG model (Eq. (9)) and scaling approach (Eq. (1312)). Dashed lines: the 1:1 line. Solid lines: linear-10 
regression line, shadowed solid red line: nonlinear-regression-line. 11 


