10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

A-Secaling-Appreach-Predicting the CentinveusFormofSoil
Moisture CharacteristicsRetention Curve, from Soil Particle

Size Distribution and Bulk Density Data using a Packing

Density Scaling Factor

F. Meskini-Vishkaee!, M. H. Mohammadi*? and M. Vanclooster?

[1] {Department of Soil Science, Faculty of Agritwie, University of Zanjan post code 313,
Zanjan, (Iran)}

[2] {Earth and Life Institute, Environmental Sciess; Univ. Catholique de Louvain, Croix du
Sud 2, Bte 2, 1348 Louvain-la-Neuve, Belgium}

Correspondence to:F. Meskini-Vishkaee (fatemeh.magk/ahoo.com)

ABSTRACT

A substantial number of models, predicting the Sdiisture Characteristic Curve (SMC) from
Particle Size Distribution (PSD) data, underestarthe dry range of the SMC especially in soils i
clay and organic matter contents. In this studyapglied a continuous form of the PSD model to joted
the SMC and subsequently, we developed a physibabgd scaling approach to reduce the model’s bias
at the dry range of the SMC. The soil parghackingparameterdensity—ebtained-from-the-poronias
consideredas a metric of soil structure and used-to-asacteisticlength define a soil particle packing
scaling factor. This factor was subsequently irgtg in the conceptual SMC prediction modethe
model was testedy-using oreighty-two soit-samplesselected from the UNSODA database. The result
shewed showhat the scaling approach properly estim#ite SMC for all soil samples. In comparison to
P-theformerhyusedphysieally-based the originahceptualSMC modelwithout scaling the scaling

propesedapproachimproved improvegshe model estimationsy—anonaveragesf-by 30%-foral-soil
amples—However—the—advantage—of-thisnew appresss—larger Improvements were particularly

significantfor the fine and medium textured sdilan—thatfor-the-coarse—textured-sibview-that-in
Since-this the scalingpproachis parsimonious and-there is do not rely-en—ntrtrneed-for additional
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empirical parameters, we conclude that this approaay be used forceuld-become—applicable for
estimating SMC at the larger field scalem basic soil data

1 Introduction

Increasing contamination of the groundwater resesjrbave profoundly accentuated the need
for accurate predictions of subsurface flow andnabal transport.Water flow and subsequent
chemical transport are largely determined by thi sgdraulic properties, such as the Soil
Moisture Characteristics curve (SMC) (Wang et &l02Mohammadi et al., 2009). Measuring
the soil hydraulic properties is still difficultalbor intensive, and expensive. Therefore, many
researchers havemade an attempt to develop aredhdivethod as an alternative to the direct
measurement of hydraulic properties. For the SM@lirect methods are classified into
conceptual methods(Nimmo et al., 2007; Mohammadai ®anclooster, 2011),serphysical
methods(e.g. Arya and Paris, 1981; Haverkamp andriRge, 1982; Wu et al. 1990; Smetten and
Gregory, 1996) and empirical methods (e.g. Saxt@h 4986; Schaap et al. 1998).

The semiphysical methods are mainly based on shape sityilagtween the SMC and the
Particle Size Distribution (PSD) curve (Zhung et &001; Schaap, 2005; Haverkamp et al.,
2005; Hwang and Choi, 2006), implying that the psire distribution (PoSD) is closely related
to the PSD (Arya et al., 2008). Arya and Paris (1981) aidioneering work (AP model) fahe

developnent ofing-semiphysical models. They showed thtte pore sizewhich is associated

with a pore volume, is determined by scaling theepength, using a scaling factar, They
demonstrated thatin average value of 1.38 far scales the pore lengths based on spherical
particles to natural pore lengths properly. HoweVater investigations by Arya et al. (1982),
Tyler and Wheatcraft (1989), Basile and D’Urso (ZP@nd Vaz et al. (2005) revealed tloat
value varies between 1.02 - 2.97 for fine and e&estured soils, respectively. A slight error in
the estimation ofa may result in considerable error in predicting 8MC (Shuh et al. 1988).
Schuh et al. (1988) found that the valuenxofaries with soil texture and suction head, esjlgcia

in the wet range of sandy soils. Using three foatiahs ofa, Arya et al. (1999) modeledthe
parameten as a function of particle sizes and showed ¢hafis not constant—and-thereforetl

decreased with increasing particle size, especiftly the coarse fractions. Tyler and
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Wheatcraft(1989) showed that the parameatex equivalent to the fractal dimension of a tousio
fractal pore.

Although, the empirical methods have been develagpadnsively (e.g. Puhlmann and von
Wilpert, 2012), the performance of an empirical moet will depend on the databases, being used
for the model calibration and testing (Tietje arapRenhinrichs, 1993; Kern, 1995; Schaap and
Leij, 1998; Schaap et al., 2004; Haverkamp e28l05; Hwang and Choi, 2008/eynants et al.,

2009). Moreover, direct measurementsof SMC arendfieegrated as predictor variables of the

continuous SMC function. Mangttempts havee-farbeen made to reduce the sensitivity of the

indirect methods to empirical and database-depémmeameters. For instance, Mohammadi and
Vanclooster (2011), proposed a conceptual robuslem@MV) that does not include an
empirical parameter and is independent of the @abthat are being used. The disadvantages of
the-mestsemi-physical or conceptual models such as the #PMV models arethe use of
“bundle of cylindrical capillaries” (BCC) concepi tepresent the pore space geometry and the
lack of consideration of surface forces (Or and@rull999; Tuller et al., 1999%1ohammadi and
Meskini-Vishkaee, 2012). These conceptual probleften —whichleads to the underestimation

of the dry range of the SMC (Arya et al., 1999; Hggaand Choi, 2006; Mohammadi and
Vanclooster, 2011). Such underestimations wouldltrda large error—in- modeling errors of
hydraulic dependent soil functions sueh ofreechanicaproperties-ef-unsaturated-smalsistance
functions (Gras et al., 2010)-and-biclogical-processes-includiptant water uptakéunctions
(Ryel et al., 2002gnd-microbial activity functions (Jamieson et al., 2002; Santamari’a and
Toranzos, 2003)in particular inespectaty-tarid environments.

To predict continuous SMC, Naveed et al. (2012gapeterized the van Genuchten model
based on the SMC data points predicigdheirpropesed-medelusing fravrganic matter, clay,
silt, —andfine sandand coarsesandssand contenMohammadi and Meskini-Vishkaee (2013)
integrated the MV model with the van Genuchten (Wi&)del (van Genuchten, 1980) to predict
the continuous SMC curve (MV-VG model) from PSDaatheyandfound that ignoring the

residual moisture conten,f is the main source of systematic erresulted-fromthe in thvMV

model. They further tested and compared four amghesto predict th8,, and showed that the
incorporation ofthe—safely—estimated—valde—of-the predic@d will improve the MV-VG

prediction resultsonsiderably However, the estimation & has some limitations, due to the
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lack of a conceptual underpinning and the poor iptakility of 6, (Leij et al., 2002). Tuller and
Or (2005) suggested that, the introductiorb,ods a fitting parameter in most SMC models often
makes the physical representation of key procassée dry soils vague. Moreover, they pointed
out that, the dry range of the SMC shows remarkablding behaviorir—recentyears—the

ala alaValdVila aYaVaTaBRV.VifaValiV a¥a N—eledgge-to—ge aYa aTaERY alallila' a¥a Soll

procedure to scale natural pore lengths, direaitynf straight pore lengths. Theykhibited

showedthat the, scaling approach is less sensitive to uncertaintiemodel parameters and

provides better predictions of the SMC, compareith Wieoriginal AP model.

Kosugi (1996) showed that the SMC can be exprebgeal lognormal pore-size distribution
function, while Kosugi and Hopmans (1998) founcdt tiee set of scaling factors is lognormally
distributed when PoSD curve is lognormal. Hayaslail.2007) used the Kosugi model (Kosugi,
1996) to evaluate the effectiveness of three kofdscaling factors obtained by the microscopic
characteristic length, standard deviation of paze-distribution and the porosity. They indicated
that in the natural forested hillslope soils, thariability in the SMC is characterized by
variability in the effective soil pore volume. Nast al. (2009) concluded that the scaling of the
PSD curves provides for adequate characterizatidheo mean and variance of SMCs, which
allows for characterization of the soil spatialiahiity.

Many researchers developed empirical models foresging the SMCsince the parameters
of these models do not address the physical sogmifie of the medium. Hence the spatial
variability in the pore structure of soils is notly understood (Hayashi et al., 2007). Likewise,
the conventional scaling approaches are based pirieah curve fitting, without considering the
physical meaning of the scaling factor (Perfec®20Milla'n and Gonzalez-Posada, 2005). To

apply these models, one needs to determine thengcédctor, where the complexity of
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measurements of the pore—size and pore—volumebdistms easily nullifies the estimation of
the scaling factors. Nevertheless, some effort® Hmen made to relate the scaling factor to the
soil texture (Tuli et al., 2001; Milla’'n et al., @8).

From this brief review we conclude thatltheugh the scaling approaches impretre
modeling and prediction of the SMCet, most scaling approaches imply empirical pararseter
and a robust fully conceptual approach for thenesion of the SMC from easily measurable
propertiess still lackings

The MV mode] underestimatal the moisture content in the dry range of the Skk&ause of
the simplified conceptualization of thpore geomete—concepisyy-#n particular the packing

parametemhich-does not effectively reflect the pore geometry. Geeeral aim obureurrent
work-en-th this study-ts—subjectisto—augment @do improve the accuracy of the model
proposed by Mohammadi and Meskini-Vishkaee (20%8)gia scaling approach.

Therefore the objectives of this studsre arg(i) to formulate a robust and physically-based
model to scale the SMC from the PSD and porosity, @) to compare the model performance
with the results from the existing MV-VG modealsing soils documented in the UNSODA
database (Nemes et &000). We also evaluate the overall model performance Wghresults
from the full empirically SMC prediction softwal@OSETTA (Schaap et al., 2001).

2 Theory

Because of the close similarity between the shapjethe PSD and SMC curves, many
researchers expressed aSMC model in terms of arR&@iel (Haverkamp and Parlange, 1982;
Fredlund et al., 2000; Zhuang et al., 2001). TheCSkbdel developed by van Genuchten (1980)

is very flexible, widely used and given by:

o1 T

Se_|:1+(ah)nj| (1)
_6-6

Se_es_gri(z)

where @ (L3L™) is the soil moisture conters, (-) is effective saturation degree af(L> L)
and6; (L*L™) are saturated and residual soil moisture conteespectively. The parametars

m. B-anda (L) are fitting coefficients, and (L) is the suction head.
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The suction heady(L), corresponding to the particle radius of tkh fractionR; (L) is given
by (Mohammadi andVanclooster, 2011):

0543x10™
h=—"r""-7 (3)
R
where( (-) is a coefficient depending on the state of seiipl@s packing and is defined as:
= 1.909¢
1+e )
where e (-) is the void ratio given:by
e= ps _ lob
Ps I )

where thepy(ML )andpy, (ML) are soil particle and bulk densities respectively
Arya and Paris (1981) suggested that the moistoméeat,d; (L3L™), can be obtained from PSD
andés (L3L7), as:

j=i
6=6,>w; i=123...k (6)
=

wherewiis the mass fraction of particles (-) in fjh#h particle-size fraction. Considering that the

R=3w @

=1

would result in:

6/6.=S 8)

where S(-) is the saturation degree &n¢@) is the cumulative mass fraction of soil particles. It is
obvious, that if¥,.=0 then S=S and subsequenti$=P;.Arya and Paris (1981) however, ignored
the residual moisture content, while it may be astderable value for many types of soil and
clayey soils in particular. Combining Eq. (1) ail \{ith Eq. (7) yields:

m

i a5 ©)
1+(a R )"

In Eq. (9), the cumulative mass fractidh, is substituted with the Se in Eq. (1). Henceinfit of
the-Eqg. (9) to the PSD data, enables one to directylipt the SMC parameters, (m and o).

Moreover, these coefficients allow expression @ tontinuous form of predicted SMC. Since,
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assuming tha,=0 would result in model underestimation in drygarf the SMC (Mohammadi
and Meskini-Vishkaee, 2013), we developed a comnedscaling approach to reduce the model
bias.

2.1 Scaling approach

Following Hayashi et al. (2007), we suggest that plorosity is an appropriate property for
inferring a characteristieengthscaling factorSince, the soil porosity is linked to the packing
parameterg, in the MV model (Eq. (4)), we hypothesize thais the characteristiength scale
of the soil.

We assume that the reference soil is the one, wdankists of uniform-size spherical particles
that are arranged in random close packing stasglilg to minimum porosity (known as the
Kepler conjecture in literature of crystallographijterature suggests that the porosity of this
packing state is 0.259 (Hopkired Stillinger, 2009). Subsequently, the maximunueeaof
packing parametetma, would equal to 1.41432 for reference soil. Hetiee scaling factor).,
for each soil sample can Hefired suggestedaly:
1=_5

¢ max 1019
In general, the values of the pore size distributiaex, n, (Egs. (1) and (9)) addre large for

the coarse-textured soils and small for the finguieed soils. We suggest that thean scale the
parameter ‘n’, obtained from fitting Eq. (9) to tiRSD data, to therdex—manifested-byn’

27 | parametein the SMC model (Eq. (1)) (hereafte) as follows:
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where n is scaled to the PoSD index in VG model. Hence niodified model is

o [ 1 |
6. L(ah)“l
(1213
In summary, given a knowdywe can calculatés and subsequently using Eq. {04]). The

soil parameterd’ and ‘m’ are obtained from fitting Eq. (9) to tiRSD data and, nis estimated
by Eq. (L112), and consequently the SMC is predicted direcl¥ef. (L213.

3 Material and Methods

Eighty-two soil samples, with a wide range of pbgsiproperties that contained at least five
PSD data, were selected from the UNSODA hydrauloperties database (Nemes et al.,
2000)UNSODA is a database of basic soil and hydraulaperties from 790 samples, gathered
from all over the world, and compiled by the U.Separtment of AgricultureAll soils are

summarized in Table 1.

In this procedure, volumetric moisture contentsresponding to the-th fraction were
computed, using Eq. (6) and suction heads werdqgbeekl using Eq. (3), in which the parameter
C was calculated with Eq. (4). In this study, we assd that, the porosity is equivalenttto For
soils, that neither provide a porosity nodsathe first point of the SMC data that correspotals

the lowest suction head were useda€han and Govindaraju, 2004).

We fitted Eq. (9) to the PSD data. We used nontinegression analysis to fit Eqg. (9) to the
PSD, using Matlab7.1 software (Matlab 7.1, The Maiftks Inc., Natick, MA) and the
Marquardt—Levenberg algorithm (Marquardt, 1963). W&tculated for each soil the scaling
factor, using either the bulk density or the avddasaturated soil moisture content, and predicted
the SMC.

((Table 1))
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For each prediction, the agreement between thegbeeldmoisture contertf,) and measured

moisture conterflim was expressed in terms of the root mean squaress¢RMSES), given by:

RMSE :\/;Z:; (Bi(P) _Bi(m)) (1319

in which Nn is the number of observed data points. The relath@ovement (RI) resulted from
the scaling approach rather than MV-VG model wakutated as follows (Minasny and
McBartney, 2002):

RMSE, -RMSE 00
RMSE (1415

Rl (%) =

where, Rl is the Relative Improvement, RMSEnd RMSE are RMSE values of the MV-VG
model and the current scalewbdel respectively Obviously,the- anegative Rl valugindicates
that the scaling approach would diminish the acouidavel of the prediction of the SMC in
comparison with the MV-VG model.

Wealso fitteda cubic polynomial function tiee overall predicted data and,calculated the area
between the fitted polynomial and the 1:1 line ftbendifference of the numerical integrals of
these two functions (do Carmo, 1976).

Moreover, to consider and compare the reliabilitylee scale MV-VG model-seating-approeach
with a fully-empirical SMC predictionmethedmodel we compared the estimations sfaled
MV-VG model recent-approaahith the estimations dhe ROSETTA softwareln this software,
we used the{M SSCBD odel option i.e. we used:-—SSCBOextural percentages and bulk
densityas model predictoy§Schaap et al., 2001).

4 Results and Discussion

aEEATaEsILY A ne—pe aldaaksTa 0 a¥a aldalaVa a¥a ll\ll‘|=' N ala B1\Vi A 4 a¥a S an

index, to compare models for each soil and textetabs. Table 2epicts gives this the
comparisorbetween the MV-VG model, the ROSETTA model anddt&led MV-VG model in

terms of RMSE, Rand RI. Table 2andemonstrates theignificantimproved accuracy of the
presentedcaledMV-VG approachas compared to the original MV-VG model and ROSETT
The RMSEs of the predicted and measured moistureeits, ranged from 0.0223 to 0.1502 for
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the original MV-VG model (average 0.08@xdfrom 0.0169 to 0.1122 (average 0.0601) for the
scaled approachnd from 0.0188 to 0.2453 (average 0.745) foROSETTA software. In terms
of RMSESs, the scaled approach performed better 8w@maap et al., 1998 and the Sgipaand

Leij (1998) models with similar predictor variabl€se results showed that there is a significant

difference between performance of scaled MV-VG apph and ROSETTA (p=0.05). Despite

the pure statistical and empirical nature of theSIEDTA approach, it provides worse results than

the approach based on the current scaling technitheeimprovement of the scaled appro&éch
also reflected by RI in Table 2. Except for soits B033 (Clay loam) and 3090 (Silt loam), the

scaling approach resulted in more accurate predistior all soils. Table 2 also indicates that the

scaling approach can improve the model estimatibtise original MV-VG modeby 30 %.
For the fine and medium textured soils, the valoieRI| are larger than for the coarse textured
soil. This result was expected, because the MVMXevVG models underestimate the dry range
moisture content for the fine texture soils (Mohaadimand Vanclooster, 2011; Mohammadi and
Meskini, 2013) and subsequently the scaling appreas more effective for these soils.

We examined the possible relations between thenBIsail physical properties. Among all
parameters, the saturated moisture content anshgdalktor show strong relations with the RI.
Fig. 1a shows that the RI values increase sigmifigavith the saturated moisture content of the
soils, i.e. the scaling approach would more effetyi improve the model accuracy for the fine
texture soils with highe®s. This result can be confirmed with Fig. 1b, whesthibits showdhat
the scaling factor is inversely correlated with tRefactor (Fig. 1b). Indeed, the soils with high
porosity commonly have abundant amount of clay nateand organic matter, characterized

with high surface energy. These attributes arariae sources of errors of the MV and MV-VG

models.
Typical examples of measured vs. predicted SMCh wieé MV-VG modelardthe scaling
approachand ROSETTAfor clay, sandy loam, loam, and silt loam textuses presented in Fig.

2 (a-f). For the clay (codes: 2340 and 4681), sdody (code: 3180 and 3200), loam (code:
3191) and silt loam (code: 3090) soils, the scalipgroach fits the data well asétperforms
better tharthe MV-VG model at entire range of the SMC. For ¢ileloam soil (code:3090), the
scaling approach slightly overestimates the magstamtent through the entire range of suction

heads and the MV-VG model underestimates the nreistontent at low suction heaéls. Fig 2

10
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(a-f) shows that the ROSETTA software performs wdrsthe wet part of SMQverall, the

scaling approach performs better than MV-\i@&del and ROSETTA softwartor all soil

samples (Table-2rd-Fig-3 but, the performance of scaling approach didsmdably respond for
two soil samples (codes: 3033, 3090). Theidualmodel error may be related tioe simplified
representation of the total porosity which is cdesed equal to the saturated volumetric moisture
content. The swelling properties and high orgardaon content of these soils (>4%, 3.85%
respectively) may partially be a source of thesersr We further suspect that the complexity of
the relationship between PSD, PoSD and pore coritgctan be effective in the model
performance (Zhang et al., 2001). The assumptidhesimilarity between PSD and PoSD does
not perform equally well to all soils.

We tentatively conclude that the scaling of the R$ibves using the parametéigenerally
performs better in predicting the SMC as compacetth¢ original MV-VG model. The un-scaled
MV-VG model underestimates the moisture contehigtt suction heads.

The most semi-physical based methods for predicBMC rely on the use of empirical

parameters to improve the SMC estimates from PSIy nd Lin, 2004). Hydraulic properties

are indeed affected by both the soil texture amdsthil structure (Haverkamp et al., 2002). The

MV-VG model uses the packing parameterderived from soil bulk density as a metric ofl soi

structure. Moreover, the scaling parameter thatfesred from the packing state is integrated in

the scaled MV-VG model. Hence the soil structuedtfires are integrated in the MV-VG model

at two levels. First at the MV-VG model to converbisture into pressure head, and second, to

correct the SMC model prediction. The good perforogaof scaling approach in the wet range

and dry range of SMC suggests a convenient osswittural features in the SMC prediction.

Fig. 3 compares all estimated moisture contenigguglV-VG model and scaling approach,
respectively, with the measured soil moisture aanfer all the 82 soil samples. The overall
predictability of the two methods is evaluated mymparing the experimental data and the
predicted soil moisture content on a 1:1 plot. Bmeegression of the measured and estimated
moisture contents, using the two methods for al ghil samples showed that the slope values
were 0.7675 and 0.8484 and the coefficients ofrdetation (R) between the estimated results
and measured data for all soils were 0.765 and68.8& MV-VG model and scaling approach,
respectively. Hence, the MV-VG model and the scplpproach, underestimate the moisture
content by about 23% and 15% respectively, whiseltias of the scaling approactsisallerless

11
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than theMV-VG model. Since, it has been reported that usual measuremetitod of SMC

(pressure plate apparatus) is susceptible to someseat high soil suction heads (Campbell,

1988; Gee et al., 2002 and Cresswell et al., 2008) suggest that a part of the underestimation

in the dry range of SMC of our method is partialblated to limitation of this method for

measuring the SMC (Solone et al., 20R&garding the & the scaling method still remains the

most preferable method. Comparing the overall ptadility of the two methods, the correlation
coefficient of linear regressioms—a—statistical-summary—cannot-exclusigtiguld notreplace
thevisual examination of the data. We therefore, hsecubic polynomial function to adequately
express the data variations. The fitted polynorfuiattions are drawn as shadowed red curves in
Fig. 3(a, b). We further suggest that the area éetwthe fitted curve and the 1:1 line (AE), is an
expression of the systematic error. The values Bfwere 0.0369 and 0.0250 for the MV-VG
model and the scaling approach respectively. Ificoa that the level of systematic errors of the
scaling approach is about 33% less than that of \MB/model. This result can be confirmed by
the comparison of the Rvalues obtained when predicting the SMC for eauh with two
methods (Table 2 columns 5 and 6). We concludetiteascaled PSD curve will result in a more
accurate prediction of the SMC as compared to thecaled PSD datd4ereover-the-physically

a¥a ala alalda' N O\A; na N alalWla'nlaal's VAl a aVala mara AN N a ntial

To scale the SMC, Tuller and Or (2005) used thé smecific surface area (SA) and the

thickness of water film to express the moistureteonin dry range of the SMC. Despite, their

reasonable model performance, the applicationeaf firocedure was limited, due to difficulty in
the measurement or the estimation of SA.

Hayashi et al. (2007) found that in natural forddidislope soils, the variability in the SMC is
scaled and characterized by the variability in @ffe porosity. Nevertheless, the determination
of the effective porosity is also difficult.

The scaling factor proposed in current study igngef by using the index of packing state

which can be determined easily from the bulk dgritsoil and particle densiths compared to

prediction models that rely on the measured atiedas suggested above, or prediction models

that rely on measured SMC data, our approach isdbas a robust metric of the soil structure:

12
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the packing density. It does not rely on any otditional empirical parameter. The scaled MV-

VG model is therefore very parsimonious and robWat.therefore conclude that the scaled MV-

VG model may be appropriate for predicting SMC froasic soil data.

5 Conclusion

Using a new scaling approach, the current studyvetathat the continuous form of SMC
curve can be predicted from knowledge of PSD, adeteadl by the van Genuchten (1980) model
and particle packing state. In this approach it assumed that the scaling factor can be defined
as the ratio of packing state of a soil sample tedpacking state of a reference soil. Results
showed that the proposed approach can adequatdicpthe SMC of 82 soil samples selected
from the UNSODA database. It wasrther found furtherthat the scaling approach provides
better predictions of the SMC than MV-ViGodel and ROSSETA softwarespecially irthedry

range of the SMC. For soils for which the error waportant, we attributed the proposed scaling

approach error to high organic carbon content avelling properties of the soil. Indeed, in these
soils the soil pore structure and porosity is cli@m@n time, leading to uncertainty in the scaling
factor based on the soil porosity.

In summary, we concluded that the main advantadeheo proposed scaling approach as
compared to many SMC prediction models @ré¢he applied scaling factor is determined easily
from soil bulk and particle densities; ii) the soglfactor has physical meaning, which doesn’t
depend on soil database and empirical parametgysthe proposed approach predicts a
continuous form of the SMC; and, iv) this approastimates the SMC more appropriately in
comparison with many other models. Considering, titare is no further need for empirical
parameters, we conclude that this approach maysetiluin estimating the SM@t-ltarger for
regional scale soil hydrological studiesfield-seal
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Symbols and Abbreviations

SMC: Soil Moisture Characteristics curve

PSD: Particle Size Distribution.

PoSD: Pore Size Distribution.

MV: Mohammadi and Vanclooster (2011) model

BCC: Bundle of Cylindrical Capillaries

VG model: van Genuchten model

MV-VG model: integrated the MV model with the vae@ichten model
AP: Arya and Paris (1981)

PTF: Pedotransfer Function.

RMSE: Root Mean Square Error.

0: the soil moisture content

S.: effective saturation degree

0. saturated moisture contents

0,: residual moisture contents

n: fitting coefficients

m: fitting coefficients

a: fitting coefficients

h: suction head

& a coefficient depending on the state of soilphes packing
e: the void ratio

ps. SOil particle density

pp: Soil bulk density

w;: the mass fraction of particles in tjtle particle-size fraction
S: saturation degree

P:: cumulative mass fraction of soil particles

R: particle radius of thih fraction

B: scaling factor

J - microscopic characteristic lengths of the refegen

¥. microscopic characteristic lengths of the sulgiédoil
Emax Maximum value of packing parameter

n: pore size distribution index

A: scaling factor

n': scaled the PoSD index in VG model

0i): predicted moisture content

0im): measured moisture content

RI: relative improvement

RMSE,;:RMSE values of MV-VG model
RMSEs: RMSE values of scaling approach
AE: area between the fitted curve and 1:1 line
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Tablel. Textural classes and UNSODA codes for ssiésl for testing and evaluating the approach.

Textural 0 0 g ) ) ) g wn wn wn
class g 2 o = g Z o 2 S S
— 3 o o o 3 a o (=1
o s = = < < <
5 =% 2 g 5 B
o > < 3
Q o —
3 3
3
UNSODA 140C 303t 3221 2000,309 303C 310C 116C 1050,1240,14€¢ 320z 113(
codes 2340 1211 3213,3261 1360 3101 2102 1464,1466,2100 3180
2361 1260 4042,4070 1371 2103 3133,3134,3140 3200
2362 1261 4180,4181 3130 3141,3144,3155 3290
4120 2530 2464,1341 3150 3162,3163,3164
4680 3190 1342,1350 3152 3165,3172,3340
4681 3191 1351,1352 3160 4051,4152,4263
2360 3222 2001,2002 3161 4272,4282,4441
2010,2011 3170 4520,4650,4000
2012, 3171

4251
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Table2. Average Root Mean Square Error (RMSE), fimefits of determination (#; Relative
Improvement (Rlcompared to the MV-VG modeand hydraulic parameters for each soil texturaligr
with standard deviations in parentheses.

Soil - Number RMSE R’ RI Hydraulic parameters
texture of soil value
(%)
MV-  Scaling ROSETTA MV-  Scaling ROSETTA R a m n n A
VG approac VG  approac (SIS ENC) ) ) ()
model h model h
Clay 8 0.088 0.041 0.115( 097 0.97; 0915 5387 051 0043 0128 2457 1.467 0.622¢
(0.014) (0.020) (0.0403)  (0.017) (0.020) (0.0710) (16.74) (0.04) (0.085) (0.104) (2.195) (1.127) (0.0706)
Clay 1 0.027 0017 0.146¢ 072 087 0979  381F 056 000: 0246 163 1.040 0.636¢
loamr
Loam 8 0.078 0.045 0.0546 0.896 0913 0.8986 41.04 045 0042 0157 3.115 2.187 0.6970

(0.019) (0.015) (0.0333)  (0.100) (0.088) (0.0667) (17.74) (0.06) (0.030) (0.079) (1.452) (1.100) (0.0389)
Silt 19 0.082 0059 00512 0922 0950 00598 2563 044 0019 0233 4937 3637 07189

loam (6.026) (0.020) (0.0222)  (0.043) (0.033) (0.0230) (20.28) (0.04) (0.011) (0.365) (2.593) (1.982) (0.0414)
Silty 2 0.076 0.061 0.0868 0.932 0.941 0.9166 3.01 051 0.040 0.195 1573 1.091 0.6628

clay (0.056) (0.022) (0.0427) (0.040) (0.010) (0.0348) (43.07) (0.09) (0.028) (0.157) (1.402) (1.039) (0.0699)
Silty 1 0.12¢ 0.09¢  0.108( 0.887 0.92¢ 0.908 28.1F 0.4¢° 0.02( 0.11€ 2.54¢ 1.87( 0.733¢

clay

loam

Loamy11 0.093 0.060 0.086: 0.89¢ 0.92¢ 0.906; 32.63 0.40 0.067 0.179 5.488 4.048 0.733¢

sanc (0.037) (0.022) (0.0359) 0.062 (0.038) (0.0537) (11.64) (0.07) (0.038) (0.058) (1.357) (1.088) (0.0445)

Sand 27 0.093 0073 00254 0854 0893 08853 20.74 037 0052 0458 5592 4380 0.8228
(0.030) (0.024) (0.0626) (0.102) 0.081 0.0760  (7.51) (0.04) (0.033) (0.444) (2.018) (1.531)

Sandy 1 0.084 0.065 0.0653 0.957 0.967 0.9702 23.07 0.36 0.043 0.054 8.000 6.5820.7031

clay 0.0630)
loanr

Sandy 4 0.073 0.035 0.0776 0.950 0.971 0.9364 51.63 0.46 0.066 0.093 5.676 3.980 0.7641

loam (0.014) (0.015) (0.0547) (0.028) (0.008) (0.0278) (18.12) (0.05) (0.020) (0.032) (1.526) (1.137) (0.0444)
Averag 82 0.086a 0.060b 00745a 0.898 0927 0.9276 30.14 042 0044 0272 4726 3519 0.7177

e (0.028) (0.024) (0.0417 (0.084) (0.065) (0.064) (18.88) (0.07) (0.040) (0.338) (2.329) (1.816) (0.0532)

4Different lowercase letters indicate significarffeliences at P< 0.05
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Figure captions
Figure 1.The efficiency of scaling approach, % d&fined with RMSE (Eq.4514) as function of (a) the

saturated moisture content and (b) scaling factoalf soil samples. : significant at P= 0.01.

Figure 2. Examples of measured vs. predicted soisture characteristics curve (SMC) for each textur
using the integrated MV-VG model (Eqg. (9)), scalepgproach (Eq. @3)) and ROSETTAfor (a) clay
soil, (b) sandy loam soil, (c) loam soil, (d) sathdgm soil, (e) clay soil and (f) silt loam soil.

Figure 3. Comparisons of the measured and estinmatgsture contents for 82 selected soils using the
MV-VG model (Eqg. (9)) and scaling approach (EE12). Dashed lines: the 1:1 line. Solid lines: linear
regression line, shadowed solid red line: nonlifregression-line.
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