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Response to Referee 3: Overview

I would like to thank Referee 3 for their thorough review and respond to their critical
assessment of the IFP transform model.
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Overview by Referee 3

This note describes and illustrates the use of the IFP (Inverse Fractional Power)
transformation of flow to estimate the parameters of the Brutsaert-Nieber recession
model, -dQ/dt=aQb. If the value of b can be selected appropriately, then the plot of
transformed flow against time is linear, and parameter a can be estimated by linear
regression. This IFP method is an alternative to estimating a and b by fitting a straight
line to a cloud of points on log(-dQ/dt)-vs-log(Q) axes.

In my opinion, the IFP transformation may be of academic interest, but I do not think
the paper has demonstrated any significant advantages over alternatives. The IFP
method requires a two-stage estimation process, where b is chosen, and then the best
value of a is found. This must be repeated until an optimal combination of a and b is
obtained. I did not find that the examples revealing or compelling. In its current form it
does not seem suitable for publication in HESS and I recommend Major Revisions.

Response by Author

To address coherently their numerous objections to the IFP transform model, I would
like to go back to the origin of the Brutsaert-Nieber (1977) model and down to the
basic of mathematics.

Equations 1 and 2

BN model is represented by a simple nonlinear differential equation (Eq. 1). It has a
mathematical solution. Taking the logarithm of both sides of the equation:
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log(−dQ/dt) = a+ b logQ, (1a)
but leaving intact the derivative term (dQ/dt), this does not solve the differential
equation.

By contrast, separating the variables Q and t in the equation and integrating it from
time 0 to t, one obtains a solution, which is the IFP transform model (Eq. 2a) (e.g.
Sokolnikoff and Redheffer, 1958, pp. 12-13).

Thus the solution of BN model is the IFP transform, not the linear log-transform (Eq.
1a). In principle, the IFP transform is a better model than the linear log-transform one.

In the eye of the Queen of Science (after mathematician E. T. Bell), the original BN
equation (Eq. 1) and its IFP transform solution (Eq. 2a) constitute a kernel of truth
and a law in streamflow recession. Others, such as Eq. 3 below for a nonlinear
storage-discharge relation, are derivable from this law, which let me call, for discussion
purposes, BND model, named after its discoverers.

This claim of mine that BND model is a nature′s law is not in dispute, but remains
open to challenge by the Referees, c/o the Editor.

Viewed in this light, the note acknowledges the pioneering contribution of Brutsaert
and Nieber, and my re-introduction of a half-century-old IFP transform as an exact
solution helps solidify the original BN equation into a hydrologic law.

Most, if not all, of my comments that Referee 3 finds objectionable are external to the
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BND kernel and its derivatives. They can be removed from the final text, if the Editor
so directs.

Equation 3

The nonlinear storage-discharge (S−Q) relation is obtained by integrating Eq. 2a from
time t to∞. S(t) represents the amount of storage available at time t for later release,
i.e. an available storage or stock, which will be eventually depleted, i.e. S(∞) = 0 and
Q(∞) = 0.

By contrast, integrating from time 0 to t yields the amount of storage, S(0)− S(t), that
has been released at time t, i.e. a spent storage. The initial storage S(0) is generally
not known, and would have to be estimated from , say, a storage-discharge relation
that remains to be determined, thus becoming a circular augument.

The dfference is critical between the two sets of the time limits for integration, the
future vs. the past. Following the second set causes some to have to redefine S as a
negative storage (or storage deficit) where no such thing exists or needs to (e.g. Rupp
and Woods, 2008)

Regarding the limits for shape parameter b, the IFP transform (Eq. 2a) places no limit
on it, others than it being a real number. For application to streamflow recession, I
appreciate and accept the criticisms from Referee 3 as well as Referees 1 and 2, and
will revise its limits to: 0 ≤ b < 2, the latter to avoid being trapped in a blackhole of the
infinity.
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Equation 7

"As an aside ... " meant to be a footnote to the text. This serves both as a re-
minder and word of encouragement that we hydrologists, members of one of the
oldest professions, need not play a second fiddle to statisticians and alike. Hurst
vs. Mandelbrot on analysis of the Nile River flood time series data is a classic example.

Table 3 (Revised)

Referee 3 also observes the lack of discriminating power of the correlation coefficient
R among parameter pairs (b, a). Clearly this is an inadequacy of R as a statistical test:
it is necessary, but not sufficient.

But I should add, this shows, on the other hand, the IFP transform model is robust,
when b value is 1.5 and less. This is a theoretical value for hillslopes arrived at
much earlier by Chapman (1964), Ishihara and Takagi (1965) and me (Ding, 1966).
The robustness of the IFP transform lends support to my recommendation that the
RoSR transform in which b = 1.5 be falsified for headwater catchments (see the final
paragraph of the note).
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Table 3 (Revised). Summary of Brutsaert-Nieber model parameters for Spoon River, Illinois.
Eventa Q(0) Length Statsb Type of IFP transform, 1/Qb−1

(mm/d) (day) None log RoCR RoSR Recip RoQ
b 0 1.0 1.33 1.5 2.0 3.0

0 0.84 9 a 0.05 0.07 0.08 0.08 0.10 0.16
R -0.98 -0.99 0.99 0.99 1.00 1.00

3 0.56 4 a 0.06 0.13 0.17 0.19 0.29 0.63
R -1.00 -1.00 1.00 1.00 0.99 0.98

1 0.29 4 a 0.01 0.05 0.07 0.09 0.18 0.66
R -1.00 -1.00 0.99 1.00 1.00 1.00

2 0.10 8 a 0.01 0.07 0.15 0.23 0.84 10.88
R -0.97 -0.98 0.99 0.99 0.99 0.99

Mean ā 0.03 0.08 0.12 0.15 0.35 3.08
Variance σ2(a) 0.0007 0.0012 0.0025 0.0055 0.1117 27.0751
Std.Div. σ(a) 0.03 0.03 0.05 0.07 0.33 5.20
a Events arranged in the descending order of the initial flow value.
b b is the shape parameter (-), a the scale parameter [1/(d mmb−1)], and R the correlation coefficient.
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