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Abstract:

Previous studies on the non-Darcian flow into a pumping well assumed that critical radius (Rcp)
was a constant or infinity, where Rcp represents the location of the interface between the
non-Darcian flow region and Darcian flow region. In this study, a two-region model considering
time-dependent Rcp was established, where the non-Darcian flow was described by the
Forchheimer equation. A new iteration method was proposed to estimate Rcp based on the
finite-difference method. The results showed that Rcp increased with time until reaching the
quasi-steady state flow, and the asymptotic value of Rcp only depended on the critical specific
discharge beyond which flow became non-Darcian. A larger inertial force would reduce the
change rate of Rcp with time, and resulted in a smaller Rep at a specific time during the transient
flow. The difference between the new solution and previous solutions were obvious in the early
pumping stage. The new solution agreed very well with the solution of previous two-region
model with a constant Rcp under quasi-steady flow. It agreed with the solution of the fully

Darcian flow model in the Darcian flow region.

Key words: Confined aquifer; Finite-difference method; Iteration method; Two-region model
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Nomenclature

B

Dp

Jc

Oy, Oy

Re

Rec

aquifer thickness (L)

characteristic grain diameter (L)

hydraulic conductivity of the aquifer (LT™)

apparent hydraulic conductivity, an empirical constant in the Forchheimer law
(LT

specific discharge in the aquifer (LT™)

critical specific discharge (LT™)

specific discharges for Darcian flow and non-Darcian flow (LT™), respectively
well discharge (L’T™)

drawdown (L) for aquifer

drawdowns (L) for Darcian flow and non-Darcian flow, respectively
drawdown (L) inside well

storage coefficient of the aquifer (dimensionless)

distance from the center of the well (L)

radius of the well screen (L)

critical radius for non-Darcian flow (L)
Reynolds number (dimensionless)
critical Reynolds number (dimensionless)
pumping time (T)

an empirical constant in the Forchheimer law (TL™), named as inertial force
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coefficient in this study
1% kinematic viscosity of the fluid (L*T™)

Odw, Oy  dimensionless specific discharges defined in Table 1 in the non-Darcian flow and

Darcian flow regions, respectively

Jep dimensionless critical specific discharge defined in Table 1
rp dimensionless distance defined in Table 1

l'o dimensionless radius of the well screen defined in Table 1
Reo dimensionless critical radius defined in Table 1

Swo» Syp  dimensionless drawdown s defined in Table 1 in the non-Darcian flow and Darcian

flow regions, respectively

Sub dimensionless drawdown inside the well defined in Table 1

to dimensionless time defined in Table 1

Bo dimensionless inertial force coefficient defined in Table 1

A ratio of the hydraulic conductivity and apparent hydraulic conductivity defined in
Table 1

The subscript D refers to terms in dimensionless form.
The subscripts N and Y refer to terms related to non-Darcian flow and Darcian flow regions,

respectively.
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1. Introduction

Darcy’s law indicates a linear relationship between the fluid velocity and the hydraulic
gradient (Bear, 1972), which is a basic assumption used to handle a great deal of problems
related to flow in porous and fractured media. However, many evidences from the laboratory and
field experiments show that this linear law may be invalid in some situations, especially when
the groundwater flow velocity is sufficiently high or sufficiently low, where non-Darcian flow
prevails (Basak, 1977;Bordier and Zimmer, 2000;Engelund, 1953;Forchheimer, 1901;Izbash,

1931;Liu et al., 2012;Soni et al., 1978).

Darcy’s law considers kinematic forces but excludes inertial forces of flow. However, the
inertia forces become significant with respect to the kinematic forces when the velocity is great,
leading to non-Darcian flow (Engelund, 1953;Forchheimer, 1901;Irmay, 1959;Izbash, 1931).
Forchheimer (1901) proposed a heuristic Forchheimer law describing the non-Darcian flow,
which was an extension of Darcy’s law by adding a second-order velocity term, representing the
inertial effect. To verify the applicability of the Forchheimer law, many approaches were
introduced, such as the dimensional analysis (Ward, 1964), the capillary model (Dullien and
Azzam, 1973), the hybrid mixture theory (Hassanizadeh and Gray, 1987), and the volume
averaging method (Whitaker, 1996). Recently, Giorgi (1997) and Chen et al. (2001) analytically
derived the Forchheimer law from the Navier-Stokes equation. Another widely used model

describing the non-Darcian flow was the Izbash equation (Izbash, 1931). This equation was a
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fully empirical power-law function obtained through analyzing experimental data. The Izbash
equation was preferred for modeling purpose, since the power index in the Izbash equation can
be parameterized depending on flow conditions (Basak, 1977). George and Hansen (1992)

demonstrated that the Forchheimer and Izbash equations were identical for some cases.

Due to the high velocities, non-Darcian flow is likely to occur near pumping/injecting wells
(Yeh and Chang, 2013; Wen et al., 2008b). Several studies showed that the non-Darcian effect
had significant influence on hydraulic parameter estimations. For instance, Theis solution cannot
be used to explain the pumping test data in the Chaj-Doab area near Gujrat water distributory in
Pakistan (Ahmad, 1998), while Birpinar and Sen (2004) and Wen et al. (2011) found that the
Forchheimer law worked very well. Quinn et al. (2013) demonstrated that non-Darcian flow
effect increased as the initial applied head differential increased in a series of slug tests.
Specifically, Quinn et al. (2013) showed that the hydraulic conductivity was underestimated by
Darcy’s law when the initial applied head differentials were greater than 0.2 m. They pointed out
that Darcian flow conditions can be maintained in the sandstone when the initial applied head
differentials were less than 0.2 m (Quinn et al., 2013). Mathias and Todman (2010) showed that
the Jacob method, based on Darcy’s law, cannot fit the step-drawdown tests of van Tonder et al.
(2001) when the pumping rate was greater than 10 m’hour'. However, the Forchheimer law
fitted the step-drawdown tests data very well (Mathias and Todman, 2010). In this study, we will

focus on the non-Darcian flow into a pumping well by the Forchheimer law.

Although many efforts have been devoted to study the non-Darcian flow around the well,
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the exact solutions have not been obtained due to the non-linearity of the problem (Mathias et al.,
2008;Yeh and Chang, 2013). For example, Sen (1990, 2000) employed the Boltzmann transform
method to analytically solve the problems related to the non-Darcian flow. This method was
showed to be problematic, since both initial and boundary conditions cannot be simultaneously
transformed into a form only containing the Boltzmann variable (Camacho and Vasquez,
1992;Wen et al., 2008a). Wen el al. (2008a;2008b) derived the semi-analytical solutions of the
non-Darcian flow model by combining the Linearization procedure and the Laplace transform
method (LL method), assuming that the flow in the non-Darcian flow region was in quasi-steady
state flow. Wen et al. (2008a;2008b) pointed out that solutions by the Boltzmann transform and
the LL method coincided at late time. To test the accuracy of the semi-analytical solutions (Wen
et al., 2008a;Sen, 2000), Mathias et al. (2008) and Wen et al. (2009) employed the
finite-difference method to study the non-Darcian flow problems, and their results showed that
the semi-analytical solution only agreed very well with the numerical solution at late pumping

stage.

All above-mentioned investigations assume that the non-Darcian flow occurs over the entire
domain, which is called a fully non-Darcian flow (F-ND) model hereinafter. In fact, the regime
of the flow to the pumping well can be divided into two regions: non-Darcian flow occurs within
a narrow region around well, due to the relatively high velocity of flow there, and Darcian flow
prevails over the rest domain. One may think that such two-region flow could be described by

the Forchheimer law, which would automatically reduce to the Darcy’s law at the location far
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from the well (because the second-order velocity term in the Forchheimer law will be negligible
if velocity approaches zero). However, Forchheimer law (or F-ND model) may not work very
well for moderate velocity under which that Darcian flow prevails. Mackie (1983) demonstrated
that the two-region model could fit the experimental data in the laboratory better than the F-ND
model. Huyakorn and Dudgeon (1976) employed a two-region model to study flow near a
pumping well. Basak (1978) presented analytical solutions of the two-region model for
steady-state flow to a fully penetrating well. Sen (1988) and Wen et al. (2008b) derived the
analytical solutions of the two-region model for transient flow to a pumping well, and both

solutions were valid for the groundwater flow in the quasi-steady state.

All researches mentioned above implied that the critical radius is a constant, where the
critical radius represents the location separating the non-Darcian and Darcian flows (Sen,
1988;Wen et al., 2008b). For example, the critical radius is infinity for the F-ND model and is
zero for the fully Darcian flow model, while it is a finite constant for the two-region model in
which the critical radius is determined under the quasi-steady state flow condition (Sen,
1988;Wen et al., 2008b). Actually, the critical radius changes continuously with time for the
transient flow, and cannot be determined straightforwardly. For example, the initial critical
radius is zero for an initially hydrostatic aquifer, and it gradually increases with time until the
system becomes quasi-steady state near a constant-rate pumping well. The movement of critical
radius may be more complex for the variable-rate pumping tests (Bear, 1972;Mishra et al., 2012),

the slug tests (Quinn et al., 2013) or the step-drawdown tests (Louwyck et al., 2010;Mathias and
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Todman, 2010). Therefore, the two-region model with time-dependent critical radius is more
reasonable for transient flow near a pumping well, and it is particularly true when the pumping

rate changes greatly.

In this study, we will investigate non-Darcian flow into a fully penetrating pumping well
considering a time-dependent critical radius using the finite-difference method. A new iteration
procedure will be proposed to estimate the moving critical radius. This new model reduces to the
F-ND model when the critical radius is infinite and it becomes the fully Darcian flow model

when the critical radius is 0.

2. Problem statement and mathematic model

2.1. Location of the critical radius of the two-region model

Previous researches showed that the porous media flow may be divided into four regimes,
such as A) non-Darcy pre-linear laminar flow, B) Darcy flow, C) non-Darcy post-linear laminar
flow, and D) non-Darcy post-linear turbulent flow (Basak, 1977;Bear, 1972). For radial flow to a
pumping well, the velocity in the aquifer decreases with the distance from the well. Therefore,
the radial flow might experience all four-flow regimes. To simplify the problem, we use a
two-region model that considers a non-Darcian flow region near the well and a Darcian flow
region away from the well. A unique feature of the two-region model used in this study is that
the critical radius is allowed to vary with time whereas it was assumed to be constant in previous
studies (Dudgeon et al., 1972b, a;Huyakorn and Dudgeon, 1976;Mackie, 1983;Sen, 1988;Wen et

al., 2008b).
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Generally, the start of the non-Darcian flow can be determined by the critical Reynolds

number (Rec), where the Reynolds number is defined as
Re(r,t)=D,q(r.t)/v, (1)

where v is the kinematic viscosity of the fluid (L*T™); D, is the characteristic grain diameter
(L); q(r,t) is specific discharge (LT™) at distance r (L) and time t (T); Re is Reynolds number
which depends on time and space (dimensionless). The critical Reynolds number (Rec) refers to
Re at the start of non-Darcian flow. Up to present, there is still considerable debate on Rec for
the initiation of non-Darcian flow in porous media. Scheidegger (1974) gave Rec to be 0.1 to 75;
Zeng and Grigg (2006) suggested the range of Rec from 1 to 100. Rec will be set to 100 to make

sure non-Darcian flow happen in this study. According to Eq. (1), one can see that the specific

discharge has a linear relationship to Re. Therefore, the critical specific discharge (. ) can also
be used to determine the start of the non-Darcian flow, since one can calculate ¢ for a given
Rec. When the specific discharge is less than or equal to . (or Re<Rec), the flow is
considered as Darcian. When the specific discharge is greater than . (or Re>Rec), the flow is
taken as non-Darcian. Denoting R, (t) as the critical radius at which q =0, (or Re=Rec), then

it is non-Darcian flow whenr < R;(t)and Darcian flow whenr > R.(t), as shown in Fig. 1.

For the quasi-steady state flow around a fully penetrating well in a homogeneous and

isotropic formation, one has (Sen, 1988;Wen et al., 2008b)
R. =Q/(27Bq.), )

where B is the thickness of the aquifer (L); Q is the well discharge (L*T™). In the case of a

10
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constant pumping rate, R. is also a constant for a specific Rec. This constant R. was used in
previous two-region models of transient non-Darcian flow (Sen, 1988;Wen et al., 2008b).
Actually, R. isnot a constant for transient flow, and it cannot be determined directly since the

velocity distribution changes with time. In this study, a new iteration method will be proposed to

determine R. as described below.
2.2. Mathematic model

Fig. 1 shows the physical model investigated in this study, where a pumping well fully
penetrates a confined aquifer. The origin of the cylindrical coordinate system is at the center of
the well. The r-axis is horizontal and outward from the well, and the z-axis is upward vertical.
Three assumptions are made in this study. First, the non-Darcian and Darcian flow may coexist
and the critical radius is time-dependent, and the non-Darcian flow is governed by the
Forchheimer law. Second, the system is hydrostatic before the pumping starts, so R. (t = 0) =0.
Third, the aquifer is homogeneous, isotropic, infinitely extensive and with a constant thickness.
These assumptions, although quite idealized, are standard in well hydraulic study (Papadopulos
and Cooper, 1967;Sen, 1988;Wen et al., 2008b). Based on these assumptions, the governing

equations of the two-region flow model can be described as follows

(D, an (D _ S (LY e g (), 3)
ar r B 8'[

4D | &Y _S 30D 5o g (1), “)
or r B ot

where S, (I,t) and s,(r,t) are drawdowns (L) at distance r and time t in Darcian flow and

non-Darcian flow regions, respectively; S is the aquifer storage coefficient (dimensionless).

11
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Initial condition is

Sy (r,0) =s,(r,0)=0. %)

The outer boundary condition is

s, (00,t) = 0. (6)

Assuming that the pumping rate is large enough to induce non-Darcian flow near the well,
the boundary condition at the wellbore, considering the wellbore storage with a finite diameter

well, can be written as

22rBq,, (1,t) =-Q, (7)

r—r, w T

where Q is positive for the pumping rate; T,

., 1s the radius of the well (L); Sw is the drawdown

inside the well (L). Notice that well loss is not considered so the drawdown is continuous across

the well screen
Sw(t) = SN (rwat) . (8)

The drawdown and the discharge from the Darcian flow region into the non-Darcian flow

region are continuous at the critical radius
sulRe(tht]=s[Re (t)1], ©)
qN[RC(t):t]:qY [RC(t)’t] (10)

In the non-Darcian flow region, we use the Forchheimer law to describe the flow

(Forchheimer, 1901)

12
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oSy
or

Oy + By oy | = K, =2, (11)

in which B (TL")and K P (LT ") are empirical constants depending on the properties of the
medium (Sidiropoulou et al., 2007). K, is called the apparent hydraulic conductivity and it
reduces to the hydraulic conductivity when £ =0 (Chen et al., 2001;Sidiropoulou et al.,
2007). B is called the inertial force coefficient. Many studies demonstrated that the value of f

was related to the porous media and the fluid properties (Scheidegger, 1958;Moutsopoulos et al.,

2009). For example, Ergun equation (Ergun, 1952) was widely used to estimate [

1.75D,

T 150v(1-¢)’ (12)

where ¢ is porosity. When the kinematic viscosity of water (v) at 20 °C is 10 °m*s ",

D,=0.001m, ¢=0.3, one has A =2.0x10""m"/day.

In the Darcian flow region, one has

os, (r,1) .

r,t)y=K .
Gy (r,1) or

(13)

The mathematical model of Egs. (3) - (13) can be used to describe the groundwater flow in the
aquifer with a time-dependent critical radius R (t). This new model is an extension of the
previous model by Sen (1988). When R. (t) — o0, this model becomes the F-ND model. When

R (t)=0, it reduces to the fully Darcian flow model.

2.3. Dimensionless transformation

Defining the dimensionless variables in Table 1, Egs. (3) - (13) can be rewritten as

13



o 4O __ O . Iy <R.y, (14)
ory 1 oty

?TYDDJF%:—%S;—Y;, o > Rep. (15)
S (15:0) = 8o (15,0) =0, (16)
Sy (0,t) =0, (17)
Suo[Reo (to bt ]= S0 [Reo (to 1o ], (18)
Ao [Reo (to ) to | = Gvo[Ren (to ) to ] (19)

Notice that a negative sign has been used for defining gp in Table 1. The subscript “D”” means
the dimensionless variables. The boundary condition with the wellbore storage (Eq. (7)) in the

dimensionless form is

r> ds,(ts)
r 4+ wo Bwpto) _ 20
( DqNDXrDeer 28 dtD ( )

The dimensionless Forchheimer law becomes

OSyp
ory

qND+ﬂDqND|qND|:_ » To <Rep, (21)

where [, is the dimensionless inertial force coefficient. When the pumping rate is 0.628 m’s,

aquifer thickness is 10 m, and 3 =2.0x10m?/day, one has P =0.02 according to the definition

of f,as shown in Table 1.

When ry > R, groundwater flow follows the Darcy’s law in the dimensionless format as

14
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rt)y=-4—2,
Oyo(r,t) or

D

r>Re, (22)

where A is the ratio of the hydraulic conductivity and apparent hydraulic conductivity, and it is

usually taken as unity (Sidiropoulou et al., 2007).
3. Numerical solution

Because of the non-linearity of the problem, it is not easy to obtain the analytical solution of
drawdown even if R.,(t,) is constant. In this study, we will employ the finite-difference
method to investigate the problem considering a time-dependent R, (tD ) Due to the
axisymmetric nature of the problem, the numerical simulation will be conducted with a
non-uniform grid system, where the spatial steps are smaller near the well and become
progressively greater away from the well. Similar to previous studies (Mathias et al., 2008;Wen
et al., 2009), we discretize the dimensionless space rp logarithmically. The dimensionless space
domain [ryp, rep] is discretized into N nodes excluding the two boundary nodes ryp and rep,
where r¢p is a relatively large dimensionless distance used to approximate the infinite boundary

(Mathias et al., 2008;Wen et al., 2009). For any node of ri, ryp<ri<rep, i=1, 2...N, one has

L=+ 2, i=1,2...N, (23)

where T

.1, 1s calculated as follows

log,,(r,,,,) =log,,(r,p) + i[logm(reD)aloglO(rWD)} ,1=0, 1...N. (24)

After spatial discretization, Egs. (14) - (15) become

15



ds,,. I =l . .
YD,i ~ Ifl/ZqYD,Ifl/Z I+1/2qYD,I+l/2 , |:2, 3...Ns'1, rD S RCD , (25)

dtD ri(ri+l/2 - ri—l/Z)
ds,p: T i —h i .
NDJi i-1/29np.i-172 = Fiv2Gnp s 2 ,i=Ns, 3...N-1, r, > RCD , (26)
dtD ri(ri+l/2 - ri—l/Z)

where Q,y;and S,,; are the dimensionless specific discharge gyp and dimensionless drawdown

Syp at node i for the Darcian flow, respectively; 0,,; and s,,; are the dimensionless specific

discharge gnp and dimensionless drawdown Syp at node i for the non-Darcian flow, respectively.
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In terms of the Forchheimer equation of Eq. (21), one can obtain
1

Sxoia —Swoi | 2]
QND,i—l/zzﬁ _1+|:1+4ﬂD[MJi| , 1=2,3...Ns-1, 27

D i —h

and
1

Snoi —Swoant | 12|
qND,i+1/2zL -1+ 1+4ﬂD(MJ , 1=2,3...Ng -1, (28)
2B,

i —h

where node Ns means the location of R (t, ). At the well-aquifer boundary, one has

L

qNDl-l/zzL —1+|1+45;, M : > (29)
’ 20, r,

where Syp is the dimensionless drawdown inside the well. Considering Eq. (20), Swp can be

approximated as follows

ds,, _2S

dtD ~ %(l - erqND,H/z)- (30)

16
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When 1, >R, the finite-difference scheme of the specific discharge can be obtained from

Eq. (22)
SYD,i—l _SYD,i .
Uvpizi/2 z/l—,|— Ns, Ns+1...N-1, (31)
, =T
SYD,i _SYD,i+1 .
qYD,i+l/2 ~ ﬂ’#a 1= Ns, Ns+1-..N-1. (32)
i+1 N

As for the boundary at the infinity, the finite-difference scheme is

Syp,N
Ovonsi/2 & A . (33)
fo —I'y

Now one obtains a set of ordinary differential equations. It is notable that R., or Ns which is

related to the index i in Egs. (27) - (28) and Egs. (31) - (32) is time-dependent. In the following

section, a new iteration method will be proposed to determine the values of R., or Ns.

4. Iteration method to determineR_, or N

Before introducing the new iteration method, the relationship between R, and the

velocity distribution will be investigated first, based on the two-region model with a constant

Rcp - The values of the constant R, are set to 0, 0.02, 0.04, 0.08 and 0.50, respectively. The
other parameters are I,; =1x10", B, =20, A=1.The mathematic model with a constant

R.p Will be solved by the finite-difference method.

Fig. 2a shows the specific discharge distributions with different R, of 0, 0.02, 0.04, 0.08

and 0.50. The curve of R, =0 represents the fully Darcian flow model. One can find that the

17
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specific discharge decreases with increasing R at a givenr,, starting from its maximum at

R.p =0 (Darcian flow). This observation is understandable. The increasing R, implies a
stronger contribution of the inertial effect, which also means a larger resistance to flow, thus it
leads to a smaller specific discharge. After trying many different sets of aquifer parameters, such
as f,=0.002,0.02,0.2,and R.,=0.01,0.03, 0.1, numerical simulation indicates that this
observation is universally valid. This observation will serve as the basis for the new iteration

method to seek the location of R,y (tD )

Similar to the use of Rec to determine the start of the non-Darcian flow, one can use qcp
for the initiation of the non-Darcian flow, where ., 1is the dimensionless critical specific
discharge defined in Table 1. We denote ., as the newly computed critical radius at the j®
step of the new iteration method, where j =1,2,3--. Since the aquifer system is initially
hydrostatic, the initial critical radius r,., is setto 0. For a given dimensionless time t;p, the
detailed procedures of the iteration method for searching R, (t,,) will be introduced as follows.
Firstly, the specific discharge distribution in the aquifer can be calculated using Egs. (25) - (33)
with Rep(t,p) = fyep » @s shown in Fig. 2b. Based on the computed specific discharge distribution,
one can find the new critical radius I, according to a given constant (., . Secondly, the new
specific discharge distribution can be similarly calculated using Eqgs. (25) - (33) with
Reo (tm )=rp, and the new critical radius r,., can be obtained according to g, . It is notable
that I, and I, serve asthe upper and lower limits for searching R (t,p ), as illustrated in

Fig. 2b. Similarly, one can estimate the new critical radius r,., using r,.,, where I, is

18
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located somewhere between I, and r,.,. Following the same procedures, a new critical
radius r,., can be calculated based on I, and r,., isbetween I,., and r,,.One can
repeat above computations until the new critical radius finally converges. For the actual

Ry —R&E'|< &, where RES and RY' are the

problems, we define a convergence criterion
critical radius for the previous step and present step, respectively; & is a small positive value
such as 0.001. If this criterion is satisfied, the new critical radius Iy, is thought as the
estimation of R, (tm ) We develop a MATLAB program named as Two-Region Model with
Moving critical radius (MTRM) to facilitate the computation. By the way, this iteration method
is convergent. Fig. 3 represents the flow chart of the MTRM algorithm, where ti is the time at
time step K; Kmax 1S the total number of the time steps; dtp is the dimensionless time step; Sp; and
(b, are the dimensionless specific drawdown and dimensionless discharge at node i in the aquifer

respectively.

5. Results and discussions
5.1. Comparison with the previous solutions

To test the new solution, the fully Darcian flow solution of Papadopoulos and Cooper
(1967), the fully non-Darcian flow solution of Mathias et al. (2008) and the two-region model of
Sen (1988) will be introduced. Figs. 4a and 4b show the distance-drawdown curves of the four
mentioned-above models in the early and late pumping stages, respectively. In these two figures,
“Papadopoulos and Cooper (1967)” represents the analytical solution of the fully Darcian flow

model, “Sen (1988)” is the analytical solution of the two-region model by the Boltzmann
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transform method, and “Mathias et al. (2008)” represents the numerical solution of the fully

non-Darcian flow model. The deflection point of the curve is the location of the critical radius.

In the early stage, the differences among three previous solutions and the new solution of
this study are obvious, as shown in Fig. 4a. Firstly, the solution of Papadopoulos and Cooper
(1967) is smaller than the others near the well. This is because the inertial forces of the
non-Darcian flow increase the resistance for flow, thus resulting in drawdown greater than those
for the Darcian flow near the well. The second is that the F-ND solution agrees with the new
solution near the well. The third is that the solution of Sen (1988) does not agree with the new
solution near the well at the early time. This is probably because of the Boltzmann transform
method used by Sen (1988) to deal with the non-Darcian flow at the early time, which has been
discussed in several previous studies (Camacho and Vasquez, 1992;Wen et al., 2008b). The
fourth is that there is a deflection point on the new solution, leading to discontinuity of the
drawdown slope. This observation may be reasonable, as also reported by Moutsopoulos et al.

(2009), who named it non-uniform hydraulic behavior.

In the late pumping stage, the transient flow approaches the quasi-steady state, and the
specific discharge distribution is invariant with time according to Egs. (3) - (4) or Egs. (14) - (15),
regardless of the Darcian flow or non-Darcian flow. Under the quasi-steady state flow condition,
the critical radius obtained by this new solution becomes a constant which is the same as the one
used by previous two-region models such as Sen (1988) and Wen et al. (2009). Therefore, the

new solution agrees with that of Sen (1988) very well at late time (see Fig. 4b). Another fact that
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can be seen in Fig. 4b is that the new solution agrees with the solution of Papadopoulos and

Cooper (1967) in the Darcian flow region.

5.2 Effect of the inertial force coefficient to the critical radius

The inertial force coefficient ( ) is of primary concern for the non-Darcian flow described
by the Forchheimer equation, and the values of /S, are chosen as 0.001, 0.01, and 0.1. Fig. 5
shows the critical radius ( Ry ) changes with time for different dimensionless inertial force
coefficients. Several observations can be seen. Firstly, R, increases with time until the flow
approaching the quasi-steady state condition. In the early pumping stage, the specific discharge
is very large near the well and decreases quickly with the distance from the well, so R, is very
small. With time going, the cone of depression will expand along the radial direction and the
slope of the cone of depression becomes flatter, so R., becomes greater. Secondly, a larger
would reduce the rate of change R, versus time, thus result in longer time to approach its
asymptotic value, and consequently leads to a smaller R., at a specific time in the transient
state (see Fig. 5). This is because a larger S, implies a stronger inertial force, which increases
the resistance of flow. The third interesting observation is that the asymptotic value of R, is
the same for different /S, . This can be explained using Eq. (2). Based on the definition of the

dimensionless parameters defined in Table 1, Eq. (2) becomes

Ucp =1/ RCD' (34)

Therefore, the value of R., does not depend on S, under the quasi-state state flow condition,

while it only reciprocally depends on the critical specific discharge.
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5.3 Effect of the critical specific discharge to the critical radius

The criterion to judge the initiation of the non-Darcian flow is an important factor of

concern. Up to now, there is still considerable debate on what value of Re. to use for the start

of non-Darcian low. The recommended values of Re. range from 0.1 to 100 for porous media
flow (Bear, 1972;Scheidegger, 1974;Zeng and Grigg, 2006). To check the influence of Re. on
Rep during the transient flow, the values of (., are chosen as 100, 50 and 10 considering the

direct relationship of ., and R, in Eq. (2). The other parameters are f,=0.01,

andr,, =1x107".

Fig. 6 shows the effect of ., on R.;. It is obvious that the asymptotic value of R, is
equal to 1/0.p , as reflected in Eq. (34). Another interesting observation is that R., decreases

with increasing .y, and it takes shorter time for R, to approach its asymptotic value.
5.4. Type curves in the non-Darcian flow region and Darcian flow region

Type curves are a series of curves that reveal the functional relationship between the well
functions (or drawdown) and the dimensionless time factors (Sen, 1988;Wen et al., 2011). Type
curve is one of the common approaches to identify the aquifer parameters or to predict the
drawdown(Sen, 1988;Wen et al., 2011). Sen (1988) presented different type curves in the
Darcian flow region and non-Darcian flow region based on a two-region model. In that model
(Sen, 1988), R., was a fixed value which only depends on the rate of pumping but independent
of time. In this study, R, changes with time, and the type curves might be different from the
ones generated by Sen (1988). To investigate the behaviors of the type curves of the new
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solution, the two observation locations will be chosen, rp=0.005 and 0.02. According to Eq. (34),
the maximum of R, 1s 0.001 at the quasi-steady state, so the flow at rp=0.005 will experience
both Darcian flow (at the early time) and non-Darcian flow (at late time), while the flow at

ro=0.02 is always Darcian.

Fig. 7 shows the time-drawdown at rp=0.005 for different dimensionless inertial force
coefficients in the log-log scale. Two interesting observations can be seen from this figure. The
first observation is that there is a deflection point in the curve of f,=0.1 or 1, that becomes
larger in time with increasing /. This is because a larger S, implies a stronger inertial effect,
which leads to a larger drawdown and longer time to approach the quasi-steady state condition.
This observation is not found in the F-ND model (Wen et al., 2011) and in the two-region model
(Sen, 1988). The second observation is that the drawdown in the quasi-steady state increases

with increasing [, and the reason for this has been explained in previous studies (Wen et al.,

2011).

Fig. 8 represents the time-drawdown at rp=0.02 in the log-log scale. One notable point is
that flow at rp=0.02 is always Darcian, so there is no deflection point in the type curves. The

differences among the curves with different S, are obvious at the beginning, and then they

approach the same value at the quasi-steady state.

6. Summary and conclusions

In this study, a new two-region flow model considering the time-dependent critical radius

(Rp) 1s established to investigate the groundwater flow into a pumping well, and a new iteration
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method is proposed to estimate R, based on the finite-difference method. Results show that
this iteration method is convergence although it has not been analytical verified using rigorous
mathematic model. In the non-Darcian flow region, the flow is governed by the Forchheimer
equation, and the start of the non-Darcian flow is determined by the critical specific discharge,
which is calculated by the critical Reynolds number. The new solution is compared with
previous solutions, such as the fully Darcian flow model, the two-region model with a constant
critical radius, and the fully non-Darcian flow model. The impacts of the dimensionless inertial

force coefficient ( B, ) and dimensionless critical specific discharge (., ) on the critical radius

and flow field have been analyzed. Several findings can be drawn from this study:

(1) In the early stage, the new solution agrees with the fully non-Darcian flow solution near
the well, differs with the fully Darcian flow model of Papadopoulos and Cooper (1967) and the

two-region model of Sen (1988).

(2) In the quasi-steady flow stage, the new solution agrees with the solution of Sen (1988)
very well. It agrees very well with the solution of the fully Darcian flow model (Papadopulos and

Cooper, 1967) in the Darcian flow region.

(3) Ry Increases with time until reaching the quasi-steady state flow, and the asymptotic
value of R, only depends on Q.. A larger S, would reduce the rate of change of R,

with time, and result in a smaller R, at a specific time during the transient flow state.

(4) There is a deflection point in the type curve when the observation well location is within

the non-Darcian flow region in the quasi-steady state when Ay > 0.1, and the time associated
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with this deflection point becomes larger with a larger £ .
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Table 1 Dimensionless variables used in this study
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Figure captions

Fig. 1. The schematic diagram of the non-Darcian flow into a fully penetrating pumping well

considering the time-dependent critical radius.

Fig. 2a. Specific discharge distributions with different critical radius Rep.

Fig. 2b. The schematic diagram showing the iterative process of seeking Rcp.

Fig. 3. Flow chat of the MTRM algorithm.

Fig. 4a. Comparison of the distance-drawdowns by the fully Darcian flow model (Papadopoulos
and Cooper, 1967), the fully non-Darcian flow model (Mathias et al., 2008), the two-region
flow model (Sen, 1988), and the new model in early pumping stage.

Fig. 4b. Comparison of the distance-drawdowns by the fully Darcian flow model (Papadopoulos
and Cooper, 1967), the fully non-Darcian flow model (Mathias et al., 2008), the two-region
flow model (Sen, 1988), and the new model in late pumping stage.

Fig. 5. Time-dependent critical radius (Rcp) for different inertial force coefficients.

Fig. 6. Time-dependent critical radius (Rcp) for different critical specific discharges.

Fig. 7. Time-drawdown at rp=0.005 for different inertial force coefficients in a log-log scale.

Fig. 8. Time-drawdown at rp=0.02 for different inertial force coefficients in a log-log scale.
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