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Author comment to review #2: Yoram Rubin. 

We would like to thank Yoram Rubin for his review to our manuscript. He brought thoughtful 

comments forward concerning the statistical theory underlying an ensemble of stochastically generated 

realizations. We believe that a broader description of the TProGS’s principals and algorithms can 

clarify the reviewer’s concerns. We do not find it necessary to include further TProGS theory in our 

manuscript, because it is already intensively elaborated in the existing literatures. However, we have 

included more detailed descriptions on the theory in Appendix I to this reply. We appreciate the 

suggested references, e.g. concept of anchors, and have added them to the revised manuscript in both 

the  introduction and the discussion section. We hope the adjustments made during the revision can 

help to improve the scientific quality of the manuscript.             

This paper reports on several challenges addressed by the authors while pursuing this study. The paper is 

interesting to read, primarily because it raises several interesting issues and challenges. 

The main concern I have is that the approach pursued here, although referred to as stochastic, does not present 

a complete and sound statistical theory. This shows up in different ways: 

 

• The approach presented in this paper combines statistical concepts (such as transition probabilities) with 

multiple decisions that are based on aesthetics and subjective judgment calls. The judgment calls made by the 

authors are not translated into statistical rules. As a result, the ensemble of realizations that are generated does 

not constitute a statistically-meaningful ensemble. Rather, it represents a bunch of (presumably and 

subjectively) reasonably-looking realizations. This creates a confusing mix of statistical models and art. What 

constitutes “reasonable” and less “reasonable” is not clear. It is a judgment call, and hence it crosses the 

boundary between science and art. Without a statistically-meaningful ensemble, meaning, without a complete 

representation of high and low-probability realizations, it becomes impossible to quantifying predictions. 

Quantifying predictions is the main goal of such studies, and when that is not made possible, what is the point? 

 

We disagree with some of the comments  above; the underlying geostatistical methods in TProGS, 

namely sequential indicator simulation (SIS) and simulated quenching will ensure that the generated 

ensemble is statistically meaningful (Please see Appendix I for more details). The two inter-dependent 

steps will assure that each individual realization honors the conditioning data and the defined model of 

spatial variability. The model of spatial variability, which is used in the local indicator cokriging 

estimate in the SIS step, is represented by a continuous 3D Markov model, derived from the computed 

transition probabilities. A consistent/statistically meaningful TProGS ensemble will reflect the defined 

model of spatial variability (mean length and proportion) and the conditioning data (hard and soft).  

 

We agree to the comment that “subjective judgment calls are not translated into statistical rules”. 

Subjectivity is part of our study at multiple points: Basing the horizontal and vertical model of spatial 
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variability on different data types, the delineation of the entire geological structure (based on geological 

interpretations) or the way hardness is assigned to the soft data. Another subjective decision that has to 

be acknowledged is the definition of the Markov Chain model in TProGS (mean length and 

proportion). We strongly disagree that these subjective judgment calls are rather art than science; on the 

contrary they are the strength of this study. Especially the latter, because it allows the incorporation of 

geological interpretations to the modeling process. The subjective judgment calls do not undermine the 

meaningfulness of the simulated ensemble. The decision to out-thin the conditioning dataset is driven 

by the identified problem of overconditioning. We experienced that overconditioning affects both the 

SIS and the simulated quenching, as spatially correlated data are introduced into the modeling process. 

Hence, overconditioning hinders the self-consistency of TProGS, because the simulated ensemble does 

not represent the uncertainties given in the soft dataset which is used for constraining the simulation. 

Neither it embodies the defined model of spatial variability; e.g. the mean length is undersimulated. 

Before we can apply the ensemble for subsequent flow modelling we have to assure self-consistency, 

thus comparing of input and output of TProGS. An ensemble is only fit for quantifying predictive 

uncertainty if all input data and TProGS parameters are considered accordingly in the simulation. The 

five validation criteria which are defined in our study test the self-consistency; the criteria go far 

beyond visual comparisons and subjective judgment calls. We regard this as a systematically approach 

that address the consistency between input and output and significantly helped us at finding the most 

appropriate sampling distance and method to reduce the effect of overconditioing.  
 

o Along this line, I should refer to the authors’ comment on p. 15221 (line 20) concerning “.. equally likely 

probable realizations..”. First, if the authors believe the realizations are equally-probable, they need to show 

how these probabilities are computed. Next, I believe that in the absence of a multi-point statistical model, as is 

the case here, one cannot really use the term “equally-likely”. At best these are realizations that were produced 

following a similar procedure (on p. 15221 line 21, the authors refer to the realizations they produce as 

“plausible”, which I think is more appropriate) . Lastly, the authors should explain why they see merit in 

producing equally-probable realizations. I believe that in application we are interested in a variety of 

probabilities, high-and low-probabilities: we know how to prepare for high-probability events. It is the low-

probability (less plausible?) events that lead to disasters. 

 

We believe that stochastic modeling of the hydrofacies distribution is an appropriate way of describing 

geological heterogeneity and geological uncertainty. The stochastic methods can ensure local accuracy 

through conditioning to observations and “fill the gaps” between observation points, by generating 

geological features that represent an underlying model of spatial variability. The model of spatial 

variability is based on a combination of data (transition probabilities) and geological expert knowledge. 

This in addition with conditioning data, either soft or hard, represents the best combined knowledge of 

the geological system. Our interests in simulating equally plausible realisations are that they are 

different and hence will lead to different flow paths when the different geologies subsequently will be 

used for hydrological flow modelling. Hence we want to to explore how uncertainties in the geological 

structures lead to uncertainty in groundwater flow paths.  

 

We agree with the reviewer that “equally plausible” is better suited than “equally probable” and the 

manuscript will be changed accordingly.  
 

• No attempt is reported in this study on computing or employing statistics beyond single- and two-point 

correlations. This opens up the question of the implications of neglecting higher-order statistics. 

 



We pursued that thought which was also uttered by another reviewer and dedicated it a section in the 

discussion: “Choice of geostatistical method” (Appendix III; lines 206-238). Here we mostly 

concentrate on the comparison between two-point and multi-point statistics.    
 

• On p. 15220 (line 20), the authors mention five criteria used for validation. This statement and the strategy it 

represent raise several challenges: 

o First, validation is not possible in groundwater applications. This was pointed out in a paper by Naomi 

Oreskes (http://www.likbez.com/AV/CS/Pre01-oreskes.pdf) and echoed by many scientists ever since. The best 

the authors could say on this context is that they examined their realizations from five different perspectives. 

 

The reviewer gives a thoughtful point in his comment above. We are aware of the discussion following 

the papers by Konokow and Bredehoeft (1992) and Oreskes (1994), and we are aware of the different 

schools of thoughts on this fundamental issue. We have contributed to that discussion in Refsgaard and 

Henriksen (2004). We agree that a model cannot be validated if validation is understood in a universal 

sense as Oreskes does. We have argued in Refsgaard and Henriksen (2004) that the term validation, in 

line with the scientific philosophy of Popper (1959), can be used in a conditional manner, where the 

validation in restricted to given site specific locations, given types of applicability and given accuracy. 

We acknowledge that these details were not included in the manuscript. We have therefore dedicated a 

few lines on that in the revised introduction (Appendix II; lines 193-196) 

  
o The five criteria used for validation represent information that was known a-priori. One could argue that as 

such, these criteria could have affected the judgment calls made by the authors along the way, and hence they 

do not represent independent and unbiased evaluation criteria. 

 

We agree that the five performance criteria are a–priori knowledge and that they are not all truly 

independent from the simulation. However, we believe that they are unbiased. The sand proportion and 

mean length define the Markov model of spatial variability and the facies probability distribution and 

the facies probability – resistivity bias are derived from the soft conditioning dataset. Only the 

connectivity is not used as an input to TProGS and is therefore the most independent criterion. 

Nevertheless the reference connectivity is deducted from the categorized SkyTEM dataset. A more 

correct approach might be to use only borehole data for conditioning and for the definition of the 

Markov model and validate the ensemble of realizations against SkyTEM data, or vice versa. However, 

the split sample test in section 5.2 shows that conditioning purely to borehole- or geophysical data 

gives biased results, because the two data types are different in terms of support scale and density. 

Therefore only a true integration of the two data types can yield satisfying results. The moving 

sampling of the conditioning dataset generates multiple independent conditioning datasets. Thus it 

allows comparing an ensemble conditioning to a decimated dataset to be validated against the entire 

dataset.    
 

o In my opinion, the information represented by the 5 evaluation criteria should be used to construct statistical 

priors in a Bayesian sense. In this context, there are several papers I should mention, including cf., Woodbury 

and Rubin, 2000, Hou and Rubin, 2005. 

 

The study by Hou and Rubin (2005) nicely shows how Bayesian principles can be integrated into 

inverse modeling of hydraulic parameters in the vadose zone to simulate soil moisture. However, we 

are not using a Bayesian framework and we do not see how this could help us achieving the objectives 

of our study 

 



A few more comments in other directions: 

1. On p. 15222, line 24, the authors state that “Until now there are no published studies on the incorporation of 

a comprehensive and continuous soft conditioning datasets..”. To my knowledge this is not accurate. As an 

example, I should mention the concept of anchors, discussed in Rubin et al., (2010) which can be used to 

condition on so-called “soft” data. Anchors can be used to represent data of all sorts using statistical 

distributions. 

 

We agree with the reviewer and therefore have updated the introduction and the discussion section 

accordingly. Collocated cokriging/cosimulation techniques (Babak and Deutsch, 2009) probability 

aggregation (Mariethoz et al., 2009b) and truncated plurigaussian simulations (Mariethoz et al., 2009a) 

are briefly presented in the introduction. The MAD (method of anchored distributions) is very 

promising, because of its flexibility towards inverse modeling of spatial random fields. The associated 

anchors contain local information in form of distributions of the target variable. The sand probability, 

derived from the SkyTEM data, could be represented by anchors as “local effects”, thus conditioning. 

Global parameters, like sand proportion and correlation length are also considered in the MAD 

approach (Rubin et al., 2010). (Appendix II; lines 138-142)    

 
2. On p. 15223 line 4 (and on multiple other locations) the authors refer to “overconditioning” [sic]. The 

authors do not define what they mean with this term, and my interpretation of it as that it means some sort of 

challenge related to highly-dense data used for conditioning. This is supported by a statement made on p. 

15234 line 13 that “The observed problem of overconditioning is caused by spatially correlated data which are 

incorporated into the modeling process”. The relationship with spatially-correlated data is correct, in my 

opinion, only that this is an avoidable problem, because it is an outcome of the authors’ decision to use kriged 

data for conditioning. This decision needs to be revisited. Kriging produces point estimates that are optimal in 

some sense. It does not create, and is not intended to create, fields that are defined the geostatistical models 

that are used for kriging. Kriging is a smooth interpolator, not a random field generator. Kriging eliminates 

important variability, and cannot be used for conditioning (see Rubin, 2003, p. 60 and p.71, discussion on 

estimation vs. simulation). Kriging produces unrealistic and inflated correlation lengths. These correlation 

lengths do not represent spatial variability of the geophysical variables, because they are obtained from a 

graphic representation of kriging estimates. This is possibly the reason for the effect referred to by the authors 

as overconditioning. As an alternative, I would suggest to the authors to generate realizations of the 

geophysical data for conditioning. I would possibly represent the geophysical data using a series of anchors 

(each defining a statistical distribution (Rubin et al., 2010).Then, for simulation, I would suggest using a nested 

structure approach (see Maxwell et al., 2000) which involves (a) generating random skytem field realizations, 

followed by (b) using each of these realizations as a starting point instead of the kriged estimates. An 

alternative would be to convert the geophysical data into anchor representation of the facies at selected 

location, and use these anchors as a starting point for simulation. (Rubin et al., 2010; Murakami, 2010) 

 

We define “overconditioing” as an effect triggered by dense and spatially correlated conditioning data 

that produces an altered picture of observable uncertainties. We believe that this problem is essentially 

related to soft conditioning, where the soft data/uncertainty are amplified by the stochastic simulation. 

A definition is added to the introduction section (Appendix II; lines157-158). 

 

We agree to the reviewer’s general concerns about kriging; a smooth interpolator that reduces 

variability and thus inflates correlation lengths. In the discussion section we advise to only use the 

direct sounding data instead of the fully distributed 3D kriging map of resistivity. This would reduce 

the effect of overconditioing and discard any additional uncertainties originating from kriging. The 

original sounding points are very dense, with over 100,000 sounding points taken at flightlines 50m to 

100m apart. These data would be more than sufficient as soft conditioning dataset for a simulation on a 

20mx20mx2m grid domain, because all major features are well covered and delineated by the 



individual sounding data already. The kriging interpolation method forces local accuracy at locations 

with sounding data and interpolates missing data based on variogram. As the sounding density is rather 

high, giving multiple points per correlation length, we don’t expect a significant inflation of length 

scales by the kriging. Since the sounding points along the flight lines are 15 m apart, and the distance 

between the flight lines is around 50 meters, we don’t expect that there is too much of spatial 

smoothing when resampling the data on a 20×20×2 m grid. 

 

We do not see the main cause of overconditioing in the choice of interpolation method, although 

kriging might boost the overconditioing problem. In fact similar problems are expected to occur when 

another interpolator is used. The correlation length of SkyTEM data is found to be 500m in the lateral 

direction. Data on the 20m grid size will therefore always be heavily correlated, independent from the 

way they are interpolated. The reviewer suggests using SkyTEM realizations, generated by the method 

of anchored distributions as soft conditioning in TProGS. We agree that this would be a more 

sophisticated way to use the SkyTEM data than simple kriging. However as a result, the generated 

fields will still be spatially correlated even if the suggested method was carried out using the same grid 

size.              

 
3. Single point cross-correlations: show examples, explain how done. Explain how the discrepancy between the 

scale of the borehole measurements on one hand and the scale of the geophysical data as accounted for. In 

MAD (Rubin et al., 2010) a case is made that anchors could be used to account for that (a scaling model is 

needed).  

 

The resistivity data are gridded on a 20m x 20m x 2m domain and get integrated with the borehole data.  

 

The general support scale of a SkyTEM observation increases with depth, as the penetration of the 

subsurface is shaped as a cone, with 15-20m on the surface to a larger support scale in larger 

penetration depths (at 30m depth the lateral support size will be in the range of 50m). The glacial 

sequence which defines the model domain is between 10m and 40m thick. The variable support size 

makes the analysis difficult. Another difficulty is that SkyTEM inclines to overlook thin sand features, 

which are especially present in the vertical direction. However, the vertical support scale of the 

SkyTEM measurement device will not vary as much with penetration depth as the lateral support scale. 

Therefore, one can assume that the 20m x 20m x 2m is a suitable grid size for near surface resistivity 

values. However, one has to consider that with increasing depth the support size may grow larger than 

the defined grid size, where the lateral direction is more affected than the vertical direction.   

 

We agree that the support scale of the borehole data and the geophysical data are different and that this 

adds to the uncertainty when they are compared in the histogram curve (Figure 3 in the manuscript). 

The uncertainty on the relationship between the resistivity (geophysical data) and the lithology 

(borehole data) as reflected by the not very steep curve in Figure 3 is, as discussed in the manuscript, 

originating from many sources (uncertainty in resistivity data, uncertainty in borehole data, uncertainty 

in the relationship between resistivity and lithology and the mismatch of support scales). Instead of 

focusing on each of these uncertainties we have chosen to lump all these uncertainties into one 

relationship (Figure 3) which we believe is suitable for the purpose of our study. We believe that our 

methodology has a general applicability, but acknowledge that the specific relationship in Figure 3 

does not have generic validity and should not be used at other locations. 

 



 

A few lines connected to this topic are added to the reviewed discussion section (Appendix III; lines 

267-272). 

 
Additionally: 

• The use of statistical correlations to relate between the geophysical and geological attributes pursued in this 

study is reported very scantly. It is not clear how good or bad these correlations are, and this needs to be 

discussed. 

 

Please find a more detailed explanation of the data integration: 

The SkyTEM data, measured in resistivity, needs to be linked to a facies type in order to be used in a 

stochastic geological simulation. The procedure to connect SkyTEM data to facies information 

obtained from borehole data used in this study is the histogram probability matching method (HPMM), 

presented by (He et al., 2013b). The idea behind that method is the assumption that the probability of 

facies occurrence is positively correlated to the occurrence of resistivity over a certain range. Therefore 

the continuous SkyTEM data are classified into bins with a defined range. A fixed vertical 

discretization is defined representing the scale of the assessed heterogeneity in vertical direction, 2m in 

this case. The geophysical data is then compared with the categorical borehole data at collocated cells 

and the data pairs are grouped after the chosen bin width (10Ωm). Thus each bin contains a number of 

data pairs and a facies fraction of the categorized borehole data can be calculated respectively. The 

fraction can be plotted as bars and polynomial curve fitting allows to translate any resistivity 

observation into a probability of facies occurrence (Figure 3, section 3.2 in manuscript).   

      
• Please discuss and demonstrate the implications of using single- rather than multi-point statistics. 

 

We agree to this point and dedicated the section “Choice of geostatistical method” (Appendix III; lines 

206-238) to discuss the advantages and disadvantages of using two-rather multi-point statistics. This 

will be placed in the discussion section of the revised manuscript.  
 

• There is an extensive body of work on the use of petrophysical models for relating the geophysical and 

geological attributes (Rubin et al., 1992; Mavko et al., 2009). It would be interesting to know if the statistical 

correlations provided better results compared to physically-based, statistical models. 

 

Mavko et al. (2009) present several physically-based empirical models to derive geological parameters, 

e.g. empirical models to transform seismic velocity into porosity. Opposed, the method used in this 

study (histogram probability matching method) is purely based on spatial correlations and is not build 

up on physical relationships. The main limitation is that it is site specific and cannot be applied to other 

catchments. On the other hand is was never our intention to create a general histogram with universal 

applicability. It is acknowledged by Jorgensen et al. (2003) that TEM methods provide the same 

amount of structure detail as the more costly seismic methods. However, to our knowledge no general 

empirical relationship between resistivity measured by an airborne based TEM method and 

hydrological attributes has been studied. First attempts with low maturity are given in the PhD thesis by 

Vest (2003): http://www.hgg.geo.au.dk/rapporter/speciale_phd/AVC_phd.pdf.    
 

4. On several occasions in this paper the authors point out that conditioning is producing a trends (e.g., p. 

15220 lines 19-20). Stated differently, trends are identified in application. This is a problem because the 

existence of a deterministic trend indicates that the trend was not removed prior to computing the two-point 



correlations, which violates the requirement for stationarity (Rubin, 2003, p. 58). When a trend exists, it must 

be accounted for a-priori, and not as an outcome. 

 

Stationarity cannot be attested to the geology of the study site. The geophysical dataset indicates larger 

sand features in the south of the model domain, which is manifested in an increase of proportion and 

mean length. This is indicated at several occasions in the manuscript. We agree that non-stationarity 

trend must be accounted for a-priori, this was tested in our study following the method presented by 

Seifert and Jensen (1999). Here the TProGS simulation domain is subdivided into smaller sub-domains 

that fulfill the stationarity requirements and each is simulated individually. After the sub-domains are 

merged together; hard conditioning along the seamlines should ensure good connectivity between the 

sub-domains. We subdivided the TProGS domain into three sub-domains; one southern and two 

northern (north-east and north-west), each was equipped with individual Markov Chain models and 

hard conditioning was placed along the seamlines. After merging the three sub-domains together one 

could identify bad connectivity between the sub-domains, which raises questions on the method 

presented by Seifert and Jensen (1999) or the distinct geological heterogeneity at the study site poses 

extra challenges to a subdivided simulation approach. However, we claim that comprehensive soft 

conditioning, where the soft dataset represents the observable trends, can account for any non-

stationarity issues. Please find the Master’s thesis by Koch (2013) for a more detailed description of the 

matter (http://nitrat.dk/xpdf/final_juko.pdf, Part 1, pages 20-25).        
 

5. On page 15220, line 13, the authors identify “the incorporation of two distinct datasources [sic] into the 

stochastic modeling…..sparse borehole data and abundant SkyTEM data” as the “novelty of this study”. In 

making this statement, the authors should recognize the large body of published work that did precisely the 

same, including: Rubin et al., 1992, Copty and Rubin, 1995, Hubbard and Rubin, 2000, Hubbard et al., 2005, 

Hou and Rubin, 2005, Kolwaksy et al., (2001, 2004). 

 

We appreciate the reviewer’s comment and will correct the given lines respectively. The suggested 

literature is very relevant and was considered during the revision. We included Hubbard and Rubin 

(2000) in the revised introduction (Appendix II; lines 166-174).  



Appendix I 1 

Extended TProGS-Theory 2 

(Carle, 1996a) composed the second version of the TProGS manual which gives a good insight into the 3 
geostatistical software. Further the TProGS workflow design is well presented in (Carle et al., 1998). In 4 
indicator geostatistics the indicator variable Ik(x) defines the presence or absence of a category k (e.g. a 5 

facies) at a location x.  6 
 7 

  ( )                 
                                              Eq.1 8 

 9 
where K is the number of categories. In a stationary system can the heterogeneity of the category 10 
distribution then be modeled by univariate (mean length or proportion) and bivariate spatial statistics 11 
(e.g. indicator cross-variogram or transition probability). The most fundamental feature of TProGS is 12 

the transition probability tjk (h), which is a measure of spatial variability: 13 
 14 
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 16 
where k and j refer to the defined categories, x represents a spatial location vector and h is a separation 17 

vector (lag). The definition is possible to be put into words: 18 

’Given that a facies j is present at location x, what is the probability that another (or the same) facies 19 

occurs at location x+h.’ (Carle, 1996b). 20 
Before computing the transition probabilities and conducting a Markov Chain analysis categories have 21 
to be defined representing the relevant facies. Here it is crucial to keep the number of categories 22 

minimal, but at the same time, include the required complexity of the model. Markov Chain analysis is 23 
regarded as a powerful stochastic model for indicator variables. It assumes that spatial occurrence 24 

depends entirely on the nearest data. For the Markov Chain analysis are transition probabilities 25 
calculated for strike, dip and vertical direction at specified lag intervals. This denominates a K x K 26 
matrix: 27 
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 30 
where the transition probability tjk for all possible transitions (K*K) is denoted at each specific lag (h) 31 
in direction Ф. The diagonal entries represent the auto transitions and the off diagonal entries represent 32 

the cross transitions. Another important part of the Markov Chain analysis is the transition rate matrix 33 
RΦ. 34 
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where the entries rij,Φ describe the rate of change from category i to j in direction Ф, conditional to the 37 
presence of i. The transition rate corresponds to the slope of the transition probability as it approaches a 38 
lag of zero. When subsurface geology is modelled it is important to parameterize fundamental 39 
observable attributes in the model: Volumetric fractions (proportions), mean lengths (thickness and 40 
lateral extent) and (asymmetric) juxtapositional tendencies. These attributes can be conveyed by data 41 

analysis and geological interpretations and are considered for conceptualization of the facies 42 
manifestation, as they control the Markov Chain model.  This enables the user to select plausible 43 
parameters when defining the model of spatial variability. 44 
 45 
The facies proportion (pk) is related to the asymptotic limit of the transition probability by 46 

 47 
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 49 

In a stationary system the proportions are equal for strike dip and vertical direction. The asymptotic 50 
limits of each entry in the transition rate matrix will thus correspond to the proportion of the 51 
corresponding facies. The mean length of facies j in a given direction Ф can be defined as total length 52 

of j along Ф divided by the number of embedded occurrences of j along Ф. The mean length equates to 53 
the diagonal transition rate by 54 

 55 



 
,

,,

1

j

jj
L

r

         Eq.6 56 
 57 

The mean length is indicated on a plot of auto-transition probabilities as the intersection of the tangent 58 
at the origin with the x-axis. Statistically speaking is the mean length an indicator for the correlation 59 
length and for the length scale of the facies.  60 

TProGS computes the realizations of the geology in two uncoupled, but mutual depended steps. An 61 
initial configuration of facies distribution is produced by the SIS algorithm (Deutsch and Journel, 62 

1992). Secondly, the initial configuration is reshuffled by the simulation quenching optimization 63 
algorithm (Deutsch and Cockerham, 1994). The SIS algorithm incorporates a transition probability 64 

based indicator cokriging estimate in order to approximate the local conditional probabilities from data 65 
at each simulation cell. This step ensures that the conditioning data is fully honored. The local 66 
transition probabilities are incorporated from an interpolated 3D Markov Chain model. A random path 67 
is chosen along all unsimulated cells. At each of these cells a local conditional probability distribution 68 
is computed by cokriging values of neighboring conditioned data and already simulated cells. The node 69 

gets assigned to a category by choosing a random number in respect to the probability distribution. 70 
Then the simulation gets updated and repeated until all unsimulated cells are assigned to a category.        71 
The simulated quenching is incorporated to improve the agreement between simulated and modelled 72 
transition probabilities. The algorithm utilizes the initial configuration from the SIS and improves it to 73 
ensure a better agreement with the defined model of spatial variability, by minimizing the objective 74 

function O:  75 

 76 
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where hl represent l = 1,…,M specified lag vectors and ’SIM’ and ’MOD’ specify the simulated and 79 
modeled transition probabilities, respectively. The algorithm is usually implemented in an iterative 80 
manor. In each iteration step, a random path checks at each un- or soft-conditioned cell if a perturbation 81 
in category would reduce O; if so, the change is accepted. (Carle, 1997) points put that the quality of 82 
the realizations strongly depends on the initial configuration and the number and direction of the 83 

quenching lags. Best performance was attested to a simulation with 99 anisotropic lags and an initial 84 
configuration computed by cokriging of the nearest 12 data. However the four nearest quenching lags 85 
in combination with the three nearest data in the cokriging interpolation gives already good results for a 86 
2D application.        87 



Appendix II 88 

Introduction 89 

Constraints in accurate and realistic solute transport modeling in hydrogeology are caused by the 90 

difficulty of characterizing the geological structure. The subsurface heterogeneity heavily influences 91 

the distribution of contaminants in the groundwater system. The scale of heterogeneity is often smaller 92 

than the data availability (e.g. borehole spacing). In traditional hydrogeological studies, one geological 93 

model is built based on the best comprehensive knowledge from often sparse borehole data and 94 

subjective interpretations. This can lead to alleged correct results, for instance when addressing the 95 

water balance on catchment scale, but will often prove to be inadequate for simulations beyond general 96 

flows and heads, e.g. contaminant transport modeling. Therefore, it is proposed by numerous studies 97 

that the uncertainty on the geological conceptualization is crucial when assessing uncertainties on flow 98 

paths (Neuman, 2003; Bredehoeft, 2005; Hojberg and Refsgaard, 2005; Troldborg et al., 2007; Seifert 99 

et al., 2008). One of the strategies often recommended for characterizing geological uncertainty and 100 

assessing its impact on hydrological predictive uncertainty is the use of multiple geological models 101 

(Renard, 2007; Refsgaard et al., 2012).  102 

In this respect geostatistical tools such as two-point statistics e.g. TProGS (Carle and Fogg, 1996; Carle 103 

et al., 1998) and multipoint statistics (MPS) (Strebelle, 2002; Caers and Zhang, 2002; Caers, 2003; 104 

Journel, 2004) are powerful tools as they enable the generation of multiple equally plausible 105 

realizations of geological facies structure. This study targets the realistic description of heterogeneity in 106 

a geological model by introducing diverse data into the stochastic modeling process to generate a set of 107 

equally plausible realizations of the subsurface using geostatistics (Strebelle, 2002; Refsgaard et al., 108 

2006). 109 

In geostatistical applications field observations can constrain the simulation as soft or hard 110 

conditioning. “Hard conditioning” forces the realizations to honor data completely whereas “soft 111 

conditioning” honors the data partly with respect to the uncertainty of the observation (Falivene et al., 112 

2007). This feature is essential because it enables the user to associate uncertainties to the conditioning 113 

dataset that can be of either subjective or objective nature. Incorporating a comprehensive and 114 

continuous soft conditioning datasets to a stochastic simulation such as TProGS is challenging. Alabert 115 

(1987) published an early study on the implications of using sparse soft conditioning data to a 116 

stochastic simulation. The analysis shows that soft conditioning significantly increases the quality of 117 

the realizations. The same was also observed by McKenna and Poeter (1995) where soft data from 118 

geophysical measurements could significantly improve the geostatistical simulation. In the past years, 119 

highly sophisticated geophysical methods and advanced computational power allow stochastic 120 

simulations that are conditioned to a vast auxiliary dataset. This poses new challenges to the data 121 

handling and to the simulation techniques.   122 



Chugunova and Hu (2008) present a study where continuous auxiliary data is introduced directly, 123 

without classification to a MPS simulation. MPS requires a site specific training image that represents 124 

the geological structure accordingly, which is often the main source of uncertainty in MPS simulations. 125 

The above mentioned MPS studies conduct mostly 2D simulations, partly on synthetic data. The 126 

training image is the backbone of the MPS method and it has been acknowledged by dell'Arciprete et 127 

al. (2012) and He et al. (2013a) that reliable 3D training images are difficult to acquire.  128 

Alternative methods to integrate vast auxiliary information (e.g. geophysics) into the modeling process 129 

and at the same time force local accuracy are collocated cokriging or cosimulation techniques (Babak 130 

and Deutsch, 2009). Here a linear relationship between the auxiliary variable and the target variable is 131 

built in a model of cross covariance. The essentially linear relationship is often too restrictive and does 132 

not represent the complex physical processes. Mariethoz et al. (2009b) present a prospective method 133 

that extends the collocated simulation method by using a model of spatial variability of the target 134 

variable and a joint probability density distribution to depict the conditional distribution of the target 135 

variable and the auxiliary variable at any location. 136 

The method of anchored distributions (MAD) (Rubin et al., 2010) is a suitable approach for the inverse 137 

modeling of spatial random fields with conditioning to local auxiliary information. Structural 138 

parameters such as global trends and geostatistical attributes are considered in a conditional simulation. 139 

The conditioning is undertaken by anchored distributions which statistically represent the relationship 140 

between any data and the target variable.  141 

The truncated plurigaussian simulation method (Mariethoz et al., 2009a) generates a Gaussian field for 142 

the target and the auxiliary variable using variogram statistics. These Gaussian fields are truncated to 143 

produce categorical variables that represent the hydrofacies. The truncation is controlled by threshold 144 

values that can be defined in a “lithotype rule” that represents the general geological concept. It is a 145 

very flexible method, because conceptual understandings are easily incorporated, but non-stationarity 146 

and especially directional depended lithotype rules are difficult to incorporate. 147 

TProGS is a well-established stochastic modeling tool for 3D applications and it has been successfully 148 

applied to simulate highly heterogeneous subsurface systems by constraining the simulation to borehole 149 

data (Carle et al., 1998; Fleckenstein et al., 2006). Weissmann et al. (1999), Weissmann and Fogg 150 

(1999) and Ye and Khaleel (2008) use additional spatial information obtained from soil surveys, 151 

sequence stratigraphy and soil moisture, respectively for accessing the complex lateral sedimentary 152 

variability and thus improving the quality of the model in terms of  spatial variability. It has not been 153 

tested whether TProGS, is capable of handling abundant soft conditioning data. Moreover, the risk that 154 

a cell-by-cell soft constraining may cause an overconditioning of the simulation has not been fully 155 

investigated. Overconditioing is defined by the authors as an effect triggered by dense and spatial 156 

correlated conditioning data that produces an altered picture of observable uncertainties. Therefore the 157 



self-consistency of the stochastic simulation is questioned, because soft constraining should be treated 158 

accordingly during the simulation.         159 

Recent studies by Lee et al. (2007) and dell'Arciprete et al. (2012) highlight that TProGS is compatible 160 

with other geostatistical methods like, multi-point statistics, sequential Gaussian simulations and 161 

variogram statistics (Gringarten and Deutsch, 2001). The distinct strength of TProGS is the simple and 162 

direct incorporation of explicit facies manifestations like mean length, proportion and (asymmetric) 163 

juxtapositional tendencies of the facies. 164 

Geophysical datasets are valuable information in many hydrogeological investigations. It can 165 

considerably improve the conceptual understanding of a facies or hydraulic conductivity distribution 166 

and identify non-stationary trends. However, the integration of geophysical data and lithological 167 

borehole descriptions is often difficult. A recent study by Emery and Parra (2013) presents an approach 168 

to combine borehole data and seismic measurements in a geostatistical simulation to generate multiple 169 

realizations of porosity. Hubbard and Rubin (2000) review three methods that allow hydrogeological 170 

parameter estimation based on geophysical data. The three methods link seismic, ground penetrating 171 

radar (GPR) and tomographic data with sparse borehole data to support the hydrogeological description 172 

of the study site. Our study integrates high resolution airborne geophysical data with borehole data to 173 

build a probabilistic classification of the subsurface at site. The geophysical data are collected by 174 

SkyTEM, an airborne transient electromagnetic method (TEM) that has been used extensively in 175 

Denmark for the purpose of groundwater mapping (Christiansen and Christensen, 2003; Jorgensen et 176 

al., 2003b; Sorensen and Auken, 2004; Auken et al., 2009). This study utilizes a method that translates 177 

SkyTEM observation data into facies probability which enables associating the geophysical data with 178 

softness, according to the level of uncertainty. Very few studies have integrated high resolution 179 

airborne geophysical data in a stochastic modeling process (Gunnink and Siemon, 2009; He et al., 180 

2013a).     181 

Most stochastic studies only make relatively simple validations of how well the simulations are able to 182 

reproduce known geostatistical properties. Carle (1997) and Carle et al. (1998) investigate the goodness 183 

of fit between the simulated and the defined spatial variability. The geobody connectivity is used by 184 

dell'Arciprete et al. (2012) to compare results originated from two- and multipoint geostatistics. 185 

Chugunova and Hu (2008) make a simple visual comparison between the auxiliary variable fracture 186 

density and stochastic realizations of the simulated fracture media. A more advanced validation is 187 

conducted in Mariethoz et al. (2009b) where simulated variograms and histograms are compared with 188 

reference data for the simulation of synthetic examples. In spite of these few studies that have 189 

addressed the validation issue, no guidance on which performance criteria to use and how to conduct a 190 

systematical validation of a stochastic simulation has been reported so far.   191 

It should be noted that we in line with Refsgaard and Henriksen (2004) do not use the term model 192 

validation in a universal manner, but in a site specific context where a model validation is limited to the 193 



variables for which it has been tested as well as to the level of accuracy obtained during the validation 194 

tests.  195 

The objectives of this study are: (1) to set up TProGS for a study site based on lithological borehole 196 

data and high resolution airborne geophysical data and investigate the effect of the two distinct 197 

conditioning datasets to the simulation; (2) to assess the problem of overconditioing in a stochastic 198 

simulation; (3) to ensure that non-stationary trends are simulated accordingly by TProGS; and (4) to 199 

identify and test a set of performance criteria for stochastic simulations that allow the validation against 200 

geostatistical properties derived from field data. The results of the present study are intended for 201 

application in a hydrological modeling context (Refsgaard et al., 2014).  202 



Appendix III 203 

Discussion 204 

Choice of geostatistical method 205 

The choice of the stochastic method for this study is application driven (Refsgaard et al., 2014). In the 206 

Norsminde catchment, it is evident from both borehole and geophysical data that the glacial sequence 207 

contains till clay and sand lenses distributed in extremely irregular patterns that are non-stationary. 208 

Without dense conditioning data the heterogeneous and non-stationary structures will not be simulated 209 

correctly. TProGS among other two-point statistics enables soft conditioning, where the soft 210 

information represents the associated level of uncertainty of an observation. The other distinct strength 211 

of TProGS is the easy incorporation of observable geological attributes when defining the Markov 212 

Chain models. In multi-point statistics (MPS) the definition of a reliable 3D training image is 213 

challenging, especially when simulating extremely irregular patterns (Honarkhah and Caers, 2012). 214 

Defining a MPS training image for the Norsminde catchment is peculiar, because it could only be 215 

based on interpreted SkyTEM data; with inflated length scales in the vertical direction. This makes the 216 

model of spatial variability in TProGS more reliable and objective, because it is based on measured 217 

transition probabilities and not on an interpreted training image. Further the transition probabilities are 218 

based on the data type we trust best: borehole data in the vertical- and SkyTEM data in the horizontal 219 

direction. In this study it is of spatial interest to correctly simulate the vertical transition probabilities in 220 

order to subsequently simulate the flow paths in the shallow groundwater system most accurately. This 221 

requires a detailed description of the spatial variability of the vertical direction, with indication of thin 222 

sand lenses, only provided by borehole data.  223 

However, MPS is broadly applied in 2D and 3D applications: The snesim algorithm (Liu, 2006) 224 

combines object-based and pixel-based methods in the general MPS framework, to enforce spatial 225 

pattern reproduction and local conditioning, respectively. It was successfully applied by He et al. 226 

(2013a) in a 3D application. Another promising approach is given by Chugunova and Hu (2008), where 227 

MPS is tested on non-stationary 2D structures, by continuous soft conditioning to a secondary variable. 228 

Here two training images from the geological structure and from the secondary variable are joint in the 229 

simulation. 230 

Many promising geostatistical methods have advanced to incorporate auxiliary information to constrain 231 

the simulated target variable: Truncated plurigaussian simulation (Mariethoz et al., 2009a), collocated 232 

simulation with probability aggregation (Mariethoz et al., 2009b). Most of them are only tested on 2D 233 

applications partly with synthetic data. This present study uses TProGS as the geostatistical tool, 234 

because of its reliable model of spatial variability and it is well established in 3D applications with 235 

sparse conditioning data. The application of vast soft conditioning data to a TProGS simulation gives 236 

valuable information on how such data can influence the stochastic simulation results.  237 



TProGS setup 238 

Direct transformation of geophysical data, such as SkyTEM, into a deterministic subsurface model is 239 

risky, because too much reliance on geophysical mapping can lead to seriously wrong hydrogeological 240 

models (Andersen et al., 2013). Uncertainties are expected in both, geophysical and lithological data 241 

and the shape of the fitted histogram curve reflects those. High uncertainty is associated with the 242 

transition zone; around 50% sand probability. Although the cut off value that divides the SkyTEM 243 

dataset into sand and clay is calibrated, there is a large quantity of high uncertain cells included which 244 

make the measured TPs directly dependent on the cut off value. Therefore the facies proportion and 245 

mean length are very sensitive to the selection of the cut-off value. As a result, the MCM in the lateral 246 

direction, as part of the TProGS setup, is highly dependent on the way the SkyTEM data is treated. 247 

Difficulties in the integration of the two data types are indicated in Figure 2. Small scale 248 

heterogeneities indicated by the borehole descriptions are not represented by the coarser SkyTEM 249 

dataset. This supports computing the horizontal and vertical TPs individually using SkyTEM and 250 

borehole data, respectively.   251 

The SkyTEM dataset used in the present study is a 3D grid of 20m x 20m x 2m which was spatially 252 

interpolated from soundings with distances of about 17 m and 50-100 m along and between the flight 253 

lines, respectively. To reduce the overconditioning problem it might have been preferable to use the 254 

direct sounding data instead of the interpolated dataset. A similar effect is achieved by resampling, but 255 

here interpolated data with a higher uncertainty than the direct soundings are used.  256 

Simulating a binary system is a crude simplification of the broad range of sediments in the glacial 257 

sequence. However, classifying the SkyTEM data into discrete facies or deriving the soft information 258 

on facies membership are peculiar in a multi facies environment. Additionally less abundant facies (e.g. 259 

gravel) will show extremely uncertain correlations in the histogram probability matching method. Last 260 

the less abundant facies might be represented on a 20m domain, but it will often not be visible on the 261 

100m domain chosen for the subsequent hydrological flow simulations. Dell'Arciprete et al. (2010) 262 

present a study where geostatistics are successfully implemented to simulate small scale heterogeneities 263 

in a multi facies environment.      264 

Data footprint 265 

Borehole and SkyTEM data are integrated by the histogram probability matching method (He et al., 266 

2013b), where differences in support scale are partly neglected. The support scales of the two data 267 

types are expected to vary. The lithological data from the boreholes are aggregated to 2m to be in better 268 

vertical agreement with the geophysical dataset. The agreement in the lateral direction is more 269 

questionable, because the footprint increases with depth for the geophysical data. The footprint is 270 

approximately 15-20m on the surface and in the range of 50m at 30m penetration depth. 271 

Split sample test 272 



Both datasources have advantages and disadvantages: Borehole data have a higher data certainty and a 273 

finer spatial resolution in the vertical extent to better represent smaller sand features, but are essentially 274 

undersampled in the lateral extend. On the other hand, SkyTEM data have a good spatial coverage and 275 

represent the bigger sand features well, but at the same time the data are associated with a higher data 276 

uncertainty. At this point, four major sources of uncertainty can be defined: (1) The inversion that 277 

transforms the SkyTEM measurement into resistivity, (2) the borehole data, (3) the relationship 278 

between lithology and resistivity and (4) the footprint mismatch between small scale borehole data and 279 

large scale SkyTEM data. So it is precarious to assume the SkyTEM data as true geology, but it can 280 

serve as a reference/benchmark when validating the simulation results. The onlyBH scenario does not 281 

capture all of the main sand features, which are revealed by the SkyTEM survey: Only 20% of the high 282 

resistivity cells, where the resistivity is greater than 70Ωm are simulated correctly. For the onlySky20 283 

scenario only 44% of the sand descriptions in the boreholes are simulated correctly, which underlines 284 

that the SkyTEM data does not measure the finer sand features correctly. The conducted split sample 285 

test does not allow to draw firm conclusions on simulation performance, it rather analyses the 286 

agreement between the two dataset propagated through the model. 287 

Overconditioning 288 

Correlated data, both temporally and spatially are a common problem in hydrogeological 289 

investigations. It has not been previously reported how TProGS is able to handle such a conditioning 290 

dataset. TProGS stochastically simulates the subsurface facies system by utilizing the two mutually 291 

dependent steps SIS and simulated quenching. It is not assured if the soft information is considered 292 

accordingly for the cokriging of the local probability estimate in the SIS step nor if it is accounted for 293 

in the objective function used for the simulated quenching in the latest TProGS version. However 294 

Deutsch and Wen (2000) successfully integrate exhaustive soft data in simulated quenching. Work 295 

around methods have to be developed to overcome the problems associated with overconditioning. The 296 

most intuitive approach is to out-thin the original soft dataset by sampling only some of the data and to 297 

include a moving sampling strategy to account for the spatial variation in the original dataset. A 298 

drawback of this approach is that valuable information might be lost, which again underlines the need 299 

for model validation to find a justifiable sampling distance where the original information is best kept. 300 

The out-thinning approach works as a very pragmatic solution for a study-specific problem and its 301 

generalization might be limited. Thinning the SkyTEM dataset out and only considering data on a 302 

200m spaced moving sampling grid gives the most satisfying results. 303 

Non-stationarity 304 

Non-stationarity can be identified by subdividing the SkyTEM dataset (Figure 2 and 4). It is 305 

successfully tested if abundant conditioning data alone is capable of reproducing the observed non-306 

stationary patterns. In a situation of sparse data, e.g. only borehole data for conditioning, these non-307 

stationary trends cannot be reproduced correctly. Seifert and Jensen (1999) present an approach to 308 



model non-stationarity, which might be more suitable for sparse conditioning data. They suggested 309 

dividing the model domain into several stationary sub-domains, and each subdomain is then 310 

characterized using independent MCMs. When subdiving the model domain, care must be taken, that 311 

no major features are cut, because it is then difficult to model them correctly. This approach was tested 312 

in the present study, but results revealed that this method is not easily applicable in situations of 313 

abundant conditioning data, because large coherent sand features are cut by the sub-division and their 314 

connectivity could not be simulated adequately.     315 

Performance criteria 316 

We identified and tested five performance criteria for validating the model.  317 

Sand proportion. Artificial conditioning data outside the target area honoring the defined proportion 318 

and MCM may help to make the simulation more homogeneous. In that context, exhaustive hard 319 

conditioning outside the simulation target can be tested.  320 

Mean length. The simulated and measured TPs are compared by Carle (1997) and Carle et al. (1998). 321 

(Carle et al., 1998) simulate a four category system and the simulated quenching yields a perfect match 322 

between the modeled TPs and the defined MCM. On the other hand, Carle (1997) underlines that small 323 

deviations are to be expected and shows this by various examples where different SIS and simulated 324 

quenching parameters are tested.   325 

Geobody connectivity. The connectivity is partly dependent on the proportion. The sand connectivity 326 

for the simulation based on the BH-Sky200moving scenario is simulated lower and the sand proportion 327 

higher in comparison to the results from the BH-Sky20static scenario. This shows that the geobody 328 

connectivity is not fully depending on the proportion in this study. However it is a more feasible 329 

performance criterion for proportions far below the percolation threshold.  330 

Facies probability distribution. A good agreement between the simulated facies probability distribution 331 

and the original soft dataset doesn’t ensure that the allocation pattern of the simulated probability is 332 

correct. This becomes evident when validating the results of the BH-Sky500static scenario.    333 

Facies probability – resistivity bias. The simulated facies probability should be in agreement with a 334 

corresponding resistivity observation to ensure that the spatial allocation pattern is simulated correctly. 335 

All bins are weighted the same, neglecting the inequality of data in each bin.   336 

We used 25, 10 and 10 realizations to compute the first three performance criteria, respectively. 337 

Computing a moving average shows than the mean converges to +/-2% deviation to the final mean 338 

after ca. 15 realizations for the first criterion and after ca. 5 realizations for the second and third 339 

criteria, which justifies the selected number of realizations. The two latter criteria incorporate the 340 

computed probability map based on 25 realizations. Probability maps proved to be a useful tool to 341 

investigate the inter variability among realizations (Alabert, 1987; Carle, 2003; Mariethoz et al., 342 



2009b). The results of the onlyBH scenario show the highest inter variability and a moving average 343 

tested at 10 random locations in the grid shows that after 20 realizations the mean converges to less 344 

than +/-20% from the final mean and to less than +/-10% after 23 realizations. These numbers are 345 

supposed to decrease as the conditioning data increase and therefore are 25 realizations in the analysis 346 

of the two latter criteria justifiable. 347 

Table 4 compiles the five performance criteria for two different TProGS simulations: The BH-348 

Sky20static- and the BH-Sky200moving scenario. The advantage of using multiple performance 349 

criteria is that concentrating on a single criterion may reveal an alleged good result, while another 350 

criterion attests a poor performance to the same simulation. Therefore a weighted and balanced analysis 351 

of the performance criteria helps to identify the best result. In this study, where abundant data are 352 

available, a good performance of the two latter criteria is as important as simulating accurate mean 353 

length/proportion. For example, if only considering sand proportion and mean length, it can be argued 354 

that the validation favors the BH-Sky20static scenario. However both, the facies probability 355 

distribution as well as the facies probability - resistivity bias attest poor performance.  On the other 356 

hand, if interpreting the probability distribution only, it seems that the validation favors the BH-357 

Sky500static scenario. Collectively, the conclusion is that the BH-Sky200moving scenario generates 358 

the overall most balanced results.  359 
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