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Author comment to review #1: Anonymous Referee. 

We would like to thank the anonymous referee #1 for her/his review which poses thoughtful comments 

to our manuscript. We appreciate her/his professional assessment in regard to the existing literatures 

and have tried to associate our study to other existing studies both in the introduction and the 

discussion section in our manuscript. We are also thankful for the comments on the methodology and 

have made a rigorous revision of the manuscript following the referee’s suggestions. We believe the 

changes made will improve the scientific quality of the manuscript. 

Review of “Challenges in conditioning a stochastic geological model of a heterogeneous glacial aquifer to a 

comprehensive soft dataset” This manuscript essentially describes a practical approach to integrate auxiliary 

information in the transition probability approach (Tprogs). Although the approach is quite relevant for this 

particular application, the existing literature on this problem is largely missed. Integration of exhaustive or 

dense data in geostatistics has been dealt with from the early days of geostatistics (cosimulaltion, cokriging, 

kriging/simulation with external drift) until the most recent developments (integration of non-stationarity in 

multiple-point geostatistics). [1]This study entirely misses this. In the limited context of Tprogs however, it may 

be true that this problem has not been addressed. [2]The approach proposed consists of using a decimated 

version of the auxiliary variable as conditioning data for the primary variable. It is quite a crude way of 

proceeding since it ignores the differences of support in the different variables, as well as the differences in 

spatial variability. [3]I think this is entirely missed in the discussions and is not tested throughout. [4]The title 

and abstract have a much too general focus. The paper is essentially only focusing on the transition probability 

method, and more particularly on the tprogs software. [5]In my opinion, this manuscript would be more 

appropriate in a journal focusing specifically on the application of geostatistical methods, such as 

Mathematical Geosciences. It may also be fit for Hydrogeology Journal because of the emphasis on the case 

study. In any case I would recommend major revisions before resubmission. 

 

[1] We appreciate the reviewer’s advice and took many of the suggested literatures into consideration. 

We agree that our choice of literature was too much focused on TProGS and we decided to broaden it 

in the revised version both in the introduction and the discussion section. Please see Appendix II & III.  

[2] Decimating the soft conditioning dataset may seem as an overly simplistic and very crude approach. 

However we are still convinced that it is adequate for this study. In this study we aim at finding the 

balance between too few data and too many data. The first case is presented in section 5.2 and 5.4 (BH-

Sky500static); one can say that the risk to miss important features is high when conditioning to too few 

data. Our study mainly deals with the latter case, where too many data lead to an underestimation of the 

simulation uncertainty. We agree, and have acknowledged in our manuscript, that valuable information 

might be lost in the process of out-thinning the conditioning dataset, but during the validation process 

the entire SkyTEM dataset is considered. This ensures that the TProGS results, which are conditioning 
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to a decimated dataset, are validated by the entire geophysical dataset. In our study we tried different 

sampling techniques; static and moving sampling at various distances. We analyzed the tradeoff 

between an increase of sampling distance and a decrease in accuracy of a set of realizations, where 

200m moving sampling performed best. We believe that a 200m sampling distance is still sufficient to 

adequately capture all relevant geological features proxied by the entire dataset; this can be argued by 

the fraction between the observed mean length and the conditioning spacing. The mean length of a sand 

lens is found to be 500m and can proxy the correlation length. With a horizontal length scale of 500m 

and sampling at 200m we still condition the simulation with two to three soft data points in each 

horizontal direction for each mean sized sand feature on average. In the vertical direction we find a 

very similar conditioning density as in the horizontal direction; 5m mean length of a sand feature and 

conditioning data is placed in each layer (2m). This means that the fraction between mean length and 

conditioning spacing is essentially the same in both horizontal and vertical direction, which forms a 

sound representation of the spatial variability in both directions.  

[3] The primary variable “probability of sand occurrence” was derived from the secondary variable 

“resistivity” by the histogram probability matching method. The reviewer addresses the question of 

support and spatial variability of the two variables. The resistivity data are given with a 20m x 20m x 

2m grid size and integrated with the borehole data which represent local observation with a fine and 

coarse representation of the subsurface in vertical and horizontal direction, respectively. The borehole 

data were aggregated to 2m in vertical direction (He et al., 2013b). Thus the support of the two 

variables can be expected to be similar in vertical direction, but it might be marginally exaggerated in 

the horizontal direction, because we do not know if the borehole observation supports the 400m
2
 of 

gridded resistivity in the lateral direction. However we can be certain that the 2m in the vertical 

direction are well represented by the borehole data. The same applies for the spatial variability. This 

leads to an interesting discussion, but we decided not to take it into consideration in this study. The 

relevant scale at which we want to capture geological heterogeneity for our subsequent hydrological 

flow modeling is well represented by a 20m x 20m x 2m resolution, because the flow modelling will be 

based on a 100m grid size. Therefore deviations in support scale between the two variables can be 

neglected. Parts of this paragraph are considered in the revised discussion. Appendix III; lines 203-209. 

[4] We believe that the title is specific enough, as it narrows the paper down to the most essential 

aspect of this study: (1) stochastic geological modeling of a (2) heterogeneous glacial aquifer with (3) 

comprehensive soft conditioning. Further we see the abstract as informative and compact, because it 

leads the reader stepwise through our study. However we reduced the abstract in length and also made 

some adjustments of the abstract after revising the paper (please see Appendix I; lines 2-24). 

[5] We strongly believe that HESS is the correct choice of journal for our manuscript, because we see 

HESS as a broad and holistic platform that creates links between Hydrology and other earth sciences 

towards sustainable management of water resources. Our study was integrated in a hydrological 

research project dealing with simulation of nitrate transport and reduction in geologically 



heterogeneous catchments (www.nitrat.dk). This puts our study in an inter-disciplinary context for 

research aiming at sustainable water resources management, which complements the aims and scope of 

the HESS journal. Many recent publications in HESS study elaborated mathematical and statistical 

methods on how to generate input data to a hydrological model, without actually testing the data in a 

flow simulation. A couple of examples: Buttafuoco et al. (2010) conduct a regional study on reference 

evapotranspiration and its associated spatial uncertainty.  Berne and Uijlenhoet (2007) assess radar 

rainfall retrieval uncertainties with a Monte Carlo based stochastic simulation.    

Specific comments:  

p.15222, top: To be a bit more exhaustive, references to truncated Gaussian and Truncated pluriGaussian 

methods could be added. Object-based models could also be mentioned.  

 

The truncated plurigaussian method presented by (Mariethoz et al., 2009) seems very promising for 

incorporating auxiliary information. This method would be especially applicable in a situation with 

more than one auxiliary source. However, limitations lie in the rather subjective “lithotype rule” which 

has to be defined as the overall geological concept. A brief description is added to the introduction 

(Appendix II; lines 80-85), because we believe that the reader would benefit from a broader view on 

alternative methods.  

p.15222, l.8: What is meant by compatible? 

 

The two inter-comparison studies mentioned in this context are Lee et al. (2007) and dell'Arciprete et 

al. (2012). The first study evaluates the representation of geological heterogeneity in two types of 

models: TProGS and a variogram based sequential Gaussian simulation. The groundwater flow was 

modeled numerically to simulate a pumping test. Comparing the results with observed data from the 

pumping test showed that TProGS performed better at simulating the lateral connectivity of high-K-

materials. The latter study compares hydrofacies simulation of three geostatistical methods; namely 

TProGS, multi-point statistics (MPS) and variogram based sequential indicator simulation (SIS). 

Assessments of the simulated facies proportion and the simulated facies connectivity shows that 

TProGS and SIS perform well at simulating less abundant facies, whereas MPS is better at simulating 

the connectivity of the most prominent facies correctly.  

The inter-comparison studies underline that TProGS is compatible with other geostatistical methods. 

Although validation is limited in the above mentioned studies, some of the advantages and 

disadvantages are highlighted.  

p.15222, l.24-25: I don’t agree with this statement: there is a large number of papers that include soft data with 

geostatistical methods (although maybe not specifically with tprogs). Please have a look at the works on 

collocated simulation, probability aggregation and tau models. It has been heavily used with indicator 

geostatistics, multiple-point geostatistics and object-based methods. Soft data is sometimes called "soft 

probability". A few examples of references: In the context of variogram-based methods: 

DEUTSCH, C. V. & WEN, X. H. 2000. Integrating large-scale soft data by simulated annealing and probability 

constraints. Mathematical Geology, 32, 49-67. MARIETHOZ, 



G., RENARD, P. & FROIDEVAUX, R. 2009. Integrating collocated auxiliary parameters in geostatistical 

simulations using joint probability distributions and probability aggregation. Water Resources Research, 45. In 

the context of multiple-point simulations: 

CAERS, J. 2003. History matching under training-image-based geological model constraints. SPE Journal, 8, 

218-226. CHUGUNOVA, T. & HU, L. 2008. Multiple-Point Simulations Constrained by Continuous Auxiliary 

Data. Mathematical Geosciences, 40, 133-146. These are only a few examples, you will find many other 

references regarding other geostatistical methods. More generally, the references in the introduction used are 

often outdated. 

 

We agree with the reviewer’s concern that parts of the relevant literature have been missed in the study. 

Therefore we decided to update both the introduction and the discussion section of our manuscript. The 

papers that are suggested by the reviewer were really helpful und could substantially contribute to 

improving the introduction and to set our study in a broader context. Please see Appendix II; lines 60-

85 and Appendix III; lines 143-175. 
 

p. 15223,l.12-14: There are numerous studies where exhaustive geophysics is used and validated. Below is a 

very recent one, however it is a problem that has been heavily studied in the last decade.  

EMERY, X. & PARRA, J. 2013. Integration of crosswell seismic data for simulating porosity in a 

heterogeneous carbonate aquifer. Journal of Applied Geophysics, 98, 254-264. 

 

The revised introduction contains a paragraph on the integration of geophysics (Appendix II; lines 103-

111). Emery and Parra (2013) present an interesting approach on how to integrate geophysical data 

(seismic measurements) and borehole data in a cross-correlated gaussian approach, where the 

underlying experimental variograms are checked against data. To our understanding this publication 

does not contribute to a systematical validation scheme for geostatistical simulation. However we could 

identify similar validation methods in other studies, e.g.  Mariethoz et al. (2009b) and Chugunova and 

Hu (2008) .Please find an updated section in the introduction (Appendix II; lines 120-129)  
 

p. 15223,l.15-16: This statement shows again that an entire side of the literature is missed on geophysical 

inversion with geostatistics. See for example: HANSEN, T. M., CORDUA, K. S., LOOMS, M. C. & 

MOSEGAARD, K. 2013. SIPPI: A Matlab toolbox for sampling the solution to inverse problems with complex 

prior information: Part 2- Application to crosshole GPR tomography. Computers and Geosciences, 52, 481-

492.  

We don’t see the connection between the above mentioned publication and the need for a systematical 

validation of geostatistical applications as claimed on p. 15226, l.15-16. We don’t aim at validating the 

geophysical inversion itself; instead we want to validate whether the soft data are treated appropriately 

by TProGS, and whether the generated set of realizations represents all comprehensive understanding 

of the system (mean length, proportions, connectivity and uncertainty) 

 

p. 15223,l.19-22: These are very vague statements. For geophysical data integration, the usual criterion is a 

forward problem that calculates the geophysical response given a certain geological model. Valid models are 

those that reproduce the measures data when such a forward model is applied. 

 

We agree with this point; the five defined validation criteria are used to evaluate the model with respect 

to the geophysical data, which is not a universal validation, rather a site specific validation. However 

site specific validation is necessary if such a forward model is applied. In this context this study 

provides a practical approach on how to validate stochastic realizations in a systematical way. Also, our 

presented validation method is a forward way of model validation, because we check the simulated 



facies probability and compare it with the anticipated probability based on the conditioning data. Please 

see a revised section in Appendix III; lines 130-133.  

p. 15228,l.13-15: Such an exhaustive conditioning is never applied. Instead, a general approach is the one of 

probability aggregation where the probability distribution coming from the spatial model (tprogs or any other 

method) is combined with the prior probability coming from geophysics. See: ALLARD, D., COMUNIAN, A. & 

RENARD, P. 2012. Probability Aggregation Methods in Geoscience. Mathematical Geosciences, 44, 545-581. 

For an example of synthetic application, see LIU, Y. 2006. Using the Snesim program for multiple-point 

statistical simulation. Computers & Geosciences, 23, 1544-1563. 

 

Pixel-based two point simulation methods (TProGS) are expected to be good at local data conditioning. 

The realization is simulated one pixel at a time, thus data conditioning is easily achieved. This opens 

the opportunity to add additional information as hard or soft conditioning at each simulation cell. The 

3D continuous SkyTEM dataset in combination with a pixel-based two point simulation allows such an 

exhaustive local constraining and this study aims to utilize that. We don’t aim at a probability 

aggregation, because the only probability distribution available in this study originates from the 

SkyTEM data. In our case, the primary variable (facies probability) and the secondary variable 

(resistivity) are linked by the histogram probability matching method (section 3.2). This method 

successfully comprises data integration of borehole data and geophysical data.     

Section 4.3: The question of support size is not addressed here, however it is critical to know what is the 

support size of the geophysical data. Is a data point representative of 1m2 or 1km2? This should be a major 

factor when deciding whether to use subsampling or moving averaging approaches. The description of the 

moving sampling is not clear enough. Is the same sampling used for each realization? Are the data resampled 

or interpolated? Why "moving" sampling - is there a moving window defined? 

 

The support scale of a SkyTEM observation increases with depth, as the penetration of the subsurface 

is shaped as a cone, with 15-20m on the surface to a larger support scale in large penetration depths (at 

30m depth the lateral support size will be in the range of 50m). The glacial sequence which defines the 

model domain is between 10m and 40m thick. The variable support size makes the analysis difficult, 

but it again underlines the heavy correlation of the conditioning data on a 20m grid size.    

The relevant scale at which we want to capture geological heterogeneity for our subsequent 

hydrological flow modeling is well represented by a 20m x 20m x 2m resolution, because the flow 

modelling will be based on a 100m grid size.  

 

 

A few lines connected to this topic are added to the reviewed discussion section (Appendix III) 

The moving sampling approach does not use a moving window thus there is no resampling, averaging 

or interpolation. Instead, it generates different location grids for the samples. The n different location 

grids have the same distance between the samples, but each has an accumulated shift of the origin (+ 

sampling distance/n in X and Y direction). For the TProGS application five location grids are 

generated, which yields five independent soft conditioning datasets. The first sampling grid have the 

origin (0,0) the second (40,40), the third (80,80), etc. (Figure 1) A more detailed description will be 



added to section 4.3. Five realizations are computed for each soft dataset; giving a total of 25 

realizations.  

 

Figure 1. The systematical pattern of the moving sampling of soft data. The circles represent the original grid 

and the squares the four additional centers of the moved grids. This gives five soft datasets that are equally 

spaced.   
p. 15229, l.5: such an "optimal" combined knowledge should be formulated in a Bayesian framework, which is 

completely not done here. Therefore the word optimal is not correct in this context. 

 

The formulation was changed to “best combined knowledge” in order not to mislead the reader. It 

simply represents a merge of all available datasources (borehole and SkyTEM), thus it contains all 

available information on the system. It will not be further addressed if this is the optimal knowledge.  
 

Section 5.3: Figure 5 is good and justifies the approach. However what is proposed is a "fix" that has no 

generality. I have nothing against such fixes that work in practice, but they should be acknowledged as such 

and their limitations should be clearly stated. 

 

The approach we chose in order to overcome the problem of overconditioning, which is indeed a study 

specific “fix” which might not be applicable for other studies. Throughout the manuscript it is referred 

to as a “work around method” which to our opinion reflects the pragmatic origin. Please find the 

relevant section in the revised discussion on the acknowledgment of its limitations in Appendix III.     
 

p. 15234, l.26: The terminology of more/less deterministic is not correct. A model is deterministic or it is not. I 

would rather speak of higher/lower variability. This is throughout the manuscript. 

 

We agree to that and changes are done accordingly throughout the manuscript.   

Section 5.4: In my opinion the approach of comparing the realizations with the probability maps derived from 

geophysics is flawed. Geophysics does not provide a facies distribution, but a smoothed and coarsened version 

of it. It is a different variable, indirectly related to the facies. Therefore they are not expected to have the same 

spatial features and cannot be compared in terms of connectivity or correlation scales. It is clear from figure 8 

that the borehole data and the SkyTEM data present different spatial properties. 

 

We partly agree to that point. In most cases it is incorrect to directly derive a deterministic facies 

distribution from geophysics. SkyTEM has been extensively used for that purpose, but limitations and 

risks are acknowledged (Andersen et al., 2013). In our point the probabilistic approach for handling 

geophysical data is much more appropriate, because it can account for uncertainties. We agree that the 



3D gridded SkyTEM data are rather smoothed and coarsened, especially in the vertical direction where 

thin sand features tend to be overlooked. However it significantly improves our understanding of the 

subsurface lateral heterogeneity, because the lateral direction is essentially undersampled by boreholes. 

This is manifested in the realizations conditioned to borehole data only (Figure 5).  

The probability map derived the geophysics is limited, but the comparison with the realizations is also 

done for testing self-consistency. Besides the geological validity of the geophysics we want to ensure 

that the probabilities from the SkyTEM data are treated accordingly during the conditional stochastic 

modeling with TProGS. Thus we compare input/output of TProGS.  

One novelty of this study lies in the integration of two datasources into the modeling study, thus we 

“cherry pick” the advantages of both datasources. Borehole data for the vertical model of spatial 

variability, SkyTEM data for the lateral model of spatial variability, both for conditioning in respect to 

the associated uncertainty. We regard this procedure in combination with stochastic methods as a sound 

approach to assess geological uncertainties.             

Section 6: This section essentially repeats material that was discussed earlier, and therefore can be shortened 

or removed. 

 

The discussion (section 6) was reduced from 1824 words to 1437 words (21%) to avoid redundant 

discussions. However new discussions inspired by the reviews are added after shortening the original 

manuscript.  

p. 15241, l.3-5: I’d recommend reading some textbooks on kriging with external drift (in particular the book of 

Chiles and Delfiner). 

 

We appreciate the reference and it was considered in rewriting parts of the discussion.   



Appendix I 1 

Abstract 2 

In traditional hydrogeological investigations, one geological model is often used based on subjective 3 

interpretations and sparse data availability. This deterministic approach usually does not account for 4 

any uncertainties. Stochastic simulation methods address this problem and can capture the geological 5 

structure uncertainty. In this study the geostatistical software TProGS is utilized to simulate an 6 

ensemble of realizations for a binary (sand/clay) hydrofacies model of the Norsminde catchment, 7 

Denmark. TProGS can incorporate soft data, which represent the associated level of uncertainty. High 8 

density (20m x 20m x 2m) airborne geophysical data (SkyTEM) and categorized borehole data are 9 

utilized to define the model of spatial variability in horizontal and vertical direction, respectively. 10 

Further, both datatypes are used for soft conditioning the TProGS simulations. The category 11 

probabilities for the SkyTEM dataset are derived from a histogram probability matching method, where 12 

resistivity is paired with the corresponding lithology from the categorized borehole data. This study 13 

integrates two distinct datasources into the stochastic modeling process that represent two extremes of 14 

the conditioning density spectrum; sparse borehole data and abundant SkyTEM data. Conditioning to 15 

vast soft data causes overconditioning; triggered by incorporating spatially correlated data in the 16 

modelling process. This is addressed by a work around utilizing a sampling (thinning) of the dataset. In 17 

case of abundant conditioning data it is shown that TProGS is capable of reproducing non-stationary 18 

trends. The stochastic realizations are validated by five performance criteria: (1) Sand proportion, (2) 19 

mean length, (3) geobody connectivity, (4) facies probability distribution and (5) facies probability – 20 

resistivity bias. As conclusion, a stochastically generated set of realizations soft conditioned to 200m 21 

moving sampling of geophysical data performs most satisfying when balancing the five performance 22 

criteria and can be used in subsequent hydrogeological flow modeling to address the predictive 23 

uncertainty originated from the geological structure uncertainty.  24 



Appendix II 25 

Introduction 26 

Constraints in accurate and realistic solute transport modeling in hydrogeology are caused by the 27 

difficulty of characterizing the geological structure. The subsurface heterogeneity heavily influences 28 

the distribution of contaminants in the groundwater system. The scale of heterogeneity is often smaller 29 

than the data availability (e.g. borehole spacing). In traditional hydrogeological studies, one geological 30 

model is built based on the best comprehensive knowledge from often sparse borehole data and 31 

subjective interpretations. This can lead to alleged correct results, for instance when addressing the 32 

water balance on catchment scale, but will often prove to be inadequate for simulations beyond general 33 

flows and heads, e.g. contaminant transport modeling. Therefore, it is proposed by numerous studies 34 

that the uncertainty on the geological conceptualization is crucial when assessing uncertainties on flow 35 

paths (Neuman, 2003; Bredehoeft, 2005; Hojberg and Refsgaard, 2005; Troldborg et al., 2007; Seifert 36 

et al., 2008). One of the strategies often recommended for characterizing geological uncertainty and 37 

assessing its impact on hydrological predictive uncertainty is the use of multiple geological models 38 

(Renard, 2007; Refsgaard et al., 2012).  39 

In this respect geostatistical tools such as two-point statistics e.g. TProGS (Carle and Fogg, 1996; Carle 40 

et al., 1998) and multipoint statistics (MPS) (Strebelle, 2002; Caers and Zhang, 2002; Caers, 2003; 41 

Journel, 2004) are powerful tools as they enable the generation of multiple equally plausible 42 

realizations of geological facies structure. This study targets the realistic description of heterogeneity in 43 

a geological model by introducing diverse data into the stochastic modeling process to generate a set of 44 

equally plausible realizations of the subsurface using geostatistics (Strebelle, 2002; Refsgaard et al., 45 

2006). 46 

In geostatistical applications field observations can constrain the simulation as soft or hard 47 

conditioning. “Hard conditioning” forces the realizations to honor data completely whereas “soft 48 

conditioning” honors the data partly with respect to the uncertainty of the observation (Falivene et al., 49 

2007). This feature is essential because it enables the user to associate uncertainties to the conditioning 50 

dataset that can be of either subjective or objective nature. Incorporating a comprehensive and 51 

continuous soft conditioning datasets to a stochastic simulation such as TProGS is challenging. Alabert 52 

(1987) published an early study on the implications of using sparse soft conditioning data to a 53 

stochastic simulation. The analysis shows that soft conditioning significantly increases the quality of 54 

the realizations. The same was also observed by McKenna and Poeter (1995) where soft data from 55 

geophysical measurements could significantly improve the geostatistical simulation. In the past years, 56 

highly sophisticated geophysical methods and advanced computational power allow stochastic 57 

simulations that are conditioned to a vast auxiliary dataset. This poses new challenges to the data 58 

handling and to the simulation techniques.   59 



Chugunova and Hu (2008) present a study where continuous auxiliary data is introduced directly, 60 

without classification to a MPS simulation. MPS requires a site specific training image that represents 61 

the geological structure accordingly, which is often the main source of uncertainty in MPS simulations. 62 

The above mentioned MPS studies conduct mostly 2D simulations, partly on synthetic data. The 63 

training image is the backbone of the MPS method and it has been acknowledged by dell'Arciprete et 64 

al. (2012) and He et al. (2013a) that reliable 3D training images are difficult to acquire.  65 

Alternative methods to integrate vast auxiliary information (e.g. geophysics) into the modeling process 66 

and at the same time force local accuracy are collocated cokriging or cosimulation techniques (Babak 67 

and Deutsch, 2009). Here a linear relationship between the auxiliary variable and the target variable is 68 

built in a model of cross covariance. The essentially linear relationship is often too restrictive and does 69 

not represent the complex physical processes. Mariethoz et al. (2009b) present a prospective method 70 

that extends the collocated simulation method by using a model of spatial variability of the target 71 

variable and a joint probability density distribution to depict the conditional distribution of the target 72 

variable and the auxiliary variable at any location. 73 

The method of anchored distributions (MAD) (Rubin et al., 2010) is a suitable approach for the inverse 74 

modeling of spatial random fields with conditioning to local auxiliary information. Structural 75 

parameters such as global trends and geostatistical attributes are considered in a conditional simulation. 76 

The conditioning is undertaken by anchored distributions which statistically represent the relationship 77 

between any data and the target variable.  78 

The truncated plurigaussian simulation method (Mariethoz et al., 2009a) generates a Gaussian field for 79 

the target and the auxiliary variable using variogram statistics. These Gaussian fields are truncated to 80 

produce categorical variables that represent the hydrofacies. The truncation is controlled by threshold 81 

values that can be defined in a “lithotype rule” that represents the general geological concept. It is a 82 

very flexible method, because conceptual understandings are easily incorporated, but non-stationarity 83 

and especially directional depended lithotype rules are difficult to incorporate. 84 

TProGS is a well-established stochastic modeling tool for 3D applications and it has been successfully 85 

applied to simulate highly heterogeneous subsurface systems by constraining the simulation to borehole 86 

data (Carle et al., 1998; Fleckenstein et al., 2006). Weissmann et al. (1999), Weissmann and Fogg 87 

(1999) and Ye and Khaleel (2008) use additional spatial information obtained from soil surveys, 88 

sequence stratigraphy and soil moisture, respectively for accessing the complex lateral sedimentary 89 

variability and thus improving the quality of the model in terms of  spatial variability. It has not been 90 

tested whether TProGS, is capable of handling abundant soft conditioning data. Moreover, the risk that 91 

a cell-by-cell soft constraining may cause an overconditioning of the simulation has not been fully 92 

investigated. Overconditioing is defined by the authors as an effect triggered by dense and spatial 93 

correlated conditioning data that produces an altered picture of observable uncertainties. Therefore the 94 



self-consistency of the stochastic simulation is questioned, because soft constraining should be treated 95 

accordingly during the simulation.         96 

Recent studies by Lee et al. (2007) and dell'Arciprete et al. (2012) highlight that TProGS is compatible 97 

with other geostatistical methods like, multi-point statistics, sequential Gaussian simulations and 98 

variogram statistics (Gringarten and Deutsch, 2001). The distinct strength of TProGS is the simple and 99 

direct incorporation of explicit facies manifestations like mean length, proportion and (asymmetric) 100 

juxtapositional tendencies of the facies. 101 

Geophysical datasets are valuable information in many hydrogeological investigations. It can 102 

considerably improve the conceptual understanding of a facies or hydraulic conductivity distribution 103 

and identify non-stationary trends. However, the integration of geophysical data and lithological 104 

borehole descriptions is often difficult. A recent study by Emery and Parra (2013) presents an approach 105 

to combine borehole data and seismic measurements in a geostatistical simulation to generate multiple 106 

realizations of porosity. Hubbard and Rubin (2000) review three methods that allow hydrogeological 107 

parameter estimation based on geophysical data. The three methods link seismic, ground penetrating 108 

radar (GPR) and tomographic data with sparse borehole data to support the hydrogeological description 109 

of the study site. Our study integrates high resolution airborne geophysical data with borehole data to 110 

build a probabilistic classification of the subsurface at site. The geophysical data are collected by 111 

SkyTEM, an airborne transient electromagnetic method (TEM) that has been used extensively in 112 

Denmark for the purpose of groundwater mapping (Christiansen and Christensen, 2003; Jorgensen et 113 

al., 2003b; Sorensen and Auken, 2004; Auken et al., 2009). This study utilizes a method that translates 114 

SkyTEM observation data into facies probability which enables associating the geophysical data with 115 

softness, according to the level of uncertainty. Very few studies have integrated high resolution 116 

airborne geophysical data in a stochastic modeling process (Gunnink and Siemon, 2009; He et al., 117 

2013a).     118 

Most stochastic studies only make relatively simple validations of how well the simulations are able to 119 

reproduce known geostatistical properties. Carle (1997) and Carle et al. (1998) investigate the goodness 120 

of fit between the simulated and the defined spatial variability. The geobody connectivity is used by 121 

dell'Arciprete et al. (2012) to compare results originated from two- and multipoint geostatistics. 122 

Chugunova and Hu (2008) make a simple visual comparison between the auxiliary variable fracture 123 

density and stochastic realizations of the simulated fracture media. A more advanced validation is 124 

conducted in Mariethoz et al. (2009b) where simulated variograms and histograms are compared with 125 

reference data for the simulation of synthetic examples. In spite of these few studies that have 126 

addressed the validation issue, no guidance on which performance criteria to use and how to conduct a 127 

systematical validation of a stochastic simulation has been reported so far.   128 

It should be noted that we in line with Refsgaard and Henriksen (2004) do not use the term model 129 

validation in a universal manner, but in a site specific context where a model validation is limited to the 130 



variables for which it has been tested as well as to the level of accuracy obtained during the validation 131 

tests.  132 

The objectives of this study are: (1) to set up TProGS for a study site based on lithological borehole 133 

data and high resolution airborne geophysical data and investigate the effect of the two distinct 134 

conditioning datasets to the simulation; (2) to assess the problem of overconditioing in a stochastic 135 

simulation; (3) to ensure that non-stationary trends are simulated accordingly by TProGS; and (4) to 136 

identify and test a set of performance criteria for stochastic simulations that allow the validation against 137 

geostatistical properties derived from field data. The results of the present study are intended for 138 

application in a hydrological modeling context (Refsgaard et al., 2014).  139 



Appendix III 140 

Discussion 141 

Choice of geostatistical method 142 

The choice of the stochastic method for this study is application driven (Refsgaard et al., 2014). In the 143 

Norsminde catchment, it is evident from both borehole and geophysical data that the glacial sequence 144 

contains till clay and sand lenses distributed in extremely irregular patterns that are non-stationary. 145 

Without dense conditioning data the heterogeneous and non-stationary structures will not be simulated 146 

correctly. TProGS among other two-point statistics enables soft conditioning, where the soft 147 

information represents the associated level of uncertainty of an observation. The other distinct strength 148 

of TProGS is the easy incorporation of observable geological attributes when defining the Markov 149 

Chain models. In multi-point statistics (MPS) the definition of a reliable 3D training image is 150 

challenging, especially when simulating extremely irregular patterns (Honarkhah and Caers, 2012). 151 

Defining a MPS training image for the Norsminde catchment is peculiar, because it could only be 152 

based on interpreted SkyTEM data; with inflated length scales in the vertical direction. This makes the 153 

model of spatial variability in TProGS more reliable and objective, because it is based on measured 154 

transition probabilities and not on an interpreted training image. Further the transition probabilities are 155 

based on the data type we trust best: borehole data in the vertical- and SkyTEM data in the horizontal 156 

direction. In this study it is of spatial interest to correctly simulate the vertical transition probabilities in 157 

order to subsequently simulate the flow paths in the shallow groundwater system most accurately. This 158 

requires a detailed description of the spatial variability of the vertical direction, with indication of thin 159 

sand lenses, only provided by borehole data.  160 

However, MPS is broadly applied in 2D and 3D applications: The snesim algorithm (Liu, 2006) 161 

combines object-based and pixel-based methods in the general MPS framework, to enforce spatial 162 

pattern reproduction and local conditioning, respectively. It was successfully applied by He et al. 163 

(2013a) in a 3D application. Another promising approach is given by Chugunova and Hu (2008), where 164 

MPS is tested on non-stationary 2D structures, by continuous soft conditioning to a secondary variable. 165 

Here two training images from the geological structure and from the secondary variable are joint in the 166 

simulation. 167 

Many promising geostatistical methods have advanced to incorporate auxiliary information to constrain 168 

the simulated target variable: Truncated plurigaussian simulation (Mariethoz et al., 2009a), collocated 169 

simulation with probability aggregation (Mariethoz et al., 2009b). Most of them are only tested on 2D 170 

applications partly with synthetic data. This present study uses TProGS as the geostatistical tool, 171 

because of its reliable model of spatial variability and it is well established in 3D applications with 172 

sparse conditioning data. The application of vast soft conditioning data to a TProGS simulation gives 173 

valuable information on how such data can influence the stochastic simulation results.  174 



TProGS setup 175 

Direct transformation of geophysical data, such as SkyTEM, into a deterministic subsurface model is 176 

risky, because too much reliance on geophysical mapping can lead to seriously wrong hydrogeological 177 

models (Andersen et al., 2013). Uncertainties are expected in both, geophysical and lithological data 178 

and the shape of the fitted histogram curve reflects those. High uncertainty is associated with the 179 

transition zone; around 50% sand probability. Although the cut off value that divides the SkyTEM 180 

dataset into sand and clay is calibrated, there is a large quantity of high uncertain cells included which 181 

make the measured TPs directly dependent on the cut off value. Therefore the facies proportion and 182 

mean length are very sensitive to the selection of the cut-off value. As a result, the MCM in the lateral 183 

direction, as part of the TProGS setup, is highly dependent on the way the SkyTEM data is treated. 184 

Difficulties in the integration of the two data types are indicated in Figure 2. Small scale 185 

heterogeneities indicated by the borehole descriptions are not represented by the coarser SkyTEM 186 

dataset. This supports computing the horizontal and vertical TPs individually using SkyTEM and 187 

borehole data, respectively.   188 

The SkyTEM dataset used in the present study is a 3D grid of 20m x 20m x 2m which was spatially 189 

interpolated from soundings with distances of about 17 m and 50-100 m along and between the flight 190 

lines, respectively. To reduce the overconditioning problem it might have been preferable to use the 191 

direct sounding data instead of the interpolated dataset. A similar effect is achieved by resampling, but 192 

here interpolated data with a higher uncertainty than the direct soundings are used.  193 

Simulating a binary system is a crude simplification of the broad range of sediments in the glacial 194 

sequence. However, classifying the SkyTEM data into discrete facies or deriving the soft information 195 

on facies membership are peculiar in a multi facies environment. Additionally less abundant facies (e.g. 196 

gravel) will show extremely uncertain correlations in the histogram probability matching method. Last 197 

the less abundant facies might be represented on a 20m domain, but it will often not be visible on the 198 

100m domain chosen for the subsequent hydrological flow simulations. Dell'Arciprete et al. (2010) 199 

present a study where geostatistics are successfully implemented to simulate small scale heterogeneities 200 

in a multi facies environment.      201 

Data footprint 202 

Borehole and SkyTEM data are integrated by the histogram probability matching method (He et al., 203 

2013b), where differences in support scale are partly neglected. The support scales of the two data 204 

types are expected to vary. The lithological data from the boreholes are aggregated to 2m to be in better 205 

vertical agreement with the geophysical dataset. The agreement in the lateral direction is more 206 

questionable, because the footprint increases with depth for the geophysical data. The footprint is 207 

approximately 15-20m on the surface and in the range of 50m at 30m penetration depth. 208 

Split sample test 209 



Both datasources have advantages and disadvantages: Borehole data have a higher data certainty and a 210 

finer spatial resolution in the vertical extent to better represent smaller sand features, but are essentially 211 

undersampled in the lateral extend. On the other hand, SkyTEM data have a good spatial coverage and 212 

represent the bigger sand features well, but at the same time the data are associated with a higher data 213 

uncertainty. At this point, four major sources of uncertainty can be defined: (1) The inversion that 214 

transforms the SkyTEM measurement into resistivity, (2) the borehole data, (3) the relationship 215 

between lithology and resistivity and (4) the footprint mismatch between small scale borehole data and 216 

large scale SkyTEM data. So it is precarious to assume the SkyTEM data as true geology, but it can 217 

serve as a reference/benchmark when validating the simulation results. The onlyBH scenario does not 218 

capture all of the main sand features, which are revealed by the SkyTEM survey: Only 20% of the high 219 

resistivity cells, where the resistivity is greater than 70Ωm are simulated correctly. For the onlySky20 220 

scenario only 44% of the sand descriptions in the boreholes are simulated correctly, which underlines 221 

that the SkyTEM data does not measure the finer sand features correctly. The conducted split sample 222 

test does not allow to draw firm conclusions on simulation performance, it rather analyses the 223 

agreement between the two dataset propagated through the model. 224 

Overconditioning 225 

Correlated data, both temporally and spatially are a common problem in hydrogeological 226 

investigations. It has not been previously reported how TProGS is able to handle such a conditioning 227 

dataset. TProGS stochastically simulates the subsurface facies system by utilizing the two mutually 228 

dependent steps SIS and simulated quenching. It is not assured if the soft information is considered 229 

accordingly for the cokriging of the local probability estimate in the SIS step nor if it is accounted for 230 

in the objective function used for the simulated quenching in the latest TProGS version. However 231 

Deutsch and Wen (2000) successfully integrate exhaustive soft data in simulated quenching. Work 232 

around methods have to be developed to overcome the problems associated with overconditioning. The 233 

most intuitive approach is to out-thin the original soft dataset by sampling only some of the data and to 234 

include a moving sampling strategy to account for the spatial variation in the original dataset. A 235 

drawback of this approach is that valuable information might be lost, which again underlines the need 236 

for model validation to find a justifiable sampling distance where the original information is best kept. 237 

The out-thinning approach works as a very pragmatic solution for a study-specific problem and its 238 

generalization might be limited. Thinning the SkyTEM dataset out and only considering data on a 239 

200m spaced moving sampling grid gives the most satisfying results. 240 

Non-stationarity 241 

Non-stationarity can be identified by subdividing the SkyTEM dataset (Figure 2 and 4). It is 242 

successfully tested if abundant conditioning data alone is capable of reproducing the observed non-243 

stationary patterns. In a situation of sparse data, e.g. only borehole data for conditioning, these non-244 

stationary trends cannot be reproduced correctly. Seifert and Jensen (1999) present an approach to 245 



model non-stationarity, which might be more suitable for sparse conditioning data. They suggested 246 

dividing the model domain into several stationary sub-domains, and each subdomain is then 247 

characterized using independent MCMs. When subdiving the model domain, care must be taken, that 248 

no major features are cut, because it is then difficult to model them correctly. This approach was tested 249 

in the present study, but results revealed that this method is not easily applicable in situations of 250 

abundant conditioning data, because large coherent sand features are cut by the sub-division and their 251 

connectivity could not be simulated adequately.     252 

Performance criteria 253 

We identified and tested five performance criteria for validating the model.  254 

Sand proportion. Artificial conditioning data outside the target area honoring the defined proportion 255 

and MCM may help to make the simulation more homogeneous. In that context, exhaustive hard 256 

conditioning outside the simulation target can be tested.  257 

Mean length. The simulated and measured TPs are compared by Carle (1997) and Carle et al. (1998). 258 

(Carle et al., 1998) simulate a four category system and the simulated quenching yields a perfect match 259 

between the modeled TPs and the defined MCM. On the other hand, Carle (1997) underlines that small 260 

deviations are to be expected and shows this by various examples where different SIS and simulated 261 

quenching parameters are tested.   262 

Geobody connectivity. The connectivity is partly dependent on the proportion. The sand connectivity 263 

for the simulation based on the BH-Sky200moving scenario is simulated lower and the sand proportion 264 

higher in comparison to the results from the BH-Sky20static scenario. This shows that the geobody 265 

connectivity is not fully depending on the proportion in this study. However it is a more feasible 266 

performance criterion for proportions far below the percolation threshold.  267 

Facies probability distribution. A good agreement between the simulated facies probability distribution 268 

and the original soft dataset doesn’t ensure that the allocation pattern of the simulated probability is 269 

correct. This becomes evident when validating the results of the BH-Sky500static scenario.    270 

Facies probability – resistivity bias. The simulated facies probability should be in agreement with a 271 

corresponding resistivity observation to ensure that the spatial allocation pattern is simulated correctly. 272 

All bins are weighted the same, neglecting the inequality of data in each bin.   273 

We used 25, 10 and 10 realizations to compute the first three performance criteria, respectively. 274 

Computing a moving average shows than the mean converges to +/-2% deviation to the final mean 275 

after ca. 15 realizations for the first criterion and after ca. 5 realizations for the second and third 276 

criteria, which justifies the selected number of realizations. The two latter criteria incorporate the 277 

computed probability map based on 25 realizations. Probability maps proved to be a useful tool to 278 

investigate the inter variability among realizations (Alabert, 1987; Carle, 2003; Mariethoz et al., 279 



2009b). The results of the onlyBH scenario show the highest inter variability and a moving average 280 

tested at 10 random locations in the grid shows that after 20 realizations the mean converges to less 281 

than +/-20% from the final mean and to less than +/-10% after 23 realizations. These numbers are 282 

supposed to decrease as the conditioning data increase and therefore are 25 realizations in the analysis 283 

of the two latter criteria justifiable. 284 

Table 4 compiles the five performance criteria for two different TProGS simulations: The BH-285 

Sky20static- and the BH-Sky200moving scenario. The advantage of using multiple performance 286 

criteria is that concentrating on a single criterion may reveal an alleged good result, while another 287 

criterion attests a poor performance to the same simulation. Therefore a weighted and balanced analysis 288 

of the performance criteria helps to identify the best result. In this study, where abundant data are 289 

available, a good performance of the two latter criteria is as important as simulating accurate mean 290 

length/proportion. For example, if only considering sand proportion and mean length, it can be argued 291 

that the validation favors the BH-Sky20static scenario. However both, the facies probability 292 

distribution as well as the facies probability - resistivity bias attest poor performance.  On the other 293 

hand, if interpreting the probability distribution only, it seems that the validation favors the BH-294 

Sky500static scenario. Collectively, the conclusion is that the BH-Sky200moving scenario generates 295 

the overall most balanced results.  296 
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