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Abstract

In hydrogeology, the application of reliable tra¢eansport model approaches is a key issue to
derive the hydrodynamic properties of aquifers.

Laboratory and field — scale tracer dispersion lkiteaugh curves (BTC) in fractured media are
notorious for exhibiting early time arrivals andela- time tailing that are not captured by the
classical advection — dispersion equation (ADE)esEh““non — Fickian” features are proved to be
better explained by a mobile — immobile (MIM) appecb. In this conceptualization the fractured
rock system is schematized as a continuous medmuwmhich the liquid phase is separated into
flowing and stagnant regions.

The present study compares the performances aiabiliges of classical Mobile — Immobile
Model (MIM) and the Explicit Network Model (ENM) #t takes expressly into account the
network geometry for describing tracer transpotiawgour in a fractured sample at bench scale.
Though ENM shows better fitting results than MIMegtlatter remains still valid as it proves to
describe the observed curves quite well.

The results show that the presence of nonlineav fitays an important role in the behaviour of
solute transport. Firstly the distribution of s@wccording to different pathways is not constant b
it is related to the flow rate. Secondly nonlinttaw influences advection, in that it leads to dage

in solute transport respect to the linear flow agstion. Whereas nonlinear flow does not show to
be related with dispersion. The experimental ressittow that in the study case the geometrical
dispersion dominates the Taylor dispersion. Howéwerinterpretation with the ENM model shows
a weak transitional regime from geometrical disijperdo Taylor dispersion for high flow rates.
Incorporating the description of the flowpathshie analytical modeling has proved to better fit the

curves and to give a more robust interpretatiothefsolute transport.
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Introduction

In fractured rock formations, the rock mass hydcab€haviour is controlled by fractures. In such
aquifers, open and well — connected fractures datesthigh permeability pathways and are orders
of magnitude more permeable than the rock matriea(B& Berkowitz, 1987; Berkowitz, 2002;
Bodin et al., 2003; Cherubini, 2008; Cherubini &skae, 2011, Geiger et al.,, 2012, Neuman,
2005).

In most studies examining hydrodynamic processdsattured media, it is assumed that flow is
described by Darcy’s law, which expresses a limelationship between pressure gradient and flow
rate (Cherubini & Pastore, 2010). Darcy’'s law haerb demonstrated to be valid at low flow

regimes (Re < 1). For Re > 1 a nonlinear flow b&havs likely to occur.

But in real rock fractures, microscopic inertialgplomena can cause an extra macroscopic
hydraulic loss (Klgv, 2000) which deviates flow ficdhe linear relationship among pressure drop

and flow rate.

To experimentally investigate fluid flow regimesrdbgh deformable rock fractures, Zhang &
Nemcik (2013) carried out flow tests through botated and non — mated sandstone fractures in
triaxial cell. For water flow through mated fraatar the experimental data confirmed the validity of
linear Darcy’'s law at low velocity. For larger watBdow through non — mated fractures, the
relationship between pressure gradient and voluen8bow rate revealed that the Forchheimer
equation offers a good description for this pafticdlow process. The obtained experimental data
show that Izbash’s law can also provide an excetlescription for nonlinear flow. They concluded

that further work was needed to study the dependehthe two coefficients on flow velocity.

In fracture networks heterogeneity intervenes auesolute transport: due to the variable aperture
and heterogeneities of the fracture surfaces the flow will seek out preferential paths (Gyllireg

al., 1995) through which solutes are transported.

Generally the geometry of fracture network is nailvknown and the study of solute transport
behaviour is based on multiple domain theory adogrtb which the fractured medium is separated
in two distinct domains: high velocity zones suchtlae network of connected fractures (mobile
domain) where solute transport occurs predominadntlpdvection, and lower velocity zones such
as secondary pathways, stagnation zones (almastnelbile domain), such as the rock matrix.

The presence of steep concentration gradients batwieactures and matrix causes local

disequilibrium in solute concentration which givese to dominantly diffusive exchange between
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fracture and matrix. This explains the non — Fiokimature of transport, which is characterized by
breakthrough curves with early first arrival andddails.

Quantifying solute transport in fractured media basome a very challenging research topic in
hydrogeology over the last three decades (Nowarebak, 2013).

Tracer tests are commonly conducted in such aguiferestimate transport parameters such as
effective porosity and dispersivity, to characterigubsurface heterogeneity, and to directly
delineate flow paths. Transport parameters aremastd by fitting appropriate tracer transport
models to the breakthrough data.

In this context, analytical models are frequentiypéoyed, especially for analyzing tests obtained
under controlled conditions, because they involvenzll number of parameters and provide
physical insights into solute transport proceskasét al 2012).

The advection — dispersion equation (ADE) has lisditionally applied to model tracer transport
in fractures. However extensive evidence has shinanthere exist two main features that cannot
be explained by the ADE: the early first arrivaldatine long tail of the observed BTCs curves.
(Neretnieks et al, 1982; Becker and Shapiro, 2000énez-Hornero et al. 2005; Bauget and Fourar,
2008).

Several other models have been used to fit the aloas BTCs obtained in laboratory tracer tests
carried out in single fractures. Among those, thebNé-Immobile (MIM) model (van Genuchten
and Wierenga, 1976), which recognizes the existavfcenobile and immobile domains for
transport, has showed to provide better fits of BXl@ves (Gao et al., 2009, Schumer et.al 2003,
Feehley et al, 2010).

In the well — controlled laboratory tracer testsriea out by Qian et al. (2011) a mobile— immobile
(MIM) model proved to fit both peak and tails oetbbserved BTCs better than the classical ADE
model.

Another powerful method to describe non — Fickia@ms$port in fractured media is the continuous
time random walk (CTRW) approach (Berkowitz et 2006) which is based on the conceptual
picture of tracer particles undergoing a seriesasfsitions of length s and tinte

Together with a master equation conserving solusssnthe random walk is developed into a
transport equation in partial differential equationm. The CTRW has been successfully applied
for describing non — Fickian transport in singlactures (Berkowitz et al.2001; Jiménez — Hornero
et al. 2005).

Bauget and Fourar (2008) investigated non — Fickiansport in a transparent replica of a real
single fracture. They employed three different ni®decluding ADE, CTRW, and a stratified

model to interpret the tracer experiments.
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As expected, the solution derived from the ADE d¢igmaappears to be unable to model long-time
tailing behaviour. On the other hand, the CTRW thalstratified model were able to describe non
— Fickian dispersion. The parameters defined bgehwodels are correlated to the heterogeneities
of the fracture.

Nowamooz et al., (2013) carried out experimentakgtigation and modeling analysis of tracer
transport in transparent replicas of two Vosgesistome natural fractures.

The obtained breakthrough curves were then intergreising a stratified medium model that
incorporates a single parameter permeability distion to account for fracture heterogeneity,
together with a CTRW model, as well as the clas#i&E model.

The results indicated that the classical ADE is aygpropriate for modeling early first arrival and
long — time tailing. In contrast, the stratified deb provides generally satisfactory matches to the
data (even though it cannot explain the long-tiraéing adequately) while the CTRW model
captures the full evolution of the long tailing plesyed by the breakthrough curves.

Qian et al (2011) experimentally studied solutengprt in a single fracture (SF) under non —
Darcian flow condition which was found to closetyiow the Forchheimer equation.

They also investigated on the influence of the eiyocontrast between the fracture wall and the
plane of symmetry on the dispersion process, wkiek called ‘boundary layer dispersion’ by
Koch and Brady (1985). They affirmed that this ptraenon had to be considered if the thickness
of the boundary layer was greater than the roughoéshe fracture. On the other hand, if the
thickness of the boundary layer was smaller thanrtlughness of the fractures, the recirculation
zones inside the roughness cavities rather thabdhadary layer would be more relevant for the
dispersion process, thus the hold — up dispersionldvbecome important. Since smooth parallel
planes were used for constructing the SF in thg@eement, the fracture roughness and the hold —
up dispersion were negligible.

Bodin et al (2007) developed the SOLFRAC prograrhictv performs fast simulations of solute
transport in complex 2D fracture networks using fheme Domain Random Walk (TDRW)
approach (Delay & Bodin, 2001) that makes use qfipe network approximation. The code
accounts for advection and hydrodynamic dispersiorchannels, matrix diffusion, diffusion into
stagnant zones within the fracture planes, massinghat fracture intersections, and other
mechanisms such as sorption reactions and radreadecay. Comparisons between numerical
results and analytical breakthrough curves forIsgint test problems have proven the accuracy of
the model.

Zafarani & Detwiler (2013) presented an alterngtpraach for efficiently simulating transport

through fracture intersections. Rather than soltimg two — dimensional Stokes equations, the
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model relies upon a simplified velocity distributiavithin the fracture intersection, assuming local
parabolic velocity profiles within fractures entegiand exiting the fracture intersection. Therefore
the solution of the two — dimensional Stokes equatiis unnecessary, which greatly reduces the
computational complexity. The use of a time — domapproach to route particles through the
fracture intersection in a single step further mduthe number of required computations. The

model accurately reproduces mixing ratios preditigtigh — resolution benchmark simulations.

Most of previous investigations of flow and trandpo fracture networks considered Darcian flow,
and there are few controlled laboratory experimemissolute transport under non Darcian flow.
The behaviour of the solute transport in fractugemorks under non — darcian flow conditions has
been therefore poorly investigated. In fracturewoeks different pathways can be identified
through which solute is generally distributed imdtion of the energy spent by solute particles to
cross the path. In this context the presence ofimear flow could play an important role in the
distribution of the solutes according to the diier pathways. In fact the energy spent to cross the
path should be proportional to the resistance dw fassociated to the single pathway, which in
nonlinear flow regime is not constant but dependghe flow rate. This means that changing the
boundary conditions the resistance to flow varie$ @as a consequence the distribution of solute in
the main and secondary pathways also changes gnsegto a different behaviour of solute
transport.

In previous studies by Cherubini et al (2012, 20th@) presence of nonlinear flow and non fickian
transport in a fractured rock formation has beealyaed at bench scale in laboratory tests. The
effects of nonlinearity in flow have been investeghby analyzing hydraulic tests on an artificially
created fractured limestone block of parallelepif@®@0x0.40x0.8 m) shape.

The volumes of water passing through different padloross the fractured sample for various
hydraulic head differences have been measuredeXperimental results have shown evidence of a
non-Darcy relationship between flow rate and hylicdass that is best described by Forchheimer’s
law. Transition from viscous dominant regime torira¢ dominant regime has been detected.
Moreover, a tortuosity factor has been determinbathvis a measure of the deviation of each flow
path from the parallel plate model. A power law basn detected between the Forchheimer terms
and the tortuosity factor, which means that thietanhfluences flow dynamics.

The non fickian nature of transport has been ingatdd by means of tracer tests that regard the
measurement of breakthrough curves for saline tjagise across a selected path varying the flow
rate. The observed experimental breakthrough cuw¥ewslute transport have proved to be better
modeled by the MIM model. The carried out experitaeshow that there exists a pronounced

mobile—immobile zone interaction that cannot belewxtgd and that leads to a non-equilibrium
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behaviour of solute transport. The existence obr-Darcian flow regime has showed to influence
the velocity field in that it gives rise to a delay solute migration with respect to the predicted
value assuming linear flow. Furthermore the preserianertial effects has proved to enhance non-
equilibrium behaviour. Instead, the presence ofaasitional flow regime seems not to exert
influence on the behaviour of dispersion.

Herein, in order to give a more physical interptietaof the flow and transport behaviour, we build
on the work by Cherubini et al (2013) by interpngtithe obtained experimental results of flow and
transport tests by means of the comparison of tarmceptual models: the single rate mobile —
immobile model (MIM) and the Explicit Network Mod@ENM). Differently from the former, the
latter expressly takes the fracture network geoyreto account.

When applied to fractured media, the MIM approaoksdnot explicitly take the fracture network
geometry into account, but it conceptualizes thegpshof fractures as one dimensional continuous
media in which the liquid phase is separated itaavihg and stagnant regions. The convective
dispersive transport is restricted to the flowiegion, and the solute exchange is described asta fi
— order process.

Unlike MIM, the ENM model may allow to know the phgal meaning of flow and transport
phenomena (i.e the meaning of long — time behavudUBTC curves that characterize fractured
media) and permits to obtain a more accurate esamaf flow and solute transport parameters. In
this model the fractures are represented as lge-gdements and they form a 2d — pipe network.

It is clear that ENM needs to address the probldnpavameterization. In fact the transport
parameters of each individual fracture should kexiied and this leads to more uncertainty in the
estimation.

Our overarching objective is therefore of invediigg the performances and the reliabilities of

MIM and ENM approaches to describe conservativeetr&ransport in a fractured rock sample.

In particular way the present paper focuses trentin on the effects of nonlinear flow regime on
different features that depict the conservativaiteotransport in a fracture network such as mean

travel time, dispersion, dual porosity behavioustribution of solute into different pathways.

Theoretical background

Nonlinear flow
In the literature different laws are reported thatount for the nonlinear relationship between

velocity and pressure gradient.
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A cubic extension of Darcy's law that describesguee loss versus flow rate for low flow rates is

the weak inertia equation:

2
_Dp:ED‘]+£|j‘/3 (1)
k H

Wherep (ML™T?) is the pressuré, (L) is the permeabilityy (ML™*T™) is the viscosityp (ML)

is the densityy (LT™) is the velocity ang/(L) is called the weak inertia factor.

In case of higher Reynolds numbers (Re >> 1) tlesqure losses pass from a weak inertial to a
strong inertial regime, described by the Forchheiesgiation (Forchheimer, 1901), given by:

—Dp=%@7+pﬁ[ﬂz (2)

WhereB (L™ is called the inertial resistance coefficientnon — Darcy coefficient.
Forchheimer law can be written in terms of hydmaukad:

~Oh = a'T¥+ b0V (3)
Wherea (TL™) andb (TL™) are the linear and inertial coefficient respeeijvequal to:

a':i' b':ﬁ

; 4
Pk g “

In the same way the relationship between flow @té°T™) and hydraulic head gradient can be

written as:

~0Oh = a0+ b (5)

Wherea (TL™®) andb (T?L™) are related ta’ andb’:

a:i;b:i (6)
Wy Wy

Whereayq (L% represents the equivalent cross sectional aréradifire.

Mobile Immobile Model
The mathematical formulation of the MIM for noneactive solute transport is usually given as

follows:
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oc d°c ac
m = D m __ m _ —

at aXZ v aX a(Cm Clm) (7)
0Cim _ _

ﬂF a(c,—Cn)

Wheret (T) is the timex (L) is the spatial coordinate along the directairthe flow, ¢, andcim,
(ML) are the cross - sectional averaged solute coratims respectively in the mobile and
immobile domainy (LT™) is the average flow velocity ami (L?T™) is the dispersion coefficient
(T is the mass exchange coefficiehf:] is the mobile water fraction. For a non — & solute

[ is equivalent to the ratio between the immobild arobile cross — sectional area (-).

The solution of system Equation (7) describing enélimensional (1d) non — reactive solute
transport in an infinite domain for instantaneoutsp of solute injected at time zero at the origin
given by (Goltz & Roberts, 1986):

a(x=e"g(x)+a| H(t7) ¢( xr) d (8)

Where G is the concentration of solute in the mobile dom&) represents the analytical solution

for the classical advection — dispersion equatiomralfk, 1956):

M _(x—vt)2
0 e 4Dt (9)
W, N 11Dt

C(x 1) =

WhereMo (M) is the mass of the tracer injected instantasBoat time zero at the origin of the

domain. The ternH (t,r) presents the following expression:

2a
S r)ar rll(ﬂ Bt-1) rj

H(t,7)= B 10
(t,r)=e DL (10)

Wherel; represents the modified Bessel function of order 1

In order to fit the BTCs curves with the MIM modkk assumption of representative 1d lengdh (
of the fracture network should be made. Howeves thatter can be solved by the introduction of
the normalized velocity({L) and normalized dispersio®AL?). The MIM model is defined by four

parameters regarding the whole fracture netwatls D/L?, a, ).



237 Explicit Network Model
238 Assuming that a single fractujecan be represented by a 1d — pipe element, tla¢iomeship

239 between head loséh; (L) and flow rateQ; (L*T™Y) can be written in finite terms on the basis of

240 Forchheimer model:

241 Al—hizan+bq2:>Arj1:[}(a+ bQ)| @ (11)

J

242 Wherel; (L) is the length of fracturey (TL®) andb (T?L™®) are the Forchheimer parameters in finite
243 terms.

244 The term in the square brackets represents thetaese to flowR, (q) (TL™) of j fracture.

245 For steady — state condition and for a 2d simplargery of the fracture network, the solution of
246 flow field can be obtained in a straightforward manapplying the first and second Kirchhoff's
247  laws.

248 The first law affirms that the algebraic sum ofWlan a network meeting at a point is zero:
249 Q=0 (12)

250 Whereas the second law affirms that the algebrait af the head losses along a closed loop of the

251 network is equal to zero:
252 ) Ah =0 (13)
i=1

253 Generally in a 2d fracture network, the single tiuae can be set in series and/or in parallel.

254  In particular the total resistance to flow of ametk in which the fractures are arranged in a chain

255 s found by simply adding up the resistance vabfdke individual fractures.

256 In a parallel network the flow breaks up by flowitlgrough each parallel branch and re —
257 combining when the branches meet again. The tesastance to flow is found by adding up the
258 reciprocals of the resistance values and thendakia reciprocal of the total. The flow rate crogsi

259 the generic fracturgbelonging to parallel circuit®; can be obtained as:



260 Q =>Q[L—— (14)

261 Where ZQ( LT) is the sum of the discharge flow evaluated fer fitacture intersection located

262 in correspondence of the inlet bond jofracture, whereas the term in brackets represems

263 probability of water distribution gffracturePq.

264 The BTC curves at the outlet of the netwq,gk(t) (ML™®) , for an instantaneous injection, can be

265 obtained as the summation of BTCs of each elememath in the network. The latter can be

266 expressed as the convolution product of the prdibabensity functions of residence times in each

267 individual fracture belonging to the elementarytpaising the convolution theorem(,ut(t) can be

268 expressed as:
M . Nep Ny
269 ()= ?: F 1{21‘, ﬂ RF(s (1, t))} .

270 Where M, (M) is the injected mass of solutejs the Fourier transform operatdl is the number
271 of elementary pathsy; is the number of fractures inelementary pathP;; and s (Ij,t) (™Y

272 represent the fraction of solute crossing the sirigicture and the probability density function of

273 residence time respectively.

274  F,, can be estimated as the probability of the particnsition in correspondence of the inlet bond

275 of each individual single fracture. The rules fartgle transition through fracture intersectioteyp

276 an important role in mass transport. In literatsegeral models have been developed and tested in
277 order to represent the mass transfer within fractotersections. The simplest rule is represenyed b
278 the “perfect mixing model” in which the mass shgris proportional to the relative discharge flow
279 rates.

280 The perfect mixing model assumes that the proligtuifi particle transition of the fraction of solute
281 crossing the single fracture can be written as:

282 P

i
= ) 16
C, | 2 Q ( )
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Where Q; represents the flow rate in the singlfacture. Note that if assuming valid the perfect

mixing modelPq; is equal tdP.

It is clear that in order to knovxsj(lj,t) the transport model and consequently the transport

parameters of each single fracture need to be eﬂaf'u;}(lj ,t) can be evaluated in a simple way

using the 1D analytical solution of the Advectiomsfersion Equation model (ADE) for pulse

input:

Qj e_ 4Dt 17)
Dt

W, j j

s,(I,,t) =

in which the velocity; and dispersiol; relating to the genericfracture can be estimated through
the following expression:

_ 9
Vj —T (18)
edq, |
D, =a, v (19)
Where @, ; and g, ; are the equivalent crossing area and the dispersiefficient ofj fracture

respectively.

The ENM is defined by six parameters regarding eautjie fractured, b, Pg, axq ai andP).

Material and methods

Flow and tracer tests

The experimental setup has been already extengiN®tyssed in Cherubini et al. (2013), however
for the completeness in this section a summargpsnted. The analysis of flow dynamics through
the selected path (Fig 2) regards the observafiavater flow from the upstream tank to the flow

cell with a circular cross-section of 0.1963 amd 1.28x18 m? respectively.

Initially at timet,, the valvesd and ‘b’ are closed and the hydrostatic head in the fleWis equal
to ho. The experiment begins with the opening of thee/&’ which is reclosed when the hydraulic
head in the flow cell is equal tm. Finally the hydraulic head in the flow cell ispoeted tohg
through the opening of the valvie.! The experiment procedure is repeated changiadhtfdraulic
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head of the upstream tahk The time At =(tl—t0) required to fill the flow cell fromh, to h has

been registered.

Given that the capacity of the upstream tank is hmbgher than that of the flow cell it is
reasonable to assume that during the experimeetdetlel of the upstream tankc)( remains
constant. Under this hypothesis the flow insidesysem is governed by the equation:

g%?ﬂwam(b-a (20)

WhereS, (L% andh (L) are respectively the section area and theaulidr head of the flow celh.
(L) is the hydraulic head of upstream tarfiAh) represents the hydraulic conductance term

representative of both hydraulic circuit and thieced path.

The average flow rat€ can be estimated by means of the volumetric method

Q=2(h-h) 1)

Whereas the average hydraulic head differeMNads given by:
Ah=h, _@ (22)

In correspondence of the average flow rate and déBtence is it possible to evaluate the average
hydraulic conductance as:

TiAn) =2 n[ e=h
F(Ah)—tl_to In[hl—h,] (23)

The inverse ofF(Ah) represents the average resistarft@ ﬁ(@) :

The study of solute transport dynamics throughstidected path has been carried out by means of a
tracer test using sodium chloride. Initially a hadlic head difference between the upstream tank
and downstream tank is imposed.tAt O the valved' is closed and the hydrostatic head inside the
block is equal to the downstream tank.tAt 10 s the valvea’ is opened while at timé= 60 s a
mass of solute equal to 5%1@g is injected into the inlet port through a sgen The source release
time (1 s) is very small therefore the instantarsesaurce assumption can be considered valid.
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In correspondence of the flow cell in which the thuparametric probe is located it is possible to
measure the tracer breakthrough curve and the blydraead; in the meanwhile the flow rate
entering the system is measured by means of amsahiic velocimeter. For different flow rates a

BTC curve can be recorded at the outlet port.

Time moment analysis has been applied in ordeh&wacterize the BTC curves in terms of mean

breakthrough time, degree of spread and asymmetry.

The mean residence timigis given by:

jt”c(t) dt
t =0

m

- (24)
jqom

The " normalized central moment of distribution of selebncentration versus time is defined as:

0

[[t=t.]"c(tdt
IR (25)

Tc(t)dt

The second momen}, represents the degree of spread relativéytovhereas the degree of

asymmetry measured by the skewness coefficierdfinet as:
S= sl 13" (26)
Discussion

Estimation of flow model parameters

The flow field in each single fracture of the netwean be solved in analytical way by means of
Kirchhoff laws. In Figure 2 is represented the 2aipe network conceptualization.

The resistance to flow of each singl&acture is described by the Equation (12). ThecRoeimer
parameters are assumed constant for the wholeifeacetwork.

The application of the Kirchhoff’s first law at ti@de 3 can be written as:
Q-Q-Q=0 (27)

Whereas the application of the Kirchhoff's secoamt kt the loop 3 — 4 — 5 — 6 can be written as:
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R(Q)Q-(R(Q)+ R(Q+ R Q) @0 (28)

Substituting Equation (27) into Equation (28) ttexative equation of flow rat®; can be obtained:

(29)

{ R(Q-Q)+R(Q-¢)+ R @ ¢ ]
' OR(Q-Q)+R(Q- Q)+ R ¢ 9+ H §

The Forchheimer parameters representative of winadture network can be derived matching the
average resistance to flow derived experimentalith ihe resistance to flow evaluated for the

whole network:

R(O) = + N 1 _1"‘
R(Q=R(Q)+R(Q (RS(Q) R(Q)+ R(Q+ K QJ (30)
+R(Q)+R(Q)+ R( Q

Figure 3 shows the fitting of observed resistackow determined by the inverse of Equation (23)
and the theoretical resistance to flow (Equationp 3@e linear and nonlinear terms of Forchheimer
model in Equation (12) have been estimated and aheyespectively equal to= 7.345x10 sm®
andb = 11.65x18 £m®. It is evident that the 2d - pipe network modebselly matches the
experimental resultsr{ = 0.9913). Flow characteristics can be studied ufinothe analysis of
Forchheimer number oFwhich represents the ratio of nonlinear to lindsdraulic gradient

contribution:

_bQ (31)
a

(0]

Inertial forces dominate over viscous ones at titeeal Forchheimer number {E1) corresponding
in our case to a flow rate equal@a;; = 6.30x1¢ m*/s, which is coherent with the results obtained
in the previous study (Cherubini et al., 2013a).

The term in square brackets in Equation (30) regmissthe probability of water distributidpy
evaluated for the branch 6. Note that it is notstant but it depends on the flow rate crossing the
parallel branch. Figure 4 showR, as function ofQy. The probability of water distribution
decreases as the injection flow rate increases. Mmiians that when the injection flow rate increases
the resistance to flow of the branch 6 increass®fahan the resistance to flow of the branch43 —

— 5 and therefore the solute choses the secondényway.
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Fitting of breakthrough curves and interpretation of estimated transport model
parameters

Several tests have been conducted in order to whsslute transport behaviour varying the
injection flow rate in the range 1.20%310 9.34x1¢° m’s™. For each experimental BTCs the mean
travel timety, and the coefficient of SkewneSfiave been estimated.

Figure 5 showd, as function ofQo Travel time decreases more slowly for high flowesa In
particular a change of slope is evident in corresience of the injection flow rate equal to 4%¥10
m®s? (Cherubini et al., 2013a), which means the settipgof a transitional flow regime; the
diagram of velocity profile is flattened becauseimértial forces prevailing on viscous one, as
already showed by Cherubini et al (2013a). Thegres of a transitional flow regime leads to a
delay on solute transport with respect to the \&alh@t can be obtained under the assumption of a

linear flow field. Note that this behaviour occieforeQgyi:.

The skewness coefficient does not exhibit a trgpahwarying the injection flow rate, but its mean
value is equal to 2.018. A positive value of skesmimdicates that BTCs are asymmetric with early
first arrival and long tail. This behaviour seemst o be dependent on the presence of the

transitional regime.

The measured breakthrough curves for different ftates have been individually fitted by MIM

(v/L DI, @, B) and ENM(@,, @, Py, P;) models.

In particular for the ENM model the parametess, (equivalent area) and, are representative of
all fracture network, whereas the paramelysindPc are associated only to the parallel branches.
For the considered fracture network the Equatid) flecomes:

M, L [ROF(S)TF(S)OR( ) OR )R 90 9+ )

Q" [+(1-R)F(s) F(s)OR(5) DR )0 90 90 € 30 €

The velocity and dispersion that characterize thabability density functiors are related to the

flow rate that crosses each branch by Equation¥ 408 (19). This one is equal to the injection

flow rate Qo except for branch 6 and branches 3 — 4 — 5 fochviti is equal toQ=PR,Q and

Q=(1-R,)Q respectively.

Furthermore three parameter configurations haven btested for the ENM model. The

configurations are distinguished on the basis eftbmber of fitting parameters and assumptions
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made onR. and R, parameters. The first configuration named ENM2 twas fitting parameters

wq and ai. In this configuratiory, is imposed equal td}, and is derived as the square brackets

term in Equation (29).

The second configuration named ENM3 has threaeditfiarametersag a. andR, (R,). R. is still

equal toR, but they are evaluated by the interpretation o€RTirves.

Ly 00 Fos PC) are determined

In the third configuration named ENM4 all four pmeters(a)
through the fitting of BTCs.
To compare all the considered models, both thermiénation coefficient I®) and the root mean

square error (RMSE) were used as criteria to deterrtne goodness of the fitting, which can be

expressed as:

S TR (33)

RMSE= \/ii( Gom G (34)

WhereN is the number of observationS,. is the estimated concentratio@,, is the observed

concentration andfi’o represents the mean valueQf .

Tables 1, 2, 3 and 4 show the estimated valuearmainpeters, root mean square error RMSE and the

determination coefficientffor all the considered models varying the inletfirate Q.
Figure 6 shows the fitting results of BTC curvesddferent injection flow rates.

For higher flow rates (7.07xT0and 4.80 x18 m®s) the fitting is poorer than for lower flow rates
(3.21 x10° and 1.96x18 m%s). However, all models provide a satisfactoryirfi. The ENM4
model provides the highest values dfarying in the range 0.9921 — 1.000 and the sistalialues

of RMSE in the range 0.0033 — 0.0252. This is etgueéor two reasons. First this model has more
fitting parameters than ENM2 and ENMS3, thus it isre flexible. Second, compared to MIM

model, it takes explicitly into account the presepnéthe secondary path.
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The MIM model considers the existence of immobild anobile domains and a rate — limited mass
transfer between these two domains. In the presamiext this conceptualization can be a weak
assumption especially for high flow rates when thmportance of secondary path increases.
However the fitting of BTCs shows that MIM modelmains valid as it proves to describe the

observed curves quite well.

The extent of solute mixing can be assessed framattalysis of MIM first-order mass transfer

coefficienta and the fraction of mobile watgr

Several authors have observed the variation ofmhss-transfer coefficient between mobile and
immobile water regions with pore-water velocity ifv@enuchten and Wierenga, 1977; Nkedi-Kizza
et al., 1984; De Smedt and Wierenga, 1984; De Sraedi., 1986; Schulin et al., 1987). The
increase ina with increasing water velocity is attributed to Inég mixing in the mobile phase at
high pore water velocities (De Smedt and Wiereld§&84) or to shorter diffusion path lengths as a
result of a decrease in the amount of immobile w@at@n Genuchten and Wierenga, 1977).

As concernsf, various authors have observed different behavajuthe mobile water fraction
parameter. Gaudet et al. (1977) reported increaniolgjle water content with increasing pore water
velocity. However, studies have also found tBappears to be constant with varying pore-water
velocity (Nkedi-kizza et al. 1983). However, lowgrvalues can be attributed to faster initial
movement of the solute as it travels through aebsing number of faster flow paths. As a result,
some authors have relatgdvalues to the initial arrival of the solute. IrcfaGaudet et al. (1977)
and Selim and Ma (1995) observed that the mobileemfmaction parameter affects the time of
initial appearance of the solute.

In general, the initial breakthrough time increaasg increases (Gao et al., 2009) which can also
be evidenced from Fig 6. For lower flow rates thiéial arrival time is higher than for higher flow
rates. As the fraction of mobile water increaslks,lireakthrough curves are shifted to longer times
because the solute is being transported througledand larger fractions of the fracture volume. In
the limiting case that the fraction of mobile wateaches one, the MIM reduces to the equilibrium
ADE (no immobile water) (Mulla & Strock, 2008).

The evidence of dual porosity behaviour on soltdagport is clearly shown by the analysis of the
two MIM parameters: the ratio of mobile and immeldiregs and the mass exchange coefficient
shown in Figure 7 as a function of velocity.

A different behaviour of these two coefficientsviarying the injection flow rate is observed in the

present study. At Darcian-like flow conditions theass exchange coefficient remains constant,
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whereas the ratio of mobile and immobile area desme as velocity increases. When nonlinear
flow starts to become dominant a different behavisuwbserveda increases in a potential way,

whereass assumes a weakly growing trend as velocity in@eagth a mean value equal to 0.56.

In order to better explain this behaviour, the $gort time (reciprocal of normalized velocity) and
the exchange time (reciprocal of the exchange temamying the flow rate for the MIM model are
showed in Figure 8. In analogous way in Figure 8hHewed the comparison between the mean
travel time for the main path and the secondarf patying the injection flow rate for the ENM4

model.

For the MIM model at high flow rates the exchanigeetjoins the transport time; analogously for
the ENM4 as the flow rate increases the secondatly ppaches the main path in terms of mean
travel time. This analogy between MIM and ENM entemthe concept that the mass transfer

coefficient is dependent on flow velocity.

In Darcian-like flow conditions the main path isndimant on the secondary path. The latter can be
considered as an immobile zone. In this conditit@nftacture network behaves as a single fracture
and the observed dual porosity behaviour can beébwathble only to the fracture — matrix

interactions of the main path.

For higher velocities, a higher contact area betwtee mobile and immobile region is evidenced,
enhancing solute mixing between these two regi@wo(et al, 2009). The increase dnwith
increasing water velocity is therefore attributabdenonlinear flow that enhances the exchange
between the main and secondary flow paths. Inargdbke injection flow rate the importance of the
secondary path grows and the latter cannot be derexl as an immobile zone, as a consequence

the dual porosity behaviour becomes stronger.

As showed in figure 10 and B} as function ofQo evaluated by means the fitting of BTCs by
ENM3 and ENM4 models presents a different trengpeesto R, determined by means of flow
tests. R, evaluated by transport tests decreases more yaghidh R, determined by flow tests
(Figure 10). In the ENM4 modeF, and R, show a different behaviour, especially for higher

velocity B, presents values higher thdgy (Figure 11). In other words the interpretationB3fC

curves evidences more enhanced nonlinear flow betnathan the flow tests.

In Figure 12 is reported the relationship betweelogity v and injection flow rat€), . Note that, in

order to compare the results, the velocities foiMMVdre evaluated assuming the length of the
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medium equal to the length of main path (L = 0.691 Instead for ENM4 model the velocities are
evaluated dividingQo for the equivalent areaxq, The models present the same behaviour, and
similarly to the mean travel time a change of slgpevident again in correspondence of flow rate
equal to 4x18 m°s™. This result confirms the fact that the preserfoeomlinear flow regime leads

to a delay on solute transport with respect tovilaes that can be obtained under the assumption of

a linear flow field.

In order to better represent the nonlinear flowimeyg Figure 13 shows water pressure as a function

of velocity. A change of slope is evident fore= 1.5x10 ms* which corresponds to the flow rate

equal to 4x1§ m’s™,

Moreover as shown in Figure 14 a linear trend gpdision with the injection flow rate both for
MIM and ENM models has been observed. This is aattewith what obtained in the previous
study (Cherubini et al. 2013a) where a linear retesthip is found between velocity and dispersion
both for ADE and MIM models with the conclusion thgeometrical dispersion dominated the
effects of Aris — Taylor dispersion. The valuestlué coefficient of dispersion obtained for ENM

models do not depend on flow velocity but assunsomehow scattered but fluctuating value.
Being a, values constant, geometrical dispersion domin#tes mixing processes along the

fracture network. Therefore, the presence of aineal flow regime does not prove to exert any
influence on dispersion except for high velocities the ENM model where a weak transitional
regime appears.

This does not happen for MIM dispersion values weh@ges of increase are smaller than those of
ENM dispersion values.

The values of dispersion coefficient are in ordemagnitude of decimeter, which is comparable
with the values obtained for darcian condition (Q&t al, 2011), and the dispersion values of MIM
are much lower than those of ENM.

This may be attributable to the fact that the MIFparates solute spreading into dispersion in
mobile region and mobile-immobile mass transfere @ispersive effect is therefore partially taken
into account by the mass transfer between the mabihe and the immobile zone (Qian et al, 2011;
Gao et al, 2009).

Conclusion

Flow and tracer test experiments have been caotéd a fracture network. The aim of the present

study is that of comparing the performances andbidities of two model paradigms: the Mobile -
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Immobile Model (MIM) and the Explicit Network Mod€ENM) to describe conservative tracer

transport in a fractured rock sample.

Fluid flow experiments show a not negligible noeklin behaviour of flow best described by the
Forchheimer law. The solution of the flow field feach single fracture highlights that the
probabilities of water distribution between the mand the secondary path are not constant but
decrease as the injection flow rate increases.thierovords varying the injection flow rate the

conductance of the main path decreases more rapigiythe conductance of the secondary path.

The BTCs curves determined by transport experimeat® been fitted by MIM model and three
versions of ENM model (ENM2, ENM3, ENM4) which dffon the basis of the assumptions made
on the parametef3y; andPc. All models show a satisfactory fitting. The ENNMbdel provides the
best fit which is expectable because it has mdtiadi parameters than ENM2 and ENM3, thus it is
more flexible. Secondly, compared to MIM modeltakes explicitly into account the presence of
the secondary path. Furthermore for the ENM mobel parametePq decreases more rapidly
varying the injection flow rate than the same pagndetermined by flow tests. The relationship
between transport time and exchange time for MIMlei@nd mean travel time for main path and
secondary path for the ENM4 model varying the itiggc flow rate has shown similarity of
behaviour: for higher values of flow rate the diffiece between transport time and exchange time
decreases and the secondary path reaches the athimperms of mean travel time. This analogy
between MIM and ENM explains the fact that the maaesfer coefficient is dependent on flow
velocity. The mass transfer coefficient increasetha importance of secondary path over the main

path increases.

The velocity values evaluated for MIM and ENM mod#low the same relationship with the
injection flow rate. In particular a change of "dois evident in correspondence of the flow rate
equal to 4 x18 m°s™. This behaviour occurs before the critical flower@stimated by flow tests
equal to 6.3x18 m’s'. Therefore the interpretation of BTCs curves enids more enhanced
nonlinear behaviour than flow tests. These resudtdirm the fact that the presence of transitional
flow regime leads to a delay on solute transpothwespect to the values that can be obtained

under the assumption of a linear flow field (Chenubt al., 2013a).

As concerns dispersion, a linear trend varyingviiecity for both MIM and ENM models has been
observed -coherently with the previous results- ef@hini et al., 2013a), the MIM model

underestimating the dispersion respect to ENM4 hode
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The dispersivity values obtained for ENM modelsrii depend on flow velocity but assume a
somehow scattered but fluctuating value. Being values constant, geometrical dispersion

dominates the mixing processes along the fractateork. Therefore, the presence of a nonlinear
flow regime does not prove to exert any influenoedispersion except for high velocities for the
ENM model where a weak transitional regime seenapfmear. This result demonstrates that for our

experiment geometrical dispersion still dominategldr dispersion.

A major challenge for tracer tests modeling in fuaed media is the adequate choice of the

modeling approach for each different study scale.

When dealing with large scales, tracer tests bheakgh curves are generally modeled by a
relatively small number of model parameters (Becket Shapiro, 2000).

At laboratory scale, the definition of the netwank fractures by means of discrete approaches
(DEN) can permit to identify transport pathways andss transport coefficients, in order to better

define heterogeneous advective phenomena (Cheretbial, 2013b).

At an intermediate local field scale (1-100m), mgmition that heterogeneous environments contain
fast and slow paths led to the development of the kdrmulation applied successfully in a variety
of hydrogeologic settings. However, the assumedcitg partitioning into flowing and not-flowing
zones is not an accurate representation of theveleeity field (Gao et al., 2009). Especially when
the rock mass is sparsely fractured, the breakgir@urves are characterized by early breakthrough
and long tailing behaviour and a simple mobile-infie conceptualization may be an over

simplification of the physical transport phenomenon

Solute transport in fractured aquifers charactedriag highly non-Fickian behaviour is therefore
better described by an Explicit Network Model ratttean by a simple MIM. Applying a discrete
model in such a case can permit to determine ifspart occurs through one or several fractures
and if multiple arrivals are caused by fractureehageneity, in such a way as to yield a more robust

interpretation of the subsurface transport regime.

In such a context, geophysical imaging may prodeiled information about subsurface structure

and dynamics (Dorn et al, 2012).
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682

MIM 1
n° Q (m¥s)x10° v/IL(shx102 D/L? (sY)x10? a (sh B () RMSE r?

1 1.3194 0.73 £ 0.0453 0.15 + 0.0103 0.004 + 0.0009 0.95 + 0.1442 0.0220 0.9786
5 2.2090 1.05 + 0.0482 0.16 + 0.0096 0.005 + 0.0012 0.51 + 0.0705 0.0213  0.9915
10 2.7312 1.26 + 0.0478 0.18 + 0.0095 0.006 + 0.0012 051 + 0.0596 0.0212 0.9938
15 3.0842 1.74 + 0.0580 0.19 + 0.0105 0.010 + 0.0016 0.56 + 0.0526 0.0233  0.9950
20 3.3648 1.75 + 0.0594 0.20 + 0.0104 0.011 + 0.0017 054 + 0.0511 0.0220 0.9956
25 3.6813 2.49 + 01037 0.25 + 0.0166 0.017 + 0.0032 051 + 0.0587 0.0304 0.9948
30 4.0735 257 + 0.1127 0.26 + 0.0182 0.017 + 0.0035 0.50 + 0.0617 0.0333  0.9940
35 4.5356 2.25 + 0.0942 0.21 + 0.0153 0.016 + 0.0029 057 + 0.0626 0.0310 0.9936
40 5.3824 3.20 + 0.1334 0.26 + 0.0199 0.027 + 0.0044 0.61 + 0.0627 0.0349 0.9944
45 5.8945 3.32 + 0.1455 0.26 + 0.0208 0.028 + 0.0050 0.57 + 0.0634 0.0358 0.9946
50 6.1684 3.02 + 0.1478 0.26 + 0.0205 0.025 + 0.0052 051 + 0.0673 0.0312 0.9955
55 8.3455 354 + 0.2916 0.35 + 0.0363 0.030 + 0.0107 0.41 + 0.1060 0.0376 0.9948

683 Table 1. Estimated values of parameters, root mean sgre error RMSE and determination coefficient ¥ for mobile —
684  immobile model MIM at different injection flow rate s in the fractured medium.

685

ENM2

n° Qp (m¥s)x10° Weq (MP)x107 a, (m) RMSE r?

1 1.3194 0.031 + 0.0014 0.1925 + 0.0863 0.0328 0.9524
5 2.2090 0.032 + 0.0004 0.0984 + 0.0064 0.0199 0.9925
10 2.7312 0.033 + 0.0004 0.0918 + 0.0048 0.0191 0.9950
15 3.0842 0.028 + 0.0003 0.0793 + 0.0033 0.0204 0.9962
20 3.3648 0.031 + 0.0003 0.0792 + 0.0029 0.0193 0.9966
25 3.6813 0.024 + 0.0002 0.0739 + 0.0030 0.0262 0.9961
30 4.0735 0.025 + 0.0002 0.0746 + 0.0032 0.0272 0.9960
35 4.5356 0.033 + 0.0004 0.0735 + 0.0035 0.0278 0.9948
40 5.3824 0.028 + 0.0002 0.0753 + 0.0020 0.0226  0.9977
45 5.8945 0.029 + 0.0002 0.0688 + 0.0017 0.0266 0.9970
50 6.1684 0.033 + 0.0004 0.0684 + 0.0018 0.0317 0.9954
55 8.3455 0.036 + 0.0005 0.0775 + 0.0020 0.0413 0.9938

686  Table 2. Estimated values of parameters, root mean sgre error RMSE and determination coefficient # for ENM2 at
687 different injection flow rates in the fractured medium.

688

689

690

691

692

693



694
695

696

697
698

699

700

ENM3

n° Qp (m¥s)x10° Weq (MP)x107 a, (m) Po/Pc (-) RMSE r?

1 1.3194 0.0343 + 0.0128 0.1925 + 0.0863 0.8153 + 0.1717 0.0323 0.9539
5 2.2090 0.0318 + 0.0011 0.0984 + 0.0064 0.7558 + 0.0214 0.0199 0.9925
10 2.7312 0.0328 + 0.0009 0.0918 + 0.0048 0.7542 + 0.0165 0.0190 0.9950
15 3.0842 0.0273 + 0.0005 0.0793 + 0.0033 0.7334 + 0.0119 0.0193 0.9966
20 3.3648 0.0294 + 0.0005 0.0792 + 0.0029 0.7239 + 0.0106 0.0175 0.9972
25 3.6813 0.0222 + 0.0004 0.0739 + 0.0030 0.7063 + 0.0106 0.0228 0.9971
30 4.0735 0.0237 + 0.0004 0.0746 + 0.0032 0.7111 + 0.0115 0.0248 0.9967
35 4.5356 0.0313 + 0.0006 0.0735 + 0.0035 0.7124 + 0.0128 0.0259 0.9955
40 5.3824 0.0261 + 0.0003 0.0753 + 0.0020 0.6988 + 0.0070 0.0164 0.9988
45 5.8945 0.0270 + 0.0003 0.0688 + 0.0017 0.6813 + 0.0060 0.0164 0.9989
50 6.1684 0.0298 + 0.0003 0.0684 + 0.0018 0.6614 + 0.0059 0.0169  0.9987
55 8.3455 0.0313 + 0.0002 0.0775 + 0.0020 0.6297 + 0.0051 0.0161 0.9991

Table 3. Estimated values of parameters, root mean ggre error RMSE and determination coefficient ¥ for ENM3 at

different injection flow rates in the fractured medium.

ENM4
n° Qp (m¥s)x10° Weq (MP)x107 a, (m) Po () Pc () RMSE r?

1 1.3194 0.027 + 0.0013 0.118 + 0.0107 0.847 + 0.0195 0.667 + 0.020 0.0205 0.9815
5 2.2090 0.032 + 0.0012 0.096 + 0.0071 0.756 + 0.0203 0.749 + 0.026 0.0198 0.9926
10 2.7312 0.033 + 0.0010 0.092 + 0.0057 0.750 + 0.0175 0.756 + 0.022 0.0190  0.9950
15 3.0842 0.027 + 0.0006 0.080 + 0.0040 0.732 + 0.0129 0.739 + 0.017 0.0192 0.9966
20 3.3648 0.030 + 0.0006 0.081 + 0.0037 0.722 + 0.0116 0.734 + 0.016 0.0172 0.9973
25 3.6813 0.023 + 0.0005 0.080 + 0.0039 0.703 + 0.0122 0.739 + 0.017 0.0200 0.9977
30 4.0735 0.024 + 0.0006 0.080 + 0.0042 0.706 + 0.0135 0.743 + 0.019 0.0220 0.9974
35 4.5356 0.032 + 0.0008 0.076 + 0.0046 0.709 + 0.0147 0.730 + 0.020 0.0252  0.9958
40 5.3824 0.026 + 0.0004 0.076 + 0.0027 0.699 + 0.0072 0.703 + 0.012 0.0163  0.9988
45 5.8945 0.028 + 0.0003 0.073 + 0.0022 0.680 + 0.0061 0.708 + 0.010 0.0137 0.9992
50 6.1684 0.031 + 0.0004 0.076 + 0.0022 0.662 + 0.0056 0.707 + 0.011 0.0115 0.9994
55 8.3455 0.035 + 0.0002 0.096 + 0.0013 0.628 + 0.0021 0.728 + 0.006 0.0033  1.0000

Table 4. Estimated values of parameters, root mean sgre error RMSE and determination
different injection flow rates in the fractured medium.

coefficient ¢ for ENM4 at
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702 Figure 1. Schematic diagram of experimental setup.

703

704  Figure 2. 2d pipe network conceptualization of théractured medium.
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706 Figure 3. Average resistance to flow versus inject flow rate Q, (m’s). The circles represent the experimental valueshe
707  straight line represents the resistance to flow elzated by equation (31).
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709  Figure 4. Probability of water distribution evaluated for main path P, versus injection flow rate Q (m¥s).
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718 Figure 7. Immobile — mobile ratio @) as function of normalized velocity v/L (8) for MIM model. An outlier is evidenced for

719  v/iL=0,028 &
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721 Figure 8. Transport time (L/v) (reciprocal of normalized velocity) and exchange time (&) (reciprocal of the exchange term)
722  as function of injection flow rate Q, (m%s) for mobile - immobile model MIM.
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724 Figure 9. Travel time for main path t,,; (s) and travel time for secondary path t, (s) for ENM4 as function of injection flow

725  rate Q, (m%s).
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728 Figure 10. Comparison between the Probability of wir distribution P 5 evaluated as the square brackets term in Equation

7%8 (29 ) (straight line) and the probability of particle transition Pc(Pg) for ENM3 (circle) varying the injection flow rate Qg
7 (m¥s).
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735 Figure 12. velocityv (m/s) as function of the injection flow rate @ (m¥s) for MIM and ENM4 models. Note that for MIM
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740 Figure 13. difference of pressurdP (Pa) as function of velocity v (m/s) for ENM4. Th velocity is determined dividing Q for
741  the equivalent area,
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744  Figure 14. Dispersion D (M¥/s) as function of velocity for MIM and ENM4 models.Note that for MIM model D is determined
745 assuming the length of the medium equal to the letly of the main path (I=0.601 m). Instead for ENM4 mdel D is
746  determined as D=Q[@, /g



