In the following text please find the corrections and comments to the referee’s response
(for better understanding, comments from the referees were copied are black and our
comments in blue).

Replies to Referee #1 (Markus Hrachowitz)

General comment: The manuscript “Understanding mean transit times in Andean tropical
montane cloud forest catchments: combining tracer data, lumped parameter models and
uncertainty analysis” by Timbe et al. explores differences in transport processes in different
parts of the hydrological system. Let me upfront say that in spite of the comparatively
simplistic (i.e. time-invariant) modelling approach | do really like the approach taken by the
authors in the manuscript under review as it provides and analyses an interesting tracer data
set from different hydrological components such as soil, springs, etc. and provides some level
of experimental insight on the differences in transport processes between these components. |
do have, however, some comments that | would encourage the authors to address in detail.
The major points being that firstly I think that the manuscript is too much focused on the
choice of models themselves rather than on what these models can tell us about the underlying
processes and the way water is routed through the system. Secondly, | found that the methods
section is kept very superficial and requires some more attention and detail.

General reply: We are grateful for the valuable comments provided and therefore thank the
reviewer. As recommended, we have condensed the analyses of results and discussion on the
models, and included an analysis of processes that each retained model represents. Besides,
we expanded the method section.

Specific comments:

1) p.15872, 1.26ff: this is quite an unusual definition of what a TTD is. And | am not entirely
sure it is correct.

Definition has been changed to:

“Whereas the MTT describes the average time it takes for any given water parcel to leave the
catchment, the transit time distribution function (TTD) describes the retention behavior of all
those water parcels as a frequency function over time (McGuire and McDonnell, 2006).”

2) p.15873, 1.15ff: where do the 12 years come from? This seems a bit too specific. In
addition, there is a wide range of other methods than carbon dating for older waters. Thus
maybe rather say “[...], while, for example, carbon isotopes are employed [...]

Sentence has been change to:

“For longer MTTs of up to 200 years (Stewart et al., 2010), tritium radioisotopes are used to
analyze the storage and flow behavior in surface water and shallow groundwater systems
(Kendall and McDonnell, 1998), while, for example, carbon isotopes are employed for
analyzing the dynamics of deep groundwater with ages of hundreds to thousands of years
(Leibundgut et al., 2009).”

The following reference has been added:



“Stewart, M. K., Morgenstern, U. and McDonnell, J. J.: Truncation of stream residence time:
how the use of stable isotopes has skewed our concept of streamwater age and origin, Hydrol.
Process., 24, 1646-1659, doi:10.1002/hyp.7576, 2010.”

3) p.15873, 1.20: 1 do not think that these methods can be called “traditional” when it comes
to tracer routing. These are quite recent developments, really, compared to the use of the
convolution integral technique used here. The first and for a long time only ones who did it
were to my knowledge Barnes and Bonell (1996).

Sentence has been changed to:

“Since Barnes and Bonell (1996), researchers in tracer hydrology use quasi distributed
and...”

Besides, the following reference has been added:

“Barnes, C. J. and Bonell, M.: Application of unit hydrograph techniques to solute transport
in catchments, Hydrol. Process., 10, 793-802, doi:10.1002/(SIC1)1099-
1085(199606)10:6<793::AID-HYP372>3.3.CO;2-B, 1996.”

4) p.15873, 1.22-28: Good point! But not the MTT itself is of primary importance here (and
elsewhere in the manuscript) as it is just a very reductive metric. It is rather the shape of
the TTD that is of interest as it gives information about the underlying mixing processes
and the way water is routed through the system.

We acknowledge this fact and revised the relevant sections in the manuscript.

5) p.15874, 1.3: the terms “more recently” and “new” seem a bit out of place for a paper that
has been published almost one and a half decades ago.

We have changed the sentence to:
““Since almost one and a half decades ago, other lumped models are ...”

6) p.15874, 1.3-8: it would be good if this could be put more into context of actual
hydrological function. Why are TPLR and GM more flexible? What can they do better? For
example: they allow the representation of different mixing processes in different system
components, such as soil and groundwater. In contrast, EM-based models assume
instantaneous and complete mixing over the entire model domain, which is only likely in few,
if any, surface water systems (see e.g. Hrachowitz et al., 2013).

The following sentence was added to the section:

“The advantage of the latter functions relies on that they allow the representation of different
mixing processes in different system components, such as soil and groundwater. In contrast,
simpler models assume instantaneous and complete mixing over the entire model domain
(Hrachowitz et al., 2013).”

And the following reference has been added:

“Hrachowitz, M., Savenije, H., Bogaard, T. A., Tetzlaff, D. and Soulsby, C.: What can flux
tracking teach us about water age distribution patterns and their temporal dynamics?,
Hydrol. Earth Syst. Sci., 17, 533-564, doi:10.5194/hess-17-533-2013, 2013.”

7) p.15874, 1.17-21: seems to better fit into the methods section



We agree with the reviewer and moved the respective sentence to the method section (Section
2.5).

8) p.15875, I.7: In science, except mathematics, it is close to impossible to verify or confirm
hypotheses (Popper, 1959). In addition, as hydrology is an inherently inexact science it
may frequently also prove difficult to reject hypotheses simply due to inadequate, i.e.
scarce or erroneous data (e.g. Beven et al., 2012). | would thus suggest to replace “confirm
or reject” by the more neutral “test”

Sentence was modified as follows:
“Translated into hypotheses the study reported in this paper aimed to test if”

9) p.15875, 1.9-20: not sure this is correct. How did you test if tracers are conservative?? How
did you test that there are no stagnant waters? How did you test that stationary conditions
are dominant? The use of lumped equations does tell you very little about that. They can
also be fit to a non-stationary system, trying to get the best average fit. It seems to me as if
in this paragraph the authors mixed assumptions with hypotheses they wanted to test.

To clarify, we now differentiate between hypothesis we want to test and the assumptions we
have made in order to conduct this study, additionally we include references for each
assumption.

Hypotheses:

1. ““the diversity of the sampling sites allows evaluating the spatial variability in catchment
hydrology, identifying the dominant processes, and screening the performance of the TTD
models;”

2. ““the multi-model approach and the identifiability of their parameters enable identification
of the respective TTDs and MTTs.”

Assumptions:

1. “the used tracers are conservative, there are no stagnant flows in the system, and the
tracer mean transit time t represents the MTT of water (e.g. McGuire and McDonnell
2006);”

2. ““stationary conditions are dominant in the basin and lumped equations based on linear or
quasi-linear behaviors are applicable (Heidbuchel et al., 2012);”

3. “from insights derived of related studies (Soulsby et al., 2010; McGuire and McDonnell
2006, Rodgers et al., 2005), considering the drainage areas, the steepness of the topography
and the shallow depth of the soil layers, the transit times of the sampling sites are less than 5
yr, making iz possible to use 5*H and 61°0 as tracers.”

10) p.15877, 1.5: should read as “Major”
Change performed

11) p.15877, I.16ff: there is an entire paragraph about streamflow observations. It is however
not clear what it is needed for in this study except to define base flow conditions. Can be
largely condensed.



The referred paragraph has been condensed accordingly to what is needed to define base flow
conditions. Now the paragraph reads as follows:

“The San Francisco catchment was subdivided into seven sub-catchments with areas ranging
between 0.7 and 34.9 km? characterized by different land uses varying from pristine forest
and sub-paramo to pasture areas (Fig. 1 and Table 1). In order to define baseflow conditions,
each sub-catchment was equipped with a water level sensor (mini-diver, Schlumberger Water
Services, Delft, NL). Reference discharge measurement, using the salt dilution method, where
made frequently during the time of sampling. However, due to the high variability of the river
bed for the sites QP, QZ and QR, only continuous records for sub-catchments FH, QN, QM,
QC, and for the main outlet PL were considered as reliable to calculate stage-discharge
curves and the hydrographs, as shown in Fig. 2a for PL. For the remaining sites, discharge
measured at the moment of sampling was used.”

Please notice that Figures and Tables have been checked for their correct sequential order (as
requested by Referee#2). In this sense, figures 2a and 2c are now 2c and 2a respectively,
while Table 1 is now 2 and former Table 2 is now 1.

New version of figure 2:
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”Fig. 2. () Time series of rainfall for ECSF meteorological station, hourly discharge and
baseflows at the catchment outlet (PL); (b) weekly 520 and &°H of streamwater at PL for
baseflow and high flow conditions; and (c) weekly 5®0 and &H at the ECSF rainfall
sampling collector; light blue bubbles indicate daily 60 and relative volume of daily
rainfall.”



12) p.15878, 1.21-23: how were the rain event samples obtained? Automatic sampler? An
eager student who changed the sampled bottle after each event? Does this also mean that
there were samples that spanned for example 2 hour periods, 13 hr periods or, whatever,
4.32 day periods?? What did you do if there were 2 or more events during one day?
Conversely, what did you do when there was a 2 day rain event? Please provide details.

We revised section 2.3, not only to explain the present comment but also the comment #13.
Now Section reads as follows (find in the last paragraph the information for this comment):

“Weekly water samples for isotope analysis were collected manually in the main river (Fig.
2b), its tributaries, creeks and springs in the period August 2010 to mid-August 2012 and
later for soil water starting in September/November 2010 (Table 2), using 2 mL amber glass
bottles. Soil water sampling was performed along two altitudinal transects covered by forest
and pasture (Table 2), in 6 sites (Fig. 1) and 3 depths (0.10, 0.25 and 0.40 m) using wick-
samplers. Wick-samplers were designed and installed as described by Mertens et al. (2007).
Woven and braided 3/8 fiberglass wicks (Amatex Co. Norristown, PA, US) were unraveled
over a length of 0.75 m and spread over a 0.30 m x 0.30 m x 0.01 m square plastic plate. The
plate enveloped with fiberglass was covered with fine soil particles of the parent material and
then set in contact with the undisturbed soil, respectively at the bottom of the organic horizon
(0.10 m below surface), a transition horizon (0.25 m below surface) and a lower mineral
horizon (0.40 m below surface). The low constant tension in the wick-samplers guarantees
sampling of the mobile phase of soil water, avoiding isotope fractionation (Landon et al.,
1999).”

“Along with the weekly sampling, event based rainfall samples for isotope analyses were
collected manually in 1 L bottles using a @25 cm funnel at 1900 m a.s.l. (Fig. 1). After every
event, the sample bottles were covered with a lid and stored for analysis within a week in
amber glass bottles 2 mL. Only sample volumes > 2 mL were suitable for permanent storage
and measurements. Events with a sample volume below 2 mL were discarded. The end of a
single rainfall event was marked by a time span of 30 min without rainfall, whereby a total of
946 samples were collected with an average duration of 3.2 h (varying from 0.25 to 19 h with
up to 11 events per day). Since the solving of the convolution equation needs a continuous
time step of input data (Maloszewski and Zuber, 1982), the time resolution of the input series
was set to 7 days (Fig. 2¢). In this sense, weekly mean isotopic signatures for smaller rainfall
events during longer dry periods (only 5 among 104 weeks had no rainfall event > 2 mL
sampling volume) were interpolated using antecedent and precedent measurements.”

“ The final isotope signature used for the models represents:

- for rainfall water, the weighted mean of all events during each week (Sundays to
Saturdays) using the rainfall data recorded at the nearby meter logical station (400 m
to ECSF),

- for soil water samples, the weekly average isotope signal for each soil depth, and

- for stream, creek and spring water samples, an instantaneous isotopic concentration
in time. These samples were not flux-weighted. For stream waters, only isotope
samples from designated baseflow conditions were considered (see Section 2.5).”



13) p.15879, 1.1-12: as tracer input “concentrations” always need to be flux weighted, | was
wondering which precipitation amount was used for each elevation zone. Did you use the
catchment average rain for each elevation zone? Or did you rather use some kind of
elevation corrected precipitation for each zone? That could make quite a difference in the
catchment averaged input signal!

We used the altitude gradient calculated by Windhorst et al. (2013) to extrapolate the isotope
signals from samples collected at ECSF. The samples collected at ECSF were weighted taking
the weekly rainfall amounts collected at ECSF meteorological station (See section 2.3). In
other words, no correction according to variation of rainfall amounts along the catchments
was performed. This approach was adopted based in the following:

- Although rainfall volumes vary between meteorological stations, there is a high
correlation (at a daily or weekly time basis) among volumes registered between
stations. Meaning that even if we had used the rainfall amounts from another station,
the final weighted isotopic values would have remained similar to the ones that were
weighted with ECSF station data.

- The gradient calculated by Windhorst et al. (2013) states that only the altitude effect is
significant and that in this factor there is no influence of temperature, relative
humidity and precipitation amount or intensity.

In order to clarify, we modified the first paragraph of Section 2.4. Now it reads as follows:

“Throughout the catchment, the recorded rainfall time series from meteorological stations
are correlated (based on weekly precipitation data r*> was at least 0.6). As the models in
question are only driven by the isotope signal and not the actual amount of incoming
precipitation on site, a flux weighting based on a single station within the catchment (ECSF)
was sufficient. Given the large altitudinal gradient in the San Francisco basin, it is to be
expected that the input isotopic signal of rainfall for every sub-catchment varies according to
its elevation (Dansgaard, 1964). In this regard, Windhorst et al. (2013) estimated this
variation for the main transect of the catchment: -0.22%o &0, -1.12%. &°H and 0.6%o
deuterium excess per 100 m elevation gain. Applying this altitude gradient to the flux
weighted isotope signal under the assumption that the incoming rainfall signal is the sole
source of water, thereby excluding any unlikely source of water from outside the topographic
catchment boundaries with a different isotope signal, it was possible to derive the recharge
elevation and localized input signal in each sub-catchment. The derived recharge elevations
were used to crosscheck that they are inside the topographic boundaries of every sub-
catchment and comparable to their mean elevations.”

We also added the following paragraph:

“The justification to adopt only the mentioned gradient to extrapolate the isotope signals, was
based in previous studies on spatial and temporal variation of stable isotopes of rainfall in
the same catchment, which revealed that, only the altitude effect is significant and that in this
factor there is no influence of temperature, relative humidity and precipitation amount or
intensity (Windhorst et al, 2013).”

14) p.15880, 1.1-2: please justify in a bit more detail.



We changed the referred sentence by the following in which explanation now is more
detailed, it reads as follows:

“In contrast, all spring and creek water samples were included in the analysis since their
isotopic signatures were less influenced by particular rain events (as inferred from the
smooth shape of the observed isotope signal) in the San Francisco catchment. In regard to
soil water, we considered all samples, since each sample represents a volume weighted
weekly average signature (isotopic signatures of particular high rainfall events are smoothed
at a weekly time span).”

15) p.15881, I.18ff: this is the greatest mystery for me in this manuscript. Why would the
authors choose to dismiss an interesting high-resolution data set to aggregate the available
observed daily input data to weekly values??? That is quite an amazing waste of valuable
information. Even if rainfall events spread over two or more days, a uniform input distribution
over this period can be assumed. | am pretty sure that the uncertainty introduced by that
assumption is easily more than compensated for by the gain of additional information.

The time scale adopted for this study is now justified in the Section 2.3, please see reply to
comment#12 (last part of the second paragraph).

16) p.15881, 1.22-23: it does not matter which signatures are used in precipitation free periods
as the input tracer signal needs to be weighed by the respective precipitation volume which
per definition of precipitation free periods equals 0.

See comment 12 (explanation now included in Section 2.3).

17a) p.15882, 1.1: | would be glad if you could add the reference Hrachowitz et al. (2011) as
an overview of different methods was provided therein.

Suggested reference (see below) has been placed in the referred sentence.

“Hrachowitz, M., Soulsby, C., Tetzlaff, D. and Malcolm, 1. A.: Sensitivity of mean transit time
estimates to model conditioning and data availabilityle, Hydrol. Process., 25, 980-990,
d0i:10.1002/hyp.7922, 2011.”

18a) p.15881, 1.16ff and table 3: The methods are not described concretely enough. The
equations are fine, but how exactly was the stream concentration computed? Concentrations
are measured weekly (and instantaneously in the stream but as a volume weighted average in
precipitation and soil(?)) but water fluxes are measured more frequently, so what was done to
distribute concentrations over time?

Explanations about computation of stream concentrations are now given in Section 2.3.
Besides we have added the following paragraph at the end of Section 2.6:

“Modelled output results are available for the weekly time span chosen for the input function
(an average signal of rainfall was distributed for every week at Wednesdays 12:00). These
results were interpolated in order to perform statistical comparisons with instantaneous
observed data. For soil waters, direct comparisons were performed between predictions and
observed data.”



... In addition, how was the gamma function integrated (since it goes to infinity at t=0 when
alpha is less than one)?

Regarding to the prior parameter distributions, uniformly distributed pseudo random numbers
were generated using the RAND function in Matlab, as this function describes numbers in the
open interval between 0 and 1, they were scaled to a predefined range according to the
approach mentioned below (e.g., to avoid convergence problems of the gamma function close
to O the parameter range was limited from 0.0001 to 10, see Table 3, that now includes the
wide ranges we took for a first simulation stage). The calculation of weighted quantiles were
performed using R, the script used for this step is available and fully described at
www.paramo.be (under: Software/Hydrological data analysis and modelling/Uncertainty
analysis/GLUE analysis). Using these limits, a final simulation was performed in Matlab (at
this stage the 10,000 simulations were allowed to vary only for these final solution ranges).
For the mentioned approach we did not use any specific NSE limit. The limit of NSE > 0.45
was only used later in the analysis of results (for comparison between sites and models).

We added the following paragraph to the Section 2.7 in order to clarify the used approach:

“When looking for the optimum parameter range, we first set a wide range (maybe even
unrealistic) to be sure to cover all possible solutions (Table 3). By checking the plots of these
preliminary results we were able to identify the convergence of model solutions (we used NSE
as the objective function for all model parameters), thereby making it possible, for a second
simulation, to narrow down the parameter range for each variable. Once the variation ranges
were identified and bounded, according to the largest solution peak for every site and for
every variable, all the solutions 5% below the top NSE efficiency were selected. For these
behavioral efficiencies, weighted quantiles between 0.05 and 0.95 (90% prediction limits)
were calculated in order to refine limits of behavioral solutions for every variable. Using
these limits, a final simulation for each site and model was performed (at this stage the
10,000 simulations were allowed to vary only for the corresponding final solution ranges).
Results are shown in Tables 4 and 5, as well as in Annexes 1 and 2.

We also modified the second paragraph in Section 2.7:

“The before mentioned approach is based on the Generalized Likelihood Uncertainty
Estimation (GLUE, Beven and Freer, 2001). The GLUE approach considers that several
likely solutions are valid as long as efficiency of a particular simulation is above a pre-set,
but subjective threshold. In this sense, considering the large number of sites and models used,
no specific lower limit was set to discriminate predictions, but (as explained earlier) a range
that depended on the top efficiency for each case. Only for the analysis of results and for
intercomparison between predictions, we considered that a prediction was poor for NSE <
0.45.”

As mentioned, table 3 has been modified to show the initial range of variability for the model
parameters:



“Table 3. Lumped parameter models used for the calculation of the transit time distribution.”

Model Transit time distribution g( 7 ) Parameter(s)
range
Exponential Model (EM) 1 —t 7[1-400]
T T
Linear Model (LM) 1 7[1-400]
2T for t<2r
0 gor t>27
Exponential Piston flow Model (EPM 1-400
p (EPM) Qexp(_im_l) } 7[1-400]
z 3 for t>7(l-n") 1 [0.5-4]
Ofor t<z(l—-n7%)
Linear Piston flow Model (LPM) n 7[1-400]
20 for r-L<t<r+ D 7 [0.5-4]
n n
0 for other t
Dispersion Model (DM) -1/2 2 7[1-400]
47Dyt ttexp| - -t ‘
r r 4Dpt D, [0.5-4]
Gamma Model (GM) a-1 a [0.0001-10]
———exp !/ 1-400
p°T(a) LA
p=o/t
Two Parallel Linear Reservoirs p t 1-¢ t 75 [1-400]
TPLR — -
(TPLR) —EXp| ——— [+ ——E&Xp| — 71 [1-40]
z-f Z-f Z-s Ts
g10-1]

T = tracer’s mean transit time; # = parameter that indicates the percentage contribution of each flow type distribution; D, =
fitting parameter; o and S = shape parameters; z;, 7 = transit time of fast and slow flows, ¢= flow partition parameter
between fast and slow flow reservoirs. Units for parameters and their respective ranges are a-dimensional except for z, which
has units of time (for our case it is given in weeks).

18b) p.15882, 1.9ff: Methods again. It was stated that the model performance was evaluated
on basis of 10000 MC realizations within the GLUE framework. That is fine. Quite some
important information is missing however. What were the prior parameter distributions for the
models under consideration (ranges, uniform or informed,...)? GLUE requires the definition
of some sort of likelihood measure to weight the solutions and to construct the uncertainty
bounds (see e.g. Freer et al., 1996). Yet, no mention of that is made. What likelihood measure
was used? Nash-Sutcliffe efficiency? Were the solutions not likelihood weighted at all
(implying that ALL solutions retained as feasible, i.e. NSE > 0.45 (?), were assumed as
equally likely)? Please specify, justify and reference this part in more detail.

Comments referred to the prior parameter distribution for the models under consideration and
about the GLUE approach adopted are now fully explained in the Section 2.7 (please see
reply to comment 18a).



19) sections 3 and 4: As mentioned above, | really like the general set-up of the study. The
result that MTT in soils is by 1 order of magnitude below that of streams and springs is
extremely interesting and in addition it lends considerable experimental support to the
hypothesis put up by Hrachowitz et al. (2013), that different system components can exhibit
substantially similar transport patterns, i.e. TTDs. However, apart from that the results section
(but also the discussion) is too much centered on the models themselves. Bear in mind that
models are to be seen as mere tools. Thus the tools themselves are discussed. However, it
would be much more instructive if more emphasis was given to “what” the use of these
different tools can actually tell us about how the different catchments and (more importantly)
the different compartments of the system (soils, springs, streams) function. As a very first step
I would thus recommend the authors to largely condense the results and discussions of which
model performs best, in favour of showing what is the difference between them. In other
words, it would be highly interesting to see the actual TTDs of say the best 2 or 3 models for
each compartment. In how far are the shapes of the TTDs similar or dissimilar when
comparing one compartment to the other. Do for example the TTDs in the soil show different
general shapes than in the stream (e.g. delayed peaks as in EPM, DM or GM models with
alpha >1)? No matter if the answer is yes or no, it would tell us something quite fundamental
about the characteristics of transport and water routing processes in the different components.
I would therefore be very glad if the authors would consider adding such an aspect in the
results and discussion by showing the shapes of different TTDs in streams, soils and springs
and carefully interpret the shapes and discuss in respect with amongst others the results of
Botter et al. (2011), Hrachowitz et al.(2013) and Stewart et al. (2010). Please also note that
the results concerning soils are fundamentally different from springs and streams, as the soil
data characterize the age of resident water stored in the catchment (often termed “residence
time distribution”) and spring and stream data give the age of water in fluxes (often termed:
“transit time distribution). See Hrachowitz et al. (2013) and Botter et al. (2011) for detailed
characterizations.

Sections 3 and 4 have been changed accordingly to suggestions. Analysis of TTD have been
integrated in ‘Results’ and ‘Discussion’ sections and corresponding figures for the retained
models are now shown in Figs. 8 and 9 for soil waters and Figs. 14 and 15 for stream, creek,
and spring waters. Besides, ‘Results’ and ‘Discussion’ sections have been condensed (in
regard to which model perform best). As the changes of these sections are extensive, please
check the complete modified sections below.

Please notice that the inclusion of new figures in the Results and Discussion sections (Figures
8, 9, 14 and 15) changes the numbering of figures of the previous version of the manuscript
(Fig. 7 is now 10; Fig. 8 is now 7; Figs. 9, 10 and 11 are now 11, 12 and 13 respectively).
Additionally figures and tables have been checked for their correct sequential order (as
requested by reviewer#2), in this sense, figures 2a and 2c are now 2c and 2a respectively,
while Table 1 is now 2 and former Table 2 is now 1.

In the new version of the Section 4, the following references have been added:
“Botter, G., Bertuzzo, E. and Rinaldo, A.: Catchment residence and travel time distributions:
The master equation, Geophys. Res. Lett., 38, L11403, doi:10.1029/2011GL047666, 2011.”

“Hrachowitz, M., Savenije, H., Bogaard, T. A., Tetzlaff, D. and Soulsby, C.: What can flux
tracking teach us about water age distribution patterns and their temporal dynamics?,
Hydrol. Earth Syst. Sci., 17, 533-564, doi:10.5194/hess-17-533-2013, 2013.”
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“Roa-Garcia, M. C. and Weiler, M.: Integrated response and transit time distributions of
watersheds by combining hydrograph separation and long-term transit time modeling,
Hydrol. Earth Syst. Sci., 14, 1537-1549, doi:10.5194/hess-14-1537-2010, 2010.”

“Stewart, M. K., Morgenstern, U. and McDonnell, J. J.: Truncation of stream residence time:
how the use of stable isotopes has skewed our concept of streamwater age and origin, Hydrol.
Process., 24, 1646-1659, doi:10.1002/hyp.7576, 2010.”

Modified sections:

3 Results

3.1 Soil water

“Of all predictions the best matches of the models, with respect to the NSE objective function,
ranged between 0.64 and 0.91 (Fig. 5a). When only the best goodness of fit was considered,
the GM and the EPM models performed best in most of the sampled sites (13 from 18),
followed by the DM, LM and LPM models (Fig. 5b). Only these models were considered for
further mutual comparison. Even when the derived MTT values were similar among the
models that best fitted the objective function (Fig. 6a, Table 4 and Annex 1), the LPM model
performed best taking into consideration additional selection criteria, as shown in Figs. 6b
and 6c¢. Fig. 7 depicts, for the LPM model applied to site C2, the uncertainty and the range of
behavioral solutions for the two model parameters.”

“Considering results from the LPM model (Table 4), differences between observed and
predicted values described by the RMSE are up to 1.72%. and the larger absolute bias
accounts for 0.181%o (Table 4). Bearing in mind the ranges of behavioral solution, MTT
results were between 2.3 to 6.3 weeks for pastures soils and between 3.7 to 9.2 weeks for
forested soils, while parameterizations for # (ratio of the total volume to the volume in which
linear flow applies) ranged from 0.84 to 2.23 and from 0.76 to 1.61 respectively.”

“Regarding to the shapes of the distribution functions, Fig. 8 shows the best matching results
for two representative and comparable sampling sites (C2 for pastures and E2 for forest) for
each lumped model (results for LM model are not included since best matching results for
LPM were achieved with n~1, see Table 4). These probability (PDF) and cumulative density
functions (CDF) depict how water is routed through the system. In this sense, pasture sites
generally show a faster and higher response of the tracer peak when compared to forest sites.
The CDF (Figs. 8b and d) of all models are quite similar for the major part of the flows, even
including the linear function LPM that averages the shape of the peaks described by the other
models. Models based on exponential functions (EPM, DM, or GM in Figs. 8b and d) predict
a small portion of the flow with an exponentially delayed tail, which is larger for forested
sites than for pastures. Best distribution function results (based on highest NSEs) for all
sampled sites, according to the type of land cover, are shown in Figs. 9a and b for the LPM
and GM models applied to pasture sites, and in Figs. 9c and d for forest sites. Considering
the range of possible or behavioral solutions (e.g., shaded area represents range of solutions
for C2 site in Figs. 9a and b, and for E2 in Figs. 9¢c and d), distributions functions for each
type of model and land cover are very similar between each sampled site.”
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3.2 River and tributaries

“Considering all sites and models the criteria NSE > 0.45 was exceeded in 41 of the 63
predictions (9 sites per 7 models, Fig. 5a). Among the analyzed sites the TPLR model yielded
the best matches for PL, SF, FH, QZ, QN, QM and QC, while the EPM model for the QR and
QP sites (Fig. 5b). The GM model reached closest efficiencies when compared to the best
match for every site. Consequently only the TPLR, EPM and GM models were further
considered. Differences between MTT predictions for all sites are depicted in Fig. 10a and
results from retained models in Table 5 and Annex 2. Although MTT results according to the
best NSEs were reached using the TPLR model, compared to the GM or the EPM, these
predictions also showed the largest uncertainties (Fig. 10b) and at the same time depicted the
lowest number of observations inside the predicted range of behavioral solutions (Fig. 10c).
Considering these additional selection criteria, EPM performed better. For stream water at
the main outlet, Figs. 11-13 show the parameter uncertainties and behavioral solutions for
the TPLR, GM and EPM models, respectively.”

““Considering results from the EPM model (Table 5, Fig. 10a), the fitting efficiencies reached
a maximum NSE of 0.56 for the main stream, and NSEs between 0.48 and 0.58 for the main
tributaries (Fig. 5a). The predicted MTT at catchment outlet was 2.0 yr with a » parameter of
1.84 (a similar value was estimated for the main river at the SF sampling site, MTT = 2.0 yr
and = 1.85) and varied from 2.0 (QM, n = 1.85) to 3.9 yr (QC, n = 1.97) for the main
tributaries. Uncertainties of MTT predictions between sites were similar with a maximum
range between 14.1% and 20.4% of the predicted MTT, as derived for the FH and QM sites
(Table 5). Similarly,  ranged from 1.61 (QZ) to 2.21 (QP), the average value of # = 1.85
implies a 54% of volume portion of exponential flow and a 46% volume of piston flow; the
uncertainty for the  parameter was 25% on average.”

“Figures 14a and 14b show the shape of the TTD for the main river outlet (PL),
corresponding to the highest NSEs for EPM, GM and TPLR models. The curve for EPM
shows a delayed peak that is not accounted in the GM or TPLR models (Fig. 14a), which in
turn are very similar between them (at least after a short initial time since GM tends to
infinity for times closes to cero). Besides, the latter models show a more delayed flow tail
when compared to EPM, which show in general a faster transit time (Fig. 14b). Differences
between stream water TTDs from the main sub-catchments considering EPM and GM models
are shown in Figs. 15a and b. For comparison of the degree of similarities between sites,
these plots include the range of behavioral solutions for the main outlet (PL), thereby being
clear that apart from QC or QP, the remaining sites have similar (EPM or GM) transit time
distribution functions.”

3.3 Springs and creeks

“Of 35 predictions (7 models for 5 sites) the criterion NSE > 0.45 was fulfilled in 20 cases.
Sites with reduced isotope signal (small o) yielded lower efficiencies (Fig. 5a, Table 5 and
Annex 2). Apart from TP and QRS, in the remaining sites the criterion NSE > 0.45 was
reached at least by 5 models. TP, PLS and SFS sites were best described by using a TPLR
model (Fig. 5b). In this regard, GM and EPM were the second and third best models. Figure
10a shows the MTT results predicted by the three models, while detailed information is given
in Table 5 and Annex 2. As for stream waters, the EPM model performed best when looking
at the uncertainties and the number of observed data inside the range of behavioral solutions
(Figs. 10b and c).”
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“Considering EPM, MTTs of 4.5 yr (NSE = 0.49, = 1.74) for TP and 2.1 yr (NSE = 0.65, 5
= 1.84) for Q3 were estimated; while for springs, 2.0 yr (NSE = 0.69, » = 1.85) for PLS and
3.3 yr (NSE = 0.47, n = 1.42) for SFS. Results for the QRS site showed poor reliability due to
the reduced amplitude of 6'°0 in the observed data (Table 5), the lowest among the observed
sites (o = 0.17). Estimations of MTTs for this site was larger than 5 yr, and therefore beyond
the level of applicability of the method for natural isotopic tracers.”

“Figures 14c and d show the TTD results of EPM, GM and TPLR models, for a
representative site with long MTT (creek TP). This site show a distinctive more delayed time
to the peak (for EPM model) and longer duration of flow tails compared to stream water
(Figs. 14a and b). In Figs. 15c and d, the TTDs for all spring and creek sampled sites are
shown for the EPM and GM models. In these figures, it is noticeable that the sites Q3 and
PLS show the same patterns described previously for most of the stream waters (Figs. 14a
and b), while some differences related to more delayed flow responses can be accounted for
SFS, TP or QRS sites (Figs. 15¢ and d), which are more similar to QP and QC stream
waters.”

4 Discussion

“For each soil water site, similar MTT results of a few weeks to months were obtained
regardless of the lumped parameter model used (Fig. 6a, Table 4 and Annex 1). Although the
LPM model did not yield predictions with the highest efficiencies (Fig. 5a), provided smaller
ranges of uncertainty (Fig. 6b) and a larger number of observations inside them (Fig. 6c),
advantages that could not be inferred by using only the best matches to NSE, for which GM
and EPM models performed better than others (Fig. 5b). Using a LPM model, suitable to
describe a partially confined aquifer with increasing thickness (Maloszewski and Zuber,
1982), we found MTTs varying from 2.3 to 6.3 weeks for pastures sites and from 3.7 to 9.2
weeks for forested soils. If we consider that only the top soil horizon was sampled (maximum
sampled depth was 0.4 meters), these results are comparable to values between 7.5 and 31
weeks found in 2.0 meter soil columns of typical Bavarian soil using the DM model
(Maloszewski et al., 2006). When analyzing the distribution function for soil waters,
similarities between model results are evident (Figs. 8 and 9). Considering the range of
possible solutions of each site (shaded areas in Figs. 9a-d), it is noticeable that the major part
of the flow’s transit can be described similarly by all models, even using the simpler function
(LPM). For these sites, when considering exponential models (EPM, GM or DP), a small
portion of the flow is depicted as having a delayed tail; however, compared to the magnitude
of the total volume, an LPM distribution could still be considered as a reliable method to
estimate MTTs.”

“Considering the LPM results for MTTs of soil water from pastures (4.3 weeks on average)
and forest sites (5.9 weeks on average) as independent data sets, a two tailed p-value of
0.0075 for a Student’s t-test was calculated, meaning that the difference between the two
groups was statistically significant, although physical characteristics, like length, slope and
altitude and meteorological conditions of the respective hill slopes were more or less similar.
Land use effects, affecting soil hydraulic properties controlling the infiltration and flow of
water, were detected in previous studies within the research area (Huwe et al., 2008).
Confirming findings in other tropical catchments were published by Zimmermann et al.
(2006) and by Roa-Garcia and Weiler (2010), who stated that under grazing the hydraulic
conductivity decreased, overland and near surface flows increased, the storage capacity of
the soil matrix declined, with feedbacks on the MTT of soil water. Similar insights were found
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by Tetzlaff et al. (2007) comparing two small catchments in Central Scotland Highlands of
different land use.”

“For larger MTTs (> 1 yr), as derived for sampled surface waters and shallow springs, there
were differences when predicted results among models were compared (Fig. 10a, Table 5 and
Annex 2), especially for sites with strong damped signals of measured 620 (e.g. QRS and TP
sites). When considering uncertainties, the EPM model performed significantly better when
compared to the TPLR or GM models (Figs. 10b and c), although the latter two performed
best for most of the sampled surface waters according to the NSE objective function (Figs. 5a
and b).”

“When analyzing results from different models, dotty plots of model parameter uncertainty
are very useful to display not only the magnitude of uncertainty but also its tendency.
Similarly, the uncertainty bands of behavioral solutions can help to account for the sensitivity
of the parameter uncertainty on 5*0 modeled results. For example, when predicted results
for the PL site are compared, larger parameter uncertainty and skewness are notorious for
TPLR than for EPM or GM models (Figs. 11a-c for TPLR; 12a-c for GM; 13a and b for
EPM). At the same time EPM shows the highest sensitivity in modeled results (Figs. 11d, 12d,
13c). In order to contrast the signature of the effluent with younger waters such as rainfall,
Figs. 11e, 12e, or 13d show the damped observed (and predicted) 52O signatures at the main
outlet; a characteristic present in all analyzed surface waters. Considering the efficiencies
reached by the predictions, we should keep in mind that ranges of behavioral solutions
derived from a fixed 5% of the top NSE are generally smaller than a predefined lower limit
for all waters, e.g., a predefined lower efficiency limit of 0.30 and 0.45 were used by Speed et
al. (2010) and Capell et al., (2012), respectively.”

“For stream waters, as for springs and creeks, the main differences between EPM and GM
(or TPLR) results consisted first in a delayed response of the tracer signal in the outlet,
modeled by a parameter n > 1 (Table 5), while for GM or TPLR the response of the flow
occurred instantaneously after the spread of the tracer along the catchment (Figs. 14 and 15,
Annex 2); and secondly by a comparatively smaller exponential flow tails, which also means
that in general the flow transport is faster considering EPM than GM or TPLR models. For
these cases, regardless of the degree of efficiencies or uncertainties, the decision on which
TTD is more reliable would depend on the conceptual knowledge of the functioning of the
catchment. For the San Francisco catchment this can be gained through additional field
experiments in selected sites or sub-catchments using either higher resolution samples from
the effluents in order to analyze non steady conditions (Botter et al., 2011) or considering
different mixing assumptions (Hrachowitz et al., 2013). Another approach could be to analyze
longer time series of stable isotopes, or even to include radioactive isotopes as tritium, which
would help to crosscheck results, as it has been claimed that, in some cases, the inferences of
the processes using solely stables isotopes, underestimate the delayed part of the flow
(Stewart et al., 2010).”

“Regardless of the used model, efficiencies of MTT for stream waters were lower than for soil
waters. This was somehow expected, since the dampening effect on a catchment to sub-
catchment scale generates a smoother signal filtering/averaging the heterogeneity observed
at a single point along a precise transect. Since for most of the cases MTTs for soil waters
showed an increasing trend according to increasing soil depth, longer MTTs corresponding
to deeper soil layers are to be expected. Soil water below 0.4 m was not monitored within this
study, given the shallow soil depth and the increasing fraction of rock material with depth,
preventing the use of wick samplers.”
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“The similarities and differences between models for sites with MTTs > 1 yr, as for stream
and spring waters, gave insights about the importance to account for a proper TTD, defined
according to the conceptual knowledge of the catchment’s functioning, before calculating
MTT. In this regard, the use of a multi-model approach and uncertainty analysis is believed
essential as to be able of defining which functions describes in a better way the parameter
identifiability and bounds of behavioral solutions. By considering best matches to NSE for
stream waters, best predictions were obtained with the TPLR, EPM and GM models; being
more flexible versions of a pure exponential distribution function (i.e. EM model), which help
to account for non-linearities of the system. The same distribution functions were identified as
good predictors of observed data in a related study by Weiler et al. (2003). When comparing
the TPLR to EPM or GM models, the latter two take the non-linearity of the flow without
splitting it in two reservoirs with different exponential behaviors into account, therefore
yielding more identifiable results. However, findings by Weiler et al. (2003) suggest that the
TPLR distribution function could achieve better predictions for runoff events generated by
mixed fast and slow flows. In related studies using multiple models, the EPM model yielded
the best predictions for surface and spring waters (Viville et al., 2006). Considering this
model, in the San Francisco catchment, the average » = 1.85 value for surface waters
(similar values were found for creeks: » = 1.79 and springs: # = 1.64) implies that a
significant portion of old water (46%) is released previous to the new one (54%). The 7 value
in this study is larger than the » value found in studies for stream water in temperate small
headwaters catchments (y = 1.09, Kabeya et al., 2006; » = 1.28, McGuire et al., 2002; =
1.37, Asano et al., 2002), and close to results published by Katsuyama et al. (2009) for two
riparian groundwater systems (y = 1.6 and 1.7).”

“Regarding to the Gamma model, it was also identified as an applicable distribution function
in headwater montane catchments with dominant baseflow in temperate climate (Hrachowitz
et al., 2009a, 2010; Dunn et al., 2010). For our study area, a characteristic shape parameter
o <1 (e.g. Fig. 12b and Annex 2) was found in all stream and spring sites meaning that an
initial peak or a significant part of the flow was quickly transported to the river. Similar
results were found recently for mountain catchments of comparable size in Scotland by
Kirchner et al. (2010), who also stated the importance for accounting the best distribution
shape, which is usually assumed as purely exponential (o = 1). MTTs derived without the use
of observed data, using a purely exponential model, frequently led to an overestimation of «
and consequently an underestimation of MTTs. The higher flexibility of the GM model permits
to account for the non-linearity in the behavior of a catchment system (Hrachowitz et al.,
2010).”
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“Fig. 8. Comparative characteristic shapes of residence time distribution functions
corresponding to the best NSE using four lumped parameter models (DM, EPM, GM and
LPM): (a) and (b) for the soil site C2 located in a pastures land cover; (c) and (d) for the soil
site E2 located in a forest land cover.”
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“Fig. 9. Comparative results between LPM and GM models of soil water residence time
distributions functions corresponding to the best NSE for every sampling site: (a) pastures
sites using LPM; (b) pastures sites using GM; (c) forest sites using LPM; (d) forest sites using
GM. Gray shaded area in each plot corresponds to the range of possible shapes of the
distribution function for one of the sampling sites: C2 in sub-plots (a) and (b), and E2 in sub-
plots (c) and (d).”
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“Fig. 14. Comparative characteristic shapes of the transit time distribution functions
corresponding to the best NSE using three lumped parameter models (EPM, GM and TPLR):
(@) and (b) for the stream water sampled at the main outlet PL; (c) and (d) for the small creek
TP.”
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“Fig. 15. Comparative results between EPM and GM models of soil water transit time
distributions functions corresponding to the best NSE for every sampling site: (a) stream
water of main outlet and sub-catchments using EPM, and (b) using GM; (c) spring waters
and creeks using LPM, and (d) using GM. Gray shaded area in each plot corresponds to the
range of possible shapes of the distribution function for one of the sampling sites: the main
outlet (PL) in sub-plots (a) and (b) and TP creek in sub-plots (c) and (d).”
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20) section 3: please provide complete a table with results including information such as the
optimum model performances and the 5/95% of model performances of the retained models
and the same for all parameter(s) for all sites and components.

Tables of results for retained models (showed below) will be included as Annexes 1 and 2.

“Annex 1. Predicted results of soil waters for the Gamma, Exponential-Piston Flow,
Dispersion and Linear lumped models.”

“Table 1. Best predicted results for the Gamma model parameters (7 a) and corresponding
uncertainty ranges.”

site Mean o NSE RMSE  Bias - o
%00 %00 - %00 %00 weeks -
Pastures transect
Al -6.74 3.06 0.87 1.33 -0.04 3.6(2.9-4.4) 3.6(2.0-13.4)
A2 -672 246 073 172 007  55(456.7) 1.8(1.2-3.4)
A3 -717 318 085 154 -0.04  4.4(3.555) 2.0(1.4-8.3)
B1 -6.58 3.01 0.83 1.53 0.27 4.4(3.6-5.3) 2.0(1.4-7.0)
B2 -688 271 080 153 0.15 5.0(4.1-6.1) 1.7(1.2-3.5)
B3 -672 297 080 151 004  4.4(3.6-5.4) 2.1(1.3-5.1)
C1 -6.68 3.15 0.86 1.36 -0.04 3.5(2.7-4.2) 2.4(1.6-9.0)
Cc2 -7.19 3.11 0.88 1.19 -0.14 3.7(2.9-4.6) 2.1(1.2-5.4)
C3 -6.53 2.56 0.80 1.35 -0.01 5.3(4.5-6.4) 1.9(1.3-3.8)
Forest transect

DI -7.26 279 08l 135 012 6.1(5.1-7.5) 2.4(1.5-4.9)
D2 -7.03 2.35 0.82 1.08 0.03 7.6(6.6-9.2) 1.9(1.3-3.2)
D3 -6.82 2.40 0.82 1.16 -0.02 6.7(5.8-7.9) 1.8(1.2-3.6)
El -6.54 2.79 0.82 1.34 0.10 5.9(5.1-6.8) 2.9(1.8-7.1)
E2 -6.52 2.44 0.78 1.37 0.11 7.3(6.4-8.2) 2.7(1.8-5.6)
E3 -6.43 1.97 0.79 1.16 0.02 9.4(8.2-10.7) 2.5(1.8-4.0)
F1 -6.81 2.72 0.90 0.99 -0.06 5.0(4.2-6.1) 1.9(1.3-4.7)
F2 -6.74 2.79 0.90 0.97 -0.29 4.7(3.8-5.7) 2.4(1.4-6.4)
F3 -8.50 1.87 0.69 1.41 -0.41 10.2(8.7-12.5) 1.6(1.2-2.2)

o= standard deviation, NSE = Nash-Sutcliffe Efficiency, RMSE = Root Mean Square Error
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“Table 2. Best predicted results for the Exponential Piston flow model parameters (z, n) and

corresponding uncertainty ranges.”

i Mean o NSE RMSE Bias - "
ite 0 0 0 0
T T - oo oo weeks -
Pastures transect
Al -6.88 3.00 0.86 1.38 -0.18 3.7(2.9-4.8) 1.40(1.28-1.59)
A2 -6.91 2.53 0.73 1.71 -0.12 5.7(4.7-7.2) 1.26(1.18-1.34)
A3 -7.31 3.23 0.84 1.57 -0.18 4.5(3.5-5.7) 1.33(1.21-1.48)
B1 -6.99 3.11 0.84 1.49 -0.14 5.1(4.0-6.3) 1.33(1.24-1.43)
B2 -7.14 2.82 0.80 151 -0.10 5.5(4.4-6.9) 1.28(1.20-1.36)
B3 -6.82 2.94 0.80 1.52 -0.05 4.7(3.8-6.0) 1.30(1.21-1.40)
Cl -6.75 3.15 0.86 1.38 -0.10 3.7(2.9-4.7) 1.40(1.29-1.57)
C2 -7.15 3.09 0.88 1.18 -0.09 3.8(3.0-5.0) 1.36(1.25-1.51)
C3 -6.59 2.54 0.80 1.36 -0.08 5.5(4.5-6.9) 1.25(1.17-1.33)
Forest transect
D1 -7.40 2.79 0.83 1.28 -0.02 7.0(5.6-8.6) 1.44(1.33-1.56)
D2 -7.06 2.36 0.82 1.11 0.00 8.5(7.2-10.2) 1.32(1.26-1.39)
D3 -6.84 2.36 0.81 1.19 -0.05 7.2(6.0-8.9) 1.18(1.12-1.23)
E1l -6.67 2.75 0.82 1.34 -0.03 6.6(5.5-8.1) 1.47(1.37-1.63)
E2 -6.69 2.38 0.77 1.40 -0.07 8.2(6.9-9.8) 1.37(1.29-1.46)
E3 -6.54 1.99 0.78 1.21 -0.09 10.3(8.9-12.1)  1.45(1.32-1.58)
F1 -6.88 2.73 0.90 0.97 -0.13 5.2(4.2-6.6) 1.27(1.19-1.36)
F2 -6.61 2.65 0.91 0.95 -0.16 4.8(3.8-6.1) 1.25(1.16-1.37)
F3 -8.14 2.02 0.74 1.30 -0.05 9.6(8.4-11.7) 1.37(1.22-1.47)

o= standard deviation, NSE = Nash-Sutcliffe Efficiency, RMSE = Root Mean Square Error
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“Table 3. Best predicted results for the Dispersion model parameters (7, Dy) and
corresponding uncertainty ranges.”

Mean o NSE RMSE  Bias - D,

Site 0

00 %00 - %0 %00 weeks -

Pastures transect
Al -6.77 3.10 0.86 1.33 -0.07 3.6(3.1-4.7) 0.13(0.07-0.53)
A2 -6.63 2.45 0.72 1.76 0.16 5.7(4.7-7.8) 0.33(0.22-0.99)
A3 -7.15 3.23 0.84 1.59 -0.02 4.5(3.6-6.1) 0.22(0.11-0.97)
B1 -6.56 3.08 0.82 1.55 0.29 4.6(3.8-5.8) 0.21(0.11-0.78)
B2 -6.79 2.77 0.79 1.57 0.24 5.1(4.3-7.2) 0.31(0.21-1.06)
B3 -6.64 2.94 0.80 1.52 0.12 4.5(3.8-6.5) 0.28(0.17-0.87)
C1l -6.61 3.17 0.86 1.37 0.03 3.5(2.9-5.1) 0.19(0.10-0.85)
C2 -7.00 3.06 0.88 1.19 0.06 3.7(3.2-5.8) 0.29(0.17-0.97)
C3 -6.46 2.53 0.79 1.38 0.06 5.5(4.7-7.5) 0.32(0.20-0.84)

Forest transect
D1 -7.24 2.68 0.83 1.28 0.14 6.7(5.7-9.2) 0.31(0.18-0.64)
D2 -6.99 2.33 0.82 1.08 0.07 8.4(7.2-11.7)  0.34(0.23-0.76)
D3 -6.77 2.40 0.81 1.19 0.03 7.2(6.2-10.0)  0.32(0.19-0.82)
E1l -6.55 2.75 0.82 1.33 0.10 6.3(5.4-7.8) 0.21(0.12-0.46)
E2 -6.51 2.45 0.77 1.39 0.11 7.6(6.8-9.4) 0.20(0.13-0.43)
E3 -6.41 2.00 0.78 1.19 0.03 9.8(8.7-11.8)  0.22(0.15-0.39)
F1 -6.72 2.72 0.90 1.00 0.04 5.2(4.3-7.1) 0.29(0.18-0.83)
F2 -6.66 2.73 0.91 0.95 -0.21 4.8(3.9-6.7) 0.29(0.15-0.73)
F3 -8.49 1.90 0.70 1.39 -0.40  11.6(9.8-14.6)  0.41(0.29-0.75)

o= standard deviation, NSE = Nash-Sutcliffe Efficiency, RMSE = Root Mean Square Error

22



“Table 4. Best predicted results for the Linear Model parameter (z) and corresponding

uncertainty ranges.”

) Mean o NSE RMSE Bias -
Site 0 0 0 0
Too 100 - Too Too weeks
Pastures transect
Al -6.85 3.06 0.86 1.37 -0.15 3.5(2.8-4.5)
A2 -6.87 2.63 0.73 1.72 -0.08 5.4(4.5-6.2)
A3 -7.32 3.30 0.86 1.46 -0.19 4.4(3.5-5.2)
B1 -6.89 3.19 0.83 1.52 -0.04 4.3(3.3-4.9)
B2 -7.03 3.02 0.78 1.57 0.00 4.4(3.8-5.2)
B3 -6.77 3.03 0.79 1.54 0.00 4.4(3.4-4.9)
C1 -6.72 3.17 0.84 1.44 -0.07 3.5(2.5-4.1)
C2 -7.10 3.16 0.87 1.27 -0.04 3.5(2.9-4.5)
C3 -6.54 2.71 0.80 1.36 -0.02 4.9(4.4-5.9)
Forest transect

DI -731 291 076 150 007  5.4(486.2)
D2 -6.97 2.56 0.78 1.19 0.09 6.6(5.9-7.1)
D3 -6.74 2.61 0.80 1.22 0.05 6.0(4.9-6.6)
E1l -6.65 2.84 0.80 141 0.00 5.4(4.8-6.1)
E2 -664 255 078 137 -001  6.4(58-7.1)
E3 -6.48 2.14 0.76 1.24 -0.04 8.1(7.3-9.2)
F1 -6.79 2.90 0.89 1.05 -0.03 4.5(4.0-5.5)
F2 -6.52 2.79 0.89 1.03 -0.08 4.6(3.9-5.6)
F3 -8.42 2.37 0.64 1.51 -0.33 7.2(7.1-8.2)

o= standard deviation, NSE = Nash-Sutcliffe Efficiency, RMSE = Root Mean Square Error
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“Annex 2. Predicted results of stream, creek and spring waters for the lumped models
Gamma and Two Parallel Linear Reservoirs.”

“Table 1. Best predicted results for the Gamma model parameters (7 a) and corresponding
uncertainty ranges.”

. Mean o NSE RMSE  Bias r a
Site 0 0 0 0
/OO /OO - /00 /00 yr -

Stream

PL -8.16 0.42 0.61 0.34  0.0909 2.2(1.6-3.2) 0.62(0.55-0.71)
SF -8.03 0.43 0.62 0.34 0.0836 2.0(1.5-3.1) 0.63(0.56-0.72)
Streamwater tributaries

FH -8.21 0.42 0.58 0.36  0.0765 1.8(1.5-2.9) 0.71(0.60-0.78)
Qz -8.35 0.36 0.58 0.31  0.0596 2.7(2.0-3.9) 0.63(0.57-0.72)
QN -8.21 0.40 0.64 0.30 0.0681 2.1(1.6-3.2) 0.66(0.58-0.75)
QR -7.86 0.16 0.45 0.35 0.0915 3.5(2.6-4.4) 0.60(0.56-0.67)
QP -8.04 0.26 0.54 0.23  0.0240 4.3(3.3-5.4) 0.65(0.62-0.73)
QM -7.74 0.44 0.60 0.37  0.0706 2.5(1.8-3.7) 0.57(0.51-0.64)
QC -7.57 0.24 0.53 0.21  0.0508 4.5(3.7-5.4) 0.68(0.64-0.74)
Creeks

TP -7.63 0.20 0.45 0.18  0.0249 5.5(4.8-5.9) 0.68(0.64-0.73)
Q3 -7.66 0.45 0.68 0.30 0.0126 1.7(1.3-2.8) 0.65(0.55-0.74)
Springs

PLS -7.94 0.43 0.69 0.28  0.0945 2.6(1.9-3.7) 0.58(0.53-0.66)
SFS -1.57 0.23 0.56 0.19 0.0432 3.9(3.0-4.9) 0.74(0.68-0.81)
QRS -7.78 0.09 0.25 0.14 0.0146 6.0(5.3-6.5) 0.94(0.91-1.00)

o= standard deviation, NSE = Nash-Sutcliffe Efficiency, RMSE = Root Mean Square Error
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“Table 2. Best predicted results for the Two Parallel Reservoir model parameters (zs, ¢) and
corresponding uncertainty ranges. A fixed range from 4 to 4.5 weeks was maintained for z in

all cases.”

i Mean o NSE RMSE Bias 7 0

ite 0 0 0 0

/OO /OO - /00 /00 yr -

Stream
PL 824 044 066 032 0.0176 2.5(1.9-5.6) 0.622(0.554-0.706)
SF -8.10 0.44 0.64 0.33 0.0117 2.1(1.6-4.3) 0.631(0.555-0.721)
Streamwater tributaries
FH -8.24 0.43 0.60 0.34 0.0383 2.0(1.5-3.1) 0.708(0.605-0.782)
Qz -8.41 0.37 0.60 0.30  0.0000 2.5(1.9-4.7) 0.632(0.570-0.717)
ON -8.27 0.41 0.67 0.29 0.0141 2.2(1.6-3.6) 0.660(0.582-0.749)
QR -7.93 0.23 0.52 0.33  0.0280 4.6(3.1-7.0) 0.603(0.562-0.672)
QP -8.09 0.24 0.54 0.23 -0.0207 3.6(2.8-6.5) 0.653(0.620-0.728)
QM -7.84 0.48 0.63 0.36  -0.0307 2.7(2.1-8.3) 0.565(0.506-0.636)
QC -7.60 0.23 0.59 0.19 0.0183 5.2(3.8-6.8) 0.685(0.642-0.741)
Creeks
TP -7.65 0.17 0.51 0.17  0.0054 7.0(5.7-7.8) 0.680(0.642-0.726)
Q3 -7.71 0.43 0.67 0.31 -0.0428 1.7(1.3-2.7) 0.648(0.554-0.742)
Springs
PLS -8.04 0.44 0.78 0.24  -0.0045 4.0(2.6-8.0) 0.581(0.526-0.659)
SFS -7.58 0.23 0.59 0.19 0.0255 3.6(2.8-5.2) 0.735(0.684-0.813)
QRS -7.79 0.09 0.25 0.14 0.0119 6.1(5.3-6.6) 0.945(0.911-0.997)

o= standard deviation, NSE = Nash-Sutcliffe Efficiency, RMSE = Root Mean Square Error

21) p.15888, 1.1-4: maybe include Roa-Garcia and Weiler (2010) as reference here

Suggested reference has been included in the referred text, now it reads (please see reply to
comment 19 for the new version of Section 4):

“Confirming findings in other tropical catchments were published by Zimmermann et al.
(2006) and by Roa-Garcia and Weiler (2010), who stated...”

22) p.15889, 1.5 and elsewhere in the manuscript: this should not come as a surprise. Rule of
thumb: more parameters = more uncertainty, simply by the additional degrees of freedom in a
model, allowing for different parameter combinations giving the same results (equifinality)

We agree and deleted the sentence.

23) Table 1: not sure that the SI units for “site code” is [m a.s.l.] and for “altitude” [weeks].
Just saying... ;-)

Corrected.

24) Table 3: symbols need to be defined somewhere in the manuscript

Description of symbols (model parameters) are now included in Table 3. Please see new
version of Table 3 in the reply to comment 18a.
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25) Table 4: it would be nice to also provide and discuss a figure with the transects and the
respective MTT and/or TTD depth profiles therein.

Similarities between soil sites according to their respective distribution functions (for two
representative models) are now analyzed in the *Discussion’ section (See reply to comment
19). A more in depth analysis, than the one shown in the mentioned section, has been avoided
accordingly to the suggestions of referee #2.

26) Figure 1: please add a zoom-in to better show the transects
As showed below, figure 1 has now a zoomed area for the lower part of the catchment.
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“Fig. 1. San Francisco catchment with sampling locations and delineation of drainage area.
Acronyms in bold are defined in Table 1. Framed image shows the zoomed area of the lower
part of the catchment.”
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