10

15

20

25

Hydrol. Earth Syst. Sci. Discuss., 10, 1547515523, 2013 Hydrology and
www.hydrol-earth-syst-sci-discuss.net/10/15475/2013/ Earth System
doi:10.5194/hessd-10-15475-2013

© Author(s) 2013. CC Attribution 3.0 License.

$s900y uadQ

Sciences

Discussions

A global water cycle reanalysis
(2003-2012) reconciling satellite
gravimetry and altimetry observations
with a hydrological model ensemble

A. 1. J. M. van Dijk', L. J. Renzullo?, Y. Wada®, and P. Tregoning®

"Fenner School of Environment & Society, The Australian National University,

Canberra, Australia

2CSIRO Land and Water, Canberra, Australia

3Department of Physical Geography, Utrecht University, Utrecht, the Netherlands

*Research School of Earth Sciences, The Australian National University, Canberra, Australia

Received: 23 November 2013 — Accepted: 10 December 2013
— Published: 18 December 2013

Correspondence to: A. I. J. M. van Dijk (albert.vandijk@anu.edu.au)

Published by Copernicus Publications on behalf of the European Geosciences Union.

15475

Abstract

We present a global water cycle reanalysis that reconciles water balance estimates
derived from the GRACE satellite mission, satellite water level altimetry and off-line
estimates from several hydrological models. Error estimates for the sequential data as-
similation scheme were derived from available uncertainty information and the triple
collocation technique. Errors in four GRACE storage products were estimated to be
11-12mm over land areas, while errors in monthly storage changes derived from
five global hydrological models were estimated to be 17-28 mm. Prior and poste-
rior estimates were evaluated against independent observations of river water level
and discharge, snow water storage and glacier mass loss. Data assimilation im-
proved or maintained agreement overall, although results varied regionally. Uncertain-
ties were greatest in regions where glacier mass loss and sub-surface storage de-
cline are both plausible but poorly constrained. We calculated a global water budget
for 2003-2012. The main changes were a net loss of polar ice (-341 thr'1) and
mountain glaciers (-185 thr'1), with an additional decrease in seasonal snow pack
(—19thr'1). Storage in lakes increased by +77thr'1, due to new reservoir im-
poundments (+87 thr'1), water level change in the Caspian Sea (-27 thr'1) and
net increases in the remaining lakes combined (+17thr'1). There was no change
in subsurface storage, because groundwater depletion (—90 thr'1) was offset by in-
creased water storage in the seasonally wet tropics of South America and southern
Africa (+87 thr'1), which agrees with observed and predicted changes in the tropical
monsoon.

1 Introduction

More accurate global water balance estimates are needed, to better understand inter-
actions between the global climate system and water cycle (Sheffield et al., 2012), the
causes of observed sea level rise (Boening et al., 2012; Fasullo et al., 2013; Cazenave
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et al., 2009; Leuliette and Miller, 2009), human impacts on water resources (Wada
et al., 2010, 2013), and to improve hydrological models (van Dijk et al., 2011) and
initialise water resources forecasts (van Dijk et al., 2013). The current generation of
global hydrological models have large uncertainties arising from a combination of data
deficiencies (e.g., precipitation in sparsely gauged regions; poorly known soil, aquifer
and vegetation properties) and overly simplistic descriptions of important water cycle
processes (e.g. groundwater dynamics, human water resources extraction and use,
wetland hydrology and glacier dynamics). Data assimilation (DA) is used routinely to
overcome data and model limitations in atmospheric reconstructions or “reanalysis”.
In hydrological applications, DA has been largely limited to flood forecasting, but new
applications are being developed (Liu et al., 2012a), including promising developments
towards large-scale water balance reanalyses, alternatively referred to as monitoring,
assessment or estimation (van Dijk and Renzullo, 2011).

Here, we undertake a global water cycle reanalysis for the period 2003-2012. Specif-
ically, we attempt to reconcile global water balance model estimates from different
sources with an ensemble of total water storage (TWS) estimates derived from the
Gravity Recovery And Climate Experiment (GRACE) satellite mission (Tapley et al.,
2004). Various alternative approaches can be conceptualised to achieve this integra-
tion and the most appropriate among these is not obvious. Our approach was to use off-
line water balance estimates generated by five global hydrological models along with
several ancillary data sources to generate an ensemble of prior estimates of monthly
water storage changes. Errors in the different mo timates and GRACE products
were estimated spatially through triple collocation: sequently, a DA scheme was
designed to sequentially reconcile the model ensemble and GRACE observations. The
reanalysis results were evaluated with independent global streamflow records, remote
sensing of river water level and snow water equivalent (SWE), and independent glacier
mass balance estimates.
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2 Methods and data sources
2.1 Overall approach

We conceptualise TWS (S, in mm) as the sum of five different water stores (s in mm),
i.e., water stored in snow and ice (Sgn0y); below the surface in soil and groundwater
(Sgub)> @nd in rivers (s,;,); lakes (S;4e), @and seas and oceans (Sg.,). We ignore atmo-
spheric water storage changes, which are removed from the signal during the GRA
TWS retrieval process, and vegetation mass changes, which are assumed negligibl
The GRACE TWS estimates are denoted by y and have the same units as S but are
distinct in their much smoother spatial character.

To date, DA schemes developed for large-scale water cycle analysis typically use
Kalman filter approaches (Liu et al., 2012a). This requires calculation of co-variance
matrices and, presumably because of complexity and computational burden, has only
been applied for single models and limited regions (e.g., Zaitchik et al., 2008). We
aimed to develop a DA scheme that made it possible to use water balance estimates
derived “off line” (i.e., in the absence of DA) so we could use an ensemble of already
available model outputs. In the DA terminology of Bouttier and Courtier (1999), our
scheme could be described as sequential and near-continuous with a spatially variable
but temporally stable gain factor. The characteristics of the DA problem to be addressed
in this application were as follows:

1. alternative GRACE TWS estimates (y°) were available from different processing
centres and error estimates were required for each;

2. alternative estimates for some of the stores, s, were available from different hy-
drological models with higher definition than y°;

3. error estimates were required for each store and data source;

4. a method was required to aggregate and disaggregate spatially between s and y
as part of the assimilation.
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2.2 Data sources

The data used includﬁose needed to derive prior estimates for each of the water
cycle stores, the GRACE retrievals to be assimilated and independent observations to
evaluate the quality of the reanalysis. All are listed in Table 1 and described below.

Monthly water balance components from four global land surface model estimates
at 1° resolution were obtained from NASA’s Global Data Assimilation System (GLDAS)
(Rodell et al., 2004). The four models include CLM, Mosaic, NOAH and VIC which, for
the 2003-2012, were forced with “a combination of NOAA/GDAS atmospheric anal-
ysis fields, spatially and temporally disaggregated NOAA Climate Prediction Center
Merged Analysis of Precipitation (CMAP) fields, and observation-based radiation fields
derived using the method of the Air Force Weather Agency’s AGRicultural METeorolog-
ical modelling system” (Rui, 2011). The models are described in Rodell et al. (2004).
From the model outputs we used (i) snow water equivalent (SWE) depth, (ii) total soil
moisture storage over a soil depth that varies between models, and (iii) generated
streamflow, calculated as the sum of surface runoff and sub-surface drainage. In ad-
dition to GLDAS, we used global water balance estimates generated by the W3RA
model (van Dijk et al., 2013) in the configuration used in the Asia—Pacific Water Monitor
(http://eos.csiro.au/apwm/). For 2003-2008, the model was forced with the “Princeton”
merged precipitation, down-welling short-wave radiation, minimum and maximum dairE;E_]
temperature and air pressure data produced by Sheffield et al. (2006). From 2009 o
wards, the model primarily uses “ERA-Interim” weather forecast model reanalysis data
from the European Centre for Medium-Range Weather Forecasts. For low latitudes,
these are combined with near-real time TRMM multi-sensor precipitation analysis data
(TMPA_3B42 RT) (Huffman et al., 2007) to improve estimates of convective rainfall
(Pe{%’jancibia et al., 2013). Both were bias-corrected with reference to the Princeton
data." W3RA model estimates were conceptually similar to those from GLDAS, except
that the model includes deep soil and groundwater stores and sub-grid surface and
groundwater routing.
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The five hydrological models do not provide estimates of groundwater depletion and
storage in rivers and lakes and these were therefore derived separately. Groundwater
depletion estimates were derived for 1960-2010 by Wada et al. (2012). The time series
were calculated as the net difference between estimated groundwater extraction and
recharge. National groundwater extraction data compiled by the International Ground-
water Resources Assessment Centre (IGRAC) were disaggregaestimates of
water use intensity and surface water availability at 0.5° resolutiorn=g ge including
return flow from irrigation was simulated by a global hydrological model” Uncertainty in-
formation of groundwater depletion was generated by 10 000 Monte Carlo simulations,
with 100 realizations of extraction and recharge respectively (Wada et al., 2010). This
method tends to overestimate reported depletion in non-arid regions, where ground-
water pumping can enhance recharge from surface water. Wada et al. (2012) used
a universal multiplicative correction to account for this. Here, the correction was cal-
culated per climate region rather than world-wide, reflecting the dependency of uncer-
tainty on recharge estimates and their errors. Data for 2011-2012 were not available;
these were estimated using monthly average depletion and uncertainty values for the
preceding 2003-2010 period. Given the regular pattern of depletion in the preceding
years this by itself is unlikely to have affected the analysis noticeably.

River water storage was estimated pagating runoff fields from each of the five
models through a global routing scheme”Tn a previous study, we compared these runoff
fields with streamflow records from 6192 small (< 10000 km2) catchments worldwide
and found that observed runoff was 1.28 to 1.77 times greater than predicted by the
different models (van Dijk et al., 2013). The respective values were used to uniformly
bias-correct the runoff fields. Next, we used a global 0.5° resolution flow direction grid
(Oki et al., 1999; Oki and Sud, 1998) to parameterise a cell-to-cell river routing scheme.
We used a linear reservoir kinematic wave approximation (Vérésmarty and Moore lIl,
1991), similar to that used in several large-scale hydrology models (see recent review
by Gong et al., 2011). The monthly 1° runoff fields from each of the five models were
oversampled to 0.5° and daily time step before routing, and the river water storage
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estimates (in mm) were aggregated back to monthly 1° grid cell averages before use
in assimilation. The routing function was an inverse linear function of the distance be-
tween network nodes and a transfer (or routing) coefficient. For each model, a globally
uniform optimal transfer coefficient was found by testing values of 0.3 to 0.9 day’1 in
0.1 day‘1 increments and finding the value that produced best overall agreement with
seasonal flow patterns observed in 586 large rivers world-wide. These 586 were a sub-
set of 925 ocean-reaching rivers for which streamflow records were compiled by Dai
et al. (2009) from various sources; we excluded locations where streamflow records
were available for less than 10 yr since 1980 or less than 6 months of the year.

The resulting river flow estimates do not account for the impact of river water use
(i.e., the evaporation of water extracted from rivers, mainly for irrigation). We addressed
this using global monthly surface water use estimates that were derived in a way sim-
ilar to that used for groundwater depletion estimates (details in Wada et al., 2013).
For each grid cell, mean water use rates for 2002-2010 were subtracted from mean
runoff estimates for the same period, and the remaining runoff was routed downstream.
The resulting mean net river flow estimates were divided by the original estimates to
derive a scaling factor, which was subsequently applied at each time step. Lack of ad-
ditional global information on river hydrology meant that three simplifications needed
to be made: (i) our approach implies that for a particular grid cell, monthly river wa-
ter use is assumed proportional to river flow for that month; (ii) the influence of lakes,
wetlands and water storages on downstream flows (e.g., through dam operation) is
not accounted for, even though their actual storage changes are (see further on); (iii)
our approach does not account for losses associated with permane phemeral
wetlands, channel leakage and net evaporation from the river channel.

Variations in lake water storage were not modelled, but water level data for 62 lakes
world-wide were obtained from the Crop Explorer web site (Table 1) and include most
of the world’s largest lakes and reservoirs, including the Caspian Sea. The water level
data for these lakes were derived from satellite altimetry and converted to mm water
storage. Measurements were typically available every 10 days, from which the monthly
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mean and standard deviatio%]were used as best estimate and estimation error, respec-
tively. Storage in water bodies without altimetry data was assumed negligible. This
includes many small lakes and dams, but also some larger lakes affected by snow and
ice cover (e.g., the Great Bear and Great Slave Lakes in Canada) phemeral, dis-
tributed or otherwise complex water bodies (e.g., the Okavango de Zimbabwe and
Lake Eyre in Australia, each of which contains > 10 km® of water when full).

Delayed time, up-to-date global merged mean sea level anomalies were obtained
from the Aviso web site (Table 1). The monthly data were r ‘ected from the native
1/3° Mercator grid to regular 1° grids. An estimate of uncertainTEy—r/as derived by calcu-
lating the spatial standard deviation in sea level values within a 4° by 4° region around
each grid cell during re-projection. When sea level data were missing, because of sea
ice, we assumed sea level did not change and assigned an uncertainty of 5mm. Fol-
lowing the recent global sea level budget study by Chen et al. (2013), we assumed that
75 % of the observed sea level change was due to mass increase, and we multiplied
altimetry sea level anomalies with this factor.

We did not have spatial global time series of glacier mass changes. The five hydro-
logical models have an oversimplified representation of ice dynamics, and therefore
large uncertainties and errors can be expected for glaciated regions. To account for
this, we used the “"GGHYDRO?” global glacier extent mapping by Cogley (2003) to cal-
culate the percentage glacier area for each grid cell, and assumed a proportional error
in monthly glacier mass change estimates corresponding to 100 mm per unit glacier
area. This value was chosen somewhat arbitrarily and ensures that a substantial frac-
tion of the analysis increment is assigned to glaciers.

Three alternative GRACE TWS retrieval products were downloaded from the Tellus
web site. The three products (coded CSR, JPL and GFZ; release 05) each had 1° (nom-
inal) and monthly resolution and had been “de-striped” and smoothed with a 200 km
Gaussian filter (Swenson et al., 2008; Swenson and Wahr, 2006). The land and ocean
mass retrievals (Chambers and Bonin, 2012) were combined. Because our goal was
to assimilate the retrievals, we did not use the scaling factors provided to correct for
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leakage eﬁectgaddition, gravity fields produced by CNES/GRGS (Bruinsma et al.,
2010) at 1° resolution for 10 day periods were used. The three Tellus data sources had
been corrected for Glacial Isostatic Adjustment (GIA); we corrected the GRGS data
using the GIA estimates of Geruo et al. (2013). Initial DA experiments produced un-
expectedly strong mass trends around the Gulf of Thailand. Inspection demonstrated
that all products, to different degrees, contained a mass redistribution signal associ-
ated with the December 2004 Sumatera-Andaman earthquake. To account for this, we
calculated a time series of seasonally-adjusted monthly anomalies (i.e., the average
seasonal cycle was removed) for the region [5° N-15°, 80-110° E] and adjusted values
after December 2004 by the difference in the mean anomalies for the year before and
after the earthquake.

2.3 Data assimilation scheme

For each update cycle, the DA scheme proceeds through the steps illustrated in Fig. 1
and described below.

(1) Deriving the prior estimate for each store. The way to calculate the prior (or
background) estimate of storage sll? varied between stores. A systematic and accu-
mulating bias (or “drift”) was considered plausible for the deep soil and groundwater
components of model-derived sub-surface storage due to slow groundwater dynamics
(including extraction) and ice storage in permanent glaciers and ice sheets, which may
be progressively melting or accumulating. In these cases, the model-estimated change
in storage was assumed more reliable than the actual storage itself, and estimates from
the five models were used to calculate storage change, As? forstore/ (i=1,...,N)as:

L
DS (i) = D wx, (i) (1)
/=1

where x; is the estimate of storage change frommodel / (/ = 1,...,L) between time ¢ -1
and ¢, and w, the relative weight of model / in the ensemble based on triple collocation
15483

(see Sect. 2.4). Subsequently, s? was calculated as:

SP(7) = 52 (/) + AsP(i) @)

where sf:1 is the posterior (or analysis) estimate from the previous time step. This
approach was not suitable for model-estimated seasonal snowpack and river storage,
where the ephemeral nature of the storage means that long-term drift is not an issue
and Eq. (2) could in fact lead to unrealistic negative storage values. For these cases,
sf’ was computed as:

L
sp(i) = D wysy(i) )
/=1

where slf is the storage estimate from model /. The glacier extent map was used to

identify whether Egs. (2) or (3) should be used for sy, Similarly, no drift was expected

in the ocean and lake storage data, and these were used directly as estimates of sf.
(2) Deriving the prior estimate of GRACE-like TWS (yb). This estimate was derived

by summing all stores s? as:

N
SED XAV (4)
i=1

and subsequently applying an observation model I" to predict the observed state yb.
The observation model I wac;j;aussian smoother which can be written as:

YU = > T 2)SP Ui o)
i

®)

where j; and j, in principle should encompass all existing grid cell coordinates. In
practice, ' was applied as a moving Gaussian kernel with a size of 6 times the filter
half-width (chosen as 300 km, see further on).

15484


Reviewer
Sticky Note
May need one sentence to explain what 'leakage' is for the reader that is not aware of GRACE retrievals.

Reviewer
Sticky Note
Explain why the smoother was needed. Was it applied to both St^b and GRACE TWS estimates? 


10

15

20

10

15

20

25

(3) Updating the GRACE-like TW@e updated GRACE-like TWS, yf‘, was calcu-
Iat@i_ugom the prior (Eq. 4) and GRACE observations yt°for time t as:

VXY + 6y, =R+ k(YD - ¥p) (6)

where 8y; is the analysis increment and k a temporally static gain factor derived by
combining the error variances of modelled and observed y as follows:

2
2 w6,

ZI Wla}z,_/ + Zm Wma;zf,m

@)

where oi, and O'f‘m are the error variances for each of the L =5 GRACE-like TWS
estimates and each of the M = 4 GRACE data sources, respectively. The weight w, for
each model was computed as:

-2
_ % ®
- -2

Z/ O—y!/
and analogous for the GRACE data.

(4) Spatially disaggregating the analysis increment to the different stores. The ob-
servation model was inverted and combined with the store error estimates in order to
disaggregate the analysis increment 5y;, as follows:

854(i,j1) = D QUj1, )61 (j2) 9)
J2

w

where the disaggregation operator Q can be written as:

[ (isr j2)0 201 o)

Q(j. y i) =
R A TWAT=TTN
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To implement this, spatial error estimates are required for each store. For lakes and
seas, the errors were estimated from the observations (see Sect. 2.2). For the model-
based estimates, the error was calculated for each time step and store as:

o)=Y w, [x;(/)— As';’(/)]z (11)

The resulting error estimates are spatially and temporally dynamic and respond to
the magnitude of the differences between the different model estimates. For s, and
Ssnow We combined the error estimates derived by Eq. (11) with the estimated errors in
groundwater depletion and glacier mass change, respectively (see Sect. 2.2), calculat-
ing total error as the quadratic sum of the composite errors.

(5) Updating the stores. In the final step, the state of each store is updated:

S3(7) = sP(i) + 854(/) (12)
Subsequently, the procedure is repeated for the next time step.
2.4 Error estimation

Spatial error fields are required for all data sets to calculate the gain factor k and
where necessary these were estimated using the triple collocation technique (Stoffe-
len, 1998). This technique infers errors in three independent time series by analysing
the covariance structure. The approach has been applied widely to estimate errors in,
among others, satellite-derived surface soil moisture (Dorigo et al., 2010; Scipal et al.,
2009), evapotranspiration (Miralles et al., 2011) and vegetation leaf area (Fang et al.,
2012). A useful description of the technique, the assumptions underlying it and an ex-
tension of the theory to any number of time series greater than three was provided
by Zwieback et al. (2012). Application requires three (or more) estimates of the same
quantity. This was achieved by transforming the model-derived storage estimates into
large-scale, smoothed TWS estimates as derived from GRACE measurements. First,
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for each model data source, prior TWS estimates were produced by adding all water
storage anomalies (Eq. 4). Second, a Gaussian filter was applied to create a common
spatial smoothness in the different data (Eq. 5). Inspection of the original Tellus data
made clear that the 200 km filter that was already applied as part of the retrieval had
only removed part of the spurious aliasing in the data sets, and propagated these arte-
facts into the error estimates and reanalysis. Therefore a smoother, 300 km filter was
applied to the Tellus TWS data sets. Because consistency is required for triple collo-
cation, the same filter was applied to the GRGS and model-derived TWS estimates.
Several alternative Tellus and model time series were available, and therefore the triple
collocation technique could be used to produce alternative error estimates from mul-
tiple triplet combinations (i.e., five for Tellus TWS, three for model TWS, and 15 for
GRGS TWS). The agreement between these alternative estimates was calculates as
a measure of uncertainty in estimated errors.

Important assumptions of the collocation technique are that: (1) each data set is free
of bias relative to each other, (2) errors do not vary over time, (3) there is no temporal

autocorrelation in the errors, and (4) there is no correlation between the errors in tk@

respective time series (Zwieback et al., 2012). Each of these assumptions is diffic
to ascertain, but some interpretative points can be made. Assumption (3) is unlikely
to hold: there will almost certainly be systematic errors and biases that cause tem-
poral correlation in the errors in the modelled TWS (e.g., due to poorly represented
processes causing secular trends such as groundwater extraction or glacier melt). We
avoided this assumption by applying the triple collocation to monthly storage changes
rather than actual storage. Temporal correlation in the GRACE errors is unlikely, how-
ever. Following conventional error propagation theory, the error in individual mass esti-
mates was therefore calculated by dividing the estimated error in mass changes by V2.
Assumption (4) will not be fully met where estimates are partially based on the same
principle or measurement. In this study, arguably the most uncertain assumption is that
the GRGS and Tellus errors are uncorrelated. The basis for this assumption is that most
of the error is likely to derive from the TWS retrieval method rather than the primary
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measurements, and that the retrieval methods are distinctly different (e.g., the GRGS
method uses ancillary observations from the Laser Geodynamics Satellites; Tregoning
et al., 2012). Some evidence that the errors are largely uncorrelated is that global av-
erage correlation among the Tellus TWS time series was stronger (0.61-0.73) than
between any of the Tellus and GRGS time series (0.49-0.58). Nonetheless, there may
well have been a residual covariance between errors in the GRGS and Tellus prod-
ucts. In triple collocation, this would cause some part of the differences to be wrongly
attributed to the prior estimates rather than the observation products. Therefore, we
conservatively inflated the calculated value by including an additional error of 5mm
through quadratic summation before calculating the gain factor (Eq. 8).

Uncertainty in the derived error estimates also arises from sample size, i.e. the num-
ber of collocated observations (N = 111). Previous studies have suggested that 100
samples are sufficient to produce a reasonable estimate (Dorigo et al., 2010), although
Zwieback et al. (2012) calculate that the relative uncertainty in the estimated errors
for N = 111 can be expected to be in the order of 20 %. Such a modest uncertainty in
derived errors will not have a strong impact on the reanalysis results.

2.5 Evaluation against observations

Evaluation of the reanalysis results for sub-surface storage was a challenge: ground
observations are not widely available at global scale, are often conceptually different
from the reanalysis terms, require tenuous scaling assumptions for comparison at 1°
grid cell resolution, and many existing data sets contain few or no records during 2003—
2012. For example, comparison with in situ soil moisture measurements or groundwa-
ter bore data is beset by such problems (Tregoning et al., 2012). Similarly, an initial
comparison with near-surface (< 5 cm depth) soil moisture estimates from passive and
active microwave remote sensing (Liu et al., 2012b, 2011) showed that the conceptual
difference between the two quantities was too great for a meaningful comparison.

We were able to evaluate the reanalysis for storage in rivers, seasonal snow pack and
glaciers, however. Firstly, a total of 1264 water level time series for several large rivers
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worldwide were obtained from the Laboratoire d’Etudes en Geodésie et Océanogra-
phie Spatiales (LEGOS) HYDROWEB web site (Table 1). The river levels were retrieved
from ENVISAT and JASON-2 satellite altimetry (Crétaux et al., 2011) and included un-
certainty information for each data period. From each time series, we removed data
points with an estimated error of more than 25 % of the temporal standard devia-
tion (SD). Another 165 altimetry time series were obtained from the European Space
Agency (ESA) River&Lake web site (Berry, 2009). These were selected to increase
measurement period and sample size for the available locations, as well as extending
coverage to additional rivers. The ESA time series did not include error estimates; in-
stead data plots were judged visually to assess the likelihood of measurement noise;
seemingly affected time series and outlier data points (> 3 SD) were excluded. The total
1429 time series were merged for individual 1° grid cells. In each case, the longest time
series was chosen as reference. Overlapping time periods were used to remove (typ-
ically small) systematic biases in water surface elevation between time series; where
there was no overlap the time series were normalised by the median water level. The
ESA data were used where or when HYDROWERB data were not available, and merged
time series with fewer than 24 data points in total were excluded. The resulting data set
contained time series for 442 grid cells with an average 61 (maximum 115) data points
during 2003-2012. The relationship between river water level and river discharge (i.e.,
the discharge rating curve) is usually non-linear but unknown, and therefore a direct
comparison could not be made. Instead, we calculated Spearman’s rank correlation
coefficient (o) between estimated discharge and observed water level

Secondly, we used the already mentioned discharge data for 586 &Cean-reaching
rivers world-wide (Dai et al., 2009). From these, we selected 430 basins for which the
reported drainage area was within 20 % of the area derived from the 0.5° routing net-
work. The ratio between reported and model-derived drainage area was used to adjust
the reanalysis estimates and these were compared with recorded mean streamflow.
The recorded mean annual discharge values are not for 2003—2012, but we assume
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that the differences are not systematic and, therefore, that any large change in agree-
ment may still be a useful indicator of reanalysis quality.

Third, snow storage estimates were evaluated with the European Space Agency
GlobSnow product (Luojus et al., 2010). This data set contains monthly 0.25° resolution
estimates of snow water equivalent (SWE, in mm) for low relief regions with seasonal
snow cover north of 55° N during 2003-2011. The SWE estimates are derived through
a combination of AMSR-E passive microwave remote sensing and weather station data
(Pulliainen, 2006; Takala et al., 2009). The GlobSnow data were aggregated to 1° res-
olution. The root mean square error (RMSE) and the coefficient of correlation (r2) were
calculated as measures of agreement.

Finally, we compared the estimated trends in storage in different glacier regions to
trends for mountain glaciers compiled by Gardner et al. (2013) for 2003—2010 and for
Greenland and Antarctica by Jacob et al. (2012) for 2003—2009. In some cases, these
mass balance estimates were based on independent glaciological or ICESAT satellite
observations and these were the focus of comparison. Other estimates were partially
or wholly based on GRACE data, which makes comparison less insightful.

3 Results
3.1 Error estimation

The mean errors derived by the triple collocation technique were of similar magnitude
for the GRACE and model estimates (Table 2; note that the numbers listed are for
storage change rather than storage per se and are not adjusted for GRACE error co-
variance; cf. Sect. 2.4). The relatively low values for the coefficient of variation suggest
that the error estimates are reasonably robust.

The spatial error in merged GRACE and model storage change estimates were cal-
culated analogous to Eq. (8). The resulting GRACE error surface was relatively homo-
geneous with an estimated error of around 5-20 mm for most regions, but increasing
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to 20—40 mm over parts of the Amazon and the Arctic (Fig. 2a). The combined model
error surface suggest that errors are smaller than those in the GRACE data for arid re-
gions (< 10 mm) but higher elsewhere, increasing beyond 80 mm in the Amazon region
(Fig. 2b). The mean errors over non-glaciated land areas were similar, at 18.1 mm for
the combined model and 14.1 mm for the combined GRACE data. Assuming no tem-
poral correlation and allowing for error covariance among GRACE products reduces

the latter to 11.2mm (i.e., \/14.12/2 + 52).

3.2 Analysis increments

Inspection of the analysis increments and the overall difference between prior and
posterior estimates provides insights into the functioning of the assimilation scheme

(Fig. 3). The spatial pattern in root mean squared (RMS) TWS increments (\/ §5?)
emphasises the important role of the world’s largest rivers in explaining mismatches
between expected and observed mass changes, particularly in tropical humid regions
(Fig. 3a). Large increments also occurred over Greenland (mainly due to updated ice
storage changes) and the seasonally-wet regions of Brazil, Angola and south Asia
(sub-surface storage). When considering the RMS between prior and posterior es-
timates of actual TWS as opposed to monthly changes (Fig. 3b) a similar pattern
emerges, but with more emphasis on the smaller but accumulating difference in es-
timated storage over Greenland, Alaska and part of Antarctica (due to updated ice
mass changes) and northwest India (groundwater depletion).

3.3 Mass balance and trends

The trend and monthly fluctuations (expressed in standard deviation, SD) in global
mean total water mass provides a test of internal consistency. Among the original
GRACE TWS data, the GRG data showed the smallest SD (0.04 mm) and linear trend
(0.007 £0.001 SDmm yr"1 )- The three Tellus retrievals showed larger SD (4.7—6.4 mm)
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and trends (-0.37+0.21 to —-0.23+0.20 mmyr’1). The merged GRACE TWS data had
intermediate SD (3.97 mm) and trend (-0.32 mmyr‘1). Assimilation reduced SD (to
3.1 mm) and removed the residual trend (-0.01 + 0.10mmyr’1). The discrepancies in
global water mass trends in the merged GRACE data and in the analysis were mostly
located over the oceans, and therefore the achieved mass balance closure can be
attributed to the influence of the prior sea mass change estimates (Fig. 4).

3.4 Regional storage trends

The spatial pattern in linear trends in the merged GRACE TWS (y,) and the syn-
thetic reanalysis signal (y,,) agree well (Fig. 4b and c), suggesting that the assimilation
scheme is able to reconcile the prior estimates and observations as intended. Sea-
sonally adjusted anomalies were calculated for the prior and posterior estimates of the
different water cycle components by subtracting the mean seasonal pattern. The 2003—
2012 linear trends in these adjusted anomalies (Fig. 5) show that the analysis has (i)
increased spatial variability in sub-surface water storage trends, with amplified increas-
ing and decreasing trends (Fig. 5a and b); (ii) drastically changes trends in snow an

ice storage and typically made them more negative (Fig. 5¢ and d); (iii) reversed riv

water storage trends in the lower Amazon and Congo Rivers (Fig. 5e and f). The reanal-
ysis shows a complex pattern of strongly decreasing and increasing sub-surface water
storage trends in northwest India (Fig. 5b). This may be an artefact from incorrectly
specified errors in the groundwater depletion estimates (see Sect. 4.2). Less visible is
that the analysis often reduced negative storage trends in other regions with ground-
water depletion, that is, decreased the magnitude of estimated depletion. Because all
sub-surface storage terms were combined, a revised estimate of groundwater deple-
tion cannot calculated directly, but it can be estimated: for all grid cells with significant
prior groundwater depletion estimates (> 0.5mm yr‘1, representing 99 % of total global
groundwater depletion) the 2003—2012 trend in sub-surface storage change was esti-
mated a priori at —168 + 3 (SD) kmsyr_1 of which 157 km® (94 %) due to groundwater
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depletion and the remaining —11 km? due to climate variability. Analysis reduced the to-
tal trend for these grid cellsto —101+3 km?® per year, from which a revised groundwater
extraction estimate of ca. 90 km® can be derived.

From the seasonally adjusted anomalies, time series and trends of global storage in
different water cycle components were calculated. We calculated snow and ice mass
change separately for regions with seasonal snow cover, high (> 55°) latitude glaciers,
and remaining glaciers (Fig. 6). The mean 2003-2012 trends are listed in Table 3; for
the posterior estimates also as equivalent sea level rise (SLR, by dividing by the fraction
of Earth’s surface occupied by oceans, i.e., 0.7116) and volume (km3 yr'1, equivalent
to Gt yr'1). Some of the effects of the assimilation were to (i) remove the decreasing
trend in prior global terrestrial sub-surface water storage estimates (Fig. 6a), (ii) change
the poor prior estimates of polar ice cap mass considerably (Fig. 6f and g), (iii) reduce
the estimated rate of ocean mass increase from 1.84 £0.06 (SD) mm to 1.45+0.05mm
(Table 3), and (iv) achieve mass balance closure between net terrestrial and ocean
storage changes (cf. Sect. 3.3).

3.5 Evaluation against river level remote sensing

The rank correlation (o) between river water level and estimated discharge for the
445 grid cells with altimetry time series are shown in Fig. 7. Overall there was no
significant change in agreement between the prior (o = 0.63 £ 0.27 SD) and posterior
(0 = 0.63 £ 0.26) estimates, with an average change of +0.01 £ 0.12. However, p did
improve for more locations than it deteriorated (286 vs. 159). There are some spatial
patterns in the influence of assimilation (Fig. 7c¢): strong improvements in the northern
Amazon and Orinoco basins and most African rivers, except for some stations along the
Congo and middle Nile Rivers, and reduced agreement for rivers in China (where prior
estimates agreed well) and most stations in the Parana and Uruguay basins (where
they did not). In most remaining rivers, agreement did not change much; in some cases
because it was already very good (e.g., the Ganges-Brahmaputra and remainder of the

15493

Amazon basin). Altimetry and estimated discharge time series are shown in Fig. 8 for
grid cells with the most data points in three large river systems. In these cases, there
is reasonably clear improvement in agreement.

3.6 Evaluation against historic river discharge observations

The prior estimate of discharge (i.e., the error-weighted average of the four bias-
corrected models) provided estimates that were already considerably better than any
of the individual members (Table 4, Fig. 9). Assimilation led to small improvements
in RMSE, from 47 to 44 kmsyr‘1, and a very slight increase in the median absolute
percentage difference, from 40 to 41 %. Combined recorded discharge from the 430
selected basins was 20909 kmsyr'1, representing 90 % of estimated total discharge to
the world’s oceans according to Dai et al. (2009). Assimilation improved the agreement
with this number from —11 % to —4 %, of which about half (5 %) is due to a closer esti-
mate of Amazon River discharge. However, modelled and observed discharge values
relate to different time periods and so it is not clear whether this should be considered
evidence for improvement or merely reflects multi-annual variability.

3.7 Evaluation against snow water equivalent remote sensing

The spatial RMSE and correlation between the prior and posterior snow water equiv-
alent (SWE) estimates and the GlobSnow retrievals are shown in Fig. 10. Although
RMSE deteriorated in a majority (58 %) of grid cells, correlation remained unchanged
at % =0.79 and average RMSE improved slightly from 23.0 to 22.0 mm. Assimilation
appeared most successful for grid cells with large prior RMSE in northern Canada
(Fig. 10a—c).

3.8 Evaluation against glacier mass balance estimates

Glacier mass changes reported in literature (Gardner et al., 2013; Jacob et al., 2012)
are listed in Table 5 and compared to regional mass trends associated with glaciers
15494
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and other components of the terrestrial water derived from the analysis. In the polar
regions (e.g., Antarctica, Greenland, Iceland, Svalbard, and the Russian Arctic) a large
part of the gravity signal is necessarily from glacier mass change. Published trends
for most of these regions also heavily rely on GRACE data and hence our estimates
are generally in good agreement. Remaining differences can be attributed to the prod-
ucts, product versions and post-processing methods used, without providing insight
into the accuracy of our analysis estimates. In the other regions, the glaciated areas
are smaller and surrounded by ice-free terrain, which strongly increases the poten-
tial for incorrect distribution of analysis increments, as evidenced by the high trend
ratios (> 47 %, last column Table 5). As a consequence, glacier mass trends are not
well constrained by GRACE data alone and alternative observations are required. The
agreement with independently derived trend estimates varies. For the Canadian Arc-
tic Archipelago, Alaska and adjoining North America, the assimilation scheme assigns
only 45 % (53 thr‘1) of the total regional negative mass trend (-116 thr‘1) to glacier
mass changes, with most of the remainder (63 thr‘1) assigned to sub-surface water
storage changes. Excluding regions for which independent storage change estimates
are not available (Greenland, Antarctica and Patagonia), our estimate of total glacier
storage change in the world’s glaciers (-103km®yr~") was 83km>yr~' less than the
estimate of Gardner et al. (2013) (-186 km>yr™").

4 Discussion
4.1 Estimated errors

The triple collocation method produced estimates of errors in month-to-month changes
in GRACE TWS estimates of 13.5—16.0 mm over non-glaciated land areas. From these,
GRACE TWS errors of 10.8—-12.4 mm can be estimated (cf. Sect. 3.1). By comparison,
reported uncertainty estimates based on formal error propagation are larger, usually
in the order of 20—25 mm (e.g., Landerer and Swenson, 2012; Tregoning et al., 2012;

15495

Wahr et al., 2006). One plausible explanation is that the 5 mm we assumed to correct
for potential covariance in errors between the GRACE products is too low, another that
the formal uncertainty estimates are too conservative. Formal error analyses predict
that the retrieval errors decrease towards the poles due to the closer spacing of satel-
lite overpasses (Wahr et al., 2006), but surprisingly we did not find such a latitudinal
pattern.

The mean errors in monthly changes in prior TWS for the different models were 16.5—
27.9 mm. We do not have independent estimates of errors in modelled large-scale TWS
with which to compare, but the estimates would seem plausible and perhaps less than
we anticipated. From a theoretical perspective, violation of the assumptions underpin-
ning triple collocation is likely to have produced overestimates of model error, if any-
thing. The calculated error in the prior estimates over oceans and very stable regions
such as Mongolia and the Sahara are around 5 mm (Fig. 2). This provides some further
evidence to suggest that the 5mm GRACE error inflation we applied may have been
reasonable. The largest errors in the merged model estimates (> 40 mm) were found
for humid tropical regions and high latitudes. The former may be attributed to the com-
bination of large storage variations and often uncertain rainfall estimates. Precipitation
measurements are also fewer at high latitudes, and here the poor prediction of snow
and ice dynamics and melt water river hydrology are also important factors.

4.2 Assimilation scheme performance

The spatial pattern in analysis increments emphasises the importance of water stores
other than the soil in explaining discrepancies between model and GRACE TWS es-
timates (Fig. 3). Adjustments to storage changes in large rivers, groundwater deple-
tion, mass changes in high latitude ice caps and glaciers (e.g., Greenland, Alaska and
Antarctica) and lake water levels (e.g., the Caspian Sea and the North-American Great
Lakes) were all considerable within their region, absorbing monthly analysis increments
or long-term trend discrepancies or both. The analysis results also illustrate the insuf-
ficiently constrained problem of separating gravity signals due to mass changes in
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mountain glaciers from nearby sub-surface water storage changes. This was particu-
larly evident around the Gulf of Alaska and northwest India, where decreases can be
expected not only in glacier mass but also in sub-surface storage due to, respectively,
a regional drying trend and high groundwater extraction rates (Fig. 5a). We suspect
that unexpectedly strong increasing storage trends in parts of northwest India are be-
cause the prior groundwater depletion estimates were too high and the assigned errors
too low, causing the analysis update to distribute increments incorrectly. We could have
addressed this by inflating the local groundwater depletion estimation errors, but more
research is needed to understand the underlying causes. Plausible causes are that
groundwater extraction is overestimated, or that extraction is compensated by induced
groundwater recharge (e.g., from connected rivers) (see Wada et al., 2010 for further
discussion).

Mass balance closure was not enforced and hence provides a useful diagnostic of
reanalysis quality. The GRGS product achieved approximate global mass balance clo-
sure at all time scales, but the three Tellus products showed a seasonal cycle and long-
term negative trend in global water mass. Accounting for atmospheric water vapour
mass changes (from ERA-Interim reanalysis and the NVAP-M satellite product, data
not shown) could not explain the trends and in fact increased the seasonal cycle in
global water mass. Data assimilation reduced the seasonal cycle and entirely removed
the trend in total water mass, thanks to the prior estimates of sea mass increase.
For comparison, we calculated average ocean mass increases by an alternative, more
conventional method, which involved avoiding areas likely to be affected by nearby land
water storage changes. Excluding a 1000 km buffer zone produced a 2003-2012 mass
trend of +0.58 to +0.72 mmyr’1 for the three Tellus retrievals, +1.12mmyr'1 for the
GRGS retrieval, and +0.75 mmyr‘1 for the merged GRACE data. Data assimilation
produced a stronger trend of +1.22 mmyr'1 due to the influence of the prior estimate
of +1.67 mmyr'1. Our prior estimate followed Chen et al. (2013), who used an itera-
tive modelling approach to attribute 75 % of altimetry-observed SLR to mass increase.
Chen et al. (2013) argue that the conventional method produces underestimates of
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ocean mass increase. Indeed, the trends we calculated for the “buffered” ocean re-
gions are lower than for the entire oceans (+1.22 vs. +1.45 mmyr'1 for the reanalysis,
and +1.67 vs. +1.84 mm yr'1 for the prior estimates; Table 3). However the reduction in
sea mass change of 0.39 mmyr’1 from prior to analysis is likely to reopen the problem
of reconciling mass and temperature observations with the altimetry derived mean sea
level rise of +2.45 + 0.08 mmyr'1 (cf. Chen et al., 2013).

4.3 Evaluation against observations

The reanalysis generally did not have much impact on the agreement with river and
snow storage observations, with small improvements for some locations and small
degradations for others. While a robust increase in the agreement would have been
desirable, the fact that agreement was not degraded overall was encouraging. The
data assimilation procedure applied has the important benefit of bringing the estimates
into agreement with GRACE observations. Moreover, performance improvements with
respect to river discharge and level data did occur in the Amazon, where they make
an important contribution to TWS changes. Similarly, snow water equivalent estimates
were improved in the North-American Arcti re errors in the prior estimates were
largest. This demonstrates that GRACE data can indeed be successfully used to con-
strain water balance estimates, although further development may be needed to avoid
some of the undesired performance degradation for water balance components that do
not contribute much to the TWS signal.

The models used for our prior estimates provided poorly constrained estimates of
ice mass balance changes, and our reanalysis ice mass loss estimates should not
be assumed more accurate than estimates based on more direct methods (Table 5).
Our analysis is uniqgue when compared to previous estimates based on GRACE, in
that data assimilation allowed some of the observed mass changes to be attributed
to other water balance components within the same region, depending on relative un-
certainties in the prior estimates. Comparison against independent estimates of glacier
mass balance changes also demonstrated the challenge of correct attribution, however.
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Glacier mass balance estimates were in good agreement for several regions, but es-
timates for North American glaciers in particular were questionable: their combined
mass loss (-53 thr‘1) was much lower than the estimates derived by independent
means (—-124 thr‘1; Table 5). This can be explained by incorrect specification of er-
rors. Two caveats are made: (i) the GIA signal is relatively large for these three regions
(+50 thr"1) and hence GIA estimation errors may have had an impact; and (ii) a signif-
icant change in sub-surface water storage is plausible in principle; for example, higher
summer temperatures could be expected to enhance permafrost melting and runoff, as
well as enhance evaporation. More accurate spatiotemporal observation and modelling
of glacier dynamics would appear to be necessary to resolve this issue.

4.4 Contributions to sea level rise

The reanalysis estimate of net terrestrial water storage change of —495 thr‘1 (Table 3)
appears a plausible estimate of ocean mass change, equivalent to ca. +1.4 mmyr‘1
sea level rise. Our results confirmed that mass loss from the polar ice caps is the great-
est contributor to net terrestrial water loss, with Antarctica and Greenland together con-
tributing —341 thr‘1. The next largest contribution was from the remaining glaciers.
We combine the reanalysis estimate of —102 G’tyr"1 with another —83 G.tyr‘1 estimated
to be misattributed (cf. Sect. 3.8) and obtain a revised estimate of —185 thr‘1 . A small
but significant contribution of —1Qthr‘1 (Table 3) was estimated to originate from re-
ductions in seasonal snow cover (particularly in Quebec and Siberia; Fig. 5¢ and d).
Inter-annual changes in river water storage were not significant, but a small contribu-
tion of —10G’[yr‘1 was attributed to lake storage. This was mainly associated with the
Caspian Sea (-27 thr"1, cf. Fig. 5) which experiences strong multi-annual water stor-
age variations depending on Volga River inflows. Not included in this number is the
terrestrial storage increase associated with new reservoir impoundments, which were
not included in the lake altimetry data. These were estimated to have stored a com-
bined +87 thr‘1, most of which in China (Wada et al., 2012). The associated trend
would have been assigned mainly to the subsurface storage component.
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Finally, the analysis suggested at statistically insignificant change of -2 thr"1 in
sub-surface storage globally. Adding back the suspected misattribution of 83 thr‘1
associated with glaciers and subtracting the 87 thr"1 associated with new reservoir
impoundments produces a revised estimate of —6 thr‘1 (cf. Fig. 6a). Combining this
with the —90 thr"1 attributed to groundwater depletion suggests that storage over the
remaining land areas increased by 84 thr‘1. Calculating sub-surface storage trends
by latitude band suggests that most of the terrestrial water “sink” can be found between
0-30°S (Fig. 11). The main regions experiencing increases are in the Okavango and
upper Zambezi basins in southern Africa and the Amazon and Orinoco basins in north-
ern South America (Fig. 5b). Storage increases for these regions are also evident from
the original GRACE data (Fig. 4a) and cannot be attributed to storage changes in rivers
or large lakes. The affected regions contain low relief, poorly drained areas with (sea-
sonally) high rainfall. In such environments, the storage changes could occur in the soil,
groundwater, wetlands, or a combination of these. Further attribution is impossible with
out additional constraining observations (Tregoning et al., 2012; van Dijk et al., 2011).
The ten-year analysis period is short and this cautions against over-interpreting this ap-
parent “tropical water sink”. However it is of interest to note that a gradual strengthening
of global monsoon rainfall extent and intensity has been observed, and is predicted to
continue (Hsu et al., 2012). In any event, the difference between prior and posterior
trends in Fig. 11 illustrates that the current generation hydrological models, even as
an ensemble, should not be assumed a reliable surrogate observation of long-term
sub-surface groundwater storage changes. GRACE observations proved valuable in
improving these estimates.

5 Conclusions

We presented a global water cycle reanalysis that reconciles four total water stor-
age retrieval products derived from GRACE observations with water balance estimates
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derived from an ensemble of five global hydrological models, water level measurements
from satellite altimetry, and ancillary data. We summarise our main findings as follows:

1. The data assimilation scheme generally behaves as desired, but in hydrologically
complex regions the analysis can be affected by poorly constrained prior esti-
mates and error specification. The greatest uncertainties occur in regions where
glacier mass loss and sub-surface storage declines (may) both occur but are
poorly known (e.g., northern India and North-American glaciers).

2. The error in original GRACE TWS data was estimated to be around 11-12mm
over non-glaciated land areas. Errors in the prior estimates of TWS changes are
estimated to be 17—28 mm for the five models.

3. Water storage changes in other water cycle components (seasonal snow, ice,
lakes and rivers) are often at least as important and uncertain as changes as
sub-surface water storage in reconciling the various information sources.

4. The analysis results were compared to independent river water level measure-
ments by satellite altimetry, river discharge records, remotely sensed snow water
storage, and independent estimates of glacier mass loss. In all cases the agree-
ment improved or remained stable compared to the prior estimates, although re-
sults varied regionally. Better estimates and error specification of groundwater
depletion and mountain glacier mass loss are required.

5. Data assimilation achieved mass balance closure over the 2003—2012 period
and suggested an ocean mass increase of ca. 1.45mm yr~'. This reopens some
question about the reasons for an apparently unexplained 0.39 mmyr‘1 (16 %) of
2.45 mmyr‘1 satellite observed sea level rise for the analysis period (Chen et al.,
2013).

6. For the period 2003—2012, we estimate glaciers and polar ice caps to have lost
around 526 thr'1, with an additional small contribution from seasonal snow
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(—1Qthr"1). Total surface water storage in lakes and rivers was estimated to
increase by +77 thr’1, including new reservoir impoundments (+87 thr"1), wa-
ter level change in the Caspian Sea (-27 thr’1) and net increases in the other
lakes (+17thr‘1). The net change in subsurface storage was insignificant, be-
cause groundwater depletion (-90 thr‘1) was offset by increased water stora%:e
in the seasonally wet tropics of South America and southern Africa (+87 Gtyr™ ).
Continued observation will help determine if this trend is due to transient climate
variability or likely to persist.
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Table 1. Description and sources of data used in this analysis. Acronyms are explained in the
text.

Description Source Data access

Prior estimates

model estimates GLDAS ftp://hydro1.sci.gsfc.nasa.gov/data/s4pa/GLDAS_V1/

(CLM, MOS, NOAH, VIC) (data accessed 17 Apr 2013)

Model estimates (W3RA) available from author van Dijk

groundwater depletion available from author Wada

river flow TRIP http://hydro.iis.u-tokyo.ac.jp/~taikan/TRIPDATA/Data/trip05.asc
direction (downloaded 10 May 2013)

discharge from small catchments
discharge from large basins
surface water extraction

lake water level

sea level

glacier extent

Assimilated data
TWS: CSR, GFZ, JPL

TWS: GRGS
glacial isostatic adjustment

Evaluation data
water level in large rivers

idem

snow depth

Crop Explorer
AVISO

GGHYDRO

Tellus
CNES

Tellus

LEGOS HYDROWEB
ESA River&Lake

GLOBSNOW

available from author van Dijk
http://www.cgd.ucar.edu/cas/catalog/surface/dai-runoff/index.html

available from author Wada
http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/

(downloaded 9 May 2013)
http://www.aviso.oceanobs.com/en/data/products/sea-surface-height-products/global/
(downloaded 7 Nov 2013)

http:/people.trentu.ca/~gcogley/glaciology/

(downloaded 12 Jun 2013)

ftp:/podaac-ftp.jpl.nasa.gov/allData/tellus/L3/land_mass/RL05/netcdf/

(downloaded 16 Apr 2013)
http:/grgs.obs-mip.fr/grace/variable-models-grace-lageos/grace-solutions-release-02
(downloaded 16 Apr 2013)
ftp://jpl.nasa.gov/allData/tellus/L3/land_mass/RLO5/netcdf/

(downloaded 16 Apr 2013)

http://www.legos.obs-mip.fr/en/soa/hydrologie/hydroweb/
(downloaded 13 Oct 2013)
http:/tethys.eaprs.cse.dmu.ac.uk/RiverLake/shared/main
(downloaded 25 Oct 2012)
http://www.globsnow.info/swe/archive_v1.3/
(downloaded 9 Oct 2013)
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Table 2. Spatial mean values (non-glaciated land areas only) of the error in monthly mass
change estimates for different GRACE and model sources as derived through triple collocation.
Also listed is the number of triple collocation estimates derived (N) and the spatial mean of the
coefficient of variation (C.V.) in these N estimates.

Mean error MeanC.V. N
mm %
GRACE
GRG 14.5 15 15
CSR 13.6 15 5
GFZ 16.4 10 5
JPL 16.2 12 5
Merged 14.1 - -
Models
CLM 27 1 7 3
MOS 22.0 7 3
NOAH 16.6 9 3
VIC 27.8 6 3
W3RA 17.8 7 3
Merged 18.1 - -
15509

Table 3. Calculated linear trends in global mean seasonally-adjusted anomalies associated
with different water cycle components for 2003—-2012. The posterior trend estimates are also
expressed in equivalent sea level rise (SLR) and volume. Second number is standard deviation.

Store Prior Posterior SLR Volume

global mean global mean mmyr' kmPyr

mmyr™! mmyr™'

Sub-surface -0.571+0.029 -0.004+0.023 -0.006 +0.032 -2+12
Rivers +0.012 +£0.009 0.000+0.01 +0.001+0.014 0+5
Lakes -0.012+0.005 -0.020+0.005 -0.029 +0.006 -10+2
Seasonal snow -0.023+0.007 -0.036+0.007 —-0.051+0.01 -19+4
Arctic glaciers (> 55° N) +0.254 £ 0.004 -0.574+0.008 -0.807+0.012 -293+4
Antarctic glaciers (> 55° S) - -0.300+0.007 -0.422+0.01 -153+4
Remaining glaciers -0.030+0.004 -0.036+0.003 -0.051=+0.004 -18+1
Total terrestrial — -0.971+£0.034 -1.365+0.048 -495x+17
Oceans 1.309 £ 0.044 1.031+£0.038 +1.449+0.054 526 +20
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Table 4. Evaluation of alternative estimates of mean basin discharge using observations col-
lated by Dai et al. (2009). Listed is the agreement for the ensemble models (without bias cor-
rection), the merged prior estimate and the posterior estimates resulting from reanalysis.

CLM MOS NOAH VIC W3RA prior  posterior
Combined discharge (km®yr™') 21874 9,003 11474 13666 16518 18663 20149

Diff. total (%) 5 -57 -45  -35  -21 -11 -4

RMSE (km®yr™") 114 184 126 147 63 47 44

Median % diff. 60 63 57 48 61 40 41
15511

Table 5. Published trends in glacier water storage (Gardner et al., 2013; Jacob et al., 2012)
compared to estimates from reanalysis. Uncertainties are given at the 95 % (2 standard devia-
tion) interval, superscripts refer to estimates derived from GRACE (g) or independent methods
(7). Also listed are regional trends attributed to other parts of the hydrological cycle, and the
ratio of the relative magnitude of that residual trends over estimated glacier mass change.

Region Reported This study
trend glacier trend  other components ratio
(Gtyr™) (Gtyr™) Gtyr™) (%)
Greenland ice sheet + PGICs -222+9 ¢ -200+9 -8+1 4
Canadian Arctic Archipelago -60+£6 "9 -43+3 212 48
Alaska -50+17 "9 -17x5 —29+6 169
Northwest America excl. Alaska -14+3 i 7+3 -13+8 193
Iceland -10+2 "9 -5+0 -1x0 22
Svalbard —5x2 "9 -240 0+0 7
Scandinavia —2+0 ! 0+1 5+2 >500
Russian Arctic -11x4 "9 -3+0 242 47
High Mountain Asia —26+12 "9 -25+4 17+ 11 66
South America excl. Patagonia 41 241 —22+33 >500
Patagonia -29+10 ¢ 111 -3+2 28
Antarctica ice sheet + PGICs -165+£72 9 -141+7 0 0
Rest of world -4+0 -1+1 86+ 107 > 500
Total -549 £ 57 -443 £ 23
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Fig. 1. lllustration of the data assimilation approach followed using data along a transect
through the USA for August 2003. Shown are: (a) monthly satellite-derived TWS, y;, and the

equivalent prior estimate, y,b ; (b) location of the transect on a map of the gain matrix, k; (c)
profile of k along the transect (cf. Fig. 2c); (d) calculation of the TWS analysis increment, 5y;,
from k and innovation, (yy —ytb); (e) the prior error in the change of each of the stores, o,b(i)

and cr,b(i) + 65,(i), resp.; and (f) visual illustration of the disaggregation of the TWS analysis
increments to the different stores. All units are in mm unless indicated otherwise; see text for
full explanation of symbols; stores shown include the sub-surface (green), rivers (blue) and sea
(dark red; remaining stores not shown for clarity).
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a) Error in GRACE

Fig. 2. Triple collocation estimated error in storage change from the merged (a) GRACE and
(b) prior estimates, and (c) resulting gain matrix.
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Fig. 3. The impact of GRACE data assimilation on total water storage expressed as (a) the
root mean square (RMS) analysis increment and (b) the RMS difference between prior and
posterior storage time series.
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Fig. 4. Trends in GRACE total water storage as derived from (a) prior storage estimates; (b)
merged satellite retrievals; and (c) posterior estimates.
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a) sub-surface

prior posterior
linear trend mrntE
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Fig. 5. Trends in seasonal anomalies of prior (left column) and posterior (right column) es-
timates of (a—b) sub-surface, (c—d) snow and (e—f) surface water (i.e., lake and river) water
storage.
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Fig. 6. Time series of the prior (grey lines) and posterior (black lines) estimates of global aver-
age seasonally-adjusted storage anomalies in different water cycle components. Dashed lines
show linear trends for 2003-2012 as listed in Table 3.
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Fig. 7. Effect of assimilation agreement with satellite altimetry river water levels: Spearman’s
rank correlation coefficient (o) for (a) prior and (b) posterior estimates and (c) difference be-
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b) Congo
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Fig. 8. Effect of assimilation agreement with satellite altimetry river water levels for grid cells
including the (a) Amazon River (~ 2.5°S, 65.5°W; p changed from 0.71 for prior to 0.80 for
posterior estimates); (b) Congo River (~2.5°N, 21.5°E; p from 0.28 to 0.47) and Mississippi
River (35.5°, 90.5° W; o from 0.37 to 0.56).
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Fig. 9. Comparison of mean basin discharge resulting from the analysis (Q,) and values based
on observations (Dai et al., 2009) (darker areas indicate overlapping data points).
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Fig. 10. Effect of assimilation on agreement with GlobSnow snow water equivalent (SWE)
estimates, showing (a—c) root mean square error (RMSE) and (d—f) the coefficient of correlation
(F»’Z). From left to right, agreement for (a) and (d) prior and (b) and (e) posterior estimates as
well as (c) and (f) the change in agreement.
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