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Abstract: The cycling of carbon (C) in terrestrial ecosystems is closely coupled with the cycling 18 

of water. An important mechanism connecting ecological and hydrological processes in 19 

terrestrial ecosystems is lateral flow of water along landscapes. Few studies, however, have 20 

examined explicitly how consideration of water routing affects simulated water and C dynamics 21 

in terrestrial ecosystems. The objective of this study is to explore how consideration of water 22 

routing in a process-based hydro-ecological model affects simulated water and C dynamics. To 23 

achieve that end, we rasterized the regional hydroecological simulation system (RHESSys) and 24 

employed the rasterized RHESSys (R-RHESSys) in a forested watershed. We performed and 25 

compared two contrasting simulations, one with and another without water routing. We found 26 

that R-RHESSys was able to correctly simulate major hydrological and ecological variables 27 

regardless of whether water routing is considered. When water routing was considered, however, 28 

soil water table depth and saturation deficit were simulated to be greater and spatially more 29 

heterogeneous. As a result, water (evaporation, transpiration, and evapotranspiration) and C 30 

(forest productivity, soil autotrophic and heterotrophic respiration) fluxes also were simulated to 31 

be spatially more heterogeneous compared to the simulation without water routing. When 32 

averaged for the entire watershed, the three simulated water fluxes were greater while C fluxes 33 

were smaller under simulation considering water routing than that ignoring water routing. In 34 

addition, the effects of consideration of water routing on simulated C and water dynamics were 35 

more apparent in dry conditions. Overall, the study demonstrated that consideration of water 36 

routing enabled R-RHESSys to better capture our preconception of the spatial patterns of water 37 

table depth and saturation deficit across the watershed. Because soil moisture is fundamental to 38 

the exchange of water and C fluxes among soil, vegetation and the atmosphere, ecosystem and C 39 
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cycle models, therefore, need to explicitly represent water routing in order to accurately quantify 40 

the magnitude and patterns of water and C fluxes in terrestrial ecosystems. 41 

Keywords: R-RHESSys, carbon cycle, water, lateral flow, hydrologic connectivity, watershed 42 
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1. Introduction 43 

The cycling of carbon (C) in terrestrial ecosystems is closely coupled with the cycling of 44 

water. Plants need water to survive, and thus, the distribution, composition, and structure of plant 45 

communities are directly influenced by spatial patterns of available water (Band, 1993; Band et 46 

al., 1993; Caylor et al., 2005; Ivanov et al., 2008). An important mechanism that connects 47 

ecological and hydrological processes in terrestrial ecosystems is lateral water flow along 48 

landscapes. Lateral water flow can redistribute water and nutrients through space, which affects 49 

plant establishment and growth (Band et al., 1993) ; leaf phenology (Asbjornsen et al., 2011); 50 

ecosystem structure and function (Wang et al., 2009); and soil biogeochemical processes, such as 51 

organic matter decomposition (Ju et al., 2006; Riveros-Iregui et al., 2011). For example, studies 52 

have demonstrated that lateral water flow and connectivity act as important determinants of 53 

ecological pattern and process in heterogeneous landscapes (Band et al., 1993; Sponseller and 54 

Fisher, 2008), and contribute to changes in surface water, energy, nutrients, and C in space 55 

(Pockman and Small, 2010). In mountainous catchments, Hwang et al. (2012) found that lateral 56 

water flow can produce important patterns in water and nutrient fluxes as well as stores, which 57 

influences the long-term spatial development of forest ecosystems. Riveros-Iregui et al. (2011) 58 

suggested that landscape-imposed redistribution of soil water is a major cause for distinct 59 

variation of growing season soil CO2 efflux within small subalpine watersheds. 60 

Hydrological connectivity via lateral water flow plays important roles in the transport of 61 

water, nutrients and sediments at catchment scales (Smith et al., 2010). Correspondingly, 62 

distributed hydrology models (DHM) that simulate lateral water flow and its spatial connectivity 63 

along landscapes or among simulated grids have been developed increasingly in recent years 64 

(Lane et al., 2009). These models – such as DHSVM (Wigmosta et al., 1994) and RHESSys 65 
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(Band et al., 1993; Tague and Band, 2004) – couple runoff generation and water routing 66 

mechanisms and thus are able to explicitly simulate the effects of topographic and subsurface 67 

heterogeneities on downslope redistribution of water and nutrients (Doten et al., 2006). In fact, 68 

DHMs are used widely to identify saturated areas that produce runoff and non-point source 69 

pollution (Gerard-Marchanti et al., 2006), evaluate irrigation systems (Singh et al., 2006), and 70 

examine flood potential associated with disturbances such as deforestation (Doten et al., 2006). 71 

The representation of soil moisture variability and water routing processes at grid cell level in 72 

DHMs also enables these models to account for spatial variability of runoff-generating 73 

mechanisms and infer model parameterization from distributed geospatial data such as geology, 74 

topography, soils, and land cover (Wang et al., 2011). These advantages greatly contributed to 75 

the accuracy of hydrologic forecasting (Smith et al., 2012).  76 

Despite the fact that lateral water flow redistributes water and nutrients in space and thus 77 

affects ecosystem structure and function as well as the cycling of water and C, the representation 78 

of lateral water flow and its spatial connectivity may not be adequate in existing ecosystem and 79 

C cycle models. For example, Riveros-Iregui et al. (2011) indicated that the robust 80 

implementation of the lateral redistribution of soil water into biogeochemical models is often 81 

lacking. Chen et al. (2005) argued that most C cycle models at regional and global scales use 82 

bucket models to estimate soil moisture and ignore lateral exchanges of water among simulated 83 

units. The causes for such inadequacy are (i) lack of detailed information on how lateral water 84 

flow may affect vegetation, water, and C dynamics in terrestrial ecosystems, and (ii) increased 85 

burden of computing when water routing is included in the model’s simulation (Ju et al., 2006; 86 

Zhou et al., 2010). This inadequacy, however, is likely to hinder better quantification of the 87 
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spatial heterogeneity and complex linkages of hydrological, ecological, and biogeochemical 88 

processes in terrestrial ecosystems. 89 

Furthermore, mountain forests account for about 23% of the Earth’s forest cover and play an 90 

important role in modulating global cycling of water and C (Price et al., 2011). Given the 91 

elevational gradient in mountain forests plus gravity, lateral water flow – such as subsurface 92 

lateral flow along slopes – is common in humid mountain forests (Ridolfi et al., 2003). In semi-93 

arid and arid ecosystems, surface lateral flow also occurs when rainfall intensity exceeds the 94 

infiltration capacity of dry soils (Kim and Eltahir, 2004) or on topographically flat ground if the 95 

presence of the vegetation patch creates a contrast in infiltration rate (Thomspon et al., 2011). 96 

The universality and significance of lateral water flow in terrestrial ecosystems suggest that it 97 

should not be overlooked by ecosystem and C cycle models. A better understanding of how 98 

lateral water flow and its spatial connectivity may affect water and C dynamics is therefore 99 

important for accurate quantification of terrestrial water and C budgets as well as sustainable 100 

management of water and forest resources (e.g., Wang et al., 2011).  101 

The overall objectives of this study are to investigate (i) how consideration of water routing 102 

in a process-based, hydro-ecological model affects simulated water and C dynamics in terrestrial 103 

ecosystems; and (ii) if effects of consideration of water routing on simulated C and water 104 

dynamics are more remarkable in dry conditions. Toward these ends, we rasterized a regional 105 

hydro-ecological model designed to simulate integrated water, C and nutrient dynamics at 106 

watershed and regional scales. The rasterization aimed to (i) remove the model’s hierarchical 107 

structure so that all hydrological and ecological processes would be simulated at the individual 108 

cell level; and (ii) add a new control interface so that the water routing algorithm built into the 109 

model could be switched on or off. These modifications allowed us to keep all model parameters 110 
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and their parameterization identical between two predesigned contrasting simulations: with vs. 111 

without water routing. In turn, this helped reduce the uncertainty of model-based comparisons 112 

that can result from differences in model structure, parameters, and parameterization – as 113 

commonly encountered in model-based inter-comparison studies. Based on the rasterized model, 114 

we performed the two contrasting simulation for each of two contrasting forcing scenarios: “wet” 115 

vs. “dry” scenario. We compared simulated soil water table depth and saturation deficit, 116 

evaporation, transpiration, evapotranspiration, forest productivity, and soil respiration from these 117 

simulations. Findings gained from these comparisons provide insights into the future 118 

development of ecosystem and C cycle models for terrestrial ecosystems.  119 

2. Material and Data 120 

2.1 Study area 121 

The Biscuit Brook (hereafter Biscuit) watershed in the Catskill Mountain Region of New 122 

York State (Fig. 1) was selected as the study region. This watershed is relatively humid with 123 

annual total precipitation of about 145 cm and annual mean temperature about 4.4 ºC. The slopes 124 

vary from 0.04° to 37°, and the maximum slope length is 4.73 km in a northeast to southwest 125 

direction (Fig. 1). We selected this watershed as the study region because (i) long-term historical 126 

streamflow observations from one USGS gauge station (01434025) for this watershed are 127 

available to calibrate and evaluate model simulations; (ii) this watershed is forested and thus well 128 

suited for investigating the linkages between ecological and hydrological processes; (iii) there 129 

are no human-related land use activities; and (iv) the watershed has spatially variable terrain with 130 

elevation ranging from 270 to 1270 m, providing a natural hydro-ecological laboratory to 131 

examine the effects of lateral water flow and its spatial connectivity on water, C and vegetation 132 

dynamics in terrestrial ecosystems. 133 
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2.2 Rasterizing the Regional Hydro-Ecological Simulation System 134 

The Regional Hydroecological Simulation System (RHESSys,  Tague and Band (2004)) is a 135 

process-based hydro-ecological model designed for simulating integrated water, C and nutrient 136 

dynamics as well as vegetation growth at watershed and regional scales. Although RHESSys is 137 

capable of being run in fully distributed mode, its hierarchical framework requires that some 138 

initial-state variables associated with the spatial hierarchy of basins, hillslopes, and zones be 139 

arranged per a prescribed template. In this study, we further rasterized RHESSys (version 5.12) 140 

in an attempt to remove the model’s hierarchical structure. The rasterized RHESSys (hereafter R-141 

RHESSys) adopted almost all features of its predecessor except for (i) exclusion of the 142 

hierarchical model framework of RHESSys, and (ii) modification of the user-interface for 143 

controlling model simulation. The exclusion of the hierarchical structure in R-RHESSys caused 144 

the basin, hillslope, and zone hierarchical structures existing in RHESSys to exist no longer. As a 145 

result, arrangement of some initial-state variables according to the prescribed template (i.e., the 146 

World file in RHESSys) was no longer needed. In addition, R-RHESSys excluded the 147 

TOPMODEL (Beven and Kirkby, 1979) embedded in its predecessor but retained the explicit 148 

water-routing algorithm (Wigmosta et al., 1994) for simulating surface and subsurface lateral 149 

flow as well as movement of solutes through space. The water routing algorithm in R-RHESSys 150 

can be switched on or off and thus provides users two ways (i.e., with vs. without water routing) 151 

to quantify C, water, and nutrient dynamics in terrestrial ecosystems. As in its predecessor, 152 

surface and subsurface lateral flow for stream-type patches are channelized in R-RHESSys. 153 

Because specific algorithms for C, water, and nutrient dynamics are maintained mostly as in 154 

Tague and Band (2004), we briefly introduced calculation of subsurface and surface flow that 155 
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was slightly modified for reference. In R-RHESSys, the saturated subsurface flow (���→�) (m 156 

day
-1

) from patch � to � is calculated as follows: 157 

���→� = 	 δ×γ×(e-s m⁄ − e-smax m⁄ ) s≥0

δ×γ×(e-s (3.5*m� ) − e-smax m⁄ ) s<0
                                                                           (1) 158 

where, 
	(m) is saturation deficit in patch �; m  (dimensionless) is the decay rate of soil hydraulic 159 

conductivity with depth in patch �; smax (m) is the water equivalent of soil depth; � 160 

(dimensionless) is the empirical sensitivity parameter with a value of 1.2 when water routing is 161 

considered and a value of 0.16 when water routing is ignored. The values 1.2 and 0.16 are based 162 

on model calibrations (see below); and γ (m day
-1

) is the percent of subsurface flow going from 163 

patch � to patch �. It is expressed as: 164 

� = ����� × tan��→� ×��→�                                                                                                 (2) 165 

where ����� (m day
-1

) is saturated hydraulic conductivity at the surface; � (degree) is the local 166 

slope from patch � to patch �; and � (dimensionless) is the flow width from patch � to patch �. 167 

The flow widths are assumed to be 0.5 times the grid size for cardinal directions and 0.354 times 168 

the grid size for diagonal directions (Quinn et al., 1991; Tague and Band, 2004). 169 

The saturation overland flow (���) for patch � is expressed as follows: 170 

��� = max	(�� +  
�!� − 
, 0.0)                                                                                      (3) 171 

where �� (m) is soil water storage in the root zone layer; and  
�!� (m) is soil water storage in 172 

the un-saturated soil layer.  173 

When water routing is considered in R-RHESSys, the saturated subsurface flow input from 174 

the upslope patch � (Eq. 1) is added to the downslope patch � and accounted for in patch �’s 175 

local water budget. When routing is turned off, Eq. 1 is still used to calculate subsurface flow out 176 

of each patch. However, rather than being routed to downslope patches the subsurface outflows 177 
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from all patches are summed and assumed to flow out of the basin as the baseflow component of 178 

streamflow. The value of the sensitivity parameter � in Eq. 1 for the non-routing case is reduced 179 

to reflect the change in function of this parameter from a lateral flow between patches adjustment 180 

to what is effectively a baseflow recession coefficient. The other difference between routing and 181 

non-routing is that with routing on surface runoff generated by Eq.3 is routed following the same 182 

topology as subsurface flow and is allowed to re-infiltrate along its flowpath, whereas with no 183 

routing the surface runoff generated by Eq. 3 for all patches is summed and assumed to flow out 184 

of the basin as the runoff component of streamflow.  185 

2.3 Meteorological data 186 

Time series of daily maximum and minimum temperature (
o
C) as well as total precipitation 187 

(mm) are required to run R-RHESSys. Because there is no weather station located in the Biscuit 188 

watershed, our climate data for the period 1961–2008, a period having as long as possible 189 

available climate records and preselected for model spin-up simulation, were derived from ten 190 

Cooperative Observer Program stations (COOP) (Fig. 1). Specifically, daily climate data for 191 

each day in each year for the watershed were estimated using the ordinary-Kriging interpolation 192 

approach (Goovaerts, 1998). Before interpolation, daily records of temperatures that exceeded 193 

the long-term (1961 – 2008) mean of all available records from that station by four standard 194 

deviations or greater were manually removed on a case-by-case basis (e.g., Tang and Arnone, 195 

2013). In addition, local lapse rates of -0.0085 ºC	m-1
 for daily maximum temperature, -0.0054 196 

ºC	m-1
 for daily minimum temperature, and 0.0014 mm m

-1
 for daily precipitation were used to 197 

adjust temperature and orographic precipitation changes along the elevation gradient in the study 198 

sites. Figure A1 in supplementary materials shows examples of interpolated daily maximum and 199 

minimum temperatures as well as precipitation for the Biscuit watershed in July, 1994. 200 
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2.4 Land cover, soil and elevation data 201 

The land cover data used to pre-define vegetation types for the Biscuit watershed were based 202 

on the 1992 National Land Cover Data (NLCD 1992; http://landcover.usgs.gov/us_map.php). 203 

The NLCD 1992 data were derived from Landsat Thematic Mapper satellite data at 30-m spatial 204 

resolution and classified land covers into 21 types for the United States (Vogelmann et al., 1998a, 205 

b). For the Biscuit watershed, only three types exist in NLCD 1992: evergreen, deciduous and 206 

mixed forests. Our soil texture data at 30 m spatial resolution were derived from the digital Soil 207 

Survey Geographic Database (http://soils.usda.gov/). We classified soil in the Biscuit watershed 208 

into four types: sandy loam, loamy skeleton, silt loam and rocky (Fig. A1d). Soil texture related 209 

parameters and their parameterization are in Table 1. The USGS National Elevation Dataset at 1 210 

arc-second spatial resolution (about 30 meters) was used in this study. 211 

2.5 Modeling protocol, model simulation, calibration, and evaluation 212 

Given that climate in the Biscuit watershed is relatively humid and precipitation has no 213 

distinct dry and wet cycles, we performed four simulations under two climate forcing scenarios: 214 

one “wet” and another “dry” scenario. Under the “wet” scenario, time-series of daily climate data 215 

for the period 1961–2008 were directly used without modification. Under the “dry” scenario, we 216 

set time-series of daily precipitations for days in May, June, July and August in 1995 all zeroes 217 

while keeping others identical to those under the “wet” scenario. For each of the two scenarios, 218 

the two contrasting simulations (i.e., with vs. without water routing) were performed, 219 

respectively.  220 

Our initial simulations under the “wet” scenario suggested that soil water table depth, leaf 221 

area index (LAI) and forest productivity tended to reach the equilibrium state after 50 222 

simulation-years. In contrast, soil C took more than 200 simulation-years to reach the 223 
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equilibrium state (Fig. A2). In order to have vegetation and soil C reach equilibrium state with 224 

long-term local climate, we spun up R-RHESSys for 240 years repeatedly using 48-year (1961–225 

2008) daily-step meteorological data. After spin-up simulations, we continued to run R-226 

RHESSys for an additional 48 years using data from 1961 to 2008. This modeling protocol 227 

applied to all four simulations under both “wet” and “dry” forcing scenarios. 228 

Based on results under the “wet” scenario, we calibrated R-RHESSys for the period 1992–229 

1993 and evaluated it for the period 1994–1995. The period 1992–1995 was selected because 230 

observed climate records in this period from 10 COOP stations were more consistent than during 231 

other periods. This can minimize the effects of the quality of atmospheric forcing data on 232 

simulated water and C dynamics. Correspondingly, model calibration and evaluation for each of 233 

the two pre-specified periods were performed for the two contrasting simulations under the “wet” 234 

scenario, respectively.  235 

To investigate how consideration of water routing may affect simulated C and water 236 

dynamics, monthly average daily values of major hydro-ecological variables in July of 1994 237 

from the two contrasting simulations under the “wet” scenario were compared. The July of 1994 238 

was selected because temperature in July is generally higher than in other months and thus the 239 

effects of consideration of water routing on simulated water and C dynamics as well as 240 

vegetation growth were assumed to be more detectable. To test if effects of consideration of 241 

water routing on simulated C and water dynamics are more remarkable in dry conditions, we 242 

compared the differences in simulated monthly values of major hydro-ecological variables in 243 

1995 between the “wet” and “dry” scenarios. 244 

3. Results 245 

3.1 Calibration and evaluation of simulated streamflow and baseflow 246 
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Fig. 2 shows the time-series of simulated daily streamflow and baseflow for the Biscuit 247 

Brook in the watershed for the calibration period 1992–1993 and the evaluation period 1994–248 

1995. For the calibration period, the calculated Nash-Sutcliffe coefficients (NS; Nash and 249 

Sutcliffe, 1970) is 0.58 for streamflow (Fig. 2a) and 0.63 for baseflow (Fig. 2b) under the 250 

simulation that considered water routing. In contrast, the calculated NS is 0.61 for streamflow 251 

(Fig. 2c) and 0.74 for baseflow (Fig. 2d) for the simulation that neglected water routing. For the 252 

evaluation period, the calculated NS was more than 0.57 for both streamflow and baseflow 253 

regardless of whether or not water routing was considered (Fig. 2a~d). In addition, the simulated 254 

average daily streamflow for the evaluation period 1994–1995 approximated each other between 255 

the two simulations (2.54 vs. 2.50 mm day
-1

). The difference in average daily streamflow 256 

between model simulations and observation was less than 1.25% under both simulations. These 257 

statistics (Table S1) suggested that R-RHESSys was able to accurately simulate daily streamflow 258 

and baseflow regardless of whether water routing was considered.  259 

3.2 Comparison of simulated soil water table depth and saturation deficit 260 

When water routing was considered, the simulated depth to the soil water table ranged from 261 

0.15 to 2.92 m among cells and averaged 1.20 m for the entire watershed. In contrast, when 262 

water routing was ignored, the simulated depth ranged from 0.02 to 1.20 m among cells, and 263 

averaged 0.72 m for the entire watershed. In other words, the simulated water table depth was 264 

spatially more variable when water routing was simulated as indicated by the calculated standard 265 

deviations for soil water table depth among cells (Table 2 and Fig. 3a vs. 3b). A similar situation 266 

applied to the simulated saturation deficit, which had a wider range from 0.08 to 1.42 m under 267 

simulation with water routing but a narrower range from 0.01 to 0.54 m under simulation without 268 

water routing (Table 2). The simulated saturation deficit also was spatially more variable under 269 
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simulation with water routing than that without water routing (Fig. 3d vs. 3e), as indicated by the 270 

standard deviations for saturation deficit among cells (Table 2). Further comparison suggested 271 

that water table depth and saturation deficit were about 0.5 m (for water table) and 0.2 m (for 272 

saturation deficit) greater in the hills or ridges of the watershed when water routing was 273 

considered. In the valleys or flat areas, however, there are regions where the simulated water 274 

table depth and saturation deficit were smaller when water routing was considered compared to 275 

the simulation ignoring water routing (Fig. 3c and 3f). Spatially, deeper water table depth and 276 

higher saturation deficit were simulated to occur mostly at upslope areas (Fig. 3a and 3d) when 277 

water routing was considered. This situation, however, did not always apply to simulations 278 

ignoring water routing, under which water table depth and saturation deficit were found to be 279 

greater at steeper slopes (Fig. 3b and 3e). 280 

3.3 Comparison of simulated evaporation, transpiration, and evapotranspiration 281 

Compared to the simulation ignoring water routing, simulated monthly average daily 282 

evaporation, transpiration, and actual evapotranspiration (ET) with water routing had a wider 283 

range among cells. For example, monthly average daily evaporation for July 1994 was simulated 284 

to vary from 0.22 to 3.11 mm day
-1

 among cells under simulation with water routing. In contrast, 285 

evaporation had a narrower range from 0.52 to 1.05 mm day
-1

 under the simulation without water 286 

routing (Table 2). When averaged for the entire watershed, monthly average daily evaporation, 287 

plant transpiration, and ET were 18% (0.87 vs. 0.74 mm), 4% (1.41 vs. 1.35 mm) and 9% (2.27 288 

vs. 2.09 mm) greater, respectively, under simulation considering water routing than that ignoring 289 

water routing (Table 2). In addition, regardless of the actual magnitudes of simulated water 290 

fluxes, the spatial patterns of evaporation, transpiration, and ET were modeled to be more 291 

variable under simulation considering water routing than that ignoring water routing, largely 292 



15 

 

because extreme high and low values of evaporation, transpiration and ET were simulated to 293 

occur under the simulation with water routing (Figs. A3 and 4). Spatially, the effects of 294 

considering water routing on simulated evaporation, transpiration, and ET can be either positive 295 

or negative compared to the simulation neglecting water routing (Fig. A3). 296 

3.4 Comparison of simulated forest net primary productivity (NPP) 297 

At the individual cell level, simulated monthly average daily NPP in July, 1994 when 298 

ignoring water routing ranged from 2.50 to 5.79 gC m
-2

, narrower than results from the 299 

simulation considering water routing which ranged from 0.10 to 5.79 gC m
-2

 among cells. In 300 

addition, although the pattern of simulated NPP was extremely similar in most areas of the 301 

watershed between the two simulations (Fig. 5a and 5b), simulated monthly average daily NPP 302 

among cells was spatially more variable when water routing was considered, as suggested by the 303 

calculated standard deviations for NPP among cells (Table 2). When averaged for the entire 304 

watershed, the simulated monthly average daily NPP was 8% (3.33 vs. 3.60 gC m
-2

) lower under 305 

simulation considering water routing than that ignoring water routing (Table 2). Nevertheless, 306 

the simulated maximum NPP between the two simulations was identical (5.79 gC m
-2

), although 307 

there were regions where simulated NPP was distinctly lower (<3.0 gC m
-2

) under the simulation 308 

considering water routing than that ignoring water routing (>3.0 gC m
-2

). Overall, the simulation 309 

that neglected water routing had a tendency to overestimate forest NPP in ridges of the 310 

watershed or areas with steeper slopes (Fig. 5c). 311 

3.5 Comparison of simulated soil autotrophic and heterotrophic respiration  312 

Simulated monthly-averaged daily soil autotrophic respiration (RA) in July, 1994 ranged 313 

from 0.0 to 0.97 gC m
-2

 under the simulation with water routing. This range was slightly broader 314 

than that from the simulation without water routing, which ranged from 0.35 to 0.97 gC m
-2

 315 
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(Table 2). When averaged for the entire watershed, monthly average daily soil RA was 8% (0.58 316 

vs. 0.63 gC m
-2

, Table 2) lower under simulation with water routing than that without water 317 

routing. In addition, although the spatial pattern of simulated soil RA across the watershed was 318 

extremely similar in most areas between the two simulations (Fig. 6a and 6b), there were patches 319 

where simulated soil RA was much lower when water routing was considered (Fig. 6c). Overall, 320 

neglect of water routing has the potential to cause R-RHESSys to overestimate soil RA while 321 

such overestimates mainly occur in areas of steeper slopes or near the ridges of the watershed 322 

(Fig. 6c). Similarly, simulated soil heterotrophic respiration (RH) had a wider range from 0.01 to 323 

1.3 gC m
-2

 under simulation with water routing and a narrower range from 0.44 to 1.3 gC m
-2

 324 

under the simulation without water routing (Table 2). The spatial patterns of simulated soil RH 325 

were more variable under simulation with water routing than that without water routing (Fig. 6d 326 

and 6e). Besides, when averaged for the entire watershed, monthly average daily soil RH was 11% 327 

(0.75 vs. 0.84) lower under the simulation considering water routing than that ignoring water 328 

routing. Differing from soil RA, the effects of water routing on soil RH can be either positive or 329 

negative when compared to the simulation without water routing (Fig. 6f). The difference in 330 

simulated soil RH between the two simulations ranged from -0.8 to 0.12 gC m
-2

 across cells. 331 

3.6 Comparison of the differences (with vs. without routing) in monthly values of hydro-332 

ecological variables between the “wet” and “dry” scenarios 333 

Fig. 7 shows comparisons of the simulated differences (with vs. without water routing) in 334 

monthly values of C and water dynamics in 1995 between the “wet” and “dry” scenarios. When 335 

averaged for the entire watershed, the magnitude of the differences in monthly average water 336 

table depth and saturation deficit was not distinct for months before July between the two 337 

scenarios while the differences diverged for months after July: greater under the “wet” and 338 
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smaller under the “dry” scenario (Fig. 7a and b). For water fluxes, the absolute magnitude of the 339 

differences in monthly transpiration and AET was greater under the “dry” scenario for May, June, 340 

July, August, and September, and bottomed in August (Fig. 7d and e). In other months, the 341 

magnitude of the differences in monthly transpiration and ET approximated each other between 342 

the two scenarios, especially for transpiration (Fig. 7e). However, this pattern of differences in 343 

monthly transpiration and AET did not apply to evaporation (Fig. 7c). For C fluxes, the absolute 344 

magnitude of the difference in monthly average NPP, soil RA, and RH was greater under the 345 

“dry” scenario for May, June, July, August, and September, and bottomed in August (Fig. 7f, g 346 

and h). In other months, the simulated differences in the three C fluxes approximated each other 347 

between the two scenarios. These results indicated that consideration of water routing has greater 348 

effects on simulated water and C dynamics in dry conditions. 349 

4. Discussion 350 

4.1 Performance and accuracy of R-RHESSys 351 

Our model evaluation against observed streamflow and derived baseflow from the USGS 352 

gauge station indicated that R-RHESSys was able to accurately simulate river flow at watershed 353 

scales, largely because all algorithms for water, C and nutrient dynamics as well as model 354 

parameters are maintained as in RHESSys, which itself has been applied and evaluated in a 355 

number of studies (e.g., Christensen et al., 2008; Hwang et al., 2012; Tague and Band, 2001). In 356 

addition, the simulated ecological variables – such as LAI and forest NPP– all fell within the 357 

ranges of corresponding field observations. For example, modeled LAI during the growing 358 

season (May to September) averaged 3.1 m
2 

m
-2

 for the entire watershed and ranged from 1.2 to 359 

3.9 m
-2 

m
-2

 across grid cells, agreeing well with observed and modeled values ranging from 2.90 360 

to 4.5 m
2 

m
-2

 in mixed oak-hickory forests and northern hardwoods (Scurlock et al., 2001; Tang 361 
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and Beckage, 2010), dominant forest types in the study watershed. Our modeled annual forest 362 

NPP averaged 474 gC m
-2 

yr
-1

, falling within the range of 391 to 574 gC m
-2

 yr
-1

 of field 363 

observations in oak-hickories (e.g., Pan et al., 2006; Tang et al., 2010). Nevertheless, we 364 

acknowledge that the lack of spatially distributed field measurements – such as observed soil 365 

moisture, water table depth, and forest NPP – hinder us in further evaluating the patterns of 366 

simulated major ecological and hydrological variables across the watershed. Such limitations in 367 

the model’s evaluation are encountered commonly in many other distributed-model-based 368 

studies (Brooks et al., 2007) and need improvement in the future.  369 

4.2 Effects of water routing on soil water table depth and saturation deficit 370 

Lateral water flow and associated water redistribution across the landscape considerably 371 

influence hydrologic response in terrestrial ecosystems, including movement and storage of 372 

water in the soil (Guntner and Bronstert, 2004; Thompson and Moore, 1996). Some studies (e.g., 373 

Kim and Eltahir, 2004) indicated that topography drives lateral transport of water downslope, 374 

and water converges into concave areas or valleys through surface or subsurface runoff. As a 375 

result, water table depth tends to be significantly shallower in valleys compared to hills. 376 

However, this contrasting pattern did not occur in simulations that ignored water routing, in 377 

which the simulated water table depth and saturation deficit approximated each other between 378 

valleys and hills/ridges of the watershed (Fig. 3b and 3e). In other words, simulated water table 379 

depth and saturation deficit with water routing captured better our preconception of their spatial 380 

patterns across the watershed. A similar study in a humid watershed (Hotta et al., 2010) indicated 381 

that lateral flow and local infiltration descending from hillslopes often causes lower elevation 382 

sites to have a higher water table level and higher elevation sites to have a lower water table level.  383 
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A similar model-based comparison study additionally supported our findings. Sonnentag et al. 384 

(2008) compared simulated water table depth between simulations with and without considering 385 

lateral water flow in a peatland. They found that the magnitude of simulated water table depth 386 

without water routing was considerably underestimated because lateral subsurface flow moves 387 

water toward the margins of the peat body. The neglect of lateral flow resulted in the simulated 388 

water table at or very close to the ground surface, which explains why the simulated water table 389 

depth was much greater under simulation ignoring water routing (Table 2). Furthermore, Moore 390 

and Thompson (1996) found that the combination of slope curvature, microtopography, and 391 

resulting water movement produce significant variability in water table depth across the 392 

landscape. This explains why the calculated standard deviation of water table depth among cells 393 

doubled (0.40) under simulation considering water routing compared to that (0.19) ignoring 394 

water routing (Table 2).  395 

Similar to water table depth, saturation deficit under simulation with water routing showed a 396 

distinct pattern in the watershed: higher in the valleys and lower in the hills or ridges of the 397 

watershed, which agreed better with findings from previous studies. Hopp et al. (2009) found 398 

that relatively high saturation in the soil profile occurs in the swale, and drier zone often occurs 399 

upslope and on the side ridges of hillslopes when water routing and topography were both 400 

considered in the model simulation. Crave and Gascuel-Odoux (1997) indicated that the steeper 401 

upslope parts of a watershed will be drained laterally more rapidly than the gentler downslope 402 

parts, resulting in drier slopes at the catchment scale. These patterns were captured by simulation 403 

with water routing (Fig. 3d) while not always by simulation without water routing (Fig. 3e). In 404 

addition, most previous studies indicated that the upslope contributing area, as incorporated into 405 

the TOPMODEL (Beven and Kirkby, 1979), is probably the major topographic influence on soil 406 
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moisture distribution (e.g., Hotta et al., 2010; Thompson and Moore, 1996). This relationship 407 

also was captured better by simulation considering water routing as suggested by the strength of 408 

the linear relationship of simulated saturation deficit to calculated topographic wetness index 409 

(Fig. 8a vs. 8b) between the two simulations. 410 

4.3 Effects of water routing on water fluxes from land to the atmosphere 411 

Slope, aspect and surrounding topography control incident direct solar radiation, and lower-412 

elevation regions in mountainous watersheds have more incoming longwave radiation from the 413 

surrounding landscapes plus temperature decreases as elevation increases. The highest ET values 414 

often occur in valleys, and the lowest ET in north-facing, high elevation areas (Bertoldi et al., 415 

2006; Christensen et al., 2008), which explains why the modeled spatial patterns of evaporation 416 

and transpiration in the watershed were generally higher in low elevations and valleys and lower 417 

in high elevations under the two contrasting simulations (Fig. A3). Water routing is a major 418 

determinant of soil water table and moisture distribution, however, both of which play important 419 

roles in modulating water fluxes from land to the atmosphere. For example, Salvucci and 420 

Entekhabi (1995) indicated that a deeper water table typically indicates drier areas where 421 

evaporation is often suppressed. This explains why there are areas where evaporation under 422 

simulation with water routing was lower than those without water routing (Fig. A3c).  423 

In addition, changes in vegetation growth resulting from moisture alteration also can affect 424 

water fluxes from land to the atmosphere due to changes in canopy leaf area. Compared to the 425 

two simulations, for cells where simulated NPP decreased (less than -2%, Fig. 5c), 60% 426 

experienced an increase in evaporation while 48% experienced a decrease in transpiration due to 427 

decrease in canopy leaf area. This explains why there are areas where simulated evaporation is 428 

higher while transpiration is lower under simulation with water routing than that without water 429 
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routing (Fig. A3c and f). At the individual cell level, because temperature, soil moisture and 430 

vegetation dynamics interact to jointly control evaporation and transpiration, differences in 431 

simulated evaporation, and transpiration can be either positive or negative (Fig. A3). When 432 

averaged for the entire watershed, because evaporation showed significant increase by 18% 433 

under simulation with water routing, the resultant AET also showed an increase by 9% under 434 

simulation with water routing than that without water routing. In addition, because forest 435 

productivity is modeled to be similar in 80% of areas between the two simulations and because 436 

transpiration accounts for two-thirds of total ET plus water is not limited, simulated transpiration 437 

and ET were extremely similar in 70% of areas in the watershed between the two contrasting 438 

simulations, although significant differences occurred in some areas (Fig. A3f and i). 439 

4.4 Effects of water routing on vegetation productivity 440 

Changes in soil moisture condition affect canopy photosynthesis and forest productivity 441 

(Band et al., 1993). Hwang et al. (2012) found that soil moisture content has profound effects on 442 

plant growth in forested watersheds. Svoray and Karnieli (2011) indicated that plant productivity 443 

is strongly correlated with water redistribution processes. Plants in the lower physiographic units 444 

(e.g., footslope, channel) should respond well to improved water and soil conditions and, 445 

therefore, should be more productive. In contrast, the interfluve, shoulder, and backslope areas 446 

often had lower vegetative greenness values because of poor water availability. In this study, the 447 

effects of differences in simulated soil moisture condition on forest productivity were not very 448 

noticeable (defined as -2%<NPP difference<2%) in 80% of areas in the study watershed between 449 

the two contrasting simulations (Fig. 5), largely because incoming solar radiation and 450 

temperature are major determinants of forest productivity and these radiative forcings were 451 

identical between the two simulations. Nevertheless, because changes in soil moisture can affect 452 
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forest productivity and because the saturation deficit was simulated to be greater under the 453 

simulation with water routing, simulated forest NPP was significantly lower in steeper slope 454 

areas of the watershed when water routing was considered. In these areas where differences in 455 

NPP were less than -2%, average soil saturation deficit (722 mm) was 45% higher than that (498 456 

mm) in areas where differences in NPP were not noticeable (defined as -2%<NPP difference<2%) 457 

(Fig. 5). In fact, forest NPP was significantly and negatively correlated with saturation deficit in 458 

our simulation (Fig. 9a) because the deterioration of soil moisture condition can limit vegetation 459 

growth (e.g., Urgeghe et al., 2010).  460 

4.5 Effects of water routing on soil respiration 461 

Local topography can generate considerable spatial variability in soil temperature, incoming 462 

solar radiation, and soil water content (Running et al., 1987; Kang et al. 2004). Although each of 463 

these factors differentially affects soil respiration, soil temperature plays a major role in soil 464 

respiration. Kang et al. (2004) found that about 75% of seasonal variation in soil respiration in 465 

such mesic ecosystems can be explained by variation in soil temperature. Because soil 466 

temperature is simulated to be the same between the two simulations, this greatly contributed to 467 

the similarity (defined as -2%<RA difference<2% ) of the spatial pattern of simulated soil RA in 468 

79.9%  of areas in the watershed (Fig. 6). Indeed, the calculation of root RA in R-RHESS is 469 

mainly treated as a function of soil temperature, following Ryan et al. (1991). Because saturation 470 

deficit was higher when water routing was considered, and because soil water deficit limits 471 

production of root resulting from reduced NPP, the consequent soil RA is smaller under the 472 

simulation considering water routing (Fig. 6a-c). In fact, for cells where simulated NPP 473 

decreased by less than -2% between the two contrasting simulations (Fig. 5c), 99.9% 474 
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experienced a decrease in RA, ranging from -1.4% to -100% (Fig. 6c). Linear regression also 475 

suggested that soil RA is negatively and significantly correlated with saturation deficit (Fig. 9b) 476 

Although soil temperature plays a dominant role in regulating soil RH, changes in soil water 477 

content due to lateral flow and connectivity affect litter production and soil microbial activity, 478 

which in turn affect soil RH. les Riveros-Iregui et al. (2011) indicated that growing season soil 479 

CO2 efflux is known to vary laterally by as much as seven-fold within small subalpine 480 

watersheds in the northern Rocky Mountains, and the variability was strongly related to the 481 

landscape-imposed redistribution of soil water. Because soil RH in R-RHESSys is treated as a 482 

function of soil moisture following Parton et al. (1996), this explains that the simulated soil RH 483 

is spatially more variable (higher standard deviation) among cells when water routing is 484 

considered (Table 2). In our simulation, for cells where forest NPP decreased by less than -2% 485 

(Fig. 5c), 97% experienced a decrease in RH due to reduction of litter production (Fig. 6f).  In a 486 

semiarid subalpine watershed, Riveros-Iregui and McGlynn (2009) observed that the highest soil 487 

CO2 efflux rates often occur in areas with persistently high soil moisture, whereas lower soil CO2 488 

efflux rates are on forested uplands in subalpine watersheds. Such patterns were captured better 489 

under simulation considering water routing (Fig. 6d) than that ignoring water routing (Fig. 6e), 490 

partially because soil RH was generally simulated to be low in areas of steeper slopes (Figs. 1 491 

and 6) and because forest NPP and litter production were low in these areas. Compared to soil 492 

RA, differences in simulated soil RH between the two contrasting simulations can be either 493 

negative or positive due to combined effects of soil temperature, moisture, and litter inputs on 494 

RH. Overall, soil RH was negatively correlated to saturation deficit in our simulation, suggesting 495 

that neglect of water routing has potential to cause the model to overestimate soil RH (Fig. 9c).  496 

4.6 Effects of water routing on C and water dynamics under dry conditions 497 
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Consideration of water routing in model simulations had greater effects on simulated C and 498 

water dynamics under the “dry” scenario than under the “wet” scenario, largely because of 499 

deterioration of soil moisture condition under the “dry” scenario (Fig. 10a). For example, when 500 

averaged for the entire watershed, soil saturation deficit increased by 14% under the “dry” 501 

scenario (0.72 m) compared to the “wet” scenario (0.63 m). The deterioration of soil moisture 502 

condition caused the number of cells where the difference in simulated monthly NPP was greater 503 

than 2% to increase by 138% under the “dry” scenario (6031 cells) (Fig. 10c) compared to the 504 

“wet” scenario (2531 cells, Fig. 10b). This explained why the absolute magnitudes of the 505 

simulated differences in monthly values of C and water fluxes were greater for those months, in 506 

which time-series of daily precipitation were set as zeroes under the “dry” scenario. Our findings 507 

of the greater effects of consideration of water routing on simulated C and water dynamics was 508 

consistent with Band (1993), who found that spatial variations in available soil water can have 509 

significant effects on areal averaged C and water fluxes rates, particularly under dry conditions. 510 

5. Conclusion 511 

Based on R-RHESSys and by keeping all model parameters and their parameterizations 512 

identical, this model-based comparison study indicated the following: 513 

(i) R-RHESSys is able to correctly simulate streamflow and baseflow for Biscuit Brook 514 

regardless of whether water routing is considered in the model simulation or not. When water 515 

routing is considered, however, R-RHESSys captures better our preconception of the spatial 516 

patterns of water table depth and saturation deficit. In contrast, when water routing is neglected, 517 

the simulation has a tendency to underestimate water table depth and saturation deficit. 518 

Simulated patterns of water table depth and saturation deficit differ from our preconception of 519 

the two quantities across the landscape. 520 
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(ii) Differences in simulated water table depth and saturation deficit between simulations 521 

with and without water routing affect subsequent water fluxes from land to the atmosphere. At 522 

the individual cell level, simulated evaporation, transpiration and ET were spatially more 523 

heterogeneous across the landscape when water routing was considered. Although differences in 524 

simulated evaporation, plant transpiration, and ET are not significant (absolute difference <2%) 525 

in most areas of the watershed, when averaged for the entire watershed, evaporation, 526 

transpiration, and ET were simulated to be 4% to 18% greater under simulation considering 527 

water routing than that ignoring water routing.  528 

(iii) Forest productivity was generally simulated to be smaller and spatially more variable 529 

under simulation with water routing due to higher and more variable saturation deficit. Lower 530 

forest productivity and root production caused simulated soil RA to be lower when water routing 531 

was considered. In contrast, simulated soil RH with water routing can be either greater or smaller 532 

than without water routing due to the combined effects of soil moisture, temperature and litter 533 

inputs. When averaged for the entire watershed, forest productivity and soil respiration were 534 

modeled to be 8% to 11% less under simulation considering water routing than that ignoring 535 

water routing. 536 

Overall, this study indicated that lateral water flow exerts strong control on the spatial pattern 537 

and variability of water table depth and saturation deficit (e.g., Band et al., 1993), and such 538 

effects are more apparent in dry conditions (e.g., Band, 1993). When averaged for the entire 539 

watershed, simulated water fluxes from land to the atmosphere were higher while forest 540 

productivity and soil respiration were less under simulation with water routing than those 541 

without water routing. Results of this study further demonstrated that the spatial pattern of soil 542 

moisture is fundamental to spatially distributed modeling of eco-hydrological processes (e.g., 543 
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Band, 1993; Chamran et al., 2002; Hebrard et al., 2006) and suggested that ecosystem and C 544 

cycle models need to explicitly represent water routing because simulation with water routing 545 

better captures the patterns of water table depth and saturation deficit across landscapes.  546 
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Tables 710 

Table 1. Major soil parameters and their parameterizations used in this study 711 

  Soil texture 

Variables Unit Sandy loam Silt loam Loamy 

skeleton 

Rocky 

Ksat_0
†
 m day

-1
 89.05 48.62 48.36 109.56 

m
†
 DIM 0.09 0.12 0.13 0.09 

Porosity % 0.435 0.410 0.451 0.485 

Porosity decay DIM 4000 4000 4000 4000 

Pore size index (PSI) DIM (0-1) 0.204 0.189 0.186 0.228 

PSI air entry % 0.218 0.386 0.478 0.480 

Soil depth m 5.0 5.2 4.8 5.0 

Active zone depth m 10 10.0 10.0 10.0 

Maximum energy capacity 
o
C -10. -10. -10. -10. 

Albedo DIM 0.258 0.253 0.320 0.200 

Sand %  0.70 0.20 0.80 0.75 

Clay %  0.10 0.15 0.02 0.05 

Silt % 0.20 0.65 0.18 0.20 
† 

Ksat_0 is saturated hydraulic conductivity at the surface; m is the decay rate of hydraulic conductivity with depth. 712 

Ksat_0 and m were manually calibrated against observed streamflow and derived baseflow at the USGS gauge station. 713 

 714 

Table 2. Comparison of simulated hydrological and ecological variables between the two 715 

contrasting simulations: with vs. without water routing 716 

Variables Water routing Minimum Maximum Mean STD 

Water table depth (m) Yes 0.15 2.92 1.20 0.40 

 No 0.02 1.20 0.72 0.19 

Saturation deficit (m) Yes 0.08 1.42 0.54 0.17 

 No 0.01 0.54 0.33 0.08 

Evaporation (mm) Yes 0.22 3.11 0.87 0.42 

 No 0.52 1.05 0.74 0.05 

Plant transpiration (mm) Yes 0.00 3.86 1.41 0.49 

 No 0.92 1.95 1.35 0.13 

Evapotranspiration (mm) Yes 0.28 6.65 2.27 0.79 

 No 1.44 2.99 2.09 0.18 

NPP (gC m
-2 

day
-1

) Yes 0.01 5.79 3.33 0.84 

 No 2.50 5.79 3.60 0.17 

RA (gC m
-2 

day
-1

) Yes 0.00 0.97 0.58 0.18 

 No 0.35 0.97 0.63 0.08 

RH (gC m
-2 

day
-1

) Yes 0.01 1.3 0.75 0.20 

 No 0.44 1.3 0.84 0.08 
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Figure Captions 717 

Fig. 1. The location of the Biscuit Brook watershed (red area) and the United States Geological 718 

Survey gauge station within the Catskill Mountain region of New York state. The map on the left 719 

depicts boundaries of the West of Hudson watershed and reservoirs of the New York City water 720 

supply system. The black points are ten Cooperative Observer Program weather stations used to 721 

derive meteorological data for the watershed. 722 

 723 

Fig. 2. Calibration (for the period 1/1/1992 – 12/31/1993) and evaluation (for the period 724 

1/1/1994 –12/31/1995) of R-RHESSys simulated daily streamflow (SF) and baseflow (BF) (solid 725 

red line) against observed/derived data (solid black line). Simulations in (a) and (b) considered 726 

water routing while simulations in (c) and (d) ignored water routing. NS is short for the Nash-727 

Sutcliff coefficient. The blue-dashed line represents January 1, 1994. 728 

 729 

Fig. 3. Comparison of simulated monthly average daily soil water table depth and saturation 730 

deficit in July, 1994 between the two contrasting simulations: (a) and (d) considered water 731 

routing while  (b) and (e) ignored water routing. (c) and (f) show differences in simulated soil 732 

water table depth and saturation deficit between the two contrasting simulations. 733 

 734 

Fig. 4. Comparison of simulated monthly average daily evaporation (evap), transpiration (Tran), 735 

and actual evapotranspiration (AET) in July, 1994 between the two simulations with and without 736 

(indicated by “NO”) consideration of water routing.  737 

 738 
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Fig. 5. Comparison of simulated monthly average daily net primary productivity (NPP) in July, 739 

1994 between the two simulations: (a) considering water routing and (b) ignoring water routing. 740 

(c) shows percentage difference between (a) and (b) divided by the result from simulation (a) 741 

considering water routing. The white areas show no significant differences. 742 

 743 

Fig. 6. Comparison of simulated monthly average daily soil autotrophic (RA) and heterotrophic 744 

respiration (RH) in July, 1994 between the two simulations: (a) and (d) considering water routing 745 

while (b) and (e) ignoring water routing. (c) and (f) show percentage differences between the two 746 

simulations divided by results from the simulation considering water routing. The white areas 747 

show no significant differences. 748 

 749 

Fig. 7. Comparison of the simulated differences (with vs. without water routing) in monthly 750 

values of major hydro-ecological variables between the “wet” (solid black line) and “dry” (solid 751 

red line) scenarios. 752 

 753 

Fig. 8. Comparison of the relationships of simulated saturation deficit (SD) to topographic 754 

wetness index (TWI) across the watershed between the two simulations: (a) considering water 755 

routing and (b) ignoring water routing. 756 

 757 

Fig. 9. The relationships of saturation deficit (SD) with net primary productivity (NPP), (b) soil 758 

autotrophic respiration (RA), and (c) soil heterotrophic respiration (RH). Data shown here are 759 

based on the simulation considering water routing. 760 

 761 
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Fig. 10. (a) Deteriortation  of soil moisture condition under the “dry” scenario compared to the 762 

“wet” scenario resulted in NPP decreases occurring in more areas of the watershed (c) under the 763 

“dry” scenario that that (b) under the “wet” scenario. The white areas show no significant 764 

differences. 765 

 766 
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Fig. 3. 777 

 778 

 779 

Fig. 4. 780 

 781 

 782 



40 

 

Fig. 5. 783 

 784 

 785 

Fig. 6. 786 

 787 

 788 

 789 

 790 

 791 



41 
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