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General Comments:

In this manuscript, the authors applied nonlinear prediction method for analysis of four
years of daily river flow data for the Langat River at Kajang, Malaysia which is known
for regularly suffers from flooding. The authors developed two models name as, Model
| and Model Il. Both models involve same modeling procedure except determining em-
bedding dimension for phase-space reconstruction. The former one uses the correla-
tion dimension method while the latter one uses the false nearest neighbor approach
for determining the embedding dimension which is essence of nonlinear prediction
method. The authors argued that both models could give a good prediction for the
river flow downstream. However, in my opinion the analyses are not sufficiently rigor-
ous to conclude that the above conclusion. In the following, | have included several
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comments.
Specific Comments:

1. The determination of the preliminary parameter pair (tau, m) plays a significant role
in forecasting performance of nonlinear prediction method. As the authors mentioned,
selection of the appropriate tau is important during the reconstruction of the phase-
space. If tau is too small, the phase-space coordinates will not be independent enough
to produce new information about the evolution of the system whereas if it is too large
then all the relevant information is lost because of diverging trajectories (Islam and
Sivakumar, 2002).

The authors proposed that “when a condition of tau=1 is used in phase space recon-
struction, the results gave good predictions (Sivakumar, 2002; Sivakumar, 2003). Thus,
in this study tau=1 is used”. Based on the Takens theorem (Takens, 1981), tau could
be randomly chosen, in the absence of noise and infinitely long time series. However,
in the real life situation, discharge time series could never be free from noise, e.g.
measurement error. Therefore, subtle analyses are required before selection of delay
time.

In the literature, the most used methods for determining the delay time (tau) are the au-
tocorrelation function (ACF) and mutual information function (Ml). Generally, tau can be
determined where the ACF attains the value of zero (Holzfuss and Mayer-Kress, 1986)
or below a pre-determined value such as 0.5 (Schuster, 1988) and 0.1 (Tsonis and
Elsner, 1988). In the phase-space reconstruction analysis a good choice of the time
delay is required for geometrical and numerical analysis of attractor. Selection of proper
delay time mainly based on system dynamics to unfold the attractor in d-dimensional
plot, for instance Porporato and Ridolfi (1997) found essential delay time as 1, 7 days
in Islam and Sivakumar (2002), 10 days in Elshorbagy et al. (2002), 14 days in Ng et
al. (2007) and 146 days in Pasternack (1999). These differences mainly rise from the
differences in autocorrelation structure, mutual information functions and/or underlying

C7293



system dynamics. For instance, a surrogate time series that was generated from a
stochastic autoregressive process with AR(1) where AR(1) coefficient is 0.80, which
have similar statistics with the original time series that used in the study can be seen
below.

Figure 1. A stochastically generated time series

As can be seen, a time series that generated from a stochastic process could yield
a similar phase-space plot to a chaotic one. Therefore, a stand-alone phase-space
plot with delay time tau=1 is not an indicator of chaotic dynamics against the authors
proposed in page 14341 “the trajectories of the attractor are clearly shown in two phase
diagrams. Thus, the data involved in this analysis are chaotic”. Finally, the effect of
tau on phase-space plot is well explained in Islam and Sivakumar (2002). The authors
investigated the effect of various delay times, i.e. 1, 7 and 200 on phase-space plot and
concluded that tau=1 is highly dependent and tau=200 is highly independent. tau=7
seems to be provide some kind of compromise when compared to the above two.
Therefore, selection of iAt should have been more rigorous.

2. The accurate estimation of correlation integrals largely depends on properly selected
delay time, because, the correlation integrals are calculated from the reconstructed
time series (Khatibi et al., 2011; Ng et al., 2007; Wu and Chau, 2010). Therefore,
without properly selected delay time, the calculated correlation integrals and resulted
embedding dimension which leads to Model | would be spurious.

3. As Wu and Chau (2010) mentioned “The false nearest neighbor (FNN) technique is
not concerned with a dynamic system being deterministic or not. Thus, the correlation
integral method can be more reliable for unfolding dynamical system”. However, in this
study, the FNN gave higher embedding dimension than the correlation integral method
and there is not any discussion about this phenomenon (e.g. is this resulted from the
system dynamics?). Also, Model Il that employs higher embedding dimension than the
Model | gave better results than Model |. However, Khatibi et al. (2012) showed that the
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performance of nonlinear prediction method is based on the selection of embedding di-
mension and the RMSE vs. embedding dimension plot shows that the best obtained
results with k is in harmony with the embedding dimension with the correlation dimen-
sion not FNN. Generally, higher embedding dimension (especially higher embedding
dimensions higher than that obtained with the correlation integral analysis) would give
poor results than the lower ones as can be seen in (Sivakumar, 2003; Sivakumar, 2007;
Sivakumar et al., 2002). This result can be originated from the under-estimated em-
bedding dimension with the correlation integral analysis or over-estimated embedding
dimension with the FNN analysis.

4. Another important parameter in the nonlinear prediction method is the number of
nearest neighbors. In the study, there is not any explanation about how and how many
nearest neighbors are selected?

5. The authors argued that both methods gave a good prediction performance for
the river flow downstream. However, the obtained correlation coefficients for Model
I and Model Il are 0.6103 and 0.6360 which are essentially Rsquare=0.372 and
Rsquare=0.404, respectively. | think these Rsquare values are rather poor and it is
evident that there is no reason to use these models in downstream prediction.

6. Finally, the study employs two different approaches to determine the embedding
dimension for nonlinear prediction method. In the study, there is not any discussion
about system dynamics and | think there is no need for chaotic analysis for determining
embedding dimension in this study. A trial-and-error process would be quite efficient in
determining embedding dimension for more practical use.
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Fig. 1. A stochastically generated time series
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