10

11
12

Attribution of Hydrologic Forecast Uncertainty within

Scalable Forecast Windows

Long Yang®, Fugiang Tian?, Yu Sun?*, Xing Yuan? and Heping Hu*

[1] State Key Laboratory of Hydsscience and Engineeringoepartment of Hydraulic
Engineering;Tsinghua Universy, Beijing 100084, China

[2] Department of Civil and Environmental Engineering, Princeton Universigw Bersey
08540, USA

Correspondnce to Fugiang TianE-mail: tianfg@tsinghua.edu.gn

Manuscriptsubmitted to Hydrology and Earth System Sciences

27 November2013



13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Abstract

Hindcasts basedn the Extendedbtreamflow Prediction (ESP) approaale carried out in a
typical rainfall-dominated basiim Ching aiming to examine the roles wfitial condition (C),
future atmosphericforcing (FC) and hydrologic model uncertainty NIU) in the streamflow
forecastskill. The combinedeffects of IC and FC are exploredwithin the framework ofa
forecast window By implementingvirtual numericalsimulationswithout the considation of
MU, it is found thathe dominance ofC could last up t®0 daysin dry season, whilés impact
gives wayto FC for lead timesxceeding30 daysin the wet seasonThe combinedeffect of IC
andFC on the forecast skikre furtherinvestigatedoy proposinga dimensionlesparameterff)
thatrepresergthe ratio ofthetotal amount of initial water storage atieincoming rainfall The
forecast skill increases exponentially withand vales greatly in different forecast windows.
Moreover, he influence ofMU on forecast skill is examined by focusing on the uncertainty of
model parametersTwo differenthydrologic model calibration strategies arerad out. The
results indicatehatthe uncertainty of model parametegghibits a more signifcant influence on
the forecast skilin thedry season tham the wet seasonThe ESPapproachs moreskillful in
monthly streamflow forecasturing the transitioperiodfrom wet to drythan otherwiseFor the
transition period from dry to wethe low skill of the forecastscould be attributed to the
combiredeffects oflC andFC, but lesdo the biases thehydrologic model parameteiSor the
forecasting indry season, theisefulness of th&eSP approachs heavily dependent on the
strategy othemocdkl calibration
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1. Introduction

Reliable hydrologic forecastare crucial in many hydrologic sectorse.g., flood control,
irrigation, water supply, eté-orecast skilis mainly affected by three factgnse.,the uncertainty
of hydrologic models used tderive the streamflow fronatmosphericforcing (precipitation
temperature, etc.), thencertaintyof initial conditions of the basimt the beginningof the
forecast and theuncertaintyof atmospheric forcingluring the forecast horizomhesefactors
are referred to ashe duncertainty tripled (Zappa et al., 2011fxamination of the three types of
uncertainty and their joint impacts on the forecast skitherefore not only beneficial fahe
understanding of rainfatunoff processes, but also facilitating hydrobgic applications with

processbased hydrologic models.

Previous studies revealed that the dominand€ @indFC in the hydrologic forecast skill vias
with season and locatioMahanama et al., 2011Mahanama et al., 2008Shukla and
Lettenmaier, 2011Singla et al., 2012¥laurer and Lettenmaier, 2003jor hydrologic forecast
IC is frequently referred toas the initial water storage(e.g., soil moisture snow water
equivalen} of the entire basinLi et al. (2009)found thatlC dominates the forecasskill with
lead time of up td month where beyond th&C bemmes the main contributor to the forecast
skill. However, for sombeasins over the U.Snitial soil moisture contributes significantly to the
forecast skills of all seasorexcept spring, and the contribution could last up to six months
(Mahanama et al., 2011The dominance ofC is related to thepersistenceof soil moisture
and/orsnow water equivalenSWB. It is not surprisingthat SWEdominates the forecast skill
over thosebasins of whichstreamfloware mainly generatedy the snow melt (Koster et al.
2010. For a short lead time (within theoncentratiortime of the basin) or underdxy period,
soil moisture is the only source streamflowobservedat the outlet othe basinKirkby, 1978)
The persistence ofC is also affected by the future atmospheric conditionsod and
Lettenmaier (2008jound thatlC yields forecast skill for up to five months during the transition
between the wet and dry seasons, but forgkerse transitiorfC is critical.IC is also proved to
have a stronger impact during the iateonsoon seasons in Sri Lanfddahanama et al., 2008)
More recently,Shukla et al. (2013gxamined the relative roles € and FC in seasonal

hydrologic foreast at a global scale. Their results are consistent with previous studies.

Mahanama et al. (201Hefined a parameter (variance ratio of initial water storage and total
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rainfall within forecast perigdto combine the effect d€ andFC, allowing the estimates of the

potential forecast skills.

In this study, we willcontinue with the discussion dfie impact oflC and FC on hydrologic
forecast by implementingindcasts withthe ESP ExtendedStreamflow Prediction) approach
(Day, 1985) In particular due to the persistence I and the impact oFC, we believe that

there should be certain proper time ranges which wee@rasfiforecast windows (see the
definition in section 3), and beyond the ranges the forecast is not reliable any more. The impact
of IC andFC will be discussed under the frameworktbé fiforecast window. In addition, we

will try to combine the effecobf the two factors by defining a nedimensionlesgparameter,

based on which theelationships of forecast skidind thecombinedeffect ofIC andFC could be

derived.

The third memberof the fiuncertainty tripled is model uncertaintyMU). The rainfaltrunoff
model based forecast approach (e.g. ESP) requires the model to provide accurate initial
conditions of the basin at theeginning of theforecast. The forecast skiNill undoubtedly be
impaired with model uncertaintyWalker et al., 208, Demirel et al., 2013) MU could be
induced by systematic biasesnmodelinput the structuref the modeland model parameters
etc. (Walker et al 2003)While errors inthe model inputand structure may not be readily
reduced, w will only focus on theuncertaity of model parameters in this studyrough a
process of model calibratipassuming that theput as well as the model structuserobust.Shi

et al. (2008)demonstrated thmfluenceof hydrologic model calibration in the improvement of

seasonal streaflow forecasting

The analyses in sectidhare based on th®llowing hypotheses: 1jorecast skill vaes with
initial forecast date and forecast windo®y the combineceffect of IC and FC determineghe
reliable forecast window in hydrologic forecastige will testthose hypothesesverthe upper
HanjiangRiver basin(UHRB) in Chinaby examining the relative roles &€, FC and MU on
hydrologic forecastUHRB is a typical rainfaldominant river basin & descriptiogiin section
2), whichis alsothe headwater of Soutio-North Water Transfer proje¢6ENWT) in China.This
study will broaden theapplicationfields of ESPapproachby testing itsvalidity in rainfall-
dominantratherthansnowdominantbasirs. The results wilshedlight on future application of

ESP approach isimilar basins.



94 The paper is organized as follows. Study area and methods wliéidoeibedn section 2; section

95 3 will present resultavith conclusiors anddiscussion followng in section4.

96 2. Study area and methods

97 2.1 Study area

98 The study area ithe upper Hanjiang River basimljbreviated as UHRB beloweeFigurel for

99 its geographic location), whids asubbasin of the Yangtze Riven China. The drainage area
100 of UHRB s 952x10" km? It is a typical monsoortlimate regioncharacterized bthe summer
101 dominantrainfall within the yearand greatdistinctions between rainy and dry seas(@so et
102 al., 2009) Figure 2 shows the intrannual cycle of monthly rainfall and runoff averaged from
103 19762000 over UHRB.Clearly, the runoff regime in this basin is dominated thy rainfall
104 pattern The integral runoff from May through Octobertie wetseasonperiad) accounts for
105 about 80% of the annual tot&@ased on the rainfall and runoff regimes presentddguare?2, we
106 divided awater year into four stageise., prewet season (May to July), pestet season (August
107 to October)pre-dry season (November and December) and-gigysseason (January to April of
108 the following year)The distinctvariationsof the basin state and rainfall pattern within the four
109 stages have some jhications in the forecast skibf the ESPapproach, as will bdiscussedn

110 the next section.

111 2.2 ESP approach

112 ESP is a widely used approach for hydrologic forecasting (Werner et al., 2004), and usually
113 serves as a reference for validating climate mbdskd seasonal hydrologic prediction (Wood et
114 al. 2005; Luo and Wood 2008; Yuan et al. 2013)e basic idea of ESP ie run a candidate

115 hydrological model with observed meteorological forcing through agpiperiod to the time of

116 the forecast.Then the moal with thespurrup initial basin states driven by an ensemble of

117 forcing (precipittion, temperature, etc.) thatrandomly sampled from the observed historical
118 records(Day, 1985) An ensemble othe streamflowtracesis thengeneratedcontainng the

119 information of forcing uncertainty on éhforecas{see figure 1 ofWood and Lettenmaigf2008

120 for schematic illustration of ESP approachhe arithmetic mean value of the ensembledasts

121 is selected as thssued forecast
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2.3 Model setup

The hydrologicalmodel used in this study is TsinghRapresentative Elementary Watershed
model(referred to as THREWhode) (Tian, 2006) It is a semidistributed hydrological model
based on the theory ofpresentative elementary watersih@ded byReggiani et al. (1999)The
model consistef a set of balnce equations for mass, momentum, energy and entnajyding
associated constitutive relationships for various exchange fluxes, at the scale ctiafiwed
spatial domainDetails of the modetanbe found inTian (2006 2009. The THREW model has
beensuccessfullyapplied inseveralprevious studiegMou et al., 2008Yang et al., 2013t et

al., 2012;Liu et al., 2012 Tian et al., 20067ian et al., 2012)

The study period is 197B000, whichis divided into two parts with the purpose of model
cdibration and validation. The calibration period is 19480 and the rest is used for model
validation.The nodelcalibrationproceduras as follows initial valuesand the reliable ranges of
each parameteare determined according tthe physical attriotes of UHRB andprevious
THREW modeling experience (s&n et al. (2013fpr the information othe key parameters in
the model) An automaticoptimization algorithm UNSGAII (Reed et al., 2003Deb et al.,
2002) is then usedor further calibration. The valuef each parametes finally determined
based on the automatic calibration resulisis calibrationprocedureenables the parameters to
bear clear physical meags and maintasithe performanceof the model as wellThe objective
function forthe automaticalibration isthe NashSutcliff coefficient(NSE (Nash and Sutcliffe,
1970) as widely used in previous hydrologicabdelingstudies.

Another water balare related metrigVB, together wittNSE is used to evaluate the performance

of the model during the two period&Btakes the form as:

WB= R)bs- I:esim (1)
Rabs

whereR ,.andR; are the total observed and simulated runoffi{im), respectively.

The statistics arsummarized iMTablel. The THREW modeperforms quite well in UHRB. The
values of dily NSEin both the calibration and validation period asdove 0.80. Thealue of
monthly NSE is as high as 0.99eeYang et al. (2013Jor more detailed evaluatisrof the

THREW model performancein UHRB). The evaluation statistics indicate that the model

6
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accurately captueethe dynamics of the streamflow during 192000 over UHRB given he

observed atmospheric forcing

However, this lumped calibratiostratey might only present the overgtlerformanceof the
model during the whole simulation periodidinot necessario guaranteehe performance over
each suifperiod(e.g., dry seasons\Ve will present further details of another model calibration

strategyused in this study in the next section.
3 Results

In this section, we present tleealuationof the impacs of IC and FC on the forecast within
different forecast windows (see section 3.1 for the definition of forecast window) and at two
contrastng initial states. The commedeffects of IC andFC is then discussed by defining a new
parameteb. The effect oMU (the uncertainty of model parametens) be examined in section

3.2.

3.1 The impact of IC and FC

3.1.1 Definition of forecast window (FW)

A forecastwindow (FW) proposed in this studganbe regarded aan integration time window
initiating from the forecast datdt differs from lead timgwhich is afrequently usederm in
hydrologic forecastg (seeFigure3). Lead timeis the gap between th@me that the forecast is
issuedandthe occurrencef theforecasedvariable. For exampldf, we are interested ithetotal
streamflow volumeof this July, supposing théorecasttime isissuedsome day irfJanuarythen
the lead time shoulbe about6 months(the time gap between January and )Iulthe model
needs to run from January till the end of Julythis context, this study focused on theesas
with no lead time (equal taerg. They could beregardedas fireattimeo forecasts but with
differentFWs The forecastedariableis the integraktreamflow véumewithin eachFW.

3.1.2 Evaluation of the impact of IC and FC

fiVirtualo experimentsaredesigned in this section for the reason of avoiding the incorporation of
model uncertaintyMIU) effect.In thesefivirtualo experimeng, the forecastareevaluaed agains

retrospectivestreamflowsimulations(driven by actual atmospherforcing) instead ofactual



177
178
179
180
181
182

183
184
185
186
187
188
189
190
191

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

streamflowobservationsassuming that the model fiperfect. The design of the experimeist

summarized ifTable 2. Eight different forecast windowareset 7 days, 15 days, 30 days, 60
days, 90 days, 120 dsy150 days and 183 day¥e alsochose two contrasting forecast dates,
1st February and 1st Julyf each year(in the middle of the winter and summer season
respectively), representing the dry and wet initial staté the basinEach set of the forecasts

were made for 80-yearperiod (from 1970 to 2000).

The resultsare evaluated byusing the Pearson correlation coefficignty decreases with the
extension of forecast window for bothnitial dates(Figure 4 and Figure 5). However, the
patterns are a little different. For the dry scenathe ipitial date islst February)j) is 0.99 for

the 7day window, and gradually drops below 0f60the window exceeding 90 dayshile for

the wet scenarialfe initial date islst July), the maximum correlation coefficient is 0.70 for the
7-day forecastwindow, and quickly reduces to 0.46 80-day window. The forecasts almost

equal the climatological mean when the forecast window exceeds 90 days under this scenario.
The contrasting behaviors of the two scenarios indicate that the consistency of the forecast seems

to bear a wider range of fcas windows for the dry scenario.

To further illustrate the impact ¢€/FC and their relative role in the forecast, we employed an
analytical framework as developed byWood and Lettenmaier, 2008nd used byLi et al.
(2009) 1t is effective to discer relative impacts ofC and FC on the forecastsas well ashe
dynamic competence of the two factors with the increase of forecast window. The basic idea of
this framework is to raort the forecasts according i© (soil moisture) and=C (precipitation
forcing). D imagesareproduced based on the resortedtrix of theforecass. The columns of
each D image inFigure 6 and Figure 7 canbe regarded aa reverseESP (RESP) approach
which was introducedy Wood and Lettenmaier (20083ee also Fig.2 ofi et al. (2009)for
more details of ESP and ESP) he basic idea dR-ESP is tadrive an ensemble ofiCs, which

are derived by resampled meteorological ensembles dimngpinup period, using the accurate
meteorologicaforcing. RESPreveas the influence ofC uncertainty on the forecast, while ESP
focuseson theimpactof FC. The patterns of the images reflect the relative impakf eindFC:

if these arenorizontally structured, the forecasts are largely determinedChyand FC hasa
relatively small impact; whilé&-C dominates the forecast if the image is vertically structured. A

i hat c h e ohdicatésm aogneined influencel@f andFC.
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Organized structures calilbe observed irboth Figure 6 and Figure 7. For the forecasts
initialized onthe 1% of February Figure 6), the patterns of thémages are characterized by
horizontal stripes for forecast windows less than 60 days (2 months). The pelt@ngginto
more vertical stripes when the window exceeds 90 days. For the foofc@@day forecast
window, a hatchegbatternis displayed IC is the dominant impaabn the forecasts within-2
monthforecast window when ESP hamst skill; while this dominancehangedo FC for larger
forecast windows (exceeding 90 days), and ESP loses its skill a3 he80-day window is the
divide of the donmnance of the two factors. BothelC andFC could impact the forecastgthin

the 90day forecast windowFor the forecasts initialized ote 1% of July (Figure 7), the
dominance ofC is constrainedo 30 days For the rest of forecast windows (exceeding 30 days),

FC dominates the forecastsd the forecast skitlecay as well

The possibleexplanations for the results atbe 1% of Februaryrepresergrelatively dry statef
the basin within the yearsine it is in the middle of the dry seasons and thetesedent
precipitation isscare. The lack ofsoil moistureto the saturatiostatecannot be easilyilled up
with subsequent rainfall events. Thus, k8ecould persistor a long period until the totahinfall
within the forecast window iable to compensate tlwitial soil moistureanomaly This could
explain why the datched image occurs on the 9fay case Kigure 6) and is converted to
overticabwhenwet seasor(May to August)begins. For the wet scenario (forecasts initialized on
the 1% of July), the basin has alreadyeen saturated or nesaturated.ln this case, the
accumulated soil moisture in the basuil contribute significantly to the future streamflow
regime, just as most snedominated basins behavelowever, ulike those snowdominate
basing UHRB will experience rainy weather the subsequent months (Augusgp&mber and
October) Several heavyrecipitationevents coulceasilyrecharge théasin and eliminate the
persistence of the saihoisturecompletely so thelC is not able to prsistfor a long periodIt
seemghat he persistence o€ is not solely determined by tlmeagnitude of initial anomaljyut
also by the subsequent meteorgloal conditions The forecast skill othe ESP approachis
determined by theombinedeffect of IC and FC, which will be examined by defining a new

parameter in the next section.



235 3.1.3 Combined effects of IC and FC

236 Based on the analyses in sect®f.2 we further cone up with anew parametewhich triesto
237 synthesize theeffect of IC and FC on the forecastand generalize the relationships to the
238 forecasts with more diverd€s. The new parameter beth)(is adimensionlessatio of total

239 initial water storage and incoming rainfall within forecast windows, defined here as

240  b=log(R,,/R) @)

241 where R, is the totalinitial water storage (e.gsoil moisture residual water in the river,
242  expressed a@eptidandthe unitis mm), representing the influence I€; R, is the total rainft

243 (in mm) within the forecast windosy representing the influence BEC. We takethe logarithmof

244  the ratiofor mathematial reasons. The form of beth) (s similar with the parameter kappg) (
245 defined byMahanama et al. (2011However, they focus on the variance instead of the total
246  amount, sincelie integration window is fixeth 3 monthsn their study

247 We employedVMARE (Mean Absolute Relative Errpas the evaluation metric of the forecasts.
248 Theform is:
1.0

249 MARE=-g
Nz

Fst - Obs
Obs

‘ 100% (3)

250 whereFst and are the foreasted and observed totstreamflow volumewithin forecast

251 windows respectivelyn is the number of forecast yeaaad in this study

252 A new set of forecast windows aneed they are: 3 days, 7 days, days, 15 days, 20 days, 30
253 days, 60 days and 90 days, since BSproaclpresentso skil for the forecastbeyond90 days
254 in this study The first day of each month is chosen as the forecast datedefhis of the

255 experiment are summarized Trable 3. The experimentonfigurationsin this section aralso
256 devoid of modeluncertainty An exponential function( y=a€*) is employed to fit the
257 relationship between thparameter(b) and evaluation metricMARE) of the forecastsThe
258 parameters and evaluatigalues R*) of the fitted lines aréistedin Table4.

259 The accuracyof the forecasts increases exponentiallith b, correspondingto our above

260 analyss that theorecastsskill will be mainly determined biC if theinitial water storagdéas a
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comparatively larger value than the totalnfall within the forecast windowsHowever the
variability of total precpitation within forecast window also plays a role. As showirigure8,

the forecast accuracy becomes less sensitivie a8 the forecast window increasdsis is
probablybecausehe total rainfall within largerforecast windows enables the basin to be fully
recharged several times, which eliminates pleesistenceof IC. In addition the interannual
variability of the totalrainfall decays with thentegratingtime window (e.g.the variability of
seasonal pregitationis usuallysmaller tharthat ofweekly precipitatior), which should come as
no surpriseThus, a larger value of total precipitation with smaller variability will indsioeller

sensitivty of forecast accuracip b.

It is alsonoteworthy that lthough the fitted lineasymptoticallyapproximate td, therewill be
upper bounds for the forecast accuratyeality. As can be observed irigure 8, the upper
boundsof forecas skill for 3-days are much higher than-g@ys, indicatingthat shortterm
forecass arepotentiallymorereliablethan longterm forecastising theESP approactHowever,
we also notice thashortterm forecasts arenot necessarily more accuratiean long-term
counterpartgthe relatively larger vertical spanfor the smaller forecastindow lines inFigure
8). Since the model iassumed to berrorfree thepossible explanation could be thariability
of the tdal precipitationwithin forecast windows. For shetérm forecastthe variability of FC
should also be considered in addition t€, especially for the cases wheéfC takes the

dominancef the forecast skill

Figure8 also showshe potential ability of ESP approaelithin different forecast windowsver
UHRB. Although the newly defined parametd) only focuseson the ratio of the total water
storage and rainfall, the derived relationships betweeh #mal forecast skill reveal the effect of
variance as welWe note that this analytical framework bis able to combine the effects Iaf
and FC, and provide a firsbrder understanding of when andvithat extert the forecast skill
may be achieved based the ESP approach in UHRB.

3.2 The impact of MU

Model Uncertainty MU) is anotherfactor thatinfluences the forecast. The essence of the ESP
appro&h is to utilize thedC of the basin provided by the hydrological model through-spin

period. Thus, he reliability of thelC greatly impacts the final accuracy of the forecast. The
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model used in this study has been calibrateminst NSE with the evalation metics
summarized iMmablel1. Although the model presents a remarkably good performance during the
whole simulation periodfs performance in each separate movdhies As shown inFigure9b,

the value oNSEis above 0.90 for July, August, September and October. These four months are
also the wettest during the yaarUHRB. For dry monthgJanuary to April) NSEis below O.
Thevalue of NSE i9.58 and).64 for Mach and April, respectively.

Previous studies revealed the problems of model calibration sisiglg objectivdunction The
mathematical form dSEresults inthe overweighing of high flows in the calculatio(Schaefli
and Gupta, 2007)Even though he simulation of low flowdeviateis poor NSEwill not be

affected sincethe magnitude ismallrelative to the flooeperiod

In this study, ve also caried out a different model calibration strategy. The low flows
(streamflow from January to May) argteacted from each year, constituting a new time series.
The model is again calibratedth the same calibratioprocedurebut only for the new lowilow

time seriesNSEis still usedas the calibration metrizecause of its simplicity

New NSEfor eachmonth (January to May$ shown inFigure9b. Model performancen March,

April and Mayis improved, while for January and February, the new calibration does not make
any improvementThere are quite a large numbarstudies focusing on the model uncertainty
analysis (e.g., Beven, 1989)he model uncertainly could be reduced by first identifying the
main source of uncertainty (including the model input, parameters and model structure, Walker
et al, 2005) and comap with effective methods, for instance, model parameter calibration
strategies (e.g., SCHA, Duan et al, 1993).

Since the objective of this study is to examine the influendédf(the uncertainty of model
parameterspn the forecast accuracy of ESP eggeh, we will not endeavor to improve the
model performance for each moniut only focus on the accuracy of forecasts on March and
April after the new model calibrationWe set the forecast window to 30 daysghich is
frequentlyused in previous studig€e.g. Smith et al., 19924ashino et al., 20068)Vang et al.,
2011)andproved to be effective under differd@sin previous section.

The skill of the forecast in ESP approach is evaluatesiy, defined as
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(4)

Where and are the observed anrecastedmonthly streamflow volume(in mm),

regectively; is the mean value of the obsenateamflow volumdin mm), representing the
climatological forecasin is the total number of forecast yeasd in this study This has
the same form adNashSutcliff Efficiency, but is being used for assessing the model

performances in individual month& score of 1 corresponds to a perfect forecast.

During Octoberto DecemberESP approacpresers high forecastskill (Figure9a). For March
and April, the skill score is far below 0, indicating no forecast skilttier period However, this
does not indicate theselessnessf ESP approach. When the foasts are made based on the

calibrated modelsespecialy for March and April), the skill scores are significantly improved.
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590 Figure5. The same aBigure4 but the initialforecastdate is 1st July.
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