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Abstract 13 

Hindcasts based on the Extended Streamflow Prediction (ESP) approach are carried out in a 14 

typical rainfall-dominated basin in China, aiming to examine the roles of initial condition (IC), 15 

future atmospheric forcing (FC) and hydrologic model uncertainty (MU) in the streamflow 16 

forecast skill. The combined effects of IC and FC are explored within the framework of a 17 

forecast window. By implementing virtual numerical simulations without the consideration of 18 

MU, it is found that the dominance of IC could last up to 90 days in dry season, while its impact 19 

gives way to FC for lead times exceeding 30 days in the wet season. The combined effects of IC 20 

and FC on the forecast skill are further investigated by proposing a dimensionless parameter (ɓ) 21 

that represents the ratio of the total amount of initial water storage and the incoming rainfall. The 22 

forecast skill increases exponentially with ɓ, and varies greatly in different forecast windows. 23 

Moreover, the influence of MU on forecast skill is examined by focusing on the uncertainty of 24 

model parameters. Two different hydrologic model calibration strategies are carried out. The 25 

results indicate that the uncertainty of model parameters exhibits a more significant influence on 26 

the forecast skill in the dry season than in the wet season. The ESP approach is more skillful in 27 

monthly streamflow forecast during the transition period from wet to dry than otherwise. For the 28 

transition period from dry to wet, the low skill of the forecasts could be attributed to the 29 

combined effects of IC and FC, but less to the biases in the hydrologic model parameters. For the 30 

forecasting in dry season, the usefulness of the ESP approach is heavily dependent on the 31 

strategy of the model calibration. 32 

33 
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1. Introduction  34 

Reliable hydrologic forecasts are crucial in many hydrologic sectors, e.g., flood control, 35 

irrigation, water supply, etc. Forecast skill is mainly affected by three factors, i.e., the uncertainty 36 

of hydrologic models used to derive the streamflow from atmospheric forcing (precipitation, 37 

temperature, etc.), the uncertainty of initial conditions of the basin at the beginning of the 38 

forecast, and the uncertainty of atmospheric forcing during the forecast horizon. These factors 39 

are referred to as the óuncertainty tripletô (Zappa et al., 2011). Examination of the three types of 40 

uncertainty and their joint impacts on the forecast skill is therefore not only beneficial for the 41 

understanding of rainfall-runoff processes, but also for facilitating hydrologic applications with 42 

process-based hydrologic models.  43 

Previous studies revealed that the dominance of IC and FC in the hydrologic forecast skill varies 44 

with season and location (Mahanama et al., 2011; Mahanama et al., 2008; Shukla and 45 

Lettenmaier, 2011; Singla et al., 2012; Maurer and Lettenmaier, 2003). For hydrologic forecasts, 46 

IC is frequently referred to as the initial water storage (e.g., soil moisture, snow water 47 

equivalent) of the entire basin. Li et al. (2009) found that IC dominates the forecast skill with 48 

lead time of up to 1 month, where beyond that FC becomes the main contributor to the forecast 49 

skill. However, for some basins over the U.S., initial soil moisture contributes significantly to the 50 

forecast skills of all seasons except spring, and the contribution could last up to six months 51 

(Mahanama et al., 2011). The dominance of IC is related to the persistence of soil moisture 52 

and/or snow water equivalent (SWE). It is not surprising that SWE dominates the forecast skill 53 

over those basins of which streamflow are mainly generated by the snow melt (Koster et al. 54 

2010). For a short lead time (within the concentration time of the basin) or under a dry period, 55 

soil moisture is the only source of streamflow observed at the outlet of the basin (Kirkby, 1978). 56 

The persistence of IC is also affected by the future atmospheric conditions. Wood and 57 

Lettenmaier (2008) found that IC yields forecast skill for up to five months during the transition 58 

between the wet and dry seasons, but for the reverse transition, FC is critical. IC is also proved to 59 

have a stronger impact during the inter-monsoon seasons in Sri Lanka (Mahanama et al., 2008). 60 

More recently, Shukla et al. (2013) examined the relative roles of IC and FC in seasonal 61 

hydrologic forecast at a global scale. Their results are consistent with previous studies. 62 

Mahanama et al. (2011) defined a parameter ə (variance ratio of initial water storage and total 63 
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rainfall within forecast period) to combine the effect of IC and FC, allowing the estimates of the 64 

potential forecast skills. 65 

In this study, we will continue with the discussion of the impact of IC and FC on hydrologic 66 

forecast by implementing hindcasts with the ESP (Extended Streamflow Prediction) approach 67 

(Day, 1985). In particular, due to the persistence of IC and the impact of FC, we believe that 68 

there should be certain proper time ranges which we termed as ñforecast windowsò (see the 69 

definition in section 3), and beyond the ranges the forecast is not reliable any more. The impact 70 

of IC and FC will be discussed under the framework of the ñforecast windowò. In addition, we 71 

will try to combine the effect of the two factors by defining a new dimensionless parameter, 72 

based on which the relationships of forecast skill and the combined effect of IC and FC could be 73 

derived. 74 

The third member of the ñuncertainty tripletò is model uncertainty (MU). The rainfall-runoff 75 

model based forecasting approach (e.g. ESP) requires the model to provide accurate initial 76 

conditions of the basin at the beginning of the forecast. The forecast skill will undoubtedly be 77 

impaired with model uncertainty (Walker et al., 2003; Demirel et al., 2013). MU could be 78 

induced by systematic biases in model input, the structure of the model, and model parameters 79 

etc. (Walker et al 2003). While errors in the model input and structure may not be readily 80 

reduced, we will only focus on the uncertainty of model parameters in this study through a 81 

process of model calibration, assuming that the input as well as the model structure is robust. Shi 82 

et al. (2008) demonstrated the influence of hydrologic model calibration in the improvement of 83 

seasonal streamflow forecasting.   84 

The analyses in section 3 are based on the following hypotheses: 1) forecast skill varies with 85 

initial forecast date and forecast window; 2) the combined effect of IC and FC determines the 86 

reliable forecast window in hydrologic forecasting. We will test those hypotheses over the upper 87 

Hanjiang River basin (UHRB) in China by examining the relative roles of IC, FC and MU on 88 

hydrologic forecast. UHRB is a typical rainfall-dominant river basin (see descriptions in section 89 

2), which is also the headwater of South-to-North Water Transfer project (SNWT) in China. This 90 

study will broaden the application fields of ESP approach by testing its validity in rainfall-91 

dominant rather than snow-dominant basins. The results will shed light on future application of 92 

ESP approach in similar basins. 93 
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The paper is organized as follows. Study area and methods will be described in section 2; section 94 

3 will present results, with conclusions and discussion following in section 4.  95 

2. Study area and methods 96 

2.1 Study area 97 

The study area is the upper Hanjiang River basin (abbreviated as UHRB below, see Figure 1 for 98 

its geographic location), which is a sub-basin of the Yangtze River in China. The drainage area 99 

of UHRB is 9.52×10
4
 km

2
. It is a typical monsoon-climate region, characterized by the summer 100 

dominant rainfall within the year and great distinctions between rainy and dry seasons (Guo et 101 

al., 2009). Figure 2 shows the intra-annual cycle of monthly rainfall and runoff averaged from 102 

1970-2000 over UHRB. Clearly, the runoff regime in this basin is dominated by the rainfall 103 

pattern. The integral runoff from May through October (the wet-season period) accounts for 104 

about 80% of the annual total. Based on the rainfall and runoff regimes presented in Figure 2, we 105 

divided a water year into four stages, i.e., pre-wet season (May to July), post-wet season (August 106 

to October), pre-dry season (November and December) and post-dry season (January to April of 107 

the following year). The distinct variations of the basin state and rainfall pattern within the four 108 

stages have some implications in the forecast skill of the ESP approach, as will be discussed in 109 

the next section.  110 

2.2 ESP approach  111 

ESP is a widely used approach for hydrologic forecasting (Werner et al., 2004), and usually 112 

serves as a reference for validating climate model-based seasonal hydrologic prediction (Wood et 113 

al. 2005; Luo and Wood 2008; Yuan et al. 2013). The basic idea of ESP is to run a candidate 114 

hydrological model with observed meteorological forcing through a spin-up period to the time of 115 

the forecast. Then, the model with the spun-up initial basin state is driven by an ensemble of 116 

forcing (precipitation, temperature, etc.) that is randomly sampled from the observed historical 117 

records (Day, 1985). An ensemble of the streamflow traces is then generated, containing the 118 

information of forcing uncertainty on the forecast (see figure 1 of Wood and Lettenmaier (2008) 119 

for schematic illustration of ESP approach). The arithmetic mean value of the ensemble forecasts 120 

is selected as the issued forecast. 121 
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2.3 Model setup 122 

The hydrological model used in this study is Tsinghua-Representative Elementary Watershed 123 

model (referred to as THREW model) (Tian, 2006). It is a semi-distributed hydrological model, 124 

based on the theory of representative elementary watershed raised by Reggiani et al. (1999). The 125 

model consists of a set of balance equations for mass, momentum, energy and entropy, including 126 

associated constitutive relationships for various exchange fluxes, at the scale of a well-defined 127 

spatial domain. Details of the model can be found in Tian (2006, 2009). The THREW model has 128 

been successfully applied in several previous studies (Mou et al., 2008; Yang et al., 2013; Li et 129 

al., 2012; Liu et al., 2012; Tian et al., 2006; Tian et al., 2012). 130 

The study period is 1970-2000, which is divided into two parts with the purpose of model 131 

calibration and validation. The calibration period is 1970-1980 and the rest is used for model 132 

validation. The model calibration procedure is as follows: initial values and the reliable ranges of 133 

each parameter are determined according to the physical attributes of UHRB and previous 134 

THREW modeling experience (see Sun et al. (2013) for the information of the key parameters in 135 

the model). An automatic optimization algorithm, Ů-NSGAII (Reed et al., 2003; Deb et al., 136 

2002), is then used for further calibration. The value of each parameter is finally determined 137 

based on the automatic calibration results. This calibration procedure enables the parameters to 138 

bear clear physical meanings and maintains the performance of the model as well. The objective 139 

function for the automatic calibration is the Nash-Sutcliff coefficient (NSE) (Nash and Sutcliffe, 140 

1970), as widely used in previous hydrological modeling studies.  141 

Another water balance related metric WB, together with NSE, is used to evaluate the performance 142 

of the model during the two periods. WB takes the form as: 143 

obs sim

obs

R R
WB

R


   (1) 144 

where obsR and simR are the total observed and simulated runoff (in mm), respectively.  145 

The statistics are summarized in Table 1. The THREW model performs quite well in UHRB. The 146 

values of daily NSE in both the calibration and validation period are above 0.80. The value of 147 

monthly NSE is as high as 0.99 (see Yang et al. (2013) for more detailed evaluations of the 148 

THREW model performance in UHRB). The evaluation statistics indicate that the model 149 
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accurately captures the dynamics of the streamflow during 1970-2000 over UHRB, given the 150 

observed atmospheric forcing. 151 

However, this lumped calibration strategy might only present the overall performance of the 152 

model during the whole simulation period. It is not necessary to guarantee the performance over 153 

each sub-period (e.g., dry seasons). We will present further details of another model calibration 154 

strategy used in this study in the next section.  155 

3 Results  156 

In this section, we present the evaluation of the impacts of IC and FC on the forecast within 157 

different forecast windows (see section 3.1 for the definition of forecast window) and at two 158 

contrasting initial states. The combined effects of IC and FC is then discussed by defining a new 159 

parameter ɓ. The effect of MU (the uncertainty of model parameters) will be examined in section 160 

3.2.  161 

3.1 The impact of IC and FC 162 

3.1.1 Definition of forecast window (FW) 163 

A forecast window (FW) proposed in this study can be regarded as an integration time window 164 

initiating from the forecast date. It differs from lead time, which is a frequently used term in 165 

hydrologic forecasting (see Figure 3). Lead time is the gap between the time that the forecast is 166 

issued and the occurrence of the forecasted variable. For example, if we are interested in the total 167 

streamflow volume of this July, supposing the forecast time is issued some day in January, then 168 

the lead time should be about 6 months (the time gap between January and July). The model 169 

needs to run from January till the end of July. In this context, this study focused on the cases 170 

with no lead time (equal to zero). They could be regarded as ñreal-timeò forecasts but with 171 

different FWs. The forecasted variable is the integral streamflow volume within each FW.  172 

3.1.2 Evaluation of the impact of IC and FC 173 

ñVirtualò experiments are designed in this section for the reason of avoiding the incorporation of 174 

model uncertainty (MU) effect. In these ñvirtualò experiments, the forecasts are evaluated against 175 

retrospective streamflow simulations (driven by actual atmospheric forcing) instead of actual 176 
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streamflow observations, assuming that the model is ñperfectò. The design of the experiment is 177 

summarized in Table 2. Eight different forecast windows are set: 7 days, 15 days, 30 days, 60 178 

days, 90 days, 120 days, 150 days and 183 days. We also chose two contrasting forecast dates, 179 

1st February and 1st July of each year (in the middle of the winter and summer season, 180 

respectively), representing the dry and wet initial states of the basin. Each set of the forecasts 181 

were made for a 30-year period (from 1970 to 2000). 182 

The results are evaluated by using the Pearson correlation coefficient ɟ. ɟ decreases with the 183 

extension of forecast window for both initial dates (Figure 4 and Figure 5). However, the 184 

patterns are a little different. For the dry scenario (the initial date is 1st February), ɟ is 0.99 for 185 

the 7-day window, and gradually drops below 0.50 for the window exceeding 90 days; while for 186 

the wet scenario (the initial date is 1st July), the maximum correlation coefficient is 0.70 for the 187 

7-day forecast window, and quickly reduces to 0.46 for 30-day window. The forecasts almost 188 

equal the climatological mean when the forecast window exceeds 90 days under this scenario. 189 

The contrasting behaviors of the two scenarios indicate that the consistency of the forecast seems 190 

to bear a wider range of forecast windows for the dry scenario. 191 

To further illustrate the impact of IC/FC and their relative role in the forecast, we employed an 192 

analytical framework, as developed by (Wood and Lettenmaier, 2008) and used by Li et al. 193 

(2009). It is effective to discern relative impacts of IC and FC on the forecasts, as well as the 194 

dynamic competence of the two factors with the increase of forecast window. The basic idea of 195 

this framework is to re-sort the forecasts according to IC (soil moisture) and FC (precipitation 196 

forcing). 2D images are produced based on the resorted matrix of the forecasts. The columns of 197 

each 2D image in Figure 6 and Figure 7 can be regarded as a reverse-ESP (R-ESP) approach 198 

which was introduced by Wood and Lettenmaier (2008) (see also Fig.2 of Li et al. (2009) for 199 

more details of R-ESP and ESP). The basic idea of R-ESP is to drive an ensemble of ICs, which 200 

are derived by resampled meteorological ensembles during the spinup period, using the accurate 201 

meteorological forcing. R-ESP reveals the influence of IC uncertainty on the forecast, while ESP 202 

focuses on the impact of FC. The patterns of the images reflect the relative impact of IC and FC: 203 

if these are horizontally structured, the forecasts are largely determined by IC, and FC has a 204 

relatively small impact; while FC dominates the forecast if the image is vertically structured. A 205 

ñhatchedò image indicates a combined influence of IC and FC.  206 
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Organized structures could be observed in both Figure 6 and Figure 7. For the forecasts 207 

initialized on the 1
st
 of February (Figure 6), the patterns of the images are characterized by 208 

horizontal stripes for forecast windows less than 60 days (2 months). The patterns change into 209 

more vertical stripes when the window exceeds 90 days. For the forecast of 90-day forecast 210 

window, a hatched pattern is displayed. IC is the dominant impact on the forecasts within 2-211 

month forecast window when ESP has most skill; while this dominance changes to FC for larger 212 

forecast windows (exceeding 90 days), and ESP loses its skill as well. The 90-day window is the 213 

divide of the dominance of the two factors. Both the IC and FC could impact the forecasts within 214 

the 90-day forecast window. For the forecasts initialized on the 1
st
 of July (Figure 7), the 215 

dominance of IC is constrained to 30 days. For the rest of forecast windows (exceeding 30 days), 216 

FC dominates the forecasts and the forecast skill decays as well.  217 

The possible explanations for the results are: the 1
st
 of February represents relatively dry state of 218 

the basin within the year, since it is in the middle of the dry seasons and the antecedent 219 

precipitation is scarce. The lack of soil moisture to the saturation state can not be easily filled up 220 

with subsequent rainfall events. Thus, the IC could persist for a long period until the total rainfall 221 

within the forecast window is able to compensate the initial soil moisture anomaly. This could 222 

explain why the óhatchedô image occurs on the 90-day case (Figure 6) and is converted to 223 

óverticalô when wet season (May to August) begins. For the wet scenario (forecasts initialized on 224 

the 1
st
 of July), the basin has already been saturated or near-saturated. In this case, the 225 

accumulated soil moisture in the basin will contribute significantly to the future streamflow 226 

regime, just as most snow-dominated basins behave. However, unlike those snow-dominate 227 

basins, UHRB will experience rainy weather in the subsequent months (August, September and 228 

October). Several heavy precipitation events could easily recharge the basin and eliminate the 229 

persistence of the soil moisture completely, so the IC is not able to persist for a long period. It 230 

seems that the persistence of IC is not solely determined by the magnitude of initial anomaly, but 231 

also by the subsequent meteorological conditions. The forecast skill of the ESP approach is 232 

determined by the combined effects of IC and FC, which will be examined by defining a new 233 

parameter in the next section.  234 
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3.1.3 Combined effects of IC and FC  235 

Based on the analyses in section 3.1.2, we further come up with a new parameter, which tries to 236 

synthesize the effect of IC and FC on the forecasts and generalize the relationships to the 237 

forecasts with more diverse ICs. The new parameter beta (ɓ) is a dimensionless ratio of total 238 

initial water storage and incoming rainfall within forecast windows, defined here as 239 

log( / )sm pR R    (2) 240 

where smR  is the total initial water storage (e.g., soil moisture, residual water in the river, 241 

expressed as ódepthô and the unit is mm), representing the influence of IC; pR  is the total rainfall 242 

(in mm) within the forecast windows, representing the influence of FC. We take the logarithm of 243 

the ratio for mathematical reasons. The form of beta (ɓ) is similar with the parameter kappa (ə) 244 

defined by Mahanama et al. (2011). However, they focus on the variance instead of the total 245 

amount, since the integration window is fixed to 3 months in their study.  246 

We employed MARE (Mean Absolute Relative Error) as the evaluation metric of the forecasts. 247 

The form is: 248 

1

1
100%

n
i i

i i

Fst Obs
MARE

n Obs


    (3) 249 

where iFst and iObs are the forecasted and observed total streamflow volume within forecast 250 

windows, respectively; n is the number of forecast years, and 30n in this study. 251 

A new set of forecast windows are used, they are: 3 days, 7 days, 10 days, 15 days, 20 days, 30 252 

days, 60 days and 90 days, since ESP approach presents no skill for the forecasts beyond 90 days 253 

in this study. The first day of each month is chosen as the forecast date. The details of the 254 

experiment are summarized in Table 3. The experiment configurations in this section are also 255 

devoid of model uncertainty. An exponential function (  bxy ae ) is employed to fit the 256 

relationship between the parameter (ɓ) and evaluation metric (MARE) of the forecasts. The 257 

parameters and evaluation values ( 2R ) of the fitted lines are listed in Table 4.  258 

The accuracy of the forecasts increases exponentially with ɓ, corresponding to our above 259 

analysis that the forecasts skill will be mainly determined by IC if the initial water storage has a 260 

app:ds:logarithm
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comparatively larger value than the total rainfall within the forecast windows. However, the 261 

variability of total precipitation within forecast window also plays a role. As shown in Figure 8, 262 

the forecast accuracy becomes less sensitive to ɓ as the forecast window increases. This is 263 

probably because the total rainfall within larger forecast windows enables the basin to be fully 264 

recharged several times, which eliminates the persistence of IC. In addition, the inter-annual 265 

variability of the total rainfall decays with the integrating time window (e.g., the variability of 266 

seasonal precipitation is usually smaller than that of weekly precipitation), which should come as 267 

no surprise. Thus, a larger value of total precipitation with smaller variability will induce smaller 268 

sensitivity of forecast accuracy to ɓ.  269 

It is also noteworthy that although the fitted lines asymptotically approximate to 0, there will be 270 

upper bounds for the forecast accuracy in reality. As can be observed in Figure 8, the upper 271 

bounds of forecast skill for 3-days are much higher than 90-days, indicating that short-term 272 

forecasts are potentially more reliable than long-term forecast using the ESP approach. However, 273 

we also notice that short-term forecasts are not necessarily more accurate than long-term 274 

counterparts (the relatively larger vertical spans for the smaller forecast window lines in Figure 275 

8). Since the model is assumed to be error free, the possible explanation could be the variability 276 

of the total precipitation within forecast windows. For short-term forecast, the variability of FC 277 

should also be considered in addition to IC, especially for the cases when FC takes the 278 

dominance of the forecast skill. 279 

Figure 8 also shows the potential ability of ESP approach within different forecast windows over 280 

UHRB. Although the newly defined parameter (ɓ) only focuses on the ratio of the total water 281 

storage and rainfall, the derived relationships between the ɓ and forecast skill reveal the effect of 282 

variance as well. We note that this analytical framework of ɓ is able to combine the effects of IC 283 

and FC, and provide a first-order understanding of when and to what extent the forecast skill 284 

may be achieved based on the ESP approach in UHRB. 285 

3.2 The impact of MU  286 

Model Uncertainty (MU) is another factor that influences the forecast. The essence of the ESP 287 

approach is to utilize the IC of the basin provided by the hydrological model through spin-up 288 

period. Thus, the reliability of the IC greatly impacts the final accuracy of the forecast. The 289 
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model used in this study has been calibrated against NSE, with the evaluation metrics 290 

summarized in Table 1. Although the model presents a remarkably good performance during the 291 

whole simulation period, its performance in each separate month varies. As shown in Figure 9b, 292 

the value of NSE is above 0.90 for July, August, September and October. These four months are 293 

also the wettest during the year in UHRB. For dry months (January to April), NSE is below 0. 294 

The value of NSE is 0.58 and 0.64 for March and April, respectively.  295 

Previous studies revealed the problems of model calibration using single objective function. The 296 

mathematical form of NSE results in the over-weighting of high flows in the calculation (Schaefli 297 

and Gupta, 2007). Even though the simulation of low flow deviate is poor, NSE will not be 298 

affected, since the magnitude is small relative to the flood-period.  299 

In this study, we also carried out a different model calibration strategy. The low flows 300 

(streamflow from January to May) are extracted from each year, constituting a new time series. 301 

The model is again calibrated with the same calibration procedure, but only for the new low-flow 302 

time series. NSE is still used as the calibration metric because of its simplicity.  303 

New NSE for each month (January to May) is shown in Figure 9b. Model performance in March, 304 

April and May is improved, while for January and February, the new calibration does not make 305 

any improvement. There are quite a large number of studies focusing on the model uncertainty 306 

analysis (e.g., Beven, 1989). The model uncertainly could be reduced by first identifying the 307 

main source of uncertainty (including the model input, parameters and model structure, Walker 308 

et al, 2005) and come up with effective methods, for instance, model parameter calibration 309 

strategies (e.g., SCE-UA, Duan et al, 1993).  310 

Since the objective of this study is to examine the influence of MU (the uncertainty of model 311 

parameters) on the forecast accuracy of ESP approach, we will not endeavor to improve the 312 

model performance for each month but only focus on the accuracy of forecasts on March and 313 

April after the new model calibration. We set the forecast window to 30 days, which is 314 

frequently used in previous studies (e.g. Smith et al., 1992; Hashino et al., 2006; Wang et al., 315 

2011) and proved to be effective under different ICs in previous section. 316 

The skill of the forecast in ESP approach is evaluated by MSESS , defined as 317 
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2

1

2

1

( )

1

( )

n

i i

i
MSE n

i

i

Fst Obs

SS

Obs Obs







 






  (4) 318 

Where iObs and iFst are the observed and forecasted monthly streamflow volume (in mm), 319 

respectively; Obs is the mean value of the observed streamflow volume (in mm), representing the 320 

climatological forecast; n is the total number of forecast years, and 30n   in this study. This has 321 

the same form as Nash-Sutcliff Efficiency, but is being used for assessing the model 322 

performances in individual months. A score of 1 corresponds to a perfect forecast.  323 

During October to December, ESP approach presents high forecast skill (Figure 9a). For March 324 

and April, the skill score is far below 0, indicating no forecast skill for this period. However, this 325 

does not indicate the uselessness of ESP approach. When the forecasts are made based on the re-326 

calibrated models (especially for March and April), the skill scores are significantly improved. 327 

The improvement of the forecast skill in March and April reinforces our hypothesis that MU 328 

(errors in model parameters) influences the forecast accuracy in ESP approach, especially for 329 

those flow events that are difficult to simulate with hydrologic models.  330 

It is noteworthy that the forecast skill score is low in May, June and July, although the model 331 

performs quite well in this month. The low skill of the forecasts in May, June and July implies 332 

that the ESP approach is no better than climatology for the monthly streamflow forecast of pre-333 

wet seasons in UHRB, which probably could be attributed to the combined effects of FC and IC 334 

in this season (as discussed in previous subsections). For post-wet season (August, September 335 

and October) and pre-dry season (November and December), the ESP approach has skill. Our 336 

results are similar to the study of Wood and Lettenmaier (2008), which showed that the forecast 337 

skill is higher during the transition period from the wet to dry season than otherwise. However, 338 

our analyses also show that the forecast skill is improved in post-dry season (March and April, 339 

especially) after re-calibrating the hydrologic model used in the ESP. The forecast skill in 340 

January and March is still comparable with that in post-wet and pre-dry seasons, indicating the 341 

potential of ESP approach with well-calibrated hydrologic model. Future efforts should focus on 342 

the improvement of the model performance in the post-dry season period (January to April).  343 
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4 Conclusions and Discussion 344 

In this paper, we have investigated the influence of IC, FC and MU on hydrologic forecast based 345 

on the hindcasts using ESP approach over UHRB in China. The concept of forecast window 346 

(FW) is introduced in this study and the combined effects of IC and FC within the forecast 347 

window is discussed by implementing ñvirtualò experiments without considering the uncertainty 348 

of hydrologic model (structure, parameter, etc.). The improvement of the model performance 349 

also increases the skill of the ESP approach significantly for low flow forecast, indicating the 350 

impact of MU (the uncertainty of model parameters) on hydrologic forecast. The results are 351 

summarized as below. 352 

(1) For dry initial states, the forecast is consistently good within forecast windows up to 90 days. 353 

For wet initial states the persistence decays with the windows exceeding 30 days. The 354 

contrasting behaviors of the two scenarios highlight the role of IC and FC on the forecast.  355 

(2) IC controls the forecast skills within smaller forecast windows. The dominance of IC on the 356 

forecast is shifted to FC with the increase of the forecast windows. A dimensionless parameter ɓ 357 

is proposed to depict the combined effects of IC and FC. The forecast skill increases 358 

exponentially with ɓ, and varies greatly in different forecast windows. The analytical framework 359 

of ɓ provides a first-order understanding of when and to extent the forecast skills may be 360 

achieved based on ESP approach.  361 

(3) The model calibration strategy used in this study emphasizes the model behavior during the 362 

wet season, while for dry season the model behaviors would not be guaranteed. This affects the 363 

accuracy of ESP approach for predicting low flows. By re-calibrating the model for low flows, 364 

the uncertainty of model parameters is reduced within the dry season, which significantly 365 

improves the model performance as well as the forecast skill.  366 

(4) The performance of ESP approach for monthly streamflow forecast is more skillful during 367 

the transition period from wet to dry than otherwise over UHRB. For the transition period from 368 

dry to wet, the lower skill of the forecasts could be attributed to the combined effects of IC and 369 

FC, but less to the biases in the hydrologic model. Other innovative ways should be explored for 370 

monthly streamflow forecast during this season (from dry to wet). 371 
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According to the best of the authorsô knowledge, the concept of forecast window (FW) is 372 

proposed in this study for the first time. We suggest that the concept of forecast window (FW) 373 

might have some implications in the hydrologic forecasting based on the ESP approach. The 374 

dominance of IC and FC within FWs reflects the potential ability of ESP. For different scenarios 375 

with various combinations of IC and FC, there should be certain ñbehavioural forecast windowsò 376 

(BFWs), beyond which ESP-based hydrologic forecasts are not accurate and not reliable. In 377 

addition, BFW can also be related to the physical attributes of each basin (e.g., sizes, maximum 378 

concentration time, etc.). Li et al. (2009) disclosed that the basin size matters in the ESP skill. 379 

Thus, the relationship we derived in this study is only basin-specific. More basins with diverse 380 

physical attributes need to be examined, so as to generalize the relationship obtained in this 381 

study, which, however, is the scope of future studies. BFW is crucial in the practical 382 

implementation of ESP approach by providing a guideline for the design of forecasting systems 383 

and the confidence of the forecast results. However, the framework designed to examine FW and 384 

BFW in this study does not consider lead time in the forecasts. They could be regarded as zero 385 

lead time scenarios. Besides, the influence of MU is not considered in the framework. Future 386 

studies will further examine the behaviors of FW and BFW with varying lead time and model 387 

uncertainty (structure and parameter) incorporated. 388 

There are a number of ways (e.g., pre-processing, post-processing) to further improve the 389 

performance of ESP approach. For instance, Yang et al. (2013) improved the forecast skills of 390 

ESP approach by using a reduced set of the ensemble members. The members in the reduced 391 

ensemble were selected from the historical records when they have the same climate signals 392 

(e.g., SOI, PDO) as the forecast year. Similar studies could be found in Hamlet and Lettenmaier 393 

(1999), Lamb (2010) and Wang et al. (2011). Instead of using the randomly sampled members, 394 

the ópre-processingô process enhances the representativeness of future forcing ensembles. 395 

Similarly, ópost-processingô aims to remove the bias of the streamflow ensembles, which could 396 

also improve the forecast skill. Possible ópost-processingô methods were evaluated in previous 397 

studies (e.g. Kang et al., 2010; Wood and Schaake, 2008; Hashino et al., 2006). Shi et al. (2008) 398 

demonstrated that ópost-processingô could reduce the forecast error as much as the correction of 399 

forecast errors through hydrologic model calibration. Yuan and Wood (2012) also found that 400 

post-processing streamflow forecasts directly from a global climate forecast model, where its 401 
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land surface model is un-calibrated, has comparable performance to a well-calibrated hydrologic 402 

model driven by downscaled and bias-corrected meteorological forcing. 403 
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Table 1. Calibration and validation statistics for the simulated streamflow of UHRB at 534 

Danjiangkou Reservoir station. 535 

 Nash-Sutcliff Efficiency (NSE) Water 

Balance 

(WB) 
 Daily Weekly Monthly 

Calibration Period (1970-1980) 0.85 0.98 0.99 -0.06 

Validation Period (1981-2000) 0.81 0.96 0.99 -0.05 

536 
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Table 2.Details of the experiment designs (for different forecast window) 537 

Initial Forecast 

Date 
Forecast Windows Ensemble Members Hindcast Period 

1
st
 February 

7 days, 15 days, 

30 days, 60 days, 

90 days, 120 days, 

150 days, 183 days 

31 1970-2000 

1
st
 July 

538 



24 

 

Table 3. Details of the experiment designs (for deriving the relationships of ɓ and the forecast 539 

skills) 540 

Initial Forecast 

Date 
Forecast Windows Ensemble Members Hindcast Period 

1
st
 Jan., 1

st
 Feb., 

…… 

1
st
 Nov., 1

st
 Dec. 

3 days, 7 days, 

15 days, 20 days 

30 days, 45 days, 

60 days, 90days 

31 1970-2000 

541 
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Table 4. Parameters of the exponential function and the R
2
 value in the relationships of ɓ and the 542 

forecast skills. 543 

Forecast Windows a b 2R  

3 days 3153 -1.1 0.90 

7 days 1055 -0.89 0.92 

10 days 561 -0.77 0.96 

15 days 270 -0.62 0.92 

20 days 155 -0.49 0.81 

30 days 134 -0.54 0.82 

60 days 67 -0.43 0.71 

90 days 50 -0.32 0.56 

544 
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 569 

Figure 1. Location of upper Hanjiang River basin (UHRB, denoted as shaded region in the 570 

figure) in China. Dashed line is the boundary of the Yangtze River basin. The grey dots are rain 571 

gauges. The black square represents the location of Danjiangkou Reservoir station. 572 
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 574 

Figure 2. Rainfall and runoff regimes over upper Hanjiang River basin (UHRB). Runoff is the 575 

total amount of monthly inflow to Danjiangkou reservoir divided by basin area. Rainfall is the 576 

mean value of all the rain gauges weighted by area. The unit is in mm. 577 

578 
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(a) Forecast window 580 

 581 

(b) Lead time 582 

Figure 3. Schematic illustration of (a) Forecast Window and (b) Lead time. 583 

584 
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 585 

Figure 4. Evaluation of the ESP approach for different forecast windows. The initial forecast date 586 

is 1
st
 February.  587 

588 
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 589 

Figure 5. The same as Figure 4 but the initial forecast date is 1st July. 590 

591 
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 592 

Figure 6. Runoff forecasts (unit: mm) by ESP (row) and R-ESP (column) for UHRB. Forecasts 593 

are initialized on 1
st
 February. Precipitation forcing (units: mm) is sorted from dry to wet in 594 

ascending order, and Initial conditions (units: mm) is sorted from wet to dry in descending order. 595 

The numbers on the horizontal and vertical axis represent the ranks of actual accumulated 596 

precipitation and soil moisture, respectively.  597 

598 
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 606 

Figure 9. (a) Forecast skills of ESP based on different sets of model parameters; (b) Model 607 

performances for each month. óESP_all yearô (circles) represent using the default parameters of 608 

the model (the whole year). óESP_Dryô (dots) uses the new-calibrated parameters of the model 609 

(only January to May). 610 


