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Abstract

This paper investigates the robustness of rainfall-runoff models when their parameters are trans-
ferred in time. More specifically, we propose an approach to diagnose their ability to simulate
water balance on periods with different hydroclimatic characteristics. The testing procedure
consists in a series of parameter calibrations over 10-yr periods and the systematic analysis of5

mean flow volume errors on long records. This procedure was applied to three conceptual mod-
els of increasing structural complexity over 20 mountainous catchments in southern France.
The results showed that robustness problems are common. Errors on 10-yr-mean flow volume
were significant for all calibration periods and model structures. Various graphical and numer-
ical tools were used to investigate these errors and unexpectedly strong similarities were found10

on the temporal evolutions of these volume errors. We indeed showed that relative changes in
simulated mean flow between 10-yr periods can remain similar, regardless of the calibration
period or the conceptual model used. Surprisingly, using longer records for parameters opti-
misation or using a semi-distributed 19-parameter daily model instead of a simple 1-parameter
annual formula, did not provide significant improvements regarding these simulation errors on15

flow volumes. While the actual causes for these robustness problems can be manifold and are
difficult to identify in each case, this work highlights that the transferability of water balance
adjustments made during calibration can be poor, with potentially huge impacts in the case of
studies in non-stationary conditions.

1 Introduction20

1.1 Confidence and evaluation of rainfall–runoff modelling in a changing climate

Whether or not climate stationarity is an appropriate concept, it is becoming increasingly dif-
ficult to consider that catchments are static environmental systems (Milly et al., 2008; Kout-
soyiannis, 2011; Matalas, 2012; Muñoz et al., 2013). The hydro-climatic conditions observed
during historical periods cannot be easily considered as representative of other periods (histori-25
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cal or future). At the same time, hydrological models are increasingly used for water resources
management or risk assessment, often for future, and different, climatic conditions. To date,
many unknowns remain concerning the robustness of conceptual models in a changing climate.

The question of hydrological models’ abilities in changing conditions has recently gained
much interest, as demonstrated by the new IAHS Scientific Decade: “Panta Rhei” (Montanari5

et al., 2013). The temporal and climatic transferability of model parameters has been increas-
ingly studied over the past few years, using the test procedures suggested by Klemeš (1986). It
is now clear that a rainfall-runoff (RR) model calibrated on a given period will generally not
be able to simulate flows with a similar efficiency on another period, especially when it differs
climatically. Various research team throughout the world have documented this (see Rosero10

et al., 2010; Vaze et al., 2010; Merz et al., 2011; Coron et al., 2012; Seifert et al., 2012; Seiller
et al., 2012; Brigode et al., 2013; Gharari et al., 2013). They agree that conceptual models lack
robustness when used in contrasted climate conditions.

Long historical records that include contrasted sub-periods are needed for evaluating models
robustness. Indeed, projections of future discharges under a changed climate cannot be com-15

pared to observations, by definition. The lack of model robustness is often measured through
changes in root-mean-square error, NS efficiency (Nash and Sutcliffe, 1970) or similar quadratic
error criteria, between different periods. These criteria have the advantage of reflecting the
model efficiency on all simulated time steps and can even be used to build “model robust-
ness criteria”, as discussed by Coron et al. (2012). In several publications examining this issue,20

the authors showed the existence of almost systematic biases on simulated volumes, depending
on the transfer conditions for model parameters (see Vaze et al., 2010; Merz et al., 2011; Coron
et al., 2012; Seiller et al., 2012). Solving the problems of incorrect water balance simulation re-
quires further investigations and has motivated the study reported herein. They are particularly
relevant in the context of climate change impact studies, where conditions are known to evolve25

but biases on simulated volumes are commonly considered constant, for lack of true robustness
assessment.

Moreover, in conceptual modelling, failure situations of parameter transfer often seem to be
blamed on the overly simplistic model used or the inadequate calibration period chosen, without

3



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

proper checking. Yet, schemes for systematic model testing and comparison are valuable tools.
They allow progress to be made on the evaluation of the models’ suitability but also on the
understanding of real-world hydrological system functioning (Seibert, 2001; Andréassian et al.,
2009; Clark et al., 2011). International initiatives such as DMIP (Smith et al., 2004, 2012),
MOPEX (Schaake et al., 2006; Chahinian et al., 2006) and HEPEX (Schaake et al., 2007; Thie-5

len et al., 2008) are good examples of the use of these testing scheme. We think that this type of
evaluation approaches must be generalised and innovative strategies should be devised to make
the best use of the long time series now available.

1.2 Scope of the paper

This paper deals with the evaluation of model robustness and was motivated by the recent find-10

ings on the difficulties for RR model parameters to reproduce water balances. We propose a
simple diagnostic approach to further investigate this question. Using long hydrological records,
we tested the capacity of three different models to simulate mean flows over series of succes-
sive 10-yr periods different from the calibration one. Specifically, we aimed at evaluating the
influence of the model complexity or the period used for parameter calibration on this capacity15

to simulate water balances.
This paper is organised as follows: the catchment set and models used are presented in the

next section; the testing methodology and analysis techniques are discussed in Sect. 3 and the
corresponding results provided in Sect. 4; a general discussion and the overall conclusions are
given in Sects. 5 and 6, respectively.20
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2 Catchments and models

2.1 Set of 20 French catchments

2.1.1 Data description

A set of 20 catchments was used to evaluate the robustness of hydrological models, in their
ability to simulate water balances. These 20 catchments are located in southern France, mostly5

in mountainous areas (Massif Central, Pyrennees and French Alps, see Fig. 1). They cover a
relatively wide range of characteristics, in terms of size, mean elevation, snow influence and
aridity index (see Table 1). The hydrological regimes are largely influenced by the processes of
snow accumulation and melt for the most elevated catchments, and only governed by rainfall
and evapotranspiration variations for the lowest ones. Three case studies were chosen to provide10

examples of detailed results: the Ubaye River at Barcelonnette (case study 1), the Lot River at
Barnassac (case study 2) and the Drac River at Pont de la Guinguette (case study 3). Case
studies 1 and 3 are medium-size high-elevation catchments located in the Alps. They have quite
similar characteristics but marked differences in terms of precipitation. Case study 2 is a larger
catchment in the Massif Central, with lower elevation and consequently a much more limited15

snow influence.
Climate forcings and flow records were at least 40 yr long, which cover a wide range of hy-

drometeorological conditions. Daily flow data were extracted from the HYDRO national archive
(www.hydro.eaufrance.fr). They were checked for errors (by visual inspection and double mass
curves analysis with neighbouring stations) and erroneous data were considered as gaps. Total20

precipitation and air temperature series were computed using the SPAZM reanalysis, which is
based on ground network data and weather patterns. Developed by Gottardi et al. (2012), this
reanalysis is available on 1x1 km cells at a daily time step from 1948 to 2010 for the main
mountainous areas in France. These forcings can be considered high-quality data. Finally, po-
tential evapotranspiration (PE) time series were computed using either Thornthwaite (1948) or25

Oudin et al. (2005) formula depending on the model considered. In both cases, PE series were
computed using air temperature from the SPAZM reanalysis.

5

www.hydro.eaufrance.fr
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2.1.2 Comments on the catchment selection process

The impact of the case studies’ particularities on the interpretations drawn is always subject to
discussion.

When the catchment set used in this work was built, we attempted to neither exclude nor over-
represent problematic situations. The availability of records of sufficient length and quality for5

our diagnostic approach mostly governed the selection procedure. Suspicious records were not
kept and the catchments used here should be free of obvious quality problems. Moreover, all
the selected catchments are unregulated and are not particularly known for changes in their
hydrological functioning for other reasons than climate variability.

The size of the catchment set was largely impacted by the demanding computation times10

for the calibration of the most complex model used in this work. From the initial database of
365 eligible catchments, 20 catchments were kept to proceed with the full diagnostic approach.
These catchments were also selected to be roughly representative of the variety of conditions
in the initial database (although snow-dominated catchments are slightly over represented). The
set of 365 catchments was used to apply our testing procedure with the two simpler models, to15

confirm the findings presented here (the results can be found in the Appendix).

[INSERT FIGURE 1]
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Fig. 1. Locations of the 20 catchments used in this study.

[INSERT TABLE 1]
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Table 1. Characteristics of the 20-catchment set and the three case studies.

Set of 20 catchments Case studies

min 25th median 75th max case case case
centile centile study 1 study 2 study 3

Catchment surface [km2] 24 170 490 1000 3600 540 1160 510
Mean elevation [m] 520 1100 1650 2180 2440 2270 1050 1700
Mean annual total precip. (P ) [mm] 880 1180 1320 1460 2260 1210 990 1620
Psolid/P ratio (annual mean) [−] 4 % 11 % 38 % 46 % 59 % 47 % 11 % 42 %
Mean annual pot. evap. (PEOudin) [mm] 330 430 470 560 640 410 560 460
Mean annual discharge (Q) [mm] 370 550 710 980 1720 600 440 860
P/PE ratio (annual mean) [−] 1.55 1.98 2.97 3.23 5.23 2.94 1.78 3.51
Q/P ratio (annual mean) [−] 0.36 0.48 0.54 0.63 0.85 0.49 0.44 0.53
Available time series length [yr] 40 47 51 57 62 52 62 42

2.2 Three rainfall–runoff models of increasing complexity – a “modelling
transect”

Three conceptual hydrological models were considered for this study and were chosen to cover
a relatively wide range of structural complexity. Schematic diagrams of their structures are given5

in Fig. 2.

2.2.1 Mouelhi formula

The formula proposed by Mouelhi et al. (2006) is a simple annual model with a single calibrated
parameter. It originates from the well-known Turc–Mezentsev formula (Turc, 1954; Mezentsev,
1955; Lebecherel et al., 2013). Its inputs are cumulated annual precipitation and PE data (com-10

puted using Oudin’s formula). The model can be described using a non-linear equation:

Qa(j) = Pa(j) ·

(
1 − 1/

[
1 +

(
0.7 · Pa(j) + 0.3 · Pa(j−1)

α · PEa(j)

)]0.5)
(1)

8
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where Qa(j), Pa(j) and PEa(j) are the annual discharge, precipitation and PE, respectively, for
a given year j, while Pa(j−1) is the annual precipitation for the previous year (j− 1).

2.2.2 GR4J-CemaNeige

GR4J is a parsimonious daily model with four calibrated parameters, described by Perrin et al.
(2003). For this study, it is used with the CemaNeige degree-day-type snow module, developed5

by Valéry (2010). The required inputs for GR4J-CemaNeige are daily series for min/mean/max
air temperature, precipitation and PE (computed using Oudin’s formula). Both CemaNeige and
GR4J are run at a daily time step. The snow module is computed over five elevation layers
of equal surface and its outputs are then aggregated to feed GR4J, which is a lumped model.
The snow module has two free parameters, which are optimised together with the four GR4J10

parameters.

2.2.3 Cequeau

Cequeau is a daily semi-distributed conceptual model, initially developed at INRS-Eau (Char-
bonneau et al., 1977). Here we used a modified version described in detail by Le Moine and
Monteil (2012). The model inputs are daily series for min/mean/max air temperature, and pre-15

cipitation. Cequeau includes a snow module and a parameterised function to adjust PE amounts
(based on the Thornthwaite formula). These functions are included in the soil moisture account-
ing (SMA) part of the model, which complies with a topography-based mesh. The number of
cells in this mesh is adjusted to the catchment size and topography (for the 20-catchment set
used in this work, this number ranges from 10 to 30). Considering the entire model structure, a20

total of 19 parameters must be optimised.

9
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2.2.4 Calibration procedure

Model parameters were calibrated by maximising the Kling-Gupta efficiency (KGE), proposed
by Gupta et al. (2009). This criterion is given by:

KGE = 1 −

√√√√(ρ[Q, Q̂] − 1
)2

+

(
σ[Q̂]

σ[Q]
− 1

)2

+

(
µ[Q̂]

µ[Q]
− 1

)2

(2)

where Q and Q̂ are the time series of observed and simulated flow, respectively, at an annual5

time step for the Mouelhi formula and a daily time step for the GR4J-CemaNeige and Cequeau
models ; ρ, σ and µ are the Pearson correlation coefficient, the standard deviation and the mean,
respectively.

Given the small number of free parameters for the Mouelhi formula and the GR4J-CemaNeige
model, we used a simple two-step calibration procedure: first the parameter space was screened10

using a gross predefined grid and the best parameter set was then used as a starting point for a
simple steepest ascent local search algorithm. This approach proved efficient for such parsimo-
nious models compared to more complex search algorithms (Edijatno et al., 1999; Mathevet,
2005). The parameters from Cequeau were optimised using a more complex procedure devel-
oped by Le Moine (2009), which combines the multi-objective evolutionary annealing-simplex15

(MEAS) algorithm proposed by Efstratiadis and Koutsoyiannis (2005) and the multi-objective
genetic algorithm, ε-NSGA-II, detailed by Reed and Devireddy (2004). This procedure has
proved to be efficient in past applications of the Cequeau model for water resources assessment
and dam management in France (Bourqui et al., 2011; François et al., 2013).

[INSERT FIGURE 2]20
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Fig. 2. Structural schemes of the three models tested: (a) the Mouelhi formula, (b) GR4J-CemaNeige
and (c) Cequeau (optimised parameters are in red bold characters).

11



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

3 Robustness testing procedure

3.1 Sub-period calibration procedure

In a previous article, we proposed a testing methodology based on multiple transfer tests: the
Generalised Split-Sample Test (GSST) procedure (Coron et al., 2012). It consists of a series of
calibration-validation tests on independent sub-periods of equal length, considering all possible5

sub-period pairs. This testing procedure has been simplified for this study. The calibration sub-
periods are built as in the GSST, i.e. using a sliding window that is moved by one hydrological
year between two neighbouring sub-periods (overlap is allowed). However, we considered for
this study a unique simulation period corresponding to the entire available time series, con-
trary to what was done in the GSST. As a result, the calibration and simulation periods were10

not independent and the transfer tests presented here should not be interpreted as strict split-
sample tests. This testing procedure is illustrated in Fig. 3, where θi is the optimal parameter
set identified on the sub-period i.

The testing procedure implemented in this work is highly dependent on the length of the
sliding window used to build the calibration sub-periods. This length is chosen as a compro-15

mise simultaneously allowing for correct parameter determination and a sufficient number of
contrasted sub-periods. Here, we considered 10-yr-long calibration sub-periods (SP), while the
available total periods (TP) were at least 40-yr long and at most 62- yr long for the catchment
set (i.e. the number of sub-periods built per catchment ranged from 31 to 53).

Hydrological years starting on October 1st from calendar year j and ending on September20

30th from calendar year j+1 were used, for the time series split. Using hydrological instead
of calendar years is important since some of the catchments considered in this work are snow-
dominated (i.e. precipitations are stored as snow during the winter and only become runoff when
spring arrives).

[INSERT FIGURE 3]25

12



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

θ01

θ02

θ03

θ04

θ05

θ06

θ07

θ08

θ09

θ10

θ11

θ12

θ13
θ14

SP [01]

SP [02]

SP [03]

SP [04]

SP [05]

SP [06]

SP [07]

SP [08]

SP [09]

SP [10]

SP [11]

SP [12]

SP [13]

SP [14]

sub-period
calibration

total period
simulation

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

Fig. 3. Sub-period (SP) calibration procedure and simulation over the total period (TP) (example of
5-yr-long sub-periods within an 18-yr-long total period).

3.2 Model efficiencies

An overview of the model performances over the catchment set is provided in Table 2. For
each catchment, KGE values were computed over the total available record, considering the
various parameter sets stemming from our sub-period calibration procedure (see Fig. 3). For5

each model, the efficiencies were computed at the time step used to run the model, i.e. annual
for the Mouelhi formula and daily for the GR4J-CemaNeige and Cequeau models. Additional

13



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

KGE were computed at the annual time step for GR4J-CemaNeige and Cequeau (after series
aggregation).

For these tests, the calibration periods (SP) are included in the simulation period (TP). The
KGE values in Table 2 are therefore not exactly ”validation” efficiencies. Still, they give a
good idea of the models’ performances over the catchment set. On average, high efficiencies5

are reached for the daily models. Cequeau shows the highest criteria computed at both annual
and daily time steps. The Mouelhi formula provides the lowest performances, but they remain
acceptable on average over the set.

[INSERT TABLE 2]

Table 2. Model efficiencies computed over the total available records, considering sub-period cali-
brated parameter sets: [KGETP]θSP .

Set of 20 catchments Case studies

min 25th median 75th max case case case
centile centile study 1 study 2 study 3

KGE at the
annual time step

Mouelhi 0.048 0.572 0.760 0.883 0.942 0.899 0.713 0.919
GR4J-CemaNeige 0.497 0.814 0.871 0.905 0.968 0.868 0.883 0.896
Cequeau 0.277 0.810 0.881 0.921 0.971 0.884 0.898 0.901

KGE at the daily
time step

GR4J-CemaNeige 0.670 0.828 0.866 0.899 0.943 0.864 0.848 0.838
Cequeau 0.724 0.845 0.878 0.902 0.943 0.890 0.881 0.876

10

3.3 Visual tools for robustness analysis

Previous studies on the temporal robustness of conceptual hydrological models have shown that
volume errors can be significant as a result of parameter transfer (Merz et al., 2011; Coron
et al., 2012). To further investigate this issue, we studied the temporal variations of medium-
term flow volume errors over the available records for different calibration configurations. These15

errors were expressed as a dimensionless bias given by Q̂10yr/Q10yr, in which Q̂10yr and Q10yr
are the 10-yr-mean simulated and observed flows, respectively. The results obtained with dif-

14
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ferent parameter sets can be superimposed on the same graph. Thus, we built visual tools for
analysing model behaviours. We illustrate their construction with the example of the Ubaye
River at Barcelonnette (case study 1 in Fig. 1) using the GR4J-Cemaneige model. Figure 4
shows the successive steps followed to plot the variations of mean flow volume errors.

Here, time series of precipitation, temperature and discharges were available over the 1959–5

2009 period. We built a total of 41 continuous sub-periods using a 10-yr-long sliding window
following the procedure presented in Fig. 3. These sub-periods were used to calibrate mod-
els and to compute volume errors. The building procedure is explained is the next three sub-
sections.

[INSERT FIGURE 4]10
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Fig. 4. Construction of the graphical representation of the series of 10-yr mean flow volume errors.

3.3.1 First step: using a single calibration period (Fig. 4a)

Let us consider the example of sub-period SP[08] and plot the point corresponding to the errors
in calibration (large circle). Since volume errors are an important component of the calibration
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criteria (KGE), the mean flow volume error obtained for SP[08] were small (i.e. Q̂10yr/Q10yr≈ 1).
Then, from the simulated flows over the whole record using the calibrated parameter set, we
could compute the mean flow volume error for each of the 40 remaining sub-periods and plot
these errors for each of them (small dots). Note that there is an overlap between the calibration
period and the neighbouring evaluation periods (for which the time lapse between starting years5

is less than nine years), but that the calibration and evaluation periods are independent in the
other cases.

All 41 points were joined to form a curve, which is specific to the parameter set. This curve,
noted ωθSP[08] , corresponds to the 10-yr moving average of mean flow volume errors when the
model calibrated on SP[08] is used. One can note significant simulation errors for this example,10

the range of volume error variations being 17.7%, with a standard deviation of 4.7%. This indi-
cates that it is difficult for the model to reproduce observed 10-yr-mean flows on this catchment
over the whole period. Phases of mean flow overestimation and underestimation are observed,
but because of the sub-periods overlap, there is a smoothing effect on these variations.

3.3.2 Second step: adding another calibration period (Fig. 4b)15

The previous step was repeated with a second calibration sub-period SP[25]. Again, mean flow
volume errors were small on the calibration sub-period, but increased when the parameter set
was transferred to simulate other parts of the time series. Interestingly, the shapes of the ωθSP[08]

and ωθSP[25] curves are similar, although their vertical positioning on the graph differs.

3.3.3 Last step: combining all calibration periods (Fig. 4c)20

This plotting procedure was used with all available parameter sets, i.e. considering all sub-
periods as parameter “donors”. In each case, the entire time series was simulated and errors
were computed on the 10-yr sub-periods. It can be noted that mean flow volume errors remain
small during calibration in all cases and that the shapes of all the curves are similar, showing a
“parallelism effect”.25
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3.3.4 Key questions

Numerous questions arose from the results obtained in the example of Fig. 4. First, each of
the parallel curves illustrates a lack of robustness. A perfectly robust model would result in flat
curves, i.e. the mean flow volume error would not depend on the period considered. Beyond
noting alternating phases of 10-yr-mean flow over- and underestimation, we then focused on5

the following questions:

– The various parameter sets used to build Fig. 4c were optimised over 10 years. Are
these calibration periods too short for the model to capture long-term dynamic processes?
Would a calibration over the full record lead to correct volume simulations over the dif-
ferent parts of the time series?10

– We observed behavioural similarities between different parameter sets on the Ubaye River
at Barcelonnette. Are these similarities observed on other catchments from the set?

– Behavioural similarities were observed for GR4J-CemaNeige. Are these similarities ob-
served for simpler or more complex conceptual models?

3.4 Numerical criteria for analysis15

Numerical criteria were built to measure the parameter transferability issues in terms of volume
errors and to assess the degree of similarity between series of mean flow volume errors obtained
with different parameter sets. These criteria enabled us to generalise our analyses over multiple
catchments and models.
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3.4.1 Measures of transferability

Since the focus was put here on mean flow volume errors (Q̂10yr/Q10yr) and their temporal
variations, we defined series of ωθ curves as:

ωθSP[i] = (uk)k∈[1:p] ; uk =

[
Q̂SP[k]

]
θSP[i]

QSP[k]
(3)

where SP[i] and SP[k] are the i-th and k-th 10-yr-long sub-periods chosen among the p possible5

ones; QSP[k] is the mean observed flow on SP[k] and [Q̂SP[k] ]θSP[i] is the mean simulated flow
on SP[k] using the parameter set optimised on SP[i].

Computable for each hydrological model, these ωθSP[i] curves reflect the extent of mean flow
volume errors. They can be compared to assess the impact of changing the calibration sub-
period on these errors (as shown in the example from Fig. 4). An ωθTP curve can be additionally10

considered in the comparison. It indicates the mean flow volume errors under calibration con-
ditions, when both the calibration and simulation period correspond to the total period (TP).
Because volume errors are an important component of the KGE calibration criterion, we expect
ωθTP to be the flattest of all the ωθ curves. For this reason, we chose to consider the ωθTP as a
reference in the comparison criteria proposed hereafter.15

In order to measure the magnitude of the volume error temporal variations, we used the
standard deviation operator (σ) on the ωθ curves. An example for the ωθTP curve is given in
Eq. (4).

σ [ωθTP ] =

√√√√(1

p

p∑
k=1

(uk)
2

)
−

(
1

p

p∑
k=1

(uk)

)2

; uk =

[
Q̂SP[k]

]
θTP

QSP[k]
(4)

with the same notations as in Eq. (3).20

This criterion reveals the overall ability for a model to reproduce 10-yr-mean flow on various
sub-periods when it is calibrated on the full available record. It varies between 0 (optimal situ-
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ation with no errors) and +∞. The largest the values, the smallest the model transferability in
time (at least with respect to mean flow volume errors).

3.4.2 Measures of behavioural similarity

Other criteria were designed to specifically address the question of behavioural similarity high-
lighted in Fig. 4c.5

In line with the criterion of Eq. (4), the standard deviation operator was used again, but with
a different objective this time: measuring the similarity between ωθ obtained from different
parameter sets. The corresponding criterion is given in Eq. (5).

σ
[
ωθSP[i] − ωθTP

]
=

√√√√(1

p

p∑
k=1

(vk)
2

)
−

(
1

p

p∑
k=1

(vk)

)2

; vk =

[
Q̂SP[k]

]
θSP[i]

−
[
Q̂SP[k]

]
θTP

QSP[k]
(5)

with the same notations as in Eq. (3).10

As opposed to the previous one, this criterion is not informative on the transferability level
of a model, but measures the degree of “parallelism” between two ωθ curves. It takes values
between 0 (situation where the shapes of the ωθSP[i] and ωθTP curves are rigorously identical)
and +∞. We note that, by construction, the mean flow volume error over the entire record
( [Q̂TP]θSP[i]/QTP ) has no impact on this second criterion. In other words, only the shape similar-15

ities between the ωθ curves are analysed, while their vertical spacing is left out of consideration.
This measure of similarity was then normalised by the magnitude of volume error variations

(σ[ωθTP ]) to build a non-dimensional criterion (ρi), given in Eq. (6). In a way, ρi is a “noise-to-
signal ratio” which highlights how similar ωθ curves are.

ρi =
σ
[
ωθSP[i] − ωθTP

]
σ [ωθTP ]

(6)20

Similarly, a criterion was built for inter-model comparisons where the “degree of parallelism”
on volume error variations is measured between two models (M1 and M2), both calibrated over
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the entire time series. Noted ρ′M1M2
, this ratio, is described in Eq. (7) and corresponds to the

comparison between different ωθTP curves. The choice for the model serving as reference, whose
corresponding σ[ωθTP ] constitutes the denominator, is made arbitrarily.

ρ′M1M2
=
σ
[
ωM2
θTP
− ωM1

θTP

]
σ
[
ωM1
θTP

] (7)

As for σ[ωθSP[i] − ωθTP ], the criteria detailed in Eqs. (6) and (7) range between 0 and +∞. The5

smaller the ρi value, the stronger the similarities between the ωθSP[i] and ωθTP curves for the
model considered. Similarly, the smaller the ρ′M1M2

value, the stronger the similarities between
the ωθTP curves from the models compared (M1 and M2).

4 Results

4.1 Case studies – graphical analyses on three catchments10

The graphical procedure illustrated in Fig. 4 was applied to the 20 catchments and three hy-
drological models described in Sect. 2.2 (the 1-parameter Mouelhi formula, the 6-parameter
GR4J-CemaNeige model and the 19-parameter Cequeau model). Examples of results are given
in Fig. 5 for three catchments: the Ubaye River at Barcelonnette (540 km2, case study 1), the
Lot River at Barnassac (1160 km2, case study 2) and the Drac River at Pont de la Guinguette15

(510 km2, case study 3). This figure is composed of 12 graphs, where the results obtained on
the same catchment are in columns, while data and simulations with the same model are in
rows. In all cases, we plotted the 10-yr moving average of the variables considered. For each
graph showing simulation results, the grey curves correspond to the sub-period calibration pro-
cedure previously introduced (see Figs. 3 and 4), while the single black curve corresponds to20

the calibration over the entire record.
The graphs from Fig. 5 provide useful elements that help determine the impact of the cali-

bration period on model robustness.
20
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First of all, let us analyse each graph independently. The “parallelism effect” observed in
Fig. 4 is again visible here. Indeed, the model calibration on different sub-periods lead to errors
on 10-yr-mean flows, which vary similarly over time (cf. similarly shaped grey ωθSP curves on
graphs 5d to 5l). Concerning the cases where parameter sets were optimised on the full record,
the corresponding ωθTP curves are (as expected) not randomly vertically placed. Logically the5

mean flow volume ratio of the entire period remains close to 1. However, we surprisingly did not
obtained flatter ωθ curves (cf. black curves on graphs 5d to 5l). This shows that even when they
are calibrated over the full records, the models tested are unable to provide a better simulation
of 10-yr-mean flows than when only a small part of the information is used for parameters
optimisation.10

Secondly, we observe different behaviours depending on the catchment considered. On some
catchments, temporal variations are clearly visible on model volume errors, with amplitudes
often around 20 %. This is the case for the Ubaye River at Barcelonnette (already discussed)
but also for the Lot River at Barnassac (Fig. 5, case study 2), where an increasing trend is ob-
served on the mean flow volume error (from underestimation to overestimation). Conversely,15

these errors are almost invariant on other catchments, for example the Drac River at Pont de la
Guinguette (Fig. 5, case study 3). Explaining why these errors occur is complex. Some causal
links may be inferred from these examples, related to changes in climate forcings (e.g. changes
in mean air temperature for the Lot River). However, our recent investigations on this topic
showed that if such correlations can be establish in numerous cases, there are not systematic20

and their significance greatly varies from one catchment to another (Coron, 2013). To date,
we remain unable to draw general conclusions regarding the spatial similarities in model vol-
ume error variations and can only acknowledge for the need to further investigate this complex
question.

Additionally, on these three illustrative examples, we note that the available period for anal-25

ysis is shorter for the Drac River than for the other two catchments, but the magnitude of the
changes on observed data (precipitation, temperature, discharges) is similar for the three catch-
ments over the common period. Therefore, the smaller range of volume error variations obtained
for the Drac River catchment truly reflects better model performance in this case.
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From these comparisons, we note that the greater the amplitude of volume error variations,
the more vertically spaced the ωθSP curves are on these graphs. This is a consequence of the cal-
ibration criterion used (KGE), where volume errors are explicitly targeted. The various ωθSP[i]

curves are indeed “positioned” to ensure [Q̂SP[k]]θSP[i=k]
/QSP[k] ≈ 1. When the sub-period used

for calibration corresponds to a lower or upper extreme of the ωθSP curves, it is “vertically po-5

sitioned” above or below the other ωθ curves, respectively. This can be seen in Fig. 4, with
the curves whose corresponding calibration sub-periods are 10/1968-09/1978 and 10/1981-
09/1991. Likewise, for catchments where model errors on mean flow volumes are almost time-
invariant, all ωθSP curves are nearly flat and thus superimposed.

Thirdly, the graphs placed in columns (Fig. 5) show strong similarities, indicating similar10

behaviours of the three models tested on each catchment. The ωθTP curve shapes (and indirectly
the ωθSP curve shapes) are not strictly identical between the three models. Still, the overall shapes
of the 10-yr moving average curves look alike, in spite of the large differences in complexity
between the models used (structure, time step, number of optimised parameters).

[INSERT FIGURE 5]15
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Case study 1:
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Case study 2:
Lot River at Banassac
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Case study 3:
Drac River at Pont de la Guinguette
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Fig. 5. Examples of behavioural similarities observed on three catchments with the three models
tested (for d to l, the various ωθSP[i] curves are in grey and the single ωθTP curve is in black).23
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4.2 Generalisation of the results (three models over 20 catchments)

The criteria introduced in Sect. 3.4 were used to measure these behavioural similarities sys-
tematically over a larger number of tests: we tested the three models over 20 catchments (see
characteristics in Sect. 2.1).

First, we computed the standard deviation on the ωθTP curves, which measures the scale of5

the volume error variations with time (see Eq. 4). These results are summarised in Fig. 6. For
each model, the boxplot provides the 5th, 25th, 50th, 75th and 95th percentile values of the
σ[ωθTP ] distribution over the catchment set (one value per catchment). Relatively similar me-
dians are obtained for all three models, with values around 4 %. Yet, small differences can be
noted between the distributions. The distributions obtained for the Mouelhi formula and GR4J-10

CemaNeige model are almost identical, and differ from the results obtained with the Cequeau
model, whose errors on simulated mean flows are less variable in time (as shown by smaller
σ[ωθTP ] values). Therefore, it seems that Cequeau is slightly more robust than the other two
models, at least with regard to its ability to simulate water balances simultaneously on various
periods. The small number of available points (20) limits the possibilities to perform relevant15

statistical tests to confirm these qualitative assessments. However, we can note that these results
are in accordance with the model efficiencies presented in Table 2, the Mouelhi formula and
Cequeau being, on average, the worst and best performing models during the transferability
tests on the catchment set, respectively. Possible explanations for this might be the differences
in structural complexity (in terms of conceptualisation, parametrisation and spatial distribu-20

tion). Other reasons for Cequeau’s better robustness might be related to the different ways snow
storage and PE data are computed, but further tests focused on these aspects are necessary to
provide a better understanding of these differences.

The ρi ratio was then used to measure the significance of behavioural similarities on these
volume errors over the catchment set (see Eq. 6). We remind that only “relative” variations are25

considered in this criterion and the overall volume error (i.e. the ωθ curves’ vertical positioning)
is not measured. The “parallelism imperfections” between various ωθ curves are compared to
the scale of the temporal variations of volume errors shown in Fig. 6. Since numerous sub-
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period calibrations were made for each catchment, a large number of ρi can be computed over
the 20 catchments considered. The distributions of the values obtained for each model are given
in Fig. 7, using a boxplot representation (5th, 25th, 50th, 75th and 95th percentiles).

Values of ρi obtained for the Mouelhi formula and GR4J-CemaNeige model are small, with
more than 95 % of them smaller than 0.25. The median value of 0.1 means that, on average5

and for both models, the “parallelism imperfections” between ωθ curves (i.e. the “noise”) are
10 times smaller than the temporal variations observed (i.e. the “signal”). The results are differ-
ent for the Cequeau model but the values obtained remain small: the median is around 0.3 and
75 % of them are smaller than 0.5 (value for which the noise’s significance is half the signal’s).
Because the reference ωθTP curves differ between models, we must add that any inter-model10

comparison based on Fig. 7 should be analysed together with the distributions shown in Fig. 6.
However, the smaller σ[ωθTP ] values obtained with Cequeau in some cases are likely not the only
explanation for the greater ρi values observed. They may also result from the larger differences
between ωθ curves with this model (see Fig. 5 for examples of “parallelism imperfections”).
The reasons for these greater differences could stem from Cequeau’s greater complexity com-15

pared to the Mouelhi formula and GR4J-CemaNeige. Because a larger number of parameters
had to be optimised, some 10-yr-long sub-periods may not have been informative enough to
allow their optimisation. This could explain the fewer similarities between ωθ trajectories.

[INSERT FIGURE 6]
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Fig. 6. Standard deviations of the 10-yr mean flow volume errors obtained during calibration over
the full record (distribution for each model over 20 catchments).

[INSERT FIGURE 7]
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Fig. 7. Behavioural similarities observed between sub-period and full record calibrations in terms of
10-yr mean flow volume errors (distribution for each model over 20 catchments).

4.3 Direct comparison of the three models’ behaviours

The issue discussed in this paper has been broken down into three questions (see Sect. 3.3.4).
The distributions obtained on the catchment set for the ρi criterion are quite informative with
respect to the first two questions on the volume error similarities between sub-period and total-5

period calibration for each model over different catchments. Analysing the distributions of
ρ′M1M2

should provide insights into the question of inter-model similarities.
For each catchment, we consider the simulations obtained with the models for a full-record

calibration. The three corresponding ωθTP curves (one per model) are compared through a ratio
of standard deviation similar to ρi (see Eqs. 6 and 7). ρ′M1M2

values can be interpreted like the10

ρi values. These distributions are presented in Fig. 8, where two pairs of comparisons are made
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depending on the model used as a reference for ρ′M1M2
computations (here, either the simplest

or the most complex of the three models is used as M1).
In the vast majority of situations, the values taken by ρ′M1M2

are below 1, with median values
ranging from 0.4 to 0.8. It shows that behavioural similarities exist between different models
and that the scale of the differences remains smaller than the scale of temporal variations of the5

10-yr-mean flow volume errors (1.25 to 2.5 times smaller on average). ρ′M1M2
values are higher

when the Cequeau model is used as a reference than when the Mouelhi formula plays this role
(see right versus left parts of Fig. 7), likely because Cequeau is more robust on the catchment
set (see higher KGE in Table 2 and lower σ[ωθTP ] in Fig. 6).

Differences on mean flow volume errors could be expected from a change of hydrological10

model, especially considering the large complexity gaps between the model structures used
here. Nevertheless, it is surprising that they remain limited, although the shape similarities be-
tween ωMθTP

curves are not as strong as the ones between ωθSP curves (see Fig. 7 vs. Fig. 6).

[INSERT FIGURE 8]
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Fig. 8. Behavioural similarities observed between different models in terms of 10-yr mean flow
volume errors. Calibrations over the full record (distributions over 20 catchments).

4.4 Alternative graphical representation

We have shown the existence of a “parallelism effect” in the previous evaluation of the models’
ability to reproduce water balance over time. The behavioural similarities observed in our tests
can be viewed in another (maybe simpler) way.5

Let us start again with the sub-periods built for each catchment using a 10-yr-long sliding
window. For each catchment, we considered all possible pairs of sub-periods A and B and we
compared the relative changes in mean flow, either observed or simulated. Because they are
expressed in a relative way (e.g. 4Q[A/B] =QSP[A]/QSP[B]), values from different sub-period
pairs and different catchments can be analysed together. For each pair (A and B), we computed10

the 4Q[A/B] observed and the various 4Q̂[A/B] simulated using the parameter set optimised
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over the full record (θTP) and the numerous parameter sets (θSP[i]) obtained from the sub-period
calibrations (see Fig. 3). These changes were then used as coordinates to build large scatterplots.

Comparing observed and simulated changes provides information on the models’ ability to
reproduce the variations in water balance equilibrium over different periods. We only consid-
ered here the parameter set obtained from the calibration on the entire record and therefore5

compared
[
4Q̂[A/B]

]
θTP

with 4Q[A/B] . Aggregated over the 20 catchments, the results of

these comparisons are given in Fig. 9a–c for the three models considered in this study. To ex-
tract the information contained in the graphs, the point clouds are divided into vertical slices
and the distributions of

[
4Q̂[A/B]

]
θTP

values are summarised by boxplots (showing the 5th,

25th, 50th, 75th and 95th percentiles). We see how these models face difficulties to reproduce10

the climate elasticity of 10-yr-mean flows, i.e. larger changes are underestimated, be they posi-
tive or negative. Cequeau shows the best ability and the Mouelhi formula the worst, which is in
accordance with the σ[ωθTP ] previously obtained (see Fig. 6).

Comparing mean flow changes simulated by the same model but with different parameter sets
reveals how the choice of the calibration period affects the model outputs. Every θSP [i] param-15

eter set was considered together with the θTP . The corresponding simulations were analysed to
extract

[
4Q̂[A/B]

]
θSP[i]

and
[
4Q̂[A/B]

]
θTP

for all the sub-period pairs (A and B). These values

were used as coordinates to build clouds of points and aggregated over the 20 catchments. The
corresponding results are given in Fig. 9d–f. These graphical representations provide another
way to measure behavioural similarities on medium-term volume errors between sub-period20

and total-period calibration. The conclusions inferred from Fig. 7 are confirmed. The choice of
the calibration period has very little impact on the simulated changes of 10-yr-mean flow be-
tween periods. Similarities are the strongest for the Mouelhi formula and the GR4J-CemaNeige
model, with an R2 coefficient of 0.997 (Pearson coefficient). For the Cequeau model, a larger
number of cases where simulated changes are different between sub-period and total-period25

calibrations can be seen. Nevertheless, behavioural similarities remain strong on average over
the 20 catchments, with an R2 coefficient around 0.95.
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[INSERT FIGURE 9]
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Fig. 9. Comparisons of relative changes in 10-yr-mean flow, observed and simulated (aggregation of
results from 20 catchments, considering any possible pair of 10-yr sub-periods A and B).
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4.5 Possible implications for climate change impact studies

The models’ behaviours highlighted throughout this work are quite remarkable. If a study was
to be conducted on the impact of the calibration period over the 10-yr-mean flow volume er-
rors, we would probably rate the uncertainties as “high” for some catchments. Indeed, for a
catchment where the ωθ curves are not flat, choosing one calibration period or another deter-5

mines the vertical positioning of the corresponding curve, which impacts the absolute errors on
every sub-period taken independently (see Fig. 4, for example). However, when the simulated
10-yr-mean flows are expressed relatively to the 10-yr-mean flow simulated during calibration,
the same analysis would conclude that these uncertainties are “low”, especially for the Mouelhi
formula and GR4J-CemaNeige model (as shown in Figs. 7 and 9). People who are both opti-10

mistic and familiar with climate change impact studies might see this as good news, because it
advocates for the validity of the delta-change approach used to present changes in hydrological
simulations, in which it is hypothesised that the mean flow volume error remains constant. Yet,
this is not entirely satisfactory and we would strongly prefer to understand and thus avoid these
parameter transferability problems from the start.15

5 Discussion

Series of simulations from three models calibrated on different periods have been compared in
this work. Differences were expected between their accuracy regarding the simulation of water
balances. However, it was surprising to see how limited these differences were in practice on
the catchment set used here (see results of similarity measurements in Sect. 4). Yet, we must20

acknowledge that after these tests we still do not know whether the three models share the same
deficiency or suffer from the same external factors.

As a result, this work may appear incomplete to some readers who expected more explana-
tions or even solutions to the modelling deficiencies presented here. We agree that the diagnosis
should ideally be followed by solutions, but our attempts to diagnose these problems, includ-25
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ing analyses of model parameters, remained unsuccessful. The possible causes for the lack of
temporal robustness are numerous and hard to distinguish from one another.

5.1 Robustness and modelling choices

The role of inappropriate model structure must of course be questioned regarding robustness
problems. For instance, Hartmann et al. (2013) showed the need for adaptation of a model5

structure to ground realities in karstic zones. Simple or complex approaches can be used to
investigate this question. For several examples, see Butts et al. (2004), Bulygina and Gupta
(2009), Reusser and Zehe (2011), Lin and Beck (2012) and Seiller et al. (2012). Here, we
investigated this issue through a comparison between three models of increasing complexity.
The results suggest that the structures of all three models may not be suitable to allow for water10

balance adjustments simultaneously on various periods. This comparison could be extended to
other model structures, although a relatively large complexity range was considered: from an
annual 1-parameter formula to a semi-distributed daily model with 19 optimised parameters.

Problems of miscalibration or overcalibration of model parameters may also cause robustness
problems. A review of the authors discussing this issue in hydrology includes Wagener et al.15

(2003), Hartmann and Bárdossy (2005), Son and Sivapalan (2007), Bai et al. (2009), Gupta et al.
(2009), de Vos et al. (2010), Ebtehaj et al. (2010), Efstratiadis and Koutsoyiannis (2010), Pech-
livanidis et al. (2010), Zhang et al. (2011), Andréassian et al. (2012), Gharari et al. (2013) and
Zhan et al. (2013). Some of these studies present new calibration criteria better balancing the
weight of different error types (e.g. wrong volume, wrong variability, etc.). Other studies pro-20

pose optimisation strategies involving multi-period calibration, these sub-periods being selected
according to their relevance with respect to the calibration objectives (e.g. informative content,
hydro-climatic characteristics, etc.). For the work reported here, different calibration criteria
were tested, including the well-known NSE and a modified KGE where the weight of volume
error within the formula was reduced. We also attempted to calibrate the GR4J-CemaNeige25

model on the total records with the exclusive aim of minimising the standard deviation on the
10-yr-mean flow volume errors (σ[ωθTP ]). None of these criteria could significantly reduce the
robustness problems observed in this study.
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Other tests could be made to determine the potential impact of the sub-period length in the
calibration procedure. However, as we have shown in this paper, a significant part of the effi-
ciency loss during parameters transfer is caused by the models’ difficulties to reproduce mean
flow volumes on the calibration period and other periods simultaneously. Increasing the sub-
period length in our procedure mechanically decreases the contrast between the conditions un-5

der which the model is tested. Indeed, whichever the causes of the robustness issues are (e.g.
changes in measurement biases, changes in climatic conditions). Although smaller contrast may
lead to smaller efficiency loss during the transfer tests, the corresponding flattening of the ωθ
curves nonetheless remains a mechanical effect, similar to changing the lens of a magnifying
glass. The absence of true improvement from using a longer calibration period was proved in10

our work when parameter sets optimised on the full records were used. Indeed, we showed how
these θTP could not allow a reduction in the mean flow volume error variations (see Fig. 7).
Concerning now the impact of reducing the sub-period length, it is logically different. Indeed,
below a certain length, the parameters would be optimised on insufficiently informative periods,
therefore causing a drop in the model efficiencies during validation.15

In spite of these various calibration criteria tested and the relatively large range of model
complexity considered in this study, further investigations are still necessary to confirm the de-
ficiencies reported in this paper regarding mean flow volume simulation. Such investigations
should extend both testing on model structure and calibration strategy. While they may con-
clude on the sole responsibility of the conceptualisation process, it remains impossible at the20

moment to determine with certainty the causes for transferability issues. All potential causes
must therefore be considered.

5.2 Robustness and data quality

The level of achievable modelling performances surely depends on the model used but also on
the quality of the data it is fed with. Errors may occur during the measurements recording or25

their post-processing (e.g. aggregation, interpolation, etc.). Depending on the error type they
may have a negative impact on the modelling performances, which must be considered (Oudin
et al., 2006; McMillan et al., 2010, 2011). If these errors vary temporally, they will induce poor
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temporal transferability of model parameters. This can for instance be the case when the mea-
surement techniques are changed or when the sensor network evolves. This may also indirectly
result from vegetation growth or changing climatic conditions if they impact the biases on model
input estimates. In the case of hydrological modelling, the incorrect estimation of discharges,
precipitation and evapotranspiration fluxes may explain temporal robustness problems.5

For the work presented here, we remind that precipitation, temperature and discharge series
could be considered to be of high quality. Yet, we performed additional quality checks using
visual inspection and double mass curves comparisons with neighbouring stations. In spite of
these verifications, the contribution of the data to model robustness issues is hard to exclude with
certainty. Among the potential input errors, particular attention should be given to the estima-10

tion of evapotranspiration. Uncertainties are indeed associated with the computation of potential
evapotranspiration (PE) as well as actual evapotranspiration (AE), which depends on the later.
Evapotranspiration is an important part of the water balance and it may not be adequately es-
timated in the context of a changing climate, depending on the approach used (Donohue et al.,
2010; Milly and Dunne, 2011; Herrnegger et al., 2012). In an attempt to investigate the potential15

contribution of PE estimates on our modelling results, we performed complementary tests using
the Penman–Monteith formula (instead of Oudin’s) to feed the Mouelhi formula and the GR4J-
CemaNeige model (Monteith, 1965; Oudin et al., 2005). The corresponding variations on 10-yr
mean volume errors were neither better nor exactly similar to those shown here. Therefore, we
could not exclude a potential role of the PE and AE computational choices on the models’ ro-20

bustness deficiencies and we can only acknowledge for the strong need for further work on this
question. Among the potential directions for further research, we could mention the need to test
multiple formula to compute PE, experiment various modelling strategies to estimate AE from
PE and soil moisture conditions, or compare modelled AE with other AE estimates (e.g. from
lysimeter or flux stations).25

Finally, investigations on the spatial similarities of model volume errors can help assess the
role of data quality issues on models robustness issues. Indeed, strong dissimilarities between
the volume error curves of different catchments, in spite of their common characteristics, may be
caused by time variant errors in discharge measurements. Conversely, similarly shaped volume
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error curves of neighbouring catchments may be obtained as a result of inaccurate regional
estimates for the model’s input forcings (e.g. if the bias on precipitation estimates evolves in
time or if the method used for PE computation is inappropriate).

5.3 Robustness and changes in catchment functioning

Although poor modelling strategies or data quality are likely to be the major sources for model5

failure, other explanations are worth considering. Working on an (until then) unexplained over-
estimation of the Meuse River runoff between 1930 and 1965, Fenicia et al. (2009) showed the
major impact of changes in land use management and forest age on the catchment’s functioning.
Such temporary or permanent changes of a catchment functioning result in significant model ro-
bustness problems if not included in the modelling framework. While limited human impacts on10

the water balances are expected for the 20 catchments used in this study, we agree that these im-
pacts may be hard to quantify in practice (Andréassian, 2002). Besides, human activities are not
the only source for changes in the rainfall–runoff relationship, which may also result from nat-
ural events. For example, Chiew et al. (2013) discussed how the “Millennium drought” reduced
the surface-groundwater connection in south-eastern Australia, thus dramatically modifying the15

dominant hydrological processes. Although this example relates to an extreme event, we believe
that, in the context of global climate change, such explanations must not be underrated when
analysing models’ temporal robustness.

6 Summary and conclusions

The purpose of this paper was to propose tools to help diagnose the robustness of rainfall-20

runoff models, regarding their ability to reproduce water balances simultaneously on different
temporal periods. A comparison framework was implemented over 20 mountainous catchments
in France using three models of increasing complexity: the annual Mouelhi formula, the daily-
lumped GR4J-CemaNeige model and the daily semi-distributed Cequeau.
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The results show that failure situations are common when models are evaluated on long
records. When temporal transferability posed problems, choosing another calibration sub-period
induced no significant difference on the 10-yr-mean flow volume errors. Indeed, when we con-
sidered two temporal periods A and B, the Q̂A/Q̂B ratio remained stable regardless of the
calibration period, even when the full record was used to optimise model parameters. This re-5

veals that the lack of robustness identified for some catchments on 10-yr-mean flows is not
caused by a poor choice of calibration period but rather stems from the models’ overall inability
to reproduce water balances simultaneously on different sub-periods (considering their usage
conditions: input data sets, modelling choices, etc.).

The three models tested in this study showed strong similarities in their (in)ability to simulate10

water balances. Some differences exist but they are smaller than expected with regards to the
large differences in complexity level between the tested models. At this stage, however, we
cannot conclude whether these three models share the same deficiency or suffer from the same
external causes, related to input data estimation for example. It is indeed difficult to apportion
blame between the potential explanations for robustness problems, which remain numerous:15

ineffective model structure, inappropriate calibration strategy as well as temporal changes in
input errors, the catchments’ natural functioning or anthropogenic impact.

The present study differs from previous works in that we highlighted strong behavioural
similarities between different model structures and calibration periods. We used simple but
relevant graphical and numerical tools to show how limited the impact of a model’s complexity20

or calibration period can be regarding its capacity to reproduce the temporal variations in water
budget equilibrium. In agreement with the participants at the “Court of Miracles of Hydrology”
workshop (Perrin and Andréassian, 2010), we believe that modelling failures should be seen
positively as challenges and can be substantial sources of information on model imperfections
and catchment functioning. This study showed that blaming the excessively short calibration25

period or the overly simplistic structure without a more detailed examination is not necessarily
the best option when discussing temporal robustness in hydrological modelling. In order to
progress on this issue, advances are needed on both the quantification of medium-term water

37



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

exchanges at the catchment scale and the way these exchanges can be modelled to account for
temporal variations.

Appendix A

The procedure presented in this paper has been applied over a larger catchment set for the
Mouelhi formula and GR4J-CemaNeige model. This set is composed of 365 French catchments,5

whose locations and properties are summarised in Fig. A1 and Table A1.
These additional results are in accordance with those exposed in the article. The difficulties

for the Mouelhi formula and GR4J-CemaNeige model to reproduce water balances simultane-
ously on different temporal periods were confirmed. The “parallelism effect” observed during
the study of volume errors variations for these models was again visible on this much larger10

catchment set (see Figs. A2 and A3). Our findings that ωθSP and ωθTP curve have similar shapes
were reproduced on this new set for both models. This is shown in Fig. A2b by the low ρi val-
ues, whose distributions are similar to the one obtained for the 20 catchment set. This can also
be seen in Fig. A3, where the ratio Q̂A/Q̂B remains very stable regardless the calibration period
(where A and B are 10-yr-long temporal periods, see Sect. 4.4). Indeed, the Pearson correlation15

coefficient (R2) between simulated changes are equivalent when results are aggregated over the
20 catchments used in the article or the 365 catchments considered in this appendix.

[INSERT FIGURE A01]

[INSERT TABLE A01]

[INSERT TABLE A02]20

[INSERT FIGURE A02]
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[INSERT FIGURE A03]

A
lp

s

Massif
Central

Pyrenees

Fig. A1. Locations of the 365 catchments used in the additional testing with the Mouelhi formula
and GR4J-CemaNeige model.
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Table A1. Characteristics of the enlarged catchment set used in the additional testing (365 catch-
ments).

5th 25th median 75th 95th
centile centile centile centile

Catchment surface [km2] 34 100 220 590 2510
Mean elevation [m] 260 490 750 1070 1660
Mean annual total precip. (P ) [mm] 850 990 1160 1440 1860
Psolid/P ratio ratio (annual mean) [−] 2 % 3 % 7 % 13 % 30 %
Mean annual pot. evap. PE(Oudin) [mm] 500 560 630 680 770
Mean annual discharge (Q) [mm] 220 370 540 880 1410
P/PE ratio (annual mean) [−] 1.15 1.49 1.85 2.46 3.52
Q/P ratio (annual mean) [−] 0.23 0.36 0.47 0.60 0.84
Available time series length [yr] 33 40 43 52 62

Table A2. Model efficiencies computed over the total available records, considering sub-period cal-
ibrated parameter sets: [KGETP]θSP

(results for the enlarged catchment set).

5th 25th median 75th 95th
centile centile centile centile

KGE at the annual time step Mouelhi 0.301 0.541 0.687 0.782 0.897
GR4J-CemaNeige 0.649 0.774 0.842 0.893 0.937

KGE at the daily time step GR4J-CemaNeige 0.704 0.810 0.860 0.897 0.931
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Fig. A2. Distributions of σ[ωθTP ], ρi and ρ′M1M2
values obtained for the set of 365 catchments (solid

coloured lines) and comparison with the previous results obtained on 20 catchments (dashed black
lines).
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simulation using θT P versus observation
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Fig. A3. Comparisons of relative changes in 10-yr-mean flow, observed and simulated (aggregation
of results from 365 catchments, considering any possible pair of 10-yr sub-periods A and B).
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potential evapotranspiration input for a lumped rainfall–runoff model?: Part 2-Towards a simple and20

efficient potential evapotranspiration model for rainfall–runoff modelling, Journal of Hydrology, 303,
290–306, doi:10.1016/j.jhydrol.2004.08.026, 2005.
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Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsimonious model for streamflow sim-
ulation, Journal of Hydrology, 279, 275–289, doi:10.1016/S0022-1694(03)00225-7, 2003.

47

http://dx.doi.org/10.1080/02626667.2013.809088
http://dx.doi.org/10.1016/j.jhydrol.2005.12.022
http://dx.doi.org/10.4067/S0717-92002013000100002
http://dx.doi.org/10.4067/S0717-92002013000100002
http://dx.doi.org/10.4067/S0717-92002013000100002
http://dx.doi.org/10.1016/0022-1694(70)90255-6
http://dx.doi.org/10.1016/j.jhydrol.2004.08.026
http://dx.doi.org/10.1016/j.jhydrol.2005.07.016
http://dx.doi.org/10.1016/j.jhydrol.2010.03.022
http://dx.doi.org/10.1016/S0022-1694(03)00225-7


D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Reed, P. and Devireddy, D.: Groundwater monitoring design : a case study combining epsilon-dominance
archiving and automatic parameterization for the NSGA-II, in: Applications of multi-objective evo-
lutionary algorithms, Advances in natural computation series, vol. 1, pp. 79–100, Carlos A. Coello
Coello & Gary B. Lamont (editors), New-York, USA, world scientific edn., 2004.

Reusser, D. E. and Zehe, E.: Inferring model structural deficits by analyzing temporal dynam-5

ics of model performance and parameter sensitivity, Water Resources Research, 47, W07550,
doi:10.1029/2010WR009946, 2011.

Rosero, E., Yang, Z.-L., Wagener, T., Gulden, L. E., Yatheendradas, S., and Niu, G.-Y.: Quantifying
parameter sensitivity, interaction, and transferability in hydrologically enhanced versions of the Noah
land surface model over transition zones during the warm season, Journal of Geophysical Research,10

115, D03106, 21 pp., doi:10.1029/2009JD012035, 2010.
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