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Abstract 1 

The water resources and hydrologic extremes in Mediterranean basins are heavily 2 

influenced by climate variability. Modeling these watersheds is difficult due to the complex 3 

nature of the hydrologic response as well as the sparseness of hydrometeorological observations. 4 

In this work, we present a strategy to calibrate a distributed hydrologic model, known as TIN-5 

based Real-time Integrated Basin Simulator (tRIBS), in the Rio Mannu basin (RMB), a medium-6 

sized watershed (472.5 km2) located in an agricultural area in Sardinia, Italy. In the RMB, 7 

precipitation, streamflow and meteorological data were collected within different historical 8 

periods and at diverse temporal resolutions. We designed two statistical tools for downscaling 9 

precipitation and potential evapotranspiration data to create the hourly, high-resolution forcing 10 

for the hydrologic model from daily records. Despite the presence of several sources of 11 

uncertainty in the observations and model parameterization, the use of the disaggregated forcing 12 

led to good calibration and validation performances for the tRIBS model, when daily discharge 13 

observations were available. The methodology proposed here can be also used to disaggregate 14 

outputs of climate models and conduct high-resolution hydrologic simulations with the goal of 15 

quantifying the impacts of climate change on water resources and the frequency of hydrologic 16 

extremes within medium-sized basins. 17 

 18 
Keywords:Watershed modeling, statistical downscaling, Mediterranean basins, climate change, 19 
water resources.  20 
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1. Introduction 1 

Mediterranean areas are highly sensitive to climate variability and this vulnerability has 2 

significant impacts on water resources and hydrologic extremes. During the last few decades, 3 

intense flood and flash-flood events have caused relevant socioeconomic losses (Chessa et al., 4 

2004; Delrieu et al., 2005; Silvestro et al., 2012), while persistent drought periods have limited 5 

water availability, causing restrictions that mainly affected the agricultural sector, often a pillar 6 

of the local economy. Unfortunately, future climate projections (IPCC, 2007; Schörter et al., 7 

2005; Giorgi, 2006) depict an even worse scenario since they predict, with high probability, that 8 

Mediterranean countries will suffer a general decreasing water availability (in terms of both 9 

rainfall and runoff) and an increasing occurrence of extreme hydrological events (IPCC, 2008; 10 

Frei et al. 2006). This may cause, in cascade, a reduction of crop production and, in the worst 11 

scenario, a decrease of their quality due to the concomitant degradation of cultivated soils and 12 

water used for irrigation (Olesen and Bindi, 2002; Schörter et al., 2005). 13 

As most semiarid areas of the world, Mediterranean watersheds are characterized by a 14 

complex hydrologic response due to the erratic and seasonal nature of rainfall, its strong 15 

interannual variability, and the highly heterogeneous land surface properties (Moussa et al., 16 

2007). These features lead to the possible occurrence of a large range of initial basin wetness 17 

conditions prior to a storm event, and, in turn, to strong non-linear relations between rainfall and 18 

runoff (Piñol et al., 1997; Gallart et al., 2002; Beven, 2002). Modeling such complex systems in 19 

a continuous fashion to manage and plan water resources as well as to predict hydrologic 20 

extremes is a difficult task. A possible strategy is the use of physically-based hydrologic models 21 

that are able to quantify the vertical and lateral water fluxes in spatially distributed fashion at 22 

high (sub-daily) time resolution, and to capture the interaction between surface and subsurface 23 
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processes (VanderKwaak and Loague, 2001; Ivanov et al., 2004a; Camporese et al., 2010, 1 

among others). These models are able to: (i) reproduce the different basin states during the dry 2 

season, the wetting-up period and the wet season (Noto et al., 2008), and (ii) to simulate the 3 

diverse surface and subsurface runoff types (Vivoni et al., 2007, 2010) that typically characterize 4 

the hydrological regime of Mediterranean basins (Piñol et al., 1997). 5 

Distributed hydrologic models have been applied to study the hydrologic impacts of 6 

future climate change scenarios, with forcing provided by General (GCMs) or Regional (RCMs) 7 

Climate Models (e.g., Abbaspour et al., 2009; Cayan et al., 2010; Montenegro and Ragab, 2012; 8 

Liuzzo et al. 2010; Sulis et al., 2011). In Mediterranean areas, conducting studies based on this 9 

approach is challenging for two reasons. First, the basin size is relatively small in most areas 10 

(<1000 km2) and a spatiotemporal scale gap exists between GCM and RCM outputs and the 11 

scale of the dominant hydrological processes (Wood et al., 2004). Second, the data required to 12 

calibrate distributed hydrologic models are often characterized by limited spatial coverage and 13 

coarse time resolution, and they may have not been collected during simultaneous periods. For 14 

example, streamflow observations may be available in a period with no meteorological or rainfall 15 

data. In the following, we refer to this type of problem as data sparseness.  16 

In this paper, we use a distributed hydrologic model known as the TIN-based Real-time 17 

Integrated Basin Simulator (tRIBS) to simulate the response of the Rio Mannu basin (RMB), a 18 

watershed of 472.5 km2 located in southern Sardinia, Italy. This basin is one of the study areas of 19 

a multi-institutional and interdisciplinary project that aims at analyzing ongoing and future 20 

climate-induced changes in hydrological budgets and extremes across the Mediterranean and 21 

neighboring regions (Ludwig et al., 2010). The RMB was selected as the study site for a number 22 

of reasons. First, it includes within its boundary an agricultural experimental farm where 23 
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productivity of several crops grown in Sardinia (wheat, artichoke, corn, pasture, and grapes) are 1 

continuously monitored by the Sardinian Agency for Research in Agriculture (AGRIS). Second, 2 

during the last 30 years, the RMB has been affected by prolonged drought periods that caused 3 

water restrictions for the agricultural sector, with significant financial losses and social conflicts 4 

as a consequence. As a result, this watershed is a representative study case in the island of 5 

Sardinia for conducting a multidisciplinary analysis of the local impacts of climate changes, 6 

ranging from the quantification of the future availability of water resources and occurrence of 7 

hydrologic extremes, to the evaluation of the corresponding social and economical vulnerability.  8 

As in most Mediterranean basins, the application of process-based hydrologic models like 9 

tRIBS in the RMB is prevented by the availability of hydrometeorological observations. In this 10 

study, we propose an approach to circumvent this problem based on two statistical downscaling 11 

(or disaggregation) tools that allow creating the high-resolution forcing (precipitation and 12 

potential evapotranspiration) required to perform detailed hydrologic simulations at hourly time 13 

resolution. The downscaling tools are calibrated using data collected at different resolutions over 14 

diverse time periods. After demonstrating the reliability of each disaggregation algorithm, we 15 

show how these tools can be used to adequately calibrate and validate the hydrologic model 16 

based on streamflow observations available over a multi-year period, encompassing a wide range 17 

of flood and low flow conditions. The downscaling routines proposed here will be adopted in 18 

subsequent work to disaggregate outputs of different RCMs and create the high-resolution inputs 19 

(hourly in time, ~10 km in space) for the tRIBS model, with the goal of quantifying the impacts 20 

of a set of future climate scenarios on the water resources of the RMB (Ludwig et al., 2010).  21 

The paper is organized as follows. In section 2, we briefly introduce the tRIBS model, 22 

while the study area and the geospatial dataset used to setup the hydrologic simulations are 23 
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described in section 3. In section 4, we first illustrate the challenges associated with the lack and 1 

sparseness of the hydrometeorological observations and, next, we describe in detail the two 2 

downscaling tools proposed to disaggregate precipitation (in space and time) and potential 3 

evapotranspiration (in time). The setup of the tRIBS model and the calibration and validation 4 

performances are discussed in section 5, while conclusions are outlined in section 6. 5 

 6 
2. The Physically-Based Distributed Hydrologic Model 7 

We used the physically-based tRIBS model that is able to continuously simulate 8 

hydrologic processes in distributed fashion by explicitly accounting for the spatial variability of 9 

hydrometeorological forcing and basin properties (Ivanov et al. 2004a,b). The model represents 10 

topography via a Triangulated Irregular Network (TIN), thus allowing a significant reduction of 11 

the number of computational nodes as compared to grid-based models (Vivoni et al., 2004, 12 

2005). In tRIBS, the TIN is used to discretize the domain into Voronoi polygons, which are the 13 

basic computational elements where the equations governing the water and energy balances are 14 

solved using a finite-difference control-volume approach. As a result of the local dynamics and 15 

the lateral mass exchanges between adjacent polygons, the model can reproduce the distributed 16 

hydrologic response of a catchment by simulating a range of hydrological processes including: 17 

canopy interception and transpiration, evaporation from bare soil and vegetated surfaces, 18 

infiltration and soil moisture redistribution, shallow subsurface transport, and overland and 19 

channel flows. Model parameters can be grouped into routing, soil and vegetation parameters. 20 

The first group is spatially uniform, while the other two sets vary in space and are provided 21 

through maps and look-up tables. A detailed description of the physical processes simulated by 22 

the model and its parameterization is given by Ivanov et al. (2004a,b). 23 
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For the purpose of this study, we briefly illustrate the different precipitation inputs that 1 

the model is able to ingest and the methods available to estimate the evapotranspiration losses. 2 

Precipitation forcing can be provided as spatially-distributed grids, as those produced by weather 3 

radars (Ivanov et al., 2004b; Vivoni et al., 2006; Nikolopoulus et al., 2011), numerical weather 4 

forecasting models or reanalysis products (Vivoni et al., 2009; Robles-Morua et al., 2012), and 5 

stochastic downscaling models (Forman et al., 2008; Mascaro et al., 2010). In addition, tRIBS 6 

can be forced by point observations of rain gages that are spatially-interpolated through the 7 

Thiessen polygon method. Due to the specific characteristics of the physical equations 8 

implemented in the model, the precipitation input should have at least hourly resolution to 9 

capture the dynamics of the hydrologic response under different types of storm events. 10 

The actual evapotranspiration (ETa) losses are estimated as a fraction of the potential 11 

evapotranspiration (ET0) based on the soil moisture available in the upper soil layer, using a 12 

piecewise-linear equation with different parameterization if applied to bare soils or vegetated 13 

surfaces (Mahfouf and Noilhan, 1991; Ivanov et al., 2004a). ET0 can be in turn computed by 14 

solving the energy balance inside the model through the Penman-Monteith approach (Penman, 15 

1948; Monteith, 1965), based on soil and vegetation parameters in addition to hourly 16 

meteorological data provided as time series observed at stations or as grids. Alternatively, the 17 

model can be forced by time series or grids of ET0 computed off-line. 18 

Outputs of the tRIBS model include time series of discharge at any location in the stream 19 

network, and spatial maps of hydrologic variables (e.g., actual and potential evapotranspiration, 20 

soil water content at different depths, ground water table position) at specified times or 21 

integrated over the simulation period. Recently, the code has been parallelized for use in high 22 

performance computing platforms (Vivoni et al., 2011), thus increasing the feasibility of long-23 
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term simulations of large watersheds, including within an ensemble modeling framework. These 1 

characteristics make the tRIBS model suitable to be used in studies aimed at quantifying the 2 

impact of climate change on water resources and hydrologic extremes at the watershed scale, 3 

while addressing the different sources of modeling uncertainty.  4 

 5 
3. Study Area and Land-Surface Dataset 6 

The case study is the Rio Mannu di San Sperate at Monastir basin (RMB), a watershed of 7 

472.5 km2 located in southern Sardinia, Italy (Fig. 1). Topography is mostly gently rolling, with 8 

an average elevation of 296 m, except for a mountainous zone in the southeastern part with a 9 

maximum height of 963 m. The flat downstream areas were originally swampy and, since the 10 

beginning of 20th century, they have been drained through a system of artificial channels and 11 

converted into fertile agricultural fields. The main basin physiographic characteristics, including 12 

elevation, slope and channel properties are summarized in Table 1.  13 

The climate of the study region is Mediterranean with extremely dry summers and 14 

rainfall from September to May. The average annual precipitation is 680 mm, with 94% 15 

concentrated in the rainy season. Mean monthly temperatures vary between 9 °C in January and 16 

25 °C in July and August. The mean annual ET0 in the basin is 750 mm (Pulina, 1986). Given the 17 

topographic characteristics and the geographic position, precipitation in the form of snow occurs 18 

rarely and can be neglected in hydrological simulations. The streamflow regime is characterized 19 

by a low flow throughout the year (less than 1 m3/s), with a few flood events per year mostly 20 

caused by frontal systems with typical duration of 1-3 days (Chessa et al.,1999; Mascaro et al., 21 

2013).  22 

The geospatial data for the RMB were provided by different agencies of the Sardinian 23 

Region Government and include: (i) a Digital Elevation Model (DEM) at 10-meter resolution 24 
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(Fig. 1c); (ii) the land cover (LC) map in digital format, derived from the COoRdination de 1 

l’INformation sur l’Environnement (CORINE) project of the European Environment Agency 2 

(EEA) for the year 2008; (iii) a hard copy of a pedological map of Sardinia at scale 1:250,000 3 

(Aru et al., 1992); and (iv) orthophotos of the entire island for years 1954 and 2006.  4 

The LC and soil texture maps were pre-processed to be utilized as model inputs. The 5 

original CORINE LC classes were aggregated into 8 groups, obtaining the map shown in Fig.2a. 6 

According to our reclassification, the dominant classes are agriculture (~48%) and sparse 7 

vegetation (~26%), including Mediterranean species. Other categories include olives, forests, 8 

pastures, vineyards and urban areas, with minor percentages as summarized in Table 2. Due to 9 

the large time discrepancy between the calibration and validation period (years 1930-1932, as 10 

described in Section 4.1) and the year 2008 when the LC map was released, we evaluated the 11 

stationarity of the LC conditions, by carefully comparing the orthophotos of years 1954 and 12 

2006. This analysis based on visual inspection revealed minimal differences in vegetation 13 

coverage and a negligible urban expansion, thus providing confidence in the use of the LC map 14 

of the year 2008 to carry out the hydrological simulations. In the RMB, irrigation is applied on 15 

about 50% of the agricultural land and is mostly concentrated in summer. As a result, the 16 

irrigated water mainly affects the low flow regime of the river only during the summer months.  17 

The pedological map was digitized and georeferenced resulting in 17 classes in the RMB. 18 

For each class of the map, Aru et al. (1992) provide a range of soil texture and a qualitative 19 

description of soil depths. To reduce the uncertainty on the soil texture classification, a series of 20 

field campaigns were conducted in 2011 by the project described in Ludwig et al. (2010), during 21 

which a total of 50 soil samples of 80 cm depth were collected throughout the watershed and 22 

analyzed to characterize the texture. These data were then used as a guide to aggregate the 17 23 
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classes and reduce the range of possible soil texture types for each class. The resulting map is 1 

shown in Fig. 2b, while the percentage distribution of the classes is reported in Table 2. 2 

 3 
4. Hydrometeorological Data Downscaling Tools 4 

Precipitation, meteorological and streamflow data were collected during different (and 5 

sometimes non-overlapping) time periods and at different time resolutions. This data sparseness 6 

represents a challenge for the calibration and validation of the hydrologic model. The Italian 7 

Hydrologic Survey collected and published discharge data at the RMB outlet (square in Fig. 1c) 8 

for 11 years from 1925 to 1935. During this period, daily rainfall data were observed by 12 gages 9 

(triangles in Fig. 1c), while one thermometric station, located in the city of Cagliari near the 10 

basin (circle in Fig. 1b), recorded daily minimum (Tmin) and maximum (Tmax) temperature. This 11 

dataset cannot be directly used for model calibration due to the coarse temporal resolution (daily) 12 

and the lack of meteorological data needed to calculate the energy balance and estimate ET0 at 13 

hourly scale with the Penman-Monteith formula. 14 

Here, we propose an approach based on two downscaling tools of precipitation and 15 

potential evapotranspiration forcing that can be used to create the high-resolution input required 16 

to calibrate the hydrologic model with reasonable accuracy. The downscaling tools are calibrated 17 

with high-resolution precipitation and meteorological data recorded in the RMB during more 18 

recent years, including: (i) precipitation records at 1-min from automatic rain gages observed 19 

during the years 1986-1996, and (ii) hourly meteorological data from 1 station over the period 20 

1995-2010. The characteristics of the hydrometeorological data, including resolution, availability 21 

period, and source are summarized in Table 3, while their locations are reported in Fig. 3. 22 

The high-resolution precipitation data were used to calibrate a multifractal downscaling 23 

model that is able to generate hourly precipitation grids from the coarse daily data. The 24 
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meteorological data were utilized to develop a disaggregation method that is capable of 1 

generating a time series of ET0 at hourly scale starting from the daily Tmin and Tmax. Through 2 

these tools, we were able to disaggregate the coarse dataset observed in the calibration and 3 

validation periods selected in the years 1925-1935, producing the forcing at hourly resolution for 4 

tRIBS. In the following, we first describe how we selected the model calibration and validation 5 

periods and then illustrate in detail the two downscaling algorithms. 6 

 7 
4.1. Selection of Calibration and Validation Periods 8 

The discharge data in the RMB outlet were published in annual technical reports of the 9 

Italian Hydrologic Survey (called “Annali Idrologici”) for the years 1925-1935. Streamflow was 10 

estimated through a rating curve by reading the water stage every day at 9 a.m. (Table 3). The 11 

information published in each annual report included: the time series of daily water stage and 12 

discharge; the rating curve, provided as a set of stage and discharge points (linear interpolation is 13 

performed between each point); the stage and discharge values that were measured during the 14 

year to update the rating curve; and a description of the possible problems encountered during 15 

the year that affected the current or the past discharge estimates.  16 

To select the periods for model calibration and validation, we carefully inspected the 17 

information and the data contained in the technical reports, finding that: (i) the rating curves 18 

exhibited significant variation across the 11 years; and (ii) a number of significant problems were 19 

reported for some years that affected the quality of the discharge estimates (e.g., in 1929, an eddy 20 

close to the measurement device caused a consistent bias). To minimize data uncertainty, we 21 

identified three consecutive years (1930-1932), during which the published rating curves did not 22 

vary significantly and problems were not reported. Next, we fitted a rating curve using the stage 23 

and discharge measurements over the three years and used this to derive a discharge time series 24 
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from the stage records. Due to the larger number of flood events, the year 1930 was selected as a 1 

calibration period, while the years 1931 and 1932 were used to validate the model performance. 2 

 3 
4.2. Precipitation Downscaling Tool 4 

The precipitation downscaling procedure is based on the multifractal model known as the 5 

Space Time RAINfall (STRAIN) model that simulates precipitation variability in temporal, 6 

spatial and spatiotemporal frameworks over a wide range of scales, through binary multifractal 7 

cascades (Deidda et al., 1999; Deidda, 2000). Rainfall models based on the multifractal theory 8 

have been extensively used to characterize and simulate the rainfall statistics at different spatial 9 

and temporal scales (see, e.g., Schertzer and Lovejoy, 1987; Over and Gupta, 1996; Menabde et 10 

al., 1997; Deidda et al., 2004; Veneziano and Langousis, 2005, 2010; and Langousis et al., 2009, 11 

2013). Our objective is to downscale daily precipitation observed by a network of gages and 12 

produce gridded maps at hourly resolution. For this purpose, we developed a disaggregation tool 13 

based on the study of Badas et al. (2006), who applied the STRAIN model in Sardinia in a 14 

spatiotemporal framework from the coarse scale L = 104 km and T1 = 6 h up to a fine scale l = 13 15 

km and T2 = 45 min. Fig. 3 shows the coarse domain and the fine scale grid, along with the 16 

location of the rain gages used to calibrate the downscaling model. In this coarse spatial domain, 17 

precipitation data are available at 1-min resolution in the period 1986-1996 and at daily 18 

resolution in the years 1930-1932 (Fig. 3 and Table 4). 19 

Our downscaling approach consists of two steps sketched in Fig. 4. We first use STRAIN 20 

to perform a temporal disaggregation of the rainfall volume observed in the domain L x L (L = 21 

104 km) from the daily scale T0 = 24 h to the scale T1 = 6 h (Fig. 4a). Next, we apply the model 22 

in a spatiotemporal framework to downscale precipitation from the coarse scale L x L x T1 to the 23 
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fine scale l x l x T2 (l = 13 km, T2 = 45 min), as in Badas et al. (2006) (Fig. 4b). The resulting 1 

gridded data are then aggregated at hourly resolution to be used as input for the tRIBS model. 2 

The STRAIN model reproduces observed multifractal properties of precipitation fields by 3 

means of a log-Poisson stochastic generator dependent on two parameters, c and β, which are 4 

estimated through scale invariance and multifractal analysis between the coarse and the fine 5 

scales. Next, empirical calibration relations are identified between estimates of c and β over a 6 

large set of rainfall events and one or more coarse scale predictors. The dependence between the 7 

parameters of multifractal models and coarse meteorological predictors has been documented in 8 

other studies (e.g., Perica and Foufoula-Georgiou, 1996; Gebremichael et al., 2006; Over and 9 

Gupta, 1996; and Veneziano et al., 2006). In previous applications (e.g., Deidda et al., 1999, 10 

2004, 2006; Badas et al., 2006), parameter β was found to be fairly constant at e-1, while c was 11 

found to be related to the coarse scale mean rainfall intensity R (mm h-1) as: 12 

c = c! + a "e
#! R   ,     (1) 13 

with parameters c∞, a and γ. The model is operationally applied as follows: (i) the coarse 14 

predictors are used to derive values of c and β from the calibration relations, and (ii) an ensemble 15 

of small-scale rainfall fields is generated, each representing a possible scenario statistically 16 

consistent with the same coarse scale condition. In the following, we briefly describe the model 17 

calibration in the time and space-time frameworks and the evaluation of the performances of the 18 

downscaling procedure, referring the reader to Deidda (2000) and Deidda et al. (1999; 2004) for 19 

additional details on the scale invariance and multifractal analysis. 20 

21 
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4.2.1. Step 1: Precipitation Downscaling in the Time Domain 1 

Similarly to Badas et al. (2006), we created a spatial grid with step l = 13 km and extent L 2 

= 104 km, characterized by the presence of at least one gage in each pixel (Fig. 3). The 1-min 3 

rainfall gage data were aggregated at a time scale T2 = 45 minutes. Next, for a given time step, a 4 

gridded precipitation field was derived by averaging the data observed by the gages in each l x l 5 

pixel. As a result, we created a dataset of gridded precipitation fields at resolution of 13 km and 6 

45 min over the coarse domain of 104 x 104 km2 for the period 1986-1996. 7 

To calibrate the STRAIN model in the time framework, we selected a total of 300 8 

precipitation events at the coarse scale L x L x T0. For each event, we performed the scale-9 

invariance and multifractal analyses from T0 = 24 h to T1 = 6 h and estimated the parameters c 10 

and β. To identify the calibration relation, (i) we sorted the events in order of increasing coarse 11 

scale intensity R and grouped them in 20 classes of 15 events, and (ii) for each class, we 12 

averaged the c, β and R values. Consistent with previous applications, we found β close to e-1 and 13 

c to be linked with R through equation (1). This relation is shown in Fig. 5a along with the c 14 

estimates in the 20 classes, while the values of c∞, a and γ are reported in Table 4. 15 

 16 
4.2.2. Step 2: Precipitation Downscaling in the Space-Time Domain 17 

The application of STRAIN in the space-time framework is based on the work of Badas 18 

et al. (2006). When the model is applied in three dimensions, a velocity parameter U needs to be 19 

identified to transfer the statistical properties from space to time scales (Deidda et al., 2004). For 20 

our dataset, we adopted the value U = 17.33 km h-1 found by Badas et al. (2006). We estimated c 21 

and β  on a total of 800 precipitation events, by performing the scale invariance and multifractal 22 

analysis from the coarse L x L x T1 (L = 104 km, T1 = 6 h) to the fine l x l x T2 (l = 13 km, T2 = 23 

45 min) scales. As in the time domain application, events were grouped in 40 classes of 20 24 
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events to estimate the calibration relation. We found β close to e-1 across the classes, while 1 

equation (1) was used to relate c and R. The resulting calibration relation is shown in Fig. 5b and 2 

the estimates of c∞, a and γ are reported in Table 4. Badas et al. (2006) showed the presence of 3 

non-homogeneity in the spatial distribution of precipitation in the island, which can be mainly 4 

associated with elevation. Since the STRAIN model reproduces homogeneous fields, we used the 5 

procedure described by Badas et al. (2006) to apply the model while accounting for the effect of 6 

orography.  7 

 8 
4.2.3. Validation of the Precipitation Downscaling Tool 9 

The performances of the downscaling tool were first evaluated separately for the time and 10 

the space-time disaggregation steps, according to the procedure described below. For each class 11 

created to group the coarse scale rainfall events, we randomly selected 10 of them. For each 12 

event, we used STRAIN to generate an ensemble of 100 disaggregated series with c derived from 13 

the corresponding calibration relation (Fig. 5 and Table 4). The observed and synthetic high-14 

resolution rainfall series of the 10 events were standardized (i.e., divided by corresponding R to 15 

have a unitary coarse scale mean) and pooled together. The model ability was then tested by 16 

comparing empirical cumulative density functions (ECDFs) of the 10 observed standardized 17 

rainfall series at the fine resolution (i*), against the 90% confidence intervals derived from the 10 18 

x 100 standardized ensemble members. Examples are presented in Fig. 6 for different R. Panels 19 

(a)-(d) show results for the time domain, revealing the good ability of the STRAIN model to 20 

reproduce the statistical variability in time. Panels (e)-(h) illustrate the space-time framework 21 

and show that, despite some exceptions (e.g., Fig. 6g), the model is also able to capture the 22 

small-scale spatiotemporal precipitation distribution with reasonable accuracy. 23 
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As a next step, we validated the entire downscaling procedure by selecting the same daily 1 

rainfall events used to verify the application in the time domain. For each event, the STRAIN 2 

model was first used to disaggregate in time the mean daily rainfall intensity over the domain L x 3 

L, producing an ensemble of 10 disaggregated series at time resolution T1 = 6 h (Fig. 4a). Next, 4 

the STRAIN model was applied to disaggregate in space and time each intensity in the domain L 5 

x L x T1, generating an ensemble of 10 fields at the fine scale l x l x T2 (Fig. 4b). Summarizing, 6 

for every precipitation event observed in 24 hours in the spatial domain of 104 x 104 km2, we 7 

created a set of 100 (10 by 10) disaggregated grids at the resolution of 13 km in space and 45 8 

minutes in time. The comparison between the ECDFs of the observed standardized rainfall series 9 

of 10 events pooled together against the 90% confidence intervals of the simulated fields is 10 

reported in panels (i)-(l) of Fig. 6 for four classes. The figures show that the downscaling tool 11 

has a relatively good skill in reproducing the rainfall distribution at fine scales. 12 

 13 
4.3. Potential Evapotranspiration Downscaling Tool 14 

If the hourly meteorological data needed for the internal computation of ET0 with the 15 

Penman-Monteith formula are not available, the tRIBS model can be applied by ingesting hourly 16 

time series of potential evapotranspiration ET0 computed off-line with some other approach. In 17 

our case, during the period 1930-1932, ET0 can be only estimated at daily resolution from Tmin 18 

and Tmax using formulas like the Hargreaves equation (Hargreaves, 1994; Hargreaves and Allen, 19 

2003). To circumvent this scale discrepancy, we designed a procedure to disaggregate ET0 from 20 

daily to hourly scale, using, as calibration dataset, hourly observations of meteorological 21 

variables available from 1995 to 2010 in the station shown in Fig. 3. The method is based on the 22 

computation of dimensionless functions ϕm(h) that reproduce, for each month m = 1, 2, …, 12, 23 

the average daily cycle of ET0 for hours h = 0, 1, …, 23. These functions are defined as: 24 
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!m (h) =
ET0 (h,m) H
ET0 (m) D

,       (2) 1 

where ET0 (h,m) H  and ET0 (m) D  are the monthly climatological averages of ET0 at hourly 2 

(subscript H) and daily (subscript D) scale, respectively. These terms are provided by the 3 

following equations:  4 

ET0 (h,m) H = 1
Ny

1
Nm

ET0 (h,d,m, y) H
d=1

Nm

!
y=1

Ny

!     (3) 5 

ET0 (m) D = 1
Ny

1
Nm

ET0 (d,m, y) D
d=1

Nm

!
y=1

Ny

! .     (4) 6 

where Nm is the number of days in month m, Ny is the number of years considered for the 7 

climatological mean (in our case, Ny = 16), while ET0 (h,d,m, y) H  and ET0 (d,m, y) D  are the 8 

hourly and daily potential evapotranspiration computed for hour h in day d, month m and year y.  9 

The dimensionless functions ϕm(h) can be used to disaggregate ET0 from daily to hourly 10 

resolution as: 11 

ET0 (h,d,m, y) H =!m (h) !ET0 (d,m, y) D .     (5) 12 

In our application, the functions ϕm(h) were estimated as follows. We used the Penman-Monteith 13 

(PM) equation (Allen et al., 1989, 2006) to compute ET0 (h,d,m, y) H  with meteorological data in 14 

the period 1995-2010 (Table 3) and values of stomatal resistance and albedo from a study by 15 

Montaldo et al. (2008) in Sardinia. From the hourly estimates, we derived ET0 (d,m, y) D  by 16 

summing over the 24 hours of each day. The hourly and daily ET0 estimates allowed the 17 

application of equations (3) and (4), and, from those, the calculation of the ratios (2) to derive the 18 

monthly ϕm(h). Examples of ϕm(h) obtained for January, April, July and October are shown in 19 
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Fig. 7a. As expected, in winter and autumn, ϕm(h) has a more pronounced peak in the central 1 

hours of the day due to the shorter daylight period. 2 

As a next step, we derived the term ET0 (d,m, y) D  to be used in (5). We utilized the 3 

Hargreaves (HG) equation (Hargreaves, 1994; Hargreaves and Allen, 2003) to calculate a first 4 

estimate of daily ET0 from Tmin and Tmax. Since the functions ϕm(h) were derived through the PM 5 

formula, the daily estimates with HG cannot be directly used in (5). Thus, we investigated the 6 

relation between the daily estimates of ET0 obtained with the two methods. The analysis was 7 

carried out separately for each season to account for different types of climate and weather 8 

conditions. We found that a simple linear relation can be used to link the two estimates: 9 

ET0 (d,m, y) D,PM = p0 + p1 !ET0 (d,m, y) D,HG ,     (6) 10 

where the subscripts PM and HG indicate the methods used to compute the daily ET0. The values 11 

of p0 and p1 estimated for each season are reported in Table 5, along with the linear correlation 12 

coefficient (CC) and the root mean square error (RMSE) between the daily estimates with PM 13 

and HG. Fig. 7b reports an example for the spring season. 14 

The disaggregation procedure can be used to produce hourly ET0 from Tmin and Tmax as 15 

follows. For a given day d in month m and year y, ET0 (d,m, y) D in equation (5) is estimated by 16 

applying in cascade: (i) the HG formula with Tmin and Tmax, and (ii) equation (6) with the values 17 

of p0 and p1 dependent on the season. Equation (5) is then used to derive the evapotranspiration 18 

at hourly scale ET0 (h,d,m, y) H  for h = 0, 1, …, 23. Table 6 reports the interannual mean RMSE 19 

and Bias between the hourly ET0 obtained (i) with the disaggregation method starting from Tmin 20 

and Tmax, and (ii) with the PM formula using the meteorological data for each season of the 21 

period 1995-2010. Despite that the downscaling procedure slightly underestimates the hourly 22 
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ET0 (negative Bias), performances are overall fairly good, as indicated by the low RMSE. 1 

 2 
5. Distributed Hydrologic Simulation with Downscaled Products 3 

5.1. Model setup and meteorological forcing 4 

The DEM of Fig. 1(c) was used to create the TIN network for the model. Following the 5 

approach of Vivoni et al. (2005), we created and compared several TINs with different 6 

resolutions to identify the best compromise between the accuracy of terrain representation and 7 

computational effort. A summary of this analysis is presented in Fig. 8a, where the TIN 8 

resolution, quantified by the horizontal point density d (ratio between the number of TIN nodes 9 

and of DEM pixels), is compared against two metrics characterizing the accuracy, namely the 10 

maximum elevation difference zr and the RMSE between TIN and DEM elevations. For our 11 

study, we selected a TIN with a total of 171,078 nodes, corresponding to 3.6% of the DEM 12 

nodes (d = 0.036). This TIN, shown in Fig. 8b, is able to adequately capture the frequency 13 

distribution of elevation, slope, curvature and topographic index provided by the original DEM 14 

(not shown). In addition, we obtained a soil depth map by combining the DEM and the soil 15 

texture information, according to a procedure described in the website of the Distributed 16 

Hydrology Soil Vegetation Model 17 

(http://www.hydro.washington.edu/Lettenmaier/Models/DHSVM/tools.shtml). 18 

The precipitation downscaling procedure was applied to create an ensemble of 50 19 

spatiotemporal fields at scale l x l x T2 for the years 1930-1932, starting from the daily mean 20 

rainfall intensities observed in the coarse domain L x L (Fig. 3). The resulting downscaled 21 

precipitation grids were subsequently aggregated in time from T2 = 45 min to 1 h. In non-rainy 22 

days, no downscaling was performed and grids with zero rainfall were created. To further test the 23 

ability of the disaggregation algorithm, we compared the observed and simulated series of the 24 
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daily mean areal precipitation (MAP) in the RMB. The observed series was obtained by applying 1 

Thiessen polygons to the observations of the 12 gages of Fig. 1, while the simulated MAP series 2 

was derived by aggregating the synthetic grids at daily resolution and computing the spatial basin 3 

average. Table 7 reports the RMSE and Bias between the observed (MAP0) and the ensemble 4 

average from the downscaling model (MAPD) for the period 1925-1935. The RMSE computed 5 

for rainy days has little interannual variability (average value of 4.38 mm), while the Bias, again 6 

calculated for rainy days, is negative (mean of -0.89 mm), indicating that the downscaling 7 

procedure tends to slightly underestimate the observed MAP (less than 10%).  8 

The hourly basin-averaged ET0 for the calibration and validation period was generated by 9 

(i) applying the disaggregation procedure in each Voronoi polygon of the RMB, and (ii) 10 

computing the weighted mean across the basin. The values of Tmin and Tmax in each Voronoi 11 

element were determined by correcting the temperature observed at the station in Cagliari (circle 12 

in Fig. 1b) as a function of the element elevation, using an adiabatic lapse rate of -6.5°C km-1. 13 

 14 
5.2. Model Calibration and Validation  15 

Different sets of simulations with 50 ensemble members were carried out with the tRIBS 16 

model during the calibration period in the year 1930. We utilized a spin-up interval of 2 years 17 

prior to the start of the calibration period following the approach of Vivoni et al. (2005). The 18 

model runs were conducted using the parallelized code in the Saguaro supercomputer at Arizona 19 

State University. Streamflow observations in the year 1930 were used to manually adjust the 20 

model parameters. Following Ivanov et al. (2004b) and results of a sensitivity analysis, the most 21 

influential parameters were found to be the saturated hydraulic conductivity at the surface (Ks) 22 

and the conductivity decay parameter (f), used to model the variation of Ks with the soil depth 23 

(Cabral et al., 1992). The values of Ks and f were modified within the ranges typical for the 24 
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corresponding soil texture classes (Fig. 2), while, for the other parameters, we adopted literature 1 

values for similar soil and vegetation properties (Rawls et al., 1983; Noto et al., 2008; Montaldo 2 

et al., 2008; Vivoni et al., 2010). Table 8 presents the parameters values in the main classes. 3 

Fig. 9a shows the time series of the observed discharge compared against the 90% 4 

confidence intervals derived from the ensemble streamflow simulations. In the two insets we can 5 

better visualize the comparison over two time periods with significant flood events, and 6 

appreciate the different resolution between the observations (daily) and model outputs (sub-7 

hourly). For each inset, we also plotted the difference between the downscaled ensemble average 8 

(MAPD) and observed (MAPO) mean areal precipitation at the daily scale. Despite the 9 

uncertainty in hydrometeorological inputs, the model reproduces, with reasonably accuracy, the 10 

shape and timing of the major flood events. In some cases, the mismatch between observed and 11 

simulated precipitation inputs leads to underestimation or overestimation of flood peaks. For 12 

example, the model is not able to reproduce the peaks labeled as M (missed), due to a previous 13 

period of underestimated precipitation (negative MAPD-MAPO). Similarly, the timing of flood 14 

peaks can be also affected, as illustrated by the label D (delayed). These discrepancies may not 15 

be entirely ascribed to a failure of the proposed procedure. First, the coarse (daily) sampling of 16 

stage levels is not sufficient to properly capture the high frequency of the discharge variability 17 

and the magnitude of the flood peaks, whereas the sub-hourly resolution of tRIBS outputs allows 18 

better representing the system dynamics, as it will be discussed below. Second, since the 19 

downscaling tool redistributes in stochastic fashion the daily rainfall volumes from a large 20 

domain (104 km x 104 km, see Fig. 3) to smaller areas and times, it may be possible that, in 21 

some days, the multifractal model fails to capture the exact spatial localization of the storms. As 22 

a consequence, cases where MAPD and MAPO differ should be somehow expected, as they are 23 
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part of the uncertainty associated with the disaggregation approach.  1 

The circles in Fig. 9a are the streamflow measurements made by the Italian Hydrologic 2 

Survey during campaigns aimed at updating the rating curve. Some of these observations were 3 

collected during three major flood events. One can note how the model is able to capture fairly 4 

well the magnitude of the high values observed between two daily discharge readings. This is an 5 

important and promising result that builds confidence on the model utility for analyses of flood 6 

frequency under climate change. Table 9 reports the Nash-Sutcliffe coefficient (NSC) (Nash and 7 

Sutcliffe, 1970) computed for the water volume derived from the observed streamflow and the 8 

ensemble streamflow simulations. Specifically, the minimum, mean and maximum values of the 9 

50 ensemble members are reported for different aggregation times (daily, weekly and monthly). 10 

Linear variability between discharge observations is assumed to calculate the volume. Clearly, 11 

the lowest values of NSC (poor performances) are obtained at daily resolution, because at this 12 

scale the direct correspondence between observation and simulations is more affected by the 13 

different sampling time step and by mismatching in the disaggregated forcing. When larger time 14 

scales are considered, NSC increases and reaches a mean value of 0.55 at monthly resolution. In 15 

terms of total runoff volume, the ensemble mean is 170 mm (standard deviation, STD, of 70 mm 16 

across the 50 members) and the observation is 183 mm. This underestimation (~10%) can be 17 

explained by the lower simulated MAP (mean and STD of 848 and 118 mm) as compared to the 18 

observation (902 mm). In both the observed streamflow and the ensemble mean, the runoff 19 

coefficient was found to be ~ 0.20 for this period.  20 

To further illustrate the model performance, Fig. 9b shows the comparison between the 21 

observed flood duration curve (FDC) and the 90% confidence intervals from the ensemble 22 

simulations. The shape of the observed FDC is well reproduced within the range of wet season 23 
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baseflow and for the major flood events. The model underestimates the streamflow values 1 

corresponding to the percentage of exceedance of 2 to 10%, due to a tendency to simulate steeper 2 

recession limbs. The shapes of simulated and observed FDCs diverge in the interval of dry 3 

season baseflow. However, in this range of discharge values, the absolute error between the 4 

observations and simulations is very low, and the observed data are quite uncertain, as they are 5 

affected by releases from urban and irrigation activities.  6 

Results for the validation period (years 1931 and 1932) are shown in Fig. 10. Note the 7 

good performances in reproducing the discharge time series (Fig. 10a) over year 1931 and most 8 

of 1932. In the period from October to December 1932, the model simulates a number of peaks 9 

that were not observed, while sometimes underestimates the discharge, due to the same reasons 10 

discussed for the calibration period. These peaks lower the NSC values at the different 11 

aggregation times, as reported in Table 9. As in the calibration period, the total simulated runoff 12 

volume (mean of 103 mm and STD of 17 mm) is lower than the observation (147 mm), due to 13 

lower precipitation simulated by the downscaling tool (mean of 993 mm and STD of 96 mm) as 14 

compared to the observed total (1025 mm). The simulated runoff coefficient throughout the two 15 

years is on average 0.10 in the simulations, slightly smaller than the observed value of 0.14. 16 

Despite the discrepancies present in the time series and the metrics, Fig. 9b reveals an excellent 17 

agreement between the shapes of observed and simulated FDCs, even in the range of the dry 18 

season baseflow. Overall, these results suggest that the combined use of the downscaling 19 

algorithms and the tRIBS model allows reproducing with reasonable accuracy the hydrologic 20 

response of the RMB within the 3 years selected for calibration and validation. This holds 21 

promise for a subsequent application of these simulation tools to evaluate the local impacts of 22 

future climate change scenarios, assuming that their calibration is stationary in time. 23 
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6. Summary and Conclusions 1 

We applied a physically-based distributed hydrologic model in the Rio Mannu basin, a 2 

medium-size watershed (area of 472.5 km2) in the Mediterranean island of Sardinia, Italy. In the 3 

RMB, precipitation, streamflow and meteorological data were collected in different historical 4 

periods and at diverse temporal resolutions. We showed how this sparse hydrometeorological 5 

dataset could be used to calibrate two downscaling tools that are able to create high-resolution 6 

(hourly) precipitation forcing from daily observations and estimates of the hourly potential 7 

evapotranspiration for use in the distributed hydrologic model application.  8 

Despite the presence of several sources of uncertainty in the observations and model 9 

parameterization, the use of the downscaled forcing led to good calibration and validation 10 

performances for the tRIBS model over the years from 1930 to 1932 with available daily 11 

discharge observations. To our knowledge, this is the first study where a distributed hydrologic 12 

model is applied in the island of Sardinia. Different from most applications based on daily 13 

forcing, the methodology proposed here allows conducting hydrologic simulations at high time 14 

and space resolutions, thus capturing with higher detail the complex interactions between surface 15 

and subsurface processes occurring in Mediterranean watersheds. This methodology will be 16 

utilized in a subsequent study to disaggregate the outputs of different RCMs and simulate the 17 

hydrologic response of the RMB under different climate change scenarios, thus quantifying their 18 

local impacts on water resources and the frequency of hydrologic extremes.  19 
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Table Captions 1 

Table 1. Physiographic characteristics of the RMB including area (Ab), minimum (zmin), 2 

maximum (zmax) and mean (zmean) elevation, mean slope (βmean), length of the main reach (L), and 3 

concentration time (Tc), computed using the Giandotti formula: Tc =
4 Ab +1.5L
0.8 zmean ! zmin

.  4 

 5 
Table 2. Land cover and range of soil texture classes used as input for the tRIBS model, with the 6 

corresponding percentage of basin area. 7 

 8 
Table 3. Hydrometeorological data used in the study, including the resolution, the number of 9 

gages and the source for each type of data and available period. The sources include: AI, “Annali 10 

Idrologici”; IHS, Italian Hydrologic Survey (data provided by the branch in Sardinia); and 11 

ARPAS, the Sardinian Agency for Environmental Protection.  12 

 13 
Table 4. Parameter values of the calibration relation (1) of the STRAIN model for applications 14 

in the time and space-time domains, which are valid when expressing R in mm h-1. 15 

 16 
Table 5. Parameters p0 and p1 of the linear regression (6) between daily ET0 expressed in mm 17 

and computed with the PM and HG formulas for each season (DJF: December, January and 18 

February; MAM: March, April and May; JJA: June, July and August; SON: September, October 19 

and November). The linear correlation coefficient (CC) and the root mean square error (RMSE) 20 

are also reported. 21 

 22 
Table 6. RMSE and Bias between (i) the hourly ET0 obtained with the disaggregation method 23 

starting from Tmin and Tmax, and (ii) the hourly ET0 estimated with the PM formula using the 24 

meteorological data for each season of the years 1995-2010. 25 
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 1 
Table 7. RMSE and Bias between the daily observed mean areal precipitation (MAPO) and the 2 

ensemble average from the downscaling tool and aggregated at daily scale (MAPD) for rainy 3 

days. Italic font is used for years selected to calibrate and validate the hydrologic model.  4 

 5 
Table 8. Parameters of the tRIBS model for the major soil and land cover classes in the RMB. 6 

 7 
Table 9. Nash-Sutcliffe coefficient (NSC) between observed and simulated water volume at 8 

daily, weekly, and monthly time scales. The minimum, mean and maximum values across the 50 9 

ensemble members are reported for the calibration and validation periods. 10 

11 
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 1 
Ab zmin zmax zmean βmean L Tc 

(km2) (m a.s.l.) (m a.s.l.) (m a.s.l.) (%) (km) (h) 
       

472.5 66 963 296 17.3 39 12 
       

 2 
(Mascaro et al., 2013; Table 1) 3 
 4 
Table 1. Physiographic characteristics of the RMB including area (Ab), minimum (zmin), 5 

maximum (zmax) and mean (zmean) elevation, mean slope (βmean), length of the main reach (L), and 6 

concentration time (Tc), computed using the Giandotti formula: Tc =
4 Ab +1.5L
0.8 zmean ! zmin

. 7 

 8 
9 
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 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 

(Mascaro et al., 2013; Table 2) 15 
 16 

Table 2. Land cover and range of soil texture classes used as input for the tRIBS model, with the 17 

corresponding percentage of basin area. 18 

 19 
 20 

Land Cover Class % basin 
area 

 Range of  
Soil Texture Classes 

% basin 
area 

     
Agriculture 47.64  Sandy clay loam - clay 1.57 

Forests 7.09  Sandy loam - sandy clay loam 19.59 
Olives 8.07  Sandy loam 8.84 

Pastures 5.43  Clay loam - clay 36.66 
Sparse vegetation 26.08  Urban 1.52 

Urban areas 3.25  Sandy loam - loam 31.82 
Vineyards 2.44    

Water 0.02    
     



 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 

 12 
(*) Read at 9 am. 13 
(**) Only minum and maximum temperature (Tmin and Tmax). 14 
(***) Air temperature, air humidity, global radiation, and wind speed at 2 m height. 15 
 16 
(Mascaro et al., 2013; Table 3) 17 
 18 
Table 3. Hydrometeorological data used in the study, including the resolution, the number of gages and the source for each type of 19 

data and available period. The sources include: AI, “Annali Idrologici”; IHS, Italian Hydrologic Survey (data provided by the branch 20 

in Sardinia); and ARPAS, the Sardinian Agency for Environmental Protection.  21 

 22 
 23 
 24 

 Streamflow  Precipitation  Meteorological 

Period Resolution # of 
gages Source  Resolution # of 

gages Source  Resolution # of 
gages Source 

            
1925 - 1935 Daily* 1 AI  Daily* 12 AI  Daily** 1 AI 

            
1986 -1996 - - -  1 min 204 HS  - - - 

            
1995 - 2010 - - -  - - -  1 h*** 1 ARPAS 
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 1 
 2 
 3 
 4 
 5 
 6 
(Mascaro et al., 2013; Table 4) 7 
 8 
Table 4. Parameter values of the calibration relation (1) of the STRAIN model for applications 9 

in the time and space-time domains, which are valid when expressing R in mm h-1. 10 

 11 
12 

 c∞ a γ  
    

Time domain 0.43 0.93 1.94 
Space-time domain 1.49 2.23 3.04 
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 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
(Mascaro et al., 2013; Table 5) 10 
 11 
Table 5. Parameters p0 and p1 of the linear regression (6) between daily ET0 expressed in mm 12 

and computed with the PM and HG formulas for each season (DJF: December, January and 13 

February; MAM: March, April and May; JJA: June, July and August; SON: September, October 14 

and November). The linear correlation coefficient (CC) and the root mean square error (RMSE) 15 

are also reported. 16 

 17 
18 

Season p0 p1 CC RMSE 
     

DJF 0.409 0.367 0.608 0.165 
MAM 0.593 0.404 0.835 0.322 
JJA 1.486 0.269 0.538 0.361 
SON 0.405 0.429 0.875 0.248 
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 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
(Mascaro et al., 2013; Table 6) 10 
 11 
Table 6. RMSE and Bias between (i) the hourly ET0 obtained with the disaggregation method 12 

starting from Tmin and Tmax, and (ii) the hourly ET0 estimated with the PM formula using the 13 

meteorological data for each season of the years 1995-2010. 14 

15 

Season RMSE (mm h-1) Bias (mm h-1) 
   

DJF 0.019 -0.004 
MAM 0.031 -0.009 
JJA 0.039 -0.015 
SON 0.029 -0.011 
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 1 
 2 
 3 
 4 

 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
(Mascaro et al., 2013; Table 7) 19 
 20 
Table 7. RMSE and Bias between the daily observed mean areal precipitation (MAPO) and the 21 

ensemble average from the downscaling tool and aggregated at daily scale (MAPD) for rainy 22 

days. Italic font is used for years selected to calibrate and validate the hydrologic model.  23 

 24 
25 

Year RMSE (mm) Bias (mm) 
   

1925 4.34 -1.06 
1926 4.28 -0.78 
1927 4.18 -1.49 
1928 3.95 -0.60 
1929 4.19 -1.31 
1930 5.63 -0.64 
1931 4.27 -0.76 
1932 3.15 -0.74 
1933 4.86 -1.35 
1934 3.97 -0.29 
1935 4.48 -1.03 

   
All 4.37 -0.89 
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 1 

 2 
(Mascaro et al., 2013; Table 8) 3 
 4 
Table 8. Parameters of the tRIBS model for the major soil and land cover classes in the RMB. 5 

 6 
7 

 Major Land Cover Types 
Land Cover Properties Variable 

(unit) 
Agriculture Sparse 

vegetation 
Olives Forests Pasture 

       
Area A (%) 47.64 26.08 8.07 7.09 5.43 
Vegetation fraction v (-) 0.5 0.5 0.5 0.5 0.4 
Albedo a (-) 0.2 0.2 0.2 0.18 0.2 
Vegetation height h (m) 1.0 1.0 3.0 10.0 0.7 
Vegetation transmission Kt(-) 0.5 0.5 0.5 0.5 0.5 
Minimum stomatal 
resistance  

rmin (s m-1) 100 100 100 100 100 

       
       
 Major Soil Types   
Soil Properties Variable 

(unit) 
Clay loam 

– Clay 
Sandy loam 

– Loam 
Sandy loam 
– Sandy clay 

loam 

  

       
Area A (%) 36.66 31.82 19.59   
Saturated hydraulic 
conductivity 

Ks (mm h-1) 0.60 13.20 3.00   

Conductivity decay  f (mm-1) 0.00051 0.00096 0.00096   
Porosity n (-) 0.475 0.463 0.398   
Saturated soil moisture θs (-) 0.385 0.434 0.330   

Residual soil moisture θr (-) 0.090 0.027 0.068   

Stress soil moisture  θ* (-) 0.308 0.347 0.264   

Pore size distribution 
index 

m (-) 0.165 0.252 0.319   
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 1 

Time scale Calibration NSC 
Min, Mean, Max 

Validation NSC 
Min, Mean, Max 

   
Daily -3.53, 0.07, 0.61 -0.99, 0.02, 0.42 

Weekly -5.50, 0.46, 0.83 -0.72, 0.13, 0.47 
Monthly -0.06, 0.55, 0.89 0.30, 0.25, 0.74 

   
 2 
(Mascaro et al., 2013; Table 9) 3 
 4 
Table 9. Nash-Sutcliffe coefficient (NSC) between observed and simulated water volume at 5 

daily, weekly, and monthly time scales. The minimum, mean and maximum values across the 50 6 

ensemble members are reported for the calibration and validation periods. 7 

 8 
 9 

10 
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 44 

Figure Captions 1 

Fig. 1. Location of the Rio Mannu di San Sperate at Monastir basin (RMB) within (a) Italy and 2 

(b) the island of Sardinia. (c) Digital elevation model (DEM) of the RMB including UTM 3 

coordinates. Panels (b) and (c) also report the position of the thermometric station, rain gages 4 

and streamflow gage at the basin outlet with daily data observed during the years 1925-1935. 5 

 6 
Fig. 2. (a) Land cover and (b) soil texture maps used as input for the tRIBS model. 7 

 8 
Fig. 3. Location of rain gages, meteorological stations and streamflow gage. The square with a 9 

dashed line is the coarse domain L x L (L = 104 km) containing the fine scale grid at resolution l 10 

x l (l = 13 km) used to calibrate the precipitation downscaling tool. See Table 3 for details. 11 

 12 
Fig. 4. Schematic of the precipitation downscaling toolbased on STRAIN model. The procedure 13 

consists of two steps: (a) disaggregation in the time domain from the coarse scale L x L x T0 (L = 14 

104 km, T0 = 24 h) to the fine scale L x L x T1 (T1 = 6 h); and (b) disaggregation in the space-15 

time domain from the coarse scale L x L x T1 to the fine scale l x l x T2 (l = 13 km, T2 = 45 min).  16 

 17 
Fig. 5. Calibration relations (1) between the STRAIN model parameter c and the coarse-scale 18 

mean precipitation intensity R for application in the (a) time and (b) space-time domains. 19 

 20 
Fig. 6. Comparison between the empirical cumulative density functions (ECDFs) of the small-21 

scale observed precipitation fields and the 90% confidence intervals derived from an ensemble of 22 

100 synthetic fields generated with the downscaling tool. The small-scale precipitation intensities 23 

were standardized and indicated as i* (see text for details). Panels (a)-(d) and (e)-(h) show results 24 

for the applications in the time and space-time domains, respectively, while panels (i)-(l) report 25 

results for the entire disaggregation procedure.  26 
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 1 
Fig. 7. (a) Dimensionless function ϕm(h) for the months January, April, July and October, and (b) 2 

scatterplot between the daily ET0 computed with the PM and HG formula during the spring 3 

season (MAM), along with the regression lines. 4 

 5 
Fig. 8. (a) Relations between vertical accuracy zr (maximum elevation difference between TIN 6 

and DEM) and horizontal point density d and  RMSE between DEM and TIN elevations. (b) 7 

Voronoi polygons of selected TIN with zr = 3 m corresponding to d = 0.036 and RMSE = 1.5 m. 8 

 9 
Fig. 9. Result of the tRIBS model calibration (year 1930). (a) Comparison between the observed 10 

discharge against the 90% confidence intervals (CI) derived from the 50 ensemble simulations of 11 

the tRIBS model. In the insets, a zoom on two periods with significant flood events is reported to 12 

better visualize the comparison, along with the difference between the daily MAPD and MAPO 13 

(see text for the definition). The circles represent the discharge values measured by the Italian 14 

Hydrologic Survey to update the rating curve. (b) Comparison between the observed flow 15 

duration curve and the 90% confidence intervals derived from the 50 ensemble simulations. 16 

 17 
Fig. 10. Result of the tRIBS model validation (years 1931-1932). See Fig. 9 for a description of 18 

the figure content. 19 

20 
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(Mascaro et al., 2013; Fig. 1) 6 
 7 

Fig. 1. Location of the Rio Mannu di San Sperate at Monastir basin (RMB) within (a) Italy and 8 

(b) the island of Sardinia. (c) Digital elevation model (DEM) of the RMB including UTM 9 

coordinates. Panels (b) and (c) also report the position of the thermometric station, rain gages 10 

and streamflow gage at the basin outlet with daily data observed during the years 1925-1935. 11 

 12 
13 
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(Mascaro et al., 2013; Fig. 2) 6 
 7 
Fig. 2. (a) Land cover and (b) soil texture maps used as input for the tRIBS model. 8 
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10 



 48 

 1 

 2 
 3 
 4 
(Mascaro et al., 2013; Fig. 3) 5 
 6 
Fig. 3. Location of rain gages, meteorological stations and streamflow gage. The square with a 7 

dashed line is the coarse domain L x L (L = 104 km) containing the fine scale grid at resolution l 8 

x l (l = 13 km) used to calibrate the precipitation downscaling tool. See Table 3 for details. 9 

 10 
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L = 104 km

L =
 104 km

T0 = 24 h

L = 104 km

L =
 104 km

T1 = 6 h

l = 13 km

T2 = 
45 min

(a) Step 1: Downscaling in time from
L x L x T0 to L x L x T1

(b) Step 2: Downscaling in space and 
time from L x L x T1 to l x l x T2

 1 
 2 
 3 
(Mascaro et al., 2013; Fig. 4) 4 
 5 
Fig. 4. Schematic of the precipitation downscaling toolbased on STRAIN model. The procedure 6 

consists of two steps: (a) disaggregation in the time domain from the coarse scale L x L x T0 (L = 7 

104 km, T0 = 24 h) to the fine scale L x L x T1 (T1 = 6 h); and (b) disaggregation in the space-8 

time domain from the coarse scale L x L x T1 to the fine scale l x l x T2 (l = 13 km, T2 = 45 min).  9 

 10 
11 
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(Mascaro et al., 2013; Fig. 5) 5 
 6 
Fig. 5. Calibration relations (1) between the STRAIN model parameter c and the coarse-scale 7 

mean precipitation intensity R for application in the (a) time and (b) space-time domains. 8 
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(Mascaro et al., 2013; Fig. 6) 5 
 6 
Fig. 6. Comparison between the empirical cumulative density functions (ECDFs) of the small-7 

scale observed precipitation fields and the 90% confidence intervals derived from an ensemble of 8 

100 synthetic fields generated with the downscaling tool. The small-scale precipitation intensities 9 

were standardized and indicated as i* (see text for details). Panels (a)-(d) and (e)-(h) show results 10 

for the applications in the time and space-time domains, respectively, while panels (i)-(l) report 11 

results for the entire disaggregation procedure. 12 

13 
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(Mascaro et al., 2013; Fig. 7) 5 
 6 
Fig. 7. (a) Dimensionless function ϕm(h) for the months January, April, July and October, and (b) 7 

scatterplot between the daily ET0 computed with the PM and HG formula during the spring 8 

season (MAM), along with the regression lines. 9 
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 1 

 2 
 3 
 4 
(Mascaro et al., 2013; Fig. 8) 5 
 6 
Fig. 8. (a) Relations between vertical accuracy zr (maximum elevation difference between TIN 7 

and DEM) and horizontal point density d and  RMSE between DEM and TIN elevations. (b) 8 

Voronoi polygons of selected TIN with zr = 3 m corresponding to d = 0.036 and RMSE = 1.5 m. 9 
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(Mascaro et al., 2013; Fig. 9) 5 
 6 
Fig. 9. Result of the tRIBS model calibration (year 1930). (a) Comparison between the observed 7 

discharge against the 90% confidence intervals (CI) derived from the 50 ensemble simulations of 8 

the tRIBS model. In the insets, a zoom on two periods with significant flood events is reported to 9 

better visualize the comparison, along with the difference between the daily MAPD and MAPO 10 

(see text for the definition). The circles represent the discharge values measured by the Italian 11 

Hydrologic Survey to update the rating curve. (b) Comparison between the observed flow 12 

duration curve and the 90% confidence intervals derived from the 50 ensemble simulations. 13 
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(Mascaro et al., 2013; Fig. 10) 5 
 6 
Fig. 10. Result of the tRIBS model validation (years 1931-1932). See Fig. 9 for a description of 7 

the figure content. 8 
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