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Response to Reviewer 1 (Holger Maier).

We are grateful to the Reviewer for recognition of the importance of our paper in ad-
dressing one of the key issues facing neural network models in hydrological research;
namely the credibility of their application. We are also pleased to note his view that the
paper is ‘well written and organised’, and that the ‘proposed approach and illustrative
case study are clear and useful’. The Reviewer makes four constructive suggestions
that, if addressed, could improve the quality and contribution of our paper. Adhering to
the numbering system used in his review, the following revisions will be implemented
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in our revised submission.

1. Different levels of generality.

The Reviewer is correct in noting that different aspects of our paper may be applied at
differing levels of generality. Specifically, we present a framework that can be applied
at a general level, and a more specific method (partial derivative sensitivity analysis
of MLP ANNs) that is used to implement the framework in an example application
of NNRFs. The present order and structure of the material in our introduction would
clearly benefit from revision. We propose to move the material that develops the gen-
eral DDMM framework to the beginning of that section, and follow this with more spe-
cific issues associated with our NNRF exemplar. New subheadings will be introduced
to reinforce the different levels of generality associated with the framework and the
exemplar.

We also note that, within Point 2, the Reviewer has questioned why our framework
is restricted to the forecasting of hydrological variables in rivers? As we have stated
in the paper (page 150, line 6) our framework is ‘generic’. However, the Reviewer’s
comments indicate that we could make this point more clearly. Therefore, in clarifying
the generality of the framework (see above comments) we also propose to highlight its
wider applicability beyond river forecasting.

2. Terminology – River Forecasting.

The Reviewer questions what is meant by the term Neural Network River Forecasting
(NNRF). We did not define the term here but instead referenced Abrahart et al., (2012)
in which the term is defined:

“NN rainfall-runoff and streamflow modelling are collectively termed NN river forecast-
ing (NNRF) in which ’The basic jobs of a river forecast model are to estimate the
amount of runoff a rain event will generate, to compute the routing, how the water
will move downstream from one forecast point to the next, and to predict the flow of
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water at a given forecast point throughout the forecast period’ (NOAA, 2011).”

As the terminology would appear unfamiliar to some readers of HESS, we will include
a direct quotation of this definition in the revised paper.

3. Purpose of the proposed framework.

The Reviewer suggests that the purpose of our framework is to “assess how well un-
derlying physical processes have been captured by a calibrated ANN model”. This is
not an accurate reflection of the purpose of the framework as presented in our paper.
We note that on Page 147, Line 22 we highlight the view taken in data-based mecha-
nistic methods: that a model should be sufficiently ‘real’. This is typically taken to mean
physical process representation. However, in the DDMM framework that we present we
are careful to express a model’s legitimacy in terms of the stability, coherency, continu-
ity and magnitude of its mechanisms (Figure 2); thereby avoiding the need to conflate
legitimacy with physical process representation. This view of legitimacy is more closely
aligned with model verification (in which a model’s mechanisms are assessed against
a conceptual blueprint (AIAA, 1998; Balci, 1998; Davis, 1992; Sargent, 1998; 2010))
than validation (in which a model’s performance is assessed against a set of defined
performance criteria (Carson, 1986; Curry et al., 1989; Beven and Binley, 1992, Rykiel,
1996)). Indeed, a model’s legitimacy may be assessed intrinsically (e.g. do the be-
haviours indicate unacceptable local overfitting?) as well as extrinsically (e.g. do the
behaviours mirror physical processes?).

The Reviewer questions our use of the term validation in the paper and suggests that
our framework is not validation, but rather part of model selection, which is a pre-
validation activity. We are not fully in agreement with the Reviewer as we recognise
validation as an overarching term that is commonly used to encompass all stages and
components in model assessment (c.f. Anderson and Bates, 2001). However, we do
recognise that the paper would be improved by more clearly positioning our frame-
work in the terminology of model verification and validation (as presented above). This

C388

will be done briefly in the revised Introduction, but we recognise the need for a fuller
discussion of such issues and that will be the topic of a follow-up, standalone paper.

4. Input selection and model structure.

The Reviewer requests greater discussion about how the information delivered by the
framework, and the sensitivity analyses, could be used. He suggests it may be useful
for improved input selection and the determination of optimal model structure – both
central issues associated with the question of how to develop ANN models with appro-
priate complexity. He notes that our method could be useful in this context and requests
the inclusion of an appropriate discussion and certain relevant literature. We note that
sensitivity analysis is a common approach for optimising input selection and/or model
complexity. Whilst we do not use our framework to deliver such optimisation, we do
agree that it could be useful in such respects. We will, therefore, be pleased to include
additional text to discuss this aspect.

5. Physical plausibility of ANN mechanisms.

We would be pleased to include some additional literature in relation to elucidating
the internal workings of ANN models at the start of Section 2 so that partial derivative
sensitivity analysis is more broadly contextualised.

6. Comparison to different methods.

The suggestion to include a comparison of our partial derivative sensitivity analysis
method with other methods for elucidating ANN internal mechanisms (e.g. connec-
tion weights) is a good one. As suggested, we will develop a qualitative, tabulated
comparison.

Response to Reviewer 2 (Anonymous).

We are grateful to this Reviewer for recognising the interest associated with our re-
search and its potential contribution. The Reviewer makes nine numbered suggestions
that we respond to in the same order.
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1. Emphasis on black-box model weaknesses.

The Reviewer suggests that we reduce our emphasis on the black-box characteristics
of ANNs and its associated limitations. They also suggest that we highlight the success
of ANNs in various hydrosystem problems.

We accept that ANNs have been widely used in hydrosystems research and that they
have been shown to be effective in replicative and predictive problems. Indeed, we
clearly state on Page 147, Lines 12-16 that:

“the main benefit of NNRFs over statistical models is that they have been found to
deliver enhanced levels of model fit when assessed against calibration and validation
data sets. Consequently, it has been suggested that NNRFs can deliver forecasts with
reduced error and can be used to extend the horizon over which forecasts can reliably
be made.”

We are, therefore, surprised that the Reviewer feels our attitude towards ANNs is overly
negative. The issue here is what one determines to be a ‘successful and satisfactory
application’. The purpose of this paper is to recognise that, whilst ANNs are effective
at optimising complex, multidimensional hydrological relationships, the extent to which
their optimised outputs are demonstrably ‘right for the right reasons’ is far less clear.
Indeed, the lack of mechanistic knowledge surrounding ANN models remains a core
criticism of them in the literature as well as one that has been identified as prevent-
ing their wider uptake and acceptance by the hydrological community (Abrahart et al.,
2010; Abrahart et al., 2012). Addressing this critical issue is the focus of our work and
a pressing matter that we should not be afraid to emphasise. Nonetheless, we will
ensure that the successes of ANNs are properly stated in our revised Introduction.

2. Simplicity and linearity of cases.

The Reviewer is correct in recognising the simplicity of the modelling cases we present.
This contrasts with the complexity of the arguments that the paper necessarily ex-
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amines. In this context, we would suggest that using relatively simple exemplars to
illustrate the application of a new, novel framework, is an ideal starting point. We re-
spectfully highlight the fact that this is a paper about how we model, rather than what
we model, and it is this fact that justifies the complexity of the arguments and simplicity
of the examples presented.

With respect to the linearity of the cases we present, we do accept that they are not
highly non-linear. However, inspection of Figures 8 and 9 coupled with the metrics
presented in Tables 5 and 6 does demonstrate modest non-linearity in the modelling
problem. That said, we again stress that this paper is not about what is being modelled,
but about how it is being modelled, and in this context we would argue that the degree
of linearity in the examples is of limited relevance.

3. The potential of other ANNs.

This comment parallels aspects of the suggestions raised by Reviewer 1 in Point 6
(above). We agree that other ANN techniques can elucidate aspects of internal mech-
anisms and we will review these in a new comparative table.

4. Length of introduction.

We agree that the introductory sections of this paper are substantial and note that
Reviewer 1 recognises the need for even greater length and detail – not less. Greater
clarity will be provided by the reordering and restructuring of the Introduction that will
be made in response to Reviewer 1 (Point 1). However a reduction in the size of the
Introduction would limit the extent to which vital arguments about model legitimacy can
be rehearsed. As stated under Reviewer 2, Point 1 (above), we will ensure that the
value of ANNs is properly portrayed.

5. Model inputs.

The Reviewer is correct to note the potential usefulness of sensitivity analysis in sup-
porting model input selection and structure. We note that this view parallels that made
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by Reviewer 1 in Point 4. The implications will be discussed as outlined in our response
to Reviewer 1.

6. Explanation of Equation 2.

The request to provide the relative sensitivity of each input in Equation 2 is not possible
because computed relative sensitivity will vary continuously across the input space. For
this reason, each data point has a separate relative sensitivity calculated for its inputs
– resulting in the cloud of points that are observed in Figures 8 and 9. Therefore, there
is no single relativity sensitivity value that can be defined and explained for each input.
Instead we adopt the brute-force, computational approach that we explain on Page 153
– an approach that extends the idea of relative sensitivity values being local rather than
global. We will include a sentence alongside Equation 2 that clarifies this point.

7. Similarity of DDMM framework to pre-processing in ANNs.

As ANNs are a form of data-driven modelling, the correspondence between elements
of Figure 1 and neural network model building is to be expected. However, we draw
the Reviewer’s attention to box B2 and B3 and note that efforts to elucidate the inter-
nal mechanisms of ANN models and provide assessments of their legitimacy are not
standard pre-processing operations. These additions are the core foci of our paper.

8. Global-local relative sensitivity plots.

Yes. The data can be separated into calibration and validation plots and this will be
done in the revised paper.

9. Ordering of Figures 8 and 9.

We are grateful to the Reviewer for spotting this error in the Figure sequencing and this
will be rectified.

References.

Abrahart, R.J., Anctil, F., Coulibaly, P., Dawson, C.W., Elshorbagy, A., Mount, N.J., See,

C392

L.M., Shamseldin, A.Y., Solomatine, D.P., Toth, E., Wilby, R.L. 2012. Two decades
of anarchy? Emerging themes and outstanding challenges for neural network river
forecasting. Progress in Physical Geography, 36(4), 480-513.

Abrahart, R.J., See, L.M., Dawson, C.W., et al. 2010. Nearly two decades of neural
network hydrologic modeling. In: Sivakumar, B. Berndtsson, R. (Eds.) Advances in
Data-Based Approaches for Hydrologic Modeling and Forecasting. Hackensack, NJ,
World Scientific Publishing. 267–346.

American Institute of Aeronautics and Astronautics. 1998. Guide for the Verification
and Validation of Computational Fluid Dynamics Simulations, AIAA-G-077-1998, Re-
ston, Virigina, USA.

Anderson, M.G., Bates, P.D. 2001. Model Validation: Perspectives in Hydrological
Science. John Wiley and Sons, Chichester, UK.

Balci, O. 1998. Verification, validation and testing. In: Banks, J. (Ed.), Handbook of
Simulation, John Wiley and Sons, Chichester, UK. 335-396.

Beven, K.J., Binley, A.M. 1992. The future of distributed models: model calibration and
uncertainty prediction. Hydrological Processes, 6, 279-298.

Carson, J.S. 1986. Convincing users of a model’s validity is a challenging aspect of a
modeler’s job. Industrial Engineering, 18 (6), 74-85.

Caswell, H. 1976. The validation problem. In: Patten, B. (Ed.), Systems Analysis and
Simulation in Ecology, Vol. IV. Academic Press, New York. 313-325.

Davis, P.K. 1992. Generalizing concepts of verification, validation and accreditation for
military simulation. R-4249-ACQ, October 1992, RAND, Santa Monica, CA.

National Oceanic and Atmospheric Administration (NOAA) 2011. National Weather
Service Middle Atlantic River Forecast Center: The models and the final product. Avail-
able at: http://www.erh.noaa.gov/marfc/Science/models.html

C393



Rykiel, E.J. 1996. Testing ecological models: the meaning of validation. Ecological
Modelling, 90, 229-244.

Sargent, R.G. 2010. Verification and validation of simulation models. In: Johansson,
B., Jain, S., Montoya-Torres, J., Hugan, J., Yucesan, E. (Eds.), Proceedings of the 2010
Winter Simulation Conference, Baltimore, Maryland, USA. 166-183.

Sargent, R.G. 1998. Verification and validation of simulation models. In Carson, J.S.,
Manivannan, M.S., Medeiros, D.J., Watson, E.F. (Eds.) Proceedings of the Winter
Simulation Conference 1998, Washington DC, USA. 121-130.

Interactive comment on Hydrol. Earth Syst. Sci. Discuss., 10, 145, 2013.

C394


