
 
Response to reviewer comments: Anonymous Referee #2 
 
GENERAL COMMENTS 1) 
 
In this study as a part of the assessment of statistical characteristics of point rainfall, 
we have fitted different probability distributions to simulate daily rainfall amounts 
and we evaluated the performance of various probability distributions to reproduce 
the full range of daily rainfall. We have included the discussion on the limitation of 
the hybrid gamma-GP distribution due to its fitting procedure to the revised 
manuscript in section 4.1.2. As per the reviewer’s suggestion, we have now included 
mixed exponential (Wilks, 1999) and hybrid of exponential-Generalized Pareto (GP) 
(Li et al., 2012) distribution to the revised manuscript. 
 
GENERAL COMMENTS 2)  
 
We also agree with the reviewer that the spatial dependence structure of rainfall at 
different temporal resolutions is important for rainfall modelling and it has significant 
impact on the rainfall runoff modelling. We have added an analysis of the spatial 
dependence structure of the observed rainfall at different temporal resolutions in the 
revised manuscript at section 4. 
 
 
Response to specific comments: 
 
1.  Reviewer is curious to know about the peculiarities of the Onkaparinga catchment 
for selecting as a study area for rainfall characteristics assessment. We have already 
mentioned that this is a relatively small catchment with very high spatial variability in 
rainfall. This catchment is also important for its valuable contribution to the city of 
Adelaide’s water supply and for meeting local irrigation demand. The Onkaparinga 
catchment is hydrologically very well instrumented, partly because of its importance 
as a water supply catchment and partly because it includes the Willunga Basin Super 
Science Site, which funded by the Australian Commonwealth Government’s Super 
Science program for the development of scientific infrastructure. 
  
We have now included additional text in the revised manuscript describing why 
Onkparianga catchment was selected for this study. 
 
2. We have added the CDF of the gamma and GP distribution in the revised 
manuscript. 
 
3. Willmott (1981) first proposed the index of agreement (d) to overcome the 
insensitivity of Nash-Sutcliffe efficiency (E) and coefficient of determination (R2) to 
differences in the observed and model simulated means and variances, which is given 
by 
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The index of agreement is the ratio of the mean square error and the potential error 
(PE) multiplied by N (no. of observation) and then subtracted from one (Willmott, 
1984). The index of agreement varies from 0 to 1 with higher index values indicating 
that the modelled values Pi have better agreement with the observations, Oi. Although 
the index of agreement provides some improvement over the coefficient of 
determination, it is still sensitive to extreme values due to the square differences in the 
mean square error in the numerator. Application of the index of agreement shows that 
the relatively high values of d may be obtained even for a poor model fit (Willmott, 
1984). The presence of outliers in the dataset may lead to relatively higher values of d 
due to the squaring of the difference term (Willmott, 1981). In order to overcome this 
limitation, Legates and McCabe Jr (1999) introduced a modified index of agreement 
followed by a generic form of index of agreement proposed by Willmott (1984) and 
this is defined as: 
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The advantage of the modified index of agreement is that the errors and differences 
are given their appropriate weighting, and are not inflated by their squared values. 
The modified index of agreement also varies from 0 to 1 with higher values indicating 
a better fit of the model. 
 
4. We have already mentioned in Section 3.4 that the PCI were introduced by Oliver 
(1980) and then modified by De Luis et al. (2000).  Further details on PCI are given in 
De Luis et al. (2011) and De Luis et al. (2010). 
 
5. In this study we only modelled the daily rainfall amount for the observed wet days 
using the gamma, exponential, Weibull and hybrid distributions. Daily rainfall 
modelling generally follows a two step approach. First, the occurrence of rainfall in 
any day is identified and second, the rainfall amount is modelled for that day. With 
reference to the errors involved in the amount model, this is largely influenced by the 
occurrence model, which results in bias in the modelled values as compared to the 
observed values. For example, if the occurrence model identifies a day as a dry day 
although it is a wet day in the observed data, the amount model does not model 
rainfall on that day. Sometimes the amount model generates rainfall in a day which is 
dry in the observed data and vice versa due to the limitation of the occurrence model. 
Therefore we only considered modelling rainfall amounts in observed rainy days. In 
order to assess the performance of the model in terms of reproducing different rainfall 
statistics, we have estimated the rainfall for every observed wet day using the 
probability distribution. A day is considered as wet day if it has a daily rainfall 
amount greater than 0.5 mm. For any wet day, the estimated model parameters have 
been used to generate the rainfall for that day using the particular probability 
distribution model. In this way the amount model is kept independent of the influence 
of the occurrence model so that the performance of the distribution model can be 
examined separately.  



 
6. We have mentioned in Section 4 in the revised manuscript about the consequence 
of central limit theorem in the discussion of the fact that the annual and seasonal 
rainfalls show lower skewness and kurtosis values compare to those of daily rainfall. 
 
7. The shape and the scale parameters of the gamma distribution are not independent. 
The product of the estimates of shape and scale is equal to the mean of the non-zero 
rainfall observations. The variance of the gamma distribution is the estimated shape 
parameter multiplied by the square of the scale parameter. So, in other words, the 
square root of the shape parameter is approximately equal to the mean divided by the 
variance. A larger shape parameter value within a low mean rainfall area will have 
low variance. A smaller shape parameter value in an area with high mean rainfall will 
indicate high variance. It is apparent that as the shape and scale parameters are related 
to each other through the mean rainfall, the area with minimal rainfall amounts is 
described by either a relatively large shape or scale parameter but not large values of 
both parameters. In this study we have found that the minimal rainfall can be 
described by the larger shape parameter. The term shape-dominant rainfall refers to 
the locations where larger shape parameters exist and the term scale-dominated 
rainfall refers to the locations with larger scale parameters. A shape-dominated regime 
describes a pattern where the rainfall tends to be symmetrically distributed, indicating 
that drier-than-average events are as common as wetter-than-average events. On the 
other hand scale-dominated rainfall describes locations where the variance is quite 
large in comparison to the mean. We have now added this explanation to the revised 
manuscript. 
 
8. We tried to mention here that in the case of the normal distribution, a single 
parameter such as the mean or standard deviation can be used directly to understand 
the properties of distribution.  This is not so straightforward in the case of the gamma 
distribution since both the shape and scale parameters are needed to describe the 
characteristics of the distribution. We have now rewritten this in the revised 
manuscript as: 
  
“Interpretation of the gamma distribution is not as straightforward as the normal 
distribution where any single parameter such as mean or standard deviation can be 
directly used to understand the characteristics of the distribution.” 
 
9. The skewness and kurtosis estimated in Table 3 are not the same as the skewness 
and kurtosis estimated by the formula 2/sqrt(shape) and 6/shape using the shape 
parameter of the gamma distribution. This is because the parameters (shape and scale) 
(Fig. 3) were estimated by the MLE after fitting a gamma distribution to the daily 
non-zero rainfall whereas the skewness and kurtosis presented in Table 3 were 
estimated considering the full rainfall series. 
 
10. Selection of a threshold in the Generalized Pareto (GP) distribution is crucial for 
its performance. Several studies have been conducted for the selection of an optimum 
threshold. Several thresholds were tried and the value was finally optimized by the 
help of goodness of fit statistics. The literature shows that goodness of fit statistics 
based on the cumulative distribution function and probability distribution function 
have often been used to find the best fit distribution. For example, Choulakian and 
Stephens (2001) used a trial and error method to estimate the optimum threshold for 



the GP distribution. They fitted a GP distribution considering a threshold and then 
assessed the performance of the distribution by checking the goodness of fit statistics 
including the Cramér-von Mises statistics (W2) and the Anderson – Darling statistics 
(AD2). The threshold was then increased successively by the value of the smallest 
order statistics until the significant statistics (p value) of the W2 and AD2 exceeded 
10%. An optimum threshold for the GP distribution was selected based on the robust 
estimation of the distribution parameter by Dupuis (1999) In this study we have used 
the goodness of fit statistics to compare the fit between the observed and the modelled 
rainfall. We believe that as our focus is to model the rainfall amount, examining the 
performance of fit by comparing the observed and modelled values will give more 
confidence on the selection of the optimal threshold. 
 
 
In the hybrid distribution the selection of the threshold should not be too small nor too 
large (Li et al., 2012). An optimum threshold would be around the point where the 
gamma distribution starts to lose its performance in terms of restimulating the rainfall. 
We have selected a threshold, then simulated the rainfall and checked the 
performance of the model by looking at different percentiles (for example 5th, 10th, 
20th and so on) of the simulated rainfall series by using goodness of fit statistics such 
as the coefficient of efficiency  (E) and the index of agreement (d). This goodness of 
fit approach is widely used for assessing the performance of models in hydro-
meteorology (Krause et al., 2005; Legates and McCabe Jr, 1999). When the fitting 
performance of the gamma and GP distribution model is compared for the different 
percentiles, it can be easily identified at which percentile the performance of the 
gamma distribution starts to deteriorate compared to the GP distribution. Once this 
point (percentile) is selected then this percentile rainfall can be used as an optimum 
threshold for that time series. So after only one trial the optimum threshold can be 
identified easily.  It was observed in this study that in general a threshold around the 
90th percentile of daily rainfall gave the optimum performance for the hybrid model 
for all rainfall stations in the Onkaparinga catchment. This result also reveals that in 
general the rainfall up to the 90th percentile is well simulated by the gamma 
distribution while the GP distribution best fitted the upper percentiles of rainfall (90th 
to 100th) in the Onkaparinga catchment. 
 
11. We have changed the sentence according to the reviewer’s suggestion in the 
revised manuscript. 
 
12. In this study we focused on assessing the performance of different distribution 
models to simulate the entire series of rainfall. We evaluated the performance of each 
distribution model by comparing the observed and simulated rainfall rather than using 
the cumulative density function or the probability density function. We have applied 
the widely used goodness of fit statistics such as the coefficient of efficiency (E) and 
the index of agreement (d) to compare the simulated and observed rainfalls. We have 
now deleted Table 6 and Fig. 7 from the revised manuscript. 
 
13.  In the hybrid (gamma + GP) distribution we have first fitted a gamma distribution 
for the entire series of the rainfall and then the Generalized Pareto (GP) distribution 
was fitted for the extreme rainfall greater than a threshold value. When the gamma 
distribution was fitted to the whole series it overestimated the lower percentiles and 
underestimated the higher percentiles. For the higher percentiles, the gamma was 



replaced by the GP distribution and the differences between the simulated and 
observed rainfalls for the higher percentiles then reduced remarkably. We have now 
explained in detail in Section 4.1.2 how this fitting procedure affects the performance 
of the hybrid distribution when daily rainfall is aggregated to annual and seasonal 
rainfalls.  
 
14. Fitting a separate distribution model for annual and monthly rainfall is an 
alternative approach. But when a model is developed to simulate the daily rainfall, 
generally the model performance is also assessed for the aggregated series (Charles et 
al., 2004; Fealy and Sweeney, 2007; Furrer and Katz, 2007). In particular, it is usual 
to check how the daily model simulates the seasonal and inter-annual variation of the 
rainfall. Moreover, if a daily model can reasonably reproduce the monthly and annual 
statistics of rainfall then there should be no need to fit separate models for annual and 
monthly rainfall. This is why we have assessed the model capacity for simulation of 
monthly and annual total rainfalls.  
 
15. Fig 9. shows the monthly mean variation of the standard deviation and skewness 
of daily rainfall over the period 1960 to 2010. Standard deviation and skewness of 
daily rainfall were estimated for each month and for each year over the period of 1960 
to 2010, and then the average for each month was estimated separately.  We have now 
explained this in more detail in the revised manuscript. 
 
16. Page 5990, line 20 should have read annual maximum (AM) rainfall. This has 
been corrected in the revised manuscript. 
 
17. Due to the space limitation we were not able to accommodate all the stations in 
Figure 10. However, we have selected three stations which are representative of the 
upstream (distant from the coast), middle and downstream (near the coast) regions of 
the catchment. We have added additional discussion on the results for the other 
stations in the revised manuscript.  
 
18. According to the definition of precipitation concentration index (PCI), it shows 
how the rainfall amount is distributed within a specific period of time. For example, 
PCI<10 indicates a uniform rainfall concentration which means that the rainfall 
amount is uniformly distributed over a period of time. On the other hand, higher PCI 
values indicate higher percentages of total rainfall occurring in only a few rainy days 
which has the potential to cause floods and/or droughts. So, higher PCI values suggest 
an increased likelihood of extreme events.  
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