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Dear Editor and Reviewers,
Thank you very much for your time and for considering our manuscript and providing
positive and detailed feedbacks. Thanks to your valuable input we believe that the
manuscript will significantly improve. All comments have been considered (see below).
Based on the referees’ feedback and internal reviews, we made several changes to
the article. These are included in the revised manuscript that will be resubmitted as
soon as possible.
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On behalf of the authors, sincerely,
Dario Del Giudice
ETHZ - Swiss Federal Institute of Technology Zurich
Eawag - Swiss Federal Institute of Aquatic Science and Technology

Reviewer # 1

1) Figures should be numbered according to their order of appearance in the text
(Figures 4 and 5 are mentioned before Figure 3).

What originally was Fig. 3 will be displaced after Fig. 5.

2) Figure 4, caption: “ The observation errors, being very small for this scale (..),
the last two uncertainty bands overlap and only the intermediate grey is visible”.
This sentence is not much clear, please rephrase.

The caption of Fig. 4 will be modified to:
“When considering bias, the contribution of uncorrelated observation errors E
to total uncertainty becomes very small ( . 1 l/s) and therefore is not visible
at this scale. Consequently, the credibility intervals for the system output
(g−1(ỹM + BM )) and the observations (g−1(ỹM + BM + E)) are almost identical
and overlapping.”

We also noticed that the caption of Fig. 5 could be improved. Therefore we will
rewrite it as:
“Probabilistic runoff predictions for part of the calibration (left) and the validation
period (right) with the constant bias model and log-sinh transformation. The in-
put time series (hyetograph) is shown on the top. The observed hydrograph is
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represented by dots, with the triangular data points being used only for valida-
tion. The 95% credible intervals are interpreted as follows: parametric uncer-
tainty due to yM (dark gray), parametric plus input and structural uncertainty due
to g−1(ỹM + BM ) (intermediate), total uncertainty due to g−1(ỹM + BM + E)
(light gray). Validation data not included in this light gray region are marked in
red. The prediction intervals for the system output and the observations are al-
most indistinguishable and therefore only the intermediate gray band is visible at
this scale.”

3) Section 3.1. I would suggest to add a basic description of the calibration and
validation rainfall events (e.g. duration, total precipitation and peak intensity).

A paragraph describing precipitation events will be added at the end of Section
3.1:
“Calibration storms had a peak intensity ranging from 13 to 65 mm/hr, whereas
validation events had a maximum rain rate spanning from 8 to 34 mm/hr. The
monitored rainstorms had a duration of 0.5-4 hr with a cumulative height varying
from 27 mm to 4.1 m.”

4) Section 5.2. It would be interesting to add some discussion on how physical
parameters of the catchment (e.g. size, percentage of impervious areas) could
influence uncertainty estimation.

We are not sure to completely understand this point. If the reviewer refers to the
effect of model parameters on uncertainty analysis this is our reply. The parame-
ters of a conceptual lumped model, which can have some physical interpretation
(e.g. slope, imperviousness ), influence the uncertainty estimation in two ways.
From one side, the simulator output directly depends on these parameters. On
its turn, the difference between model results and calibration data determines the
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error model parameters and, in this way, influences the uncertainty intervals. On
the other side, being in a Bayesian context, the width of the posterior distribution
of the simulator parameters contributes to a (small) part of total predictive uncer-
tainty.
Please notice, finally, that the physical properties of the watershed are just ap-
proximately and loosely translated into the model, whose inferred parameters
slightly change according to the error description.
Since this work is more focused on obtaining satisfactory predictions than on
solving the inverse problem of parameter inference, we would prefer omitting this
discussion in the paper.
If the reviewer refers to the effect of different catchment propriety on uncertainty
estimation this is not possible to respond here since it would require the analysis
of several hydrosystems.

Reviewer # 2

1) line 21: spell out “iid” on first use

iid will be defined on first use as independent and identically distributed. The
whole paragraph (lines 15-22) will be however eliminated since redundant.

2) p5125, line 7: the cited study does not use Box-Cox transformation, but instead
uses separate models to explicitly and separately model the variance and non-
normality in the residuals.

We agree that the citation was ambiguous. The sentence will therefore be modi-
fied to:
“(...) a common treatment in hydrology is to transform simulation results and
output data.”
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3) p5131, eq.2: I’d suggest using g(Y) for transformed flows, to make the notation
more consistent with later sections (same for eq. 4 on next page)

We think that notation using Ỹ is lighter than the one using g(Y). We will modify,
however, the notation in later sections (e.g. 2.1.3) to keep it consistent.

4) p5136, line 20: “The characteristics of the catchment and the monitoring
equipment suggested a setting of a =5 L s-1 and b =100 L s-1.” Can you be
more specific how these values were deduced? The same comment applies
to selection of Box-Cox transformation parameter. In general it seems that you
would want to estimate these parameters directly from the data (i.e. specify a
prior and estimate their posteriors); why was this not done here?

We agree that the setting of the transformation parameters could be explain more
clearly.
Regarding the non-inference of the calibration parameters, we had two reasons
for that, both linked to identifiability problems. First, the parameters of the trans-
formation reflect our assumptions on the error distribution. Calibrating these pa-
rameters would be equivalent to fitting the shape of the error distribution, which
is seldom performed. Indeed, by increasing the degrees of freedom of our error
model, the inference process becomes more and more complex and unstable.
Similar considerations can be found in the works of Schoups and Vrugt (2010)
and Honti et al. (2013) where the adjustment of the shape of the likelihood func-
tion lead to identifiability problems of other error model parameters and unrealis-
tic uncertainty bands. This brings us to our second point. From the experience
gained in our previous studies (Frey et al., 2011; Reichert and Mieleitner, 2009;
Yang et al., 2007b,a; Sikorska et al., 2012) the estimation of transformation pa-
rameters was very challenging and hindering the stability of the MCMC process.
We observed the same instabilities when trying to calibrate the transformation
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parameters in a first phase of this study.
Concerning the selection of the Box-Cox parameter λ, we took a value that in
the literature is frequently adopted for its good capacity of stabilizing the variance
of residuals without excessively compromising simulator matching of the data. λ
is scale-independent and therefore well transferable from study to study. Values
providing a good compromise between heteroskedasticity reduction and satisfac-
tory model fit usually range from: 0.25 to 0.5. (Willems, 2012; Frey et al., 2011;
Reichert and Mieleitner, 2009; Yang et al., 2007b; Honti et al., 2013; Yang et al.,
2007a; Sikorska et al., 2012, 2013). For this reason λ was set to an intermediate
value of 0.35.
We will emend, for better clarity, the last part of the Box-Cox section as follows:
“Profiting from the experience in several hydrological studies (Willems, 2012;
Honti et al., 2013; Yang et al., 2007b,a; Wang et al., 2012) and the transfer-
ability of this parameter, we choose a λ = 0.35. Assuming a constant variance in
the transformed space, this value yields a moderate increase of variance in non-
transformed output. This accounts for an observed increase in residual variance
while keeping the weight of high discharge observations sufficiently high for cal-
ibration. In other words, this moderate λ assures a good compromise between
the performances of the error model and the fit of the simulator. The behavior
of the Box-Cox transformation and its derivative for the stormwater runoff in our
study are shown in Figs. 1 and S1.”

Regarding the setting of the log-sinh parameters we made other considerations,
since their value is strongly case- and unit-specific. The attempt to derive sensi-
ble values for these parameters without calibrating them is what motivated us to
reparametrize the transformation equations.
We will also try to better explain the choice of these values in the central part of
the log-sinh section.
“(...) where α (originally a/b) and β (originally 1/b) are lower and upper refer-
ence outputs, respectively. α controls how the error increases for low flows. For
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outputs larger than β, instead, the scaling of the error (derivative of g) is approx-
imately equal to unity. In our study, we chose α to be a runoff in the range of
the smallest measured flow and β to be an intermediately high discharge above
which uncertainty was assumed not to significantly increase. These considera-
tions are also in agreement with the transformation parameter values determined
by Wang et al. (2012). Given the characteristics of our catchment and model
we set α=5 l/s and β=100 l/s. The graphs of the transformation function and its
derivative with these parameter values are provided in Figs. 1 and S1.”

5) Relating to the previous comment, a potential disadvantage of the transformation
is that it applies to the sum of the two terms (bias and output error). Is that
correct? An approach that allows one to separately treat heteroscedasticity in
these two terms seems preferable. For example, output error parameters could
then be estimated a priori, independent of any heteroscedasticity in the bias
term (which has a different source).

It is correct that the transformation acts on Yo and yM and subsequently the
bias BM and the uncorrelated output observation errors E are in the same trans-
formed space. We agree that it would be conceptually more appealing to have
different degrees of heteroskedasticity for BM and E. Indeed, this is what we con-
sidered with the two input-dependent transformed error models. In these cases,
the bias variance in the backtransformed space varies with input and output,
whereas the scatter of the random observation errors just depends on the out-
put. As we discussed in the paper, however, this increased complexity of the
error model does not necessarily improves its performances.
Regarding estimating the parameter of E, it is not clear to us how and why this
term should by omitted from the updating process in which all other parameters
are inferred. Please notice that E cannot be estimated alone since only the sum
ỹM + BM + E is observed. Furthermore E is not exactly equal to the error of the
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measurement device but it is a stochastic process representing the independent
part of the output observation errors. For that reason its a priori estimation, even
assuming the model to be inadequacy-free, is not a trivial task. It is possible,
however, by analyzing output data, to estimate the white measurement noise and
set a strong prior on E’s parameter.

6) section 2.2.5: beyond measures such as reliability and sharpness, the entire
predictive distribution can be checked by constructing predictive quantile-quantile
plots (comparing observations to probabilistic model predictions)

We agree that PQQ plots could be an additional way of analyzing the predictive
capabilities of the error descriptions. We think, however, that care should be ap-
plied when interpreting these plots due to the presence of epistemic uncertainty
expressed by parameter distributions. Actually, due to the presence of parametric
uncertainty, we cannot expect the output observations to exactly correspond to
realizations of the distribution of ỹM + BM + E. In fact, as explained on p. 5145,
line 10, our lack of knowledge about the “true” parameters will make the predic-
tive distributions of the modeled observations wider than the actual distribution of
output data, unless one of the uncertainty sources was underestimated. Due to
these open issues, we plan to investigate these diagnostics in future studies.

7) “The frequentist component of the residuals (the estimate of the observation
errors) is virtually normally distributed, has an almost constant variance and no
autocorrelation.” This is not that easy to deduce from figure 6. The diagnostic
plots are better for that; these are now in supplement (figs S1 and S2) and
should be included in the main body of the paper. Based on fig S1 I don’t
necessarily agree that the residuals are “virtually normally distributed". This
statement should be qualified.
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This is a valuable observation and we recognize that the sentence about the dis-
tribution of E was imprecise. Actually, no error model was capable of fulfilling
the normality assumption. However, as it is observable in the updated quantile-
quantile plot with p-values from the Shapiro-Wilks test for normality, the selected
error model was among the most likely to produce normally distributed observa-
tion error residuals. Rigorously speaking, however, we cannot test which distri-
bution is more normal. All that considering, we will modify our statement to:
“The frequentist component of the residuals (the estimate of the observation er-
rors) has an almost no autocorrelation and relatively low heteroskedasticity."
As we discussed in the article, in the context of bias description, the residuals
are so heavily dominated by model discrepancy that their frequentist part plays
a secondary role in the uncertainty estimation. In order not to distract the reader
with less relevant information, we would prefer to leave the diagnostic plots in the
supporting information.

8) figure S3 (and following): specify in caption what solid and dashed lines repre-
sent; I assume prior and posterior, but it is not stated explicitly

Caption amended as: “Prior (dashed lines) and posterior marginal distributions
(gray areas) for (...)”.

Other amendments following informal reviews

1. All plots will be modified after setting slightly more realistic priors of the error
model parameters (as displayed in Table S1), having run longer and more stable
chains and having improved the graphical characteristics of most of the plots.
Please refer to the updated supplementary material and figures.

2. Abstract, from line 25 on rephrased as: “further research will focus on quantifying
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and reducing the causes of bias by improving the model structure and propagat-
ing input uncertainty”

3. Several sentences will be reformulated in the Introduction to make it more con-
cise.

4. p. 5132, line 3: “additive bias term” instead of “bias term”

5. Section 2.1.3: equations for the transformation derivatives will be added

6. p. 5137, line 9: sentence added: “these last two phases imply the derivation of
credible intervals via uncertainty propagation.”

7. p. 5137, line 24: sentence modified to “On the other hand, the maximum value
of κ is in the same order of magnitude of the maximum discharge divided by the
corresponding maximum precipitation of a previously monitored storm event.”

8. p. 5138, line 3: sentence added: “The parameters σE , σBct , and κ have values
and units depending on the transformation”

9. p. 5138, line 15: full Bayes’theorem written and sentence added: “ Since the inte-
gral in the denominator is usually not analytically solvable, numerical techniques
have to be applied. In this context, Markov Chain Monte Carlo (MCMC) simula-
tions are useful for approximating properties of the posterior distribution based
on a sample. ”

10. p. 5141, line 25: sentences modified to “In general we expect this percentage
to be larger than 95% as our uncertainty bands describe our (lack of) knowledge
about future predictions. This combines Bayesian parametric and bias uncer-
tainty with the uncertainty due to the observation error. These three components
of predictive intervals are thus systematically more uncertain than the observa-
tion error alone. ”
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11. p. 5145, line 10: paragraph emended: “In general, accounting for model bias pro-
duced substantially wider predictions and separated uncertainty intervals in three
components. The bias error models also reduced substantially the magnitude of
the frequentist part of the residuals and decreased their autocorrelation. The
different formulations of model inadequacy display, however, a considerable vari-
ability in terms of predictive distributions and behavior of the observation residu-
als.”

12. p. 5146, line 9: “successfully” deleted.

13. p. 5151, line 17: sentence modified: “Third, in Honti et al. (2013) the log-sinh
transformation was not implemented.”

14. Conclusions shortened: “In this study, we proposed different strategies for ob-
taining reliable flow predictions and quantifying different error contributions. We
adapted a Bayesian description of model discrepancy to urban hydrology, making
the bias variance increase during wet weather in five different ways. The most
reliable and sharp prediction intervals were obtained with a bias having a con-
stant variance in a log-sinh transformed space. From the experience gained in
this modeling study and theoretical considerations, we conclude that: (...)”
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