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Abstract

Water temperature in lakes is governed by a complex heat budget, where the single fluxes
arehardly assessableover long time periodsin the absenceof high accuracydatawherethe
estimationof the singlefluxesrequiresthe useof severalhydro-meteorologicalvariablesthat
arenot generallyavailable. In order to address this issue, we developed Air2Water, a sim-5

ple physically-based model to relate the temperature of thelake superficial layer (epilimnion)
to air temperature only. The modelhasthe form of an ordinary differential equationwhich
accounts for the overall heat exchanges with the atmosphereand the deeper layer of the lake
(hypolimnion) by means of simplified relationships, which contain a few parameters (from four
to eight in the different proposed formulations) to be calibrated with the combined use of air10

and water temperature measurements.In particular,the The calibration of the parameters in
a given case study allowsoneto estimate, in a synthetic way, the influence of the main pro-
cesses controlling the lake thermal dynamics, and to recognize the atmospheric temperature as
the main factor driving the evolution of the system. In fact,undercertainhypothesesthe air
temperature variation implicitly contains proper information about thevariation of other ma-15

jor processesinvolved, and hence in our approach is considered as the only input variable of
the model.Furthermore,themodel In particular,themodel is suitableto beappliedover long
time scales(from monthly to interannual),and can be easily used to predict the response of
a lake to climate change, since projected air temperatures are usually available by large-scale
global circulation models. In this paper, the model is applied to Lake Superior (USA – Canada)20

considering a 27-yr record of measurements, among which 18 yr areused for calibration and
the remaining 9 yr for model validation.Thecalibrationof themodel is obtainedby usingthe
GeneralizedLikelihood UncertaintyEstimation(GLUE) methodology,which alsoallowsfor a
sensitivityanalysisof theparameters.The results show a remarkable agreement with measure-
ments, over the entire data period. The use of air temperature reconstructed by satellite imagery25

is also discussed.
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1 Introduction

Water temperature is crucial for lakes physical, chemical and biological dynamics, indeed:
temperature is the primary driver of the vertical stratification, thus directly affects vertical

exchanges of mass, energy and momentum within the water column. Water temperature plays a
key role influencing the aquatic ecosystem of lakes, which usually adapts to a specific range of5

physical and environmental conditions. As a matter of fact,water temperature can affect both
the chemical (e.g. dissolved oxygen concentration) and biological (e.g. fish growth) processes
occurring in the water body (e.g. Wetzel, 2001). Recent studies demonstrate that lakes are highly
sensitive to climate, and their physical, chemical, and biological properties respond rapidly to
climate-related changes (Adrian et al., 2009). In the lightof these considerations, it is evident10

that any significant modification to current environmental conditions may influence the limnic
system, with direct impacts on the composition and richnessof its ecosystem (MacKay et al.,
2009). There are indeed several reasons to look for a reliable tool to have information about the
dependence of water temperature on the various factors influencing the heat balance of the lake
compartments.15

Watertemperaturein lakesfollows complexdynamicsand is the result of acombinationof
different fluxes,whosesum is often small comparedto the single terms. This is particularly
true for the temperatureof the well-mixed surfacelayer, usually termedasepilimnion during
stratifiedconditions,whichexperiencesstrongoscillationsatavariety of temporalscales:from
short(a few days)to long (annualandinterannual)up to climatic (decadesto centuries).Water20

temperaturein lakesfollows complexdynamicsand is theresult of acombinationof different
fluxes,whosesumisoftensmallcomparedtothesingleterms(e.g.ImbodenandWüest,1995).
Therefore,relatively small errors in the estimateof the single contributionsmay result in a
significantly large error in the evaluationof the net heatflux. This is particularly true for
thewell-mixed surfacelayer, usuallytermedasepilimnion during stratifiedconditions,which25

experiencesstrongoscillationsat avariety of temporalscales:from short(hourly anddaily) to
long (annualandinterannual)up to climatic (decadesto centuries). Closing the heat balance
correctly at the different scales and predicting the futuretrend of surface water temperature
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is therefore challenging,but somedifficulties areessentiallyharderto tackle. andnot always
possible(e.g. if meteorologicaldataarenot sufficient). As a consequence, some hydrody-
namic lake models prescribe surface water temperature as surface boundary condition instead
of computing the net heat flux at the water-atmosphere interface (e.g. Goudsmit et al., 2002;
Piccolroaz and Toffolon, 2013). In general, large uncertainties are associated to the estimates of5

the various heat exchange components; however the variables involved in the different processes
are either not all independent from each other or do not present strong interannual variations,
suggesting that some simplifications can be possibly adopted. For instance,shortwavesolar
radiationsubstantiallydependson thelatitudeof thelake,but hasaratherregularannualtrend
For instance,shortwavesolar radiationsubstantiallydependson the latitude of the lake and10

on cloudiness,with the former presentinga rather regularannualtrend and the latter being
importantmainly at shorttime scales(from hourly to weekly) . Deep water temperature typi-
cally changes on time scales much longer than surface water,thus the heat exchanged with the
hypolimnion can be reasonably assumed as constant in many situations. On the contrary, air
temperature is a significant index of the overall meteorological conditions and can be reason-15

ably assumed as the main variable influencing the heat balance of the surface layer of the lake
(Livingstone and Padisák, 2007).

Thankfully, long-term, high-resolution air temperature observational datasets are in general
available, both for historical periods adopted to calibrate General Circulation Models (GCMs)
and Regional Climate Models (RCMs), and for future periods where air temperature is a vari-20

able commonly derived from GCMs or RCMs projections.Ontheotherhandwatertemperature
measurementsarefar lessavailable,and future projectionsare lessreliable thanmodeledair
temperature.The latter point is particularly true for climatechangestudiesbasedon GCMs,
whosemeshsizeis normally too coarsefor explicitly includingevensomeof thebiggestlakes
on Earth. Theseevidencesexplain why air temperatureis typically used to derive surface25

temperatureof water bodies. On the contrary, water tempeaturemeasurementsare far less
availableand future projectionscould be only obtainedthrough the adoption of predictive
modelsfully coupledwith atmosphericand land surfacemodels,which at the presentstage
is not a commonpractice (MacKay et al., 2009).In orderto overcometheselimitations (i.e.
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scarceavailability anddifficult estimation),severalsimplemodelshavebeenformulatedwhich
useair temperature(widely accessiblebothfor pastandfutureperiods)to derivesurfacewater
temperatureof lakes.

Regression models (see Sharma et al., 2008, for a review) aretypically adopted for this scope,
but their use may be questionable especially when it is necessary to extrapolate temperature val-5

ues beyond the maximum (or minimum) limit of the measured time series. This is often the case
in climate change studies, where the regression relationships built upon current climate condi-
tion are applied to estimate surface water temperature for different climate change scenarios,
with the possibility that the projected air temperature maycover a wider interval of values.
Regression-type models, either linear or non-linear, havebeen successfully applied to estimate10

the temperature of rivers and streams, giving rise to a rich literature (e.g. Kothandaraman and
Evans, 1972; Crisp and Howson, 1982; Webb et al., 2003; Benyahya et al., 2007; Morrill et al.,
2005). Notwithstanding,significanterror may ariseby adoptingthis approachthesemodels
cannotstraightforwardlybeextendedto thecaseof lakes, especially for those water basins that
have a significant seasonal hysteresis. As a matter of fact, the variety of processes of heat ex-15

change across the lake surface and the thermal inertia of thewater mass cause an annual phase
lag between air and water temperatures, which is hard to consider in regressions. In many cases
simplistic linear regressions are adopted for the conversion, following the assumption of a di-
rect monotonic relationship between air temperature and surface water temperature (e.g. Shuter
et al., 1983; Livingstone and Lotter, 1998; Livingstone et al., 1999), which do not allow for cap-20

turing the hysteresis cycle. In other cases, seasonal hysteresis is solved by estimating different
seasonal regression relationships, one for each branch of the hysteresis loop (e.g. one for the
ascending and another for the descending branch) (e.g. Webb, 1974), or by using linear regres-
sions to estimate the monthly means of surface water temperature from the monthly means of
measured air temperature data (McCombie, 1959).25

Besides regression analysis, water temperature of lakes can be estimated by means of process-
based numerical models (e.g. Arhonditsis et al., 2004; Fangand Stefan, 1999; Peeters et al.,
2002; Martynov et al., 2010), possibly coupled with an atmospheric model (e.g. Goyette and
Perroud, 2012; Martynov et al., 2012) aimed at including themutual interaction between water
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and atmosphere. This kind of models can provide exhaustive information about the thermal
structure of lakes, and accurately characterize the different energy fluxes involved in the lake
temperature dynamics. The major drawback of the process-based models is the requirement
of detailed time series of meteorological data in input (e.g. wind speed, humidity, cloudiness
etc. besides air temperature), which are often not available or not accurate enough.5

In order to overcome the limitations of traditional approaches (both regression- and process-
based models), semi-empirical models based on physical principles may represent a valid al-
ternative, having the key advantage of requiring less data in input than deterministic models,
whilst preserving a clear physical basis. Recently, Kettleet al. (2004) proposed a simple em-
pirical model to estimate mean daily water temperature, using only air temperature and the10

theoretical clear-sky solar radiation as input information. The model is based on the sensible
heat exchange model of Rodhe (1952) (see also Bilello, 1964), and implicitly accounts for the
main heat exchange processes through 4 parameters. The model has good performances, but its
application is limited to specific periods of the year with nearly uniform stratification conditions
(it has been tested from late June to early September, long after ice melts, when water temper-15

ature is always above 4◦C). IndeedHowever, it does not account for the seasonal evolution
of the thermal structure of the lake, and hence of the mixing depth (i.e. the depth of the epil-
imnion), which determines the volume of water responding toexternalmeteorologicalforcing
and has a significant influence on the seasonal patterns of atmosphere-lake heat exchange.

In the attempt to reliably estimate the cycle of surface water temperature of lakes from air20

temperature measurements/projection only, both under past, current and projected climate con-
ditions, a simplified model has been developed. Such a model is primarily based on the energy
balance between atmosphere and lake surface water (Fig. 1),but avoids the need to take into
account all heat budget terms explicitly. A simple parameterization of the seasonal evolution
of the mixing depth is included in the model equations, whichonly depend upon air temper-25

ature. This allows The key objectiveof the presentwork is thusthe definition of a modeling
frameworkwhich couldallow for a consistent description of the physical principles governing
lake surface temperature, and ensures a general applicability of the model (e.g. over the entire
year).
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The paper is structured as follows. In Sect. 2 the governing equations are presented, and the
model is formulated. The heat budget is presented in detail in Appendix A. Section 3 provides
a general description of the data used in this study. The results concerning model calibration
and validation are presented in Sect. 4 with reference to thedifferent versions of the modeland
thevariousdatasetusedin this work. Resultsarefurtherdiscussedin Sect.5, wherethemodel5

is also testedusing a different dataset(i.e. surfacewater temperatureestimatesfrom satellite
imagery).Finally, themainconclusionsaredrawnin Sect.6. Resultsarediscussedin Sect.5,
andfinally wedrawthemainconclusionsin Sect.6.

2 Formulation of the model

The net heat fluxHnetin the surface layer of a lake results from the combination ofthe different10

fluxes entering and exiting the upper water volume (see Fig. 1). The main heat exchanges
occur at the interface between the epilimnion and atmosphere, and betweenthe epilimnion
and deep water (i.e. hypolimnion), respectively. According to the simplifications discussed in
Appendix A, a simplified version of the net heat flux can be expressed as

Hnet= c1 cos

[
2π (t− c2)

ty

]
+ c3 + c4 (Ta−Tw)+ c5Tw, (1)15

where t is time, ty is the duration of the year expressed in suitable time units,Ta andTw
are air and water temperature (expressed in Celsius [◦C] for simplicity), respectively, andci
(i from 1 to 5) are coefficients with a physical correspondence,whose definition is detailed in
Appendix A. Note that Eq. (1) accounts for a sinusoidal annual forcing term with amplitudec1
and phasec2 (which result from a combinationof the seasonalfluctuationsof solar radiation20

andof sensibleandlatentheatfluxes), an exchange air-water termc4(Ta− Tw) (wherec4 is
a coefficientthat is primarily ascribableto atransferfunction of sensibleheatflux), a constant
termc3 and a residual correctionc5Tw dependent on the water temperature(thelast two terms
combinedtogetherbasicallyaccountfor thecontributionof thelatentheatflux). The only me-
teorological variableexplicitly included in the model isTa, while the remaining meteorological25
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forcing (primarily wind,which is amajordriving forcefor lakese.g.wind speed,solarradiation,
humidity, cloudiness,which besidesair temperaturearethe major factorscontrolling the heat
budgetof lakes) are inherently accounted for in the model’s parameters.TheIn particular,the
formulationof themodelimplicitly accounts for the seasonal patterns oftheseexternal forcing
termsthroughthe data-drivencalibration of the parameters, while higher frequency fluctua-5

tions are not considered, consistently with the main aim of the model that is to reproduce the
evolution ofTw at long time scales (i.e.seasonalmonthly , annual, interannual).

Considering the upper layer of the lake, the volume-integrated heat equation can be expressed
as follows

ρcpV
dTw
dt

=HnetA, (2)10

whereρ is the water density,cp is the specific heat at constant pressure,V andA are the volume
and the surface area of the layer, respectively. BothV andA can be left undetermined in the
analysis if we define the depth of the well-mixed surface layer (i.e. the epilimnion thickness) as
follows

D =
V

A
. (3)15

The depthD typically depends on the stratification of the water column and is characterized
by a clear seasonal behavior. In order to include this essential feature, a suitable parameteri-
zation ofD in time is required. The most appropriate choice is to estimate D as a function
of the thermal stratification, thus of the vertical temperature gradient. As a first approxima-
tion, the strength of the stratification can be evaluated as proportional to the difference between20

the surface water temperatureTw and a reference valueTr. Tr is representative of deep wa-
ter temperature, thus can be suitably chosen depending on the thermal regime of the lake (for
a classification of lakes refer to e.g. Hutchinson and Löffler, 1956; Lewis, 1983). In the case
of cold monomictic lake (i.e. never over the temperature of maximum densityTρ,max≈ 4◦C,
stably stratified in winter and circulating in summer; in these lakes the thermal stratification25

is referred to as inverse since water temperature at the surface,Tw, is colder than in the hy-
polimnion)Tr can be assumed as the maximum surface temperature registered during the year.
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In the case of warm monomictic lakes (i.e. always above 4◦C, circulating in winter and stably
stratified in summer; in these lakes the thermal stratification is referred to as direct since water
temperature at the surface,Tw, is warmer than in the hypolimnion)Tr can be assumed as the
minimum surface temperature registered during the year. Finally Tr can be assumed equal to
the temperature of maximum densityTρ,max≈ 4◦C for the case of dimictic lakes (i.e. inversely5

stratified in winter, stably stratified in summer and circulating twice a year at the transition be-
tween the two states, at about 4◦C). In all cases, when the water column is nearly isothermal
(i.e. Tw →Tr), close to the onset of the seasonal turnover, the thermal stratification weakens
and, as a consequence, the surface mixed layerD reaches its maximum thicknessDr. On the
contrary, we assume that the stronger is the stratification (i.e. |Tw −Tr|≫0), the thinner is the10

surface mixed layerD.
For the period of direct stratification (Tw >Tr), the evolution ofD hasbeenis described

using the simple exponential decay law

D(t) =Dr exp

(
−
Tw(t)−Tr
τwarm

)
, (4)

where τwarm [◦C] is the inverse of the decay rate (the subscriptwarm refers to the case15

Tw >Tr: direct stratification) andDr indicates the maximum thickness of the mixed layer.
With the aim to consider the variation ofD when the lake is inversely stratified (i.e.Tw <Tr,
subscript cold), a modified version of Eq. (4) has been derived,

D(t) =Dr

[
exp

(
−
Tr −Tw(t)

τcold

)
+exp

(
−
Tw(t)− 0◦C

τice

)]
, (5)

whereτcold [◦C] andτice [◦C] are the inverse of decay rates. In principle,τcold is not nec-20

essarily equal toτwarm, since the evolution ofD below and aboveTr is possibly different. In
addition, the second term in the exponential function has been introduced to account for the
potential formation of the ice cover at the surface.In thiscase,asTw tendsto0◦C, D thickens,
andin our schemethis indirectly takesinto accounttheinhibition of theair-waterheatflux due
to thepresenceof ice andsnowcoversAs Tw tendsto 0◦C, theair-waterheatflux is inhibited25

dueto thepresenceof ice andsnowcovers.Our schemeindirectly takesthis into accountby a
9
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fictitious increaseof thedepthD . It is worth to noticenoting thatτice should have an upper
bound (approximately equal to 0.5◦C in our case), in order to include the effect of ice only
when the lake is inversely stratified, and avoid a discontinuity in D at the transition from direct
to inverse stratification (i.e. whenTw = 4◦C).

By substituting Eqs. (1), (3), (4) and (5) into Eq. (2) we obtain5

dTw
dt

=
1

δ

{
p1 cos

[
2π (t− p2)

ty

]
+ p3+ p4 (Ta−Tw)+ p5Tw

}
, (6)

with

δ = exp

(
Tr −Tw

p6

)
, (Tw ≥ Tr)

δ = exp

(
Tw −Tr

p7

)
+exp

(
−
Tw
p8

)
, (Tw < Tr) (7)

where the model parameterspi (i= 1, 3, 4, 5) are the coefficientsci present in Eq. (1) divided by10

the productρcpDr, p2 = c2, p6 = τwarm, p7 = τcold, p8 = τice, andδ =D/Dr is the normalized
depth, whose seasonal evolution is schematically represented in Fig. 2 for the case of dimictic
lakes (monomictic regimes are particular cases of the dimictic regime, which represents the
most general case).

In conclusion, we propose a semi-empirical lumped model, which solves the temporal evo-15

lution of surface water temperature of lakes, using only airtemperature as input forcing. The
model requires the calibration of 8 physically-based parameters, whose range of variation can
be reasonably estimated according to their definitions (seeAppendix A).

3 Study site

In order to apply the model described in Sect. 2, only two series of data are required: air tem-20

perature as input forcing, and surface water temperature for calibration purpose. A sufficiently
long dataset (i.e. more than one year) is an essential prerequisite to perform a robust model
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calibration and validation procedure. Moreover, a long-term dataset provides a clear picture of
the possible interannual temperature variability, thus allowing for the identification of a set of
parameters that is appropriate to investigate long-term climate dynamics.

The model has been tested on Lake Superior (Surface area: 82 103 km2; Volume: 12 000 km3;
Maximum depth: 406 m), the largest of the five Great Lakes of North America (see Fig. 3), and5

the largest freshwater basin in the world by surface area. Lake Superior is a dimictic lake: the
temperature of the epilimnion is warmer than 4◦C in summer and cools below 4◦C in winter.
While the surface water temperature varies seasonally, thetemperature of the hypolimnion is
almost constant over the year at about 4◦C. Twice a year, in December and in June, surface
water reachesthetemperatureof 4◦C this temperature, thus the thermal stratification weakens.10

Under these conditions, and in the presence of a sufficientlystrong wind blowing at the surface,
the entire lake can mix (i.e. lake’s turnover).

Long-term temperature data (both for air and surface water)have been obtained from the
National Data Buoy Center (NDBC) and from the Great Lakes Environmental Research Lab-
oratory (GLERL), which are part of the National Oceanic and Atmospheric Administration15

(NOAA). In particular, the NDBC provides historical meteorological and oceanographic data
for a network of offshore buoys and Coastal Marine AutomatedNetwork (C-MAN) which are
installed all over the world, while the GLERL, through the CoastWatch program, releases daily
digital maps of the Great Lakes surface water temperature and ice cover (i.e. the Great Lakes
Surface Environmental Analysis – GLSEA).For thepurposeof this work, only air andsurface20

watertemperaturesarerequired,thusothervariablesarenot presentedhere.
Concerning NDBC dataset, two different stations have been used in this work: (a) 45004 –

Marquette, an offshore mooring buoy that provides water temperature measured at 1 m below
the water surface, and (b) STDM4 – Stannard Rock, a C-MAN station installed on a lighthouse
that provides air temperature series measured at about 35 m above the lake surface. These two25

stations have been chosen from the many that are available for Lake Superior (both offshore
buoys and C-MAN), because of their central location (see Fig. 3) and long-term data availabil-
ity, but time series registered in other stations present similar behavior (not presented here).
The observational dataset cover a 27-yr long period, from 1985 to 2011, and consists of mea-
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surements witha one-hour temporal resolution. Since NDBC buoys in the GreatLakes are
removed during winter to prevent damage from icing, no measurements are available at the
45004 – Marquette during winter months (except for 1991), while the STDM4 – Stannard Rock
measurements do not showsignificantsystematicgaps.

ConcerningGLERL dataset,daily temperaturemapshavebeenusedfor the period 19945

to 2011. Datarefer to thedaily lakeaveragesurfacewatertemperatureobtainedfrom NOAA
polar-orbitingsatelliteimagery.Theseriesisalmostcontinuous,anddoesnotpresentsignificant
gaps.Schwabet al. (1999)comparedGLERL surfacewatertemperaturesestimateswith water
temperaturesmeasuredatsomeof theNDBC buoys,finding anoverallgoodagreement,with a
meandifferencebetweenthetwo of lessthan0.5◦C andarootmeansquaredifferencesranging10

from 1.10 to 1.76◦C. The closecorrespondencebetweenthe two setsof data is confirmedin
Fig. 8a whereNDBC and GLERL datasetconsideredin the presentstudy are comparedfor
the period 2003–2011.ConcerningGLERL dataset,daily temperaturemapshavebeenused
for the period 1994 to 2011. Data refer to the daily lake averagesurfacewater temperature
obtainedfrom NOAA polar-orbitingsatelliteimagery. Theseriesdoesnot presentsystematic15

gaps(missingdata,seeTable 1, areconcentratedin the first, warm-upyearandhencedo not
contributeto the evaluationof the model efficiency, seeSect. 4.1), thus providing surface
water temperaturealso in winter, which, on the contrary, is almostcompletelyuncoveredby
the NDBC dataset.A mismatchbetweenNDBC andGLERL datasetsis visible in the rising
limb of the annualcycle of temperature(i.e. betweenApril andJuly, seeFig. 8a), which is20

likely to be a consequenceof the different spatialscalesof the two seriesof data: while the
NDBC datasetrepresentssurfacewatertemperaturemeasurednearlyatthecenterof thebasin,
theGLERL datasetprovidesvaluesaveragedoverthewholelake. In thelattercase,thespatial
variability of surfacewatertemperature(e.g. in spring,lakewaterheatsfrom theshorestowards
theoffshoredeeperzones)is intrinsically includedin theestimates,thusdeterminingsmoother25

annualcyclesof temperature.Despitethisdiscrepancy,Schwab et al. (1999)comparedGLERL
datawith measurementsat someof the NDBC buoysfinding anoverall goodagreement.In
particular,for the caseof the 45004- Marquettebuoy usedin this work, the meandifference
betweenthetwo datasetsfor theperiod1992 - 1997 is lessthan0.28◦C, theroot meansquare
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error is 1.10◦C andthecorrelationcoefficientis0.96.
As customary, the available datasets have been divided intotwo parts: the first part, con-

taining around two thirds of the available data, is used for model calibration and sensitivity
analysis, while the second part, containing the remaining one third, is used for model valida-
tion. Missingdatain thewatertemperatureserieshavenotbeenreplaced(theydonotcontribute5

to theevaluationof theefficiencyof themodel);on theotherhand,gapsin theair temperature
serieshavebeenreconstructedwith estimatesobtainedasanaverageof theavailabledatain the
sameday over the correspondingperiod(i.e. calibration or validation). The datasets used in
this work are listed in Table 1, together with their main statistics.

The differential Eq. (6) hasbeensolvednumericallyby using the Euler explicit numerical10

scheme,with a daily time step(concerningNDBC data,meandaily temperatureshavebeen
preliminarycalculatedfrom theoriginaldata).ThedifferentialEq.(6) hasbeensolvednumerically
by usingtheEulerexplicit numericalscheme(see e.g. Butcher, 2003), with a daily time step
(concerningNDBC data,meandaily temperatureshavebeenpreliminarycalculatedfrom the
original data).15

4 Results

4.1 Sensitivity analysis and model calibration

Inverse modeling of complex systems, as such as those encountered in hydrological applica-
tions, is inherently ill posed problem, as the information provided by observational data is
insufficient to identify the parameters without uncertainty. In a typical situation many different20

combinations of the parameters may provide similar fitting to the observational data. For exam-
ple, even a simple model with only four or five parameters to beestimated may require at least
ten hydrographs for a robust calibration (e.g. Hornberger et al., 1985).

This identification problem can be alleviated by reducing the number of parameters used in
the model, for example through sensitivity analysis, whichis the typical methodology used for25

this purpose (e.g. Majone et al., 2010). In this work we perform sensitivity analysis by using
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Generalized Likelihood Uncertainty Estimation (GLUE), a methodology proposed by Beven
and Binley (1992) that requires the identification of a validity range for each parameter, a strat-
egy for sampling the parameter space and finally a likelihoodmeasure to be used in order to
rank the different parameters sets. We carried out 100 000 000 Monte Carlo model realizations
using uniform random sampling across specified parameter ranges selected according to physi-5

cal limitations of model’s parameters. Indeed, the physical meaning of the parameters allowed
for a reasonable definition of the possible range of variability of each of them. Finally, we used
as likelihood measure the Nash-Sutcliffe model efficiency coefficient,E, which is a widely used
metric adopted in hydrological applications (e.g. Nash andSutcliffe, 1970; Majone et al., 2012,
and many others)10

E = 1−
σ2
e

σ2
o

= 1−

n∑
i=1

(
T̂w,i−Tw,i

)2

n∑
i=1

(
T̂w,i −Tw,i

)2 , (8)

wheren is the number of data,σ2
e andσ2

o are the variance of the residuals and of the observa-
tions, respectively,̂Tw,i andTw are the observed and simulated surface water temperature at
time ti, andTw is the average of̂Tw,i. Note that the residual is defined as the difference be-
tween the observational data and the model’s prediction, and a parameter set identifies a point15

in the space of parameters.
The Nash-Sutcliffe efficiency index ranges from−∞ to 1. An efficiency equal to 1 (E = 1)

corresponds to a perfect match between measured and simulated values, whilstE=0 indicates
that the model prediction is as accurate as the mean of observations. Efficiency values lower
than 0 (E < 0) occurs whenσ2

e is larger thanσ2
o , thus when the mean of observations is a better20

estimator than the model itself.
Since its introduction in 1992, GLUE has found wide applications and it is recognized as a

useful methodology for uncertainty assessment in many fields of study especially in non-ideal
situations (e.g. Beven, 2006). Nevertheless, the goal of this work is not to adopt a complete
informal Bayesian approach to estimate uncertainty of model predictions, but rather to assess25
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the impact of changes in uncertain parameter values on modeloutput. Hence, the purpose is
to set up a general and effective strategy to select which arethe most sensitive parameters of
the model, and to define which should be suitably adjusted in acalibration process. Indeed, the
GLUE methodology is a powerful and effective tool that can bealso used for model calibration
besides uncertainty estimation procedures and sensitivity analysis.5

One of the most acknowledged limitation of the GLUE methodology is the dependence on
the number of Monte Carlo simulation, especially in the presence of complex models with high
computational demand. However, in our case we were able to fully explore parameter response
surfaces by adopting a significantly high number of realizations. Therefore, the use of the
GLUE methodology, not only for parameter identifiability purposes but also as a calibration10

tool, appears appropriate. Just as a sidenote, 100 000 000 model runs over a period of 18 yr with
a daily time step and adopting Intel(R) Xeon(R) CPU X5680 @ 3.33 GHz took around 2 h; the
codeis written in Fortran90.

Furthermore, in the attempt to test reliability and predictive capability of the model, a val-
idation procedure was undertaken by running the model on validation datasets (see Table 1)15

by using the sets of parameters which maximize the efficiencyE during the calibration periods
(i.e. the set of parameters with the highest likelihood obtained through the GLUE methodology).

In the ensuing sections, the GLUE methodology is presented for different model configu-
rations (from 8 to 4 parameters), with reference to the calibration periods of the NDBC and
GLERL datasets, respectively (see Table 1).20

As a final comment, we point out that the first year of each time series is used as warm-up
period (i.e. excluding the period from the calculation of the Nash–Sutcliffe efficiency indexE),
in order to remove any transient effect due to the initial condition.

4.2 8-parameter model

As discussed in the previous section, the performance of themodel has been tested in the25

framework of the GLUE methodology, using the time series of air and surface water temper-
atures provided by the NDBC center (see Table 1). A first-stepsensitivity analysis has been
carried out by solving Eq. (6) over the calibration period (18 yr, from 1985 to 2002) using
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randomly sampled set of parameters. We recall here that eachof the 8 parameters has been
allowed to vary over physically reasonable ranges of values, which have been previously de-
termined through Eqs. (A12)–(A16) in Appendix A by considering the lake location properties
(e.g. latitude, climate, typical temperatures) and by using coefficients available in literature
(e.g. Henderson-Sellers, 1986; Imboden and Wüest, 1995; Martin and McCutcheon, 1998). As5

far as the exponential decay laws are concerned, parametersp6 andp7 have been allowed to
range within a wide interval comprised between 0 and 15◦C, andp8 between 0 and 0.5◦C.
As already mentioned in Sect. 2, the range ofp8 has been set narrower (more stringent upper
bound), aimed at confining the correction due to ice only whenthe lake is inversely stratified
(e−4/0.5 =O(10−4)≪1). In the light of the results obtained from the first-step analysis, the10

ranges of variability of each parameter were narrowed, thusallowing for a detailed investiga-
tion of parameters space regions associated with high values ofE. Subsequently, a second-step
sensitivity analysis has been undertaken by sampling further 100 000 000 parameters sets from
the narrowed parameters ranges.

Figure 4 shows the dotty plots of the efficiency indexE for each of the 8 parameters of15

the model, corresponding to the narrowed ranges (second-step performance analysis). For the
sake of clarity in the presentation of results, Fig. 4 (as well as Fig. 6) shows only the set of
parameters withE larger than 0.8. Model simulation during the calibration period 1985–2002
using the best set of parameters is illustrated in Fig. 5, which shows a noticeable agreement
between simulated and observed values, with an efficiency indexE> 0.9 (seeTable2 Tables220

and3 for a summary of the results).
A visual inspection of dotty plots of model efficiency can provide useful information on the

identifiability of each parameter. According to Fig. 4, all the parameters are characterized by
a good identifiability with the exception of parametersp7 andp8. This can be explained if we
consider that NDBC dataset presentsonly afew values of water temperature during winter peri-25

ods. In particular, no data (except for one single year out of18) are available when surface water
temperature approaches 0◦C, which corresponds to the period of the year when the parameter
p8 is relevant. We remark here thatp8 is the parameter associated to ice formation at the surface
of the lake. Although to a minor extent, alsop7 does not show a clear identifiability, probably as
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a consequence of the importance that this parameter assumesonly during winter time (it plays
a role only whenTw <4◦C), that is when water temperature measurements are not available.
However, by analyzing the dotty plot an important information can be inferred: efficiency in-
creases for higher values ofp7, and approaches a nearly asymptotic high efficiency trend when
p7 &5◦C. Looking at the physical meaning of the parameter (see Eq. 7), this means that model5

performance improves as the mixed depthD approaches its maximum valueDr when the lake
is inversely stratified (Tw < 4◦C).

On In the light of these evidences, in the ensuing section the full8-parameter version of the
model has been simplified by neglecting parametersp7 andp8.

4.3 From 8 to 4 parameters10

On the basis of the results discussed in the previous section, not all the model parameters seem
to be significant and clearly identifiable. In particular, the parameterp8 has been found to be
insensitive to the model, and parameterp7 provides an overall high performance over most
of its variability domain (p7 &5◦C). The peculiar behavior of these parameters, together with
the fact that both appear in the definition of the mixing depthD when the lake is inversely15

stratified, suggests that a simplification of the model may bepossible by considering a different
(simpler) expression forD. As far as parameterp8 is concerned, since it is not significant for
the model, it can be easily neglected, thus eliminating the effect of ice formation. On the other
hand, according to Eq. (7) high values ofp7 mean small decay rates ofD, thus thick mixing
depths when the lake is inversely stratified. In the light of these considerations, we derived a20

first simplified version of the model, where the mixing depth is assumed to be constant and at
its maximum thicknessD =Dr when the lake is inversely stratified (Tw <Tr). Thanks to this
simplificationp7 andp8 are removed and the number of parameters diminishes from 8 to6.

As for the case of the full 8-parameter version of the model, the same sensitivity analysis
described in Sect. 4.2 has been carried out also for the simplified 6-parameter version. The set of25

parameters presenting the highest efficiency index during the calibration period is summarized
in Table 2, whilst dotty plots deriving from the applicationof GLUE methodology and the
comparison between simulated and measured surface water temperature during the same period
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are not presented here for the sake of brevity. Indeed, results are essentially equivalent to those
obtained using the full 8-parameter model, which is confirmed by the close similarity between
the best set of parameters and the efficiency indexes obtained in the two cases (seeTable 2
Tables2 and 3 ). The similarity of results supports the idea that the 6-parameter model is a
reasonable simplification, at least in the case considered herein where the winter data are not5

abundant (see also Sect. 5 for further discussion).
The number of parameters can be further diminished from 6 to 4by eliminating the parameter

p1 and, as a direct consequence,p2, besidesp7 andp8. This simplification is justified since three
periodic terms appear in the model as characterized by an annual periodicity: the forcing term
p1 cos(2π(t− p2)), the exchange termp4(Ta− Tw and the residual correctionp5Tw. The si-10

multaneous co-presence of all these terms may be consideredredundant in those cases in which
the annual cycles ofTw and/or ofTa−Tw can be suitably approximated as sinusoids. Indeed,
the sum of sinusoidal functions with the same frequency, butdifferent amplitude and phase,
yields to another sinusoid with different amplitude and phase but same frequency. Therefore,
two sinusoids are sufficient, and the forcing termp1 cos(2π(t− p2)) can be removed, relieving15

the overall annual variations on the periodic terms controlled by the model variableTw and the
external forcingTa. Following this logic, the termp5Tw could be neglected alternatively (on
the contraryp4(Ta− Tw) cannot since it is the only term that includes information about the
external forcing), but this assumption would remove only one parameter (p5) instead of two (p1
andp2), thus making it less attractive. In principle, bothp1 cos(2π(t− p2)) andp5Tw could be20

neglected contemporaneously, but in this case the phase of the overall periodic term would be
forced to that of the temperature difference. It is worthto notenoting that in the 4-parameter
version of the model (retainingp3, p4, p5 andp6), the meaning of the parameters is distorted, as
the processes that were accounted inp1 are now included inp4 andp5.

Figure 6 shows the dotty plots of the efficiency indexesE for the 4-parameter version of the25

model, where only the parametersp3, p4, p5 andp6 are retained. In this case, since the number
of random samplings has been kept unchanged (i.e. 100 000 000), the predictions of the Monte
Carlo realisations appear much less sparse (i.e. denser dotty plots) if compared to the case of
the 8-parameter version. Notice that all the parameters arecharacterized by high identifiability
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and the model does not present signs of overparameterization. Figure 5 shows the comparison
between observed and simulated surface water temperaturesduring the calibration period 1985–
2002 for the 4-parameter and the full 8-parameter models, respectively. The difference islittle,
small, and mainly localized during the winter period, when no surface water temperature data
are available for comparison. During the rest of the year, when measurements are available5

andE index can be effectively calculated, the two solutions are comparable and the efficiency
indexes are similar (just slightly lower for the simplified 4-parameter version of the model, see
Table 2).

4.4 Model validation

The best set of parameters obtained during the calibration period for the different versions of10

the model (with 8, 6 and 4 parameters, see Table 2) have been used to run the model during the
validation period 2003–2011 (see Table 1). In all the cases,simulations have been character-
ized by high efficiency indexes, comparable to those obtained with the best simulations during
the calibration period (E≃ 0.9, see Table 2). In Fig. 7 simulated water temperatures (for the
versions with the 8 and 4 parameters) are compared with observations showing an overall very15

good agreement. Results confirm the reliability of the modelas a valuable tool for surface water
estimation over long-term periods with different model configurations.

Besides the evaluation of the surface water temperature, the model provides additionalrelevant
qualitative information regarding the annual evolution of the epilimnion thickness. In fact, as
discussed in Sect. 2, the model explicitly includes a suitable parameterization of the seasonal20

behavior of the mixing depth through Eq. (7). In particular,the normalized thickness of the epil-
imnion δ =D/Dr is automatically determined once the parametersp6, p7 andp8 are defined.
Furthermore, it is evident that if an estimate of the reference mixing depthDr were known, the
actual thickness of the well-mixed layerD could be evaluated as well. With reference to the
NDBC dataset Fig. 8b shows the evolution ofδ over the validation period 2003–2011, for the25

8- and 4-parameter versions of the model (continuous lines). In the first case (8 parameters) the
fictitious increase of depth due to the presence of ice is evident (peaks at values greater than 1).
Werecallherethat in the8-parameterversionof themodel,theformationof ice is modeledby
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increasingthedepthD of thesurfacelayer,thusthevolumeof waterinvolvedSuchanincrease
is relatedto the presenceof a largerwatervolume involved in the heat balance (see Fig. 2).
Thanks to this assumption the model accounts for the insulation effect due to the presence of ice,
which may be even more significant when the ice surface is snow-covered, and the penetration
of solar radiation is strongly attenuated.5

4.5 Satellite data

Resultsareremarkablebothusingthefull 8-parameterversionandthesimplified6-and4-parameter
versionsof the model. In particular,little differencehasbeenfound regardingthe bestset of
parametersandtheefficiencyindexesobtainedusingthe 8- andthe6-parameterversions(see
Tables2 and3). Therefore,onemay infer that no significantadvantagescan beexpectedby10

usingamoreaccurateexpressionfor D duringthewinterperiod(8-parameterversion),instead
of a constantvalue(6-parameterversion). However,it is not possibleto statethis conclusion
by simply analyzingresultspresentedin Sects. 4.2, 4.3 and 4.4. Indeed,no surfacewater
temperaturemeasurementsareavailableduringthewinterperiodfor theNDBC dataset,except
for the year1991, thus the modelefficiencyhasnot beentestedduring the period of inverse15

stratification.
Aimed at overcomingthis limitation, the GLERL datasethasbeenused,which provides

daily lake-averagedsurfacewatertemperaturebasedon satelliteimageryandcoversthewhole
year (seeTable 1). The sameGLUE procedurediscussedin Sect. 4.1 hasbeenperformed
by adoptingthe GLERL datasetasreferencesurfacewatertemperaturedataandby repeating20

the implementationdetailsdescribedin Sect.4.2. The simulations(hereafterreferred to as
GLERL) havebeenrun over the calibrationperiod1994-2005,using asinput forcing the air
temperaturedata retrievedfrom the NDBC dataset(C-MAN station, seeTable 1). The 8-,
6- and 4-parameterversionsof the model havebeentested,obtainingremarkableefficiency
indexes(E> 0.95), whicharehigherwith respecttothepreviousapplications(i.e. usingNDBC25

dataset). Validation procedurehasbeenconductedwith referenceto the period 2006-2011,
confirming high performancesof the model (E> 0.97). The parameterssetsproviding the
highestefficienciesduring the calibration period and the associatedE valuesare given in
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Tables2 and3, while comparisonbetweensimulatedandobservedsurfacewatertemperature
data for the 8- and 4-parameterversionsof the model are shown in Figs. 9 and 10 for the
calibrationandvalidationperiods,respectively.Finally, theseasonalevolutionof δ is shownin
Fig. 8b for both versionsof the model(dashedlines), and it is comparedwith thoseobtained
from the application of the model to the NDBC dataset. Resultsare consistent,with the5

slight differencein theonsetof summerstratificationbeingdueto theearlierincreaseof water
temperaturein theGLERL datasetcomparedto theNDBC dataset(seeFig. 8a).

5 Discussion

The physically-based, semi-empirical model presented here has been shown to provide an ac-
curate description of surface water temperature of lakes, with high values of Nash-Sutcliffe10

efficiency indexE≃ 0.90,0.9, and a root-mean-square error between observations and simu-
lations of the order of 1◦C (resultsnot presentedhereseeTable 3 ). This error in prediction
capability is comparable to those obtainable using process-based numerical models (e.g. Fang
and Stefan, 1996; Stefan et al., 1998). However,thesekindsof modelshavethestronglimitation
of requiringhighresolutionweatherdata.whichhoweverhavethestronglimitation of requiring15

high resolutionweatherdataandthecalibrationof numerousinternalparameters.
The closeagreementbetweenmeasurementsand model estimatesis further confirmed in

Figs. 11a and 11b, which illustrate the parity diagramsfor monthly-averagedsurfacewater
temperatureduring the calibrationandvalidationperiodsof GLERL simulation,respectively.
Nosystematicdeviation(bias)isobservedandthedispersionalongthediagonaldoesnotexhibit20

significanttrends.Both thesecharacteristicsareconfirmedby thesmall valuesof MeanError
(ME) and Root Mean SquareError (RMSE) listed in Table 3. Figures11a and 11b also
illustratethat themodel is able to adequatelydescribeinterannualfluctuations,asis indicated
by therangeof variability of monthly-averagedtemperaturesassociatedto thecoldest(March,
bluedots)andwarmest(August,reddots)months.This evidenceis alsoconfirmedby Figs. 925

and10, wherethemodelcoherentlyreproducestheoccurrenceof relativelycolder(e.g. 2004)
andwarmer(e.g.1998)periods.
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Resultsare remarkableboth using the full 8-parameterversionand the simplified 6- and
4-parameterversionsof themodel. In particular,little differencehasbeenfoundregardingthe
bestset of parametersand the efficiency indexesobtainedusing the 8- and the 6-parameter
versions(seeTable2). Therefore,onemayinfer thatno significantadvantagescanbeexpected
by using a more accurateexpressionfor D during the winter period (8-parameterversion),5

insteadof a constantvalue (6-parameterversion). However, it is not possibleto statethis
conclusionby simply analyzingresultspresentedin Sects.4.2,4.3and4.4. Indeed,no surface
watertemperaturemeasurementsareavailableduring thewinter periodfor theNDBC dataset,
exceptfor the year1991, thus the model efficiencyhasnot beentestedduring the period of
inversestratification. Aimed at overcomingthis limitation, a new datasetof surfacewater10

temperaturehasbeenused,which doesnot havesignificantdatagaps:thedaily lake-averaged
surfacewater temperaturebasedon satellite imageryprovidedby the GLERL (seeTable1).
ThesameGLUE procedurediscussedin Sect.4.1hasbeenperformedby adoptingtheGLERL
datasetasreferencesurfacewatertemperaturedataandby repeatingtheimplementationdetails
describedin Sect.4.2. The simulations(hereafterreferredto asGLERL) havebeenrun over15

thecalibrationperiod1994-2005,usingasinput forcing theair temperaturedataretrievedfrom
the NDBC dataset(C-MAN station,seeTable1). The 8-, 6- and4-parameterversionsof the
modelhavebeentested,obtainingremarkableefficiencyindexes(E > 0.95),which arehigher
with respectto thepreviousapplications(i.e. usingNDBC dataset).Validation procedurehas
beenconductedwith referenceto theperiod2006–2011,confirminghigh performancesof the20

model(E > 0.97).Theparameterssetsprovidingthehighestefficienciesduringthecalibration
periodandtheassociatedE valuesaregiven in Table2, while comparisonbetweensimulated
andobservedsurfacewatertemperaturedatafor the 8- and4-parameterversionsof themodel
areshownin Figs.9 and10 for thecalibrationandvalidationperiods,respectively.Finally, the
seasonalevolutionof δ isshowninFig.8bfor bothversionsof themodel(dashedlines),andit is25

comparedwith thoseobtainedfrom theapplicationof themodel to theNDBC dataset.Results
areconsistent,with theslight differencein theonsetof summerstratificationbeingdue to the
earlierincreaseof watertemperaturein theGLERL datasetcomparedto theNDBC dataset(see
Fig. 8a).
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So far, the model has been tested with long-term series of data (NDBC: 27 yr, and GLERL:
18 yr), anywayhowever long-term records are often not available, or are characterized by sig-
nificant gaps due to missing data. Instead, it is relatively easier to have access to mean annual
cycles of temperature (both of surface water and air), whosedetermination also represents a
valuable strategy to overcome the possible lack of data. Therefore, a conversion model that5

could be calibrated on mean annual cycles, and successivelyapplied over long-term periods
without compromising the correct estimation of the interannual fluctuations, would represent a
valuable tool. For this purpose, the mean annual cycle of surface water temperature has been
derived from GLERL data during the calibration period 1994–2005, and the corresponding cy-
cle of air temperature from NDBC dataset (C-MAN station). A Monte Carlo sensitivity analysis10

(hereafter referred to as GLERLmy, the subscriptmy staying for mean year) has been carried
out following the same procedure adopted in the previous sections, but using mean annual cycles
of air and water temperature as forcing and reference data, respectively. In order to eliminate
the influence of initial conditions the temperature cycles have been replicated for two years
with the first one used as a “warm-up”. Results obtained by adopting the parameters providing15

the highest efficiency (see Table 2) are presented in Fig. 12,which shows the hysteresis cycles
between air and surface water temperatures derived from measurements and model estimates
(8- and 4-parameter versions). A very high efficiency index (E≃ 1.0) is achieved, and both
versions of the model are able to satisfactorily capture theseasonal pattern of thermal hystere-
sis. Parameters set providing the highest efficiency duringthe calibration process with the mean20

annual temperature data and the associatedE value are summarized inTable2. Tables2and3.

Afterwards, a validation procedure has been conducted for GLERLmy during the period
2006–2011 (the same as GLERL simulations, thus results can be compared). Results are char-
acterized by remarkable efficiency indexes (E≃0.97), only slightly lower than the values ob-25

tained with the simulations presented in the previous sections. Indeed, the model calibrated on
the mean year is able to well capture the interannual variabilities, producing remarkable results
not dissimilar from those shown in Fig. 10 (for this reasontheyare not presented here). Further-
more, parameters values are significantly similar to those obtained calibrating the model with
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the whole 12-yr series of data (GLERL simulation, see Table 2).
On In the light of the results presented in this section, we assertthat the model can be cali-

brated and adopted using data of different origin (measurements at buoys and coastal stations,
satellite estimates) and nature (long-term series of data,mean annual cycle of temperature).
This conclusion is corroborated by the excellent results (not shown here for the sake of brevity)5

of the performance analysis (entirely comparable to those presented in the present paper) ob-
tained using different datasets: (a) air temperature from adifferent C-MAN station (the PILM4
– Passage Island), whose sensor is installed at a different high (22 m) respect to the Stannard
Rock station (35 m), (b) air temperature data measured at the45004 – Marquette offshore buoy
station at only 4 m from the lake surface, and (c) water temperature measured at a different10

off shore buoy (the 45001 – Hancock). Furthermore, in all cases, even if the calibration is
performed considering mean annual cycles of temperature, the model suitably captures the in-
terannual variations that are likely to occur. On the basis of theseevidencesthis evidence,
we can assert thatin principlesthis simple model may be used with differentair temperature
datasetsin as input. As a matterof fact, and, unlike process-based models, it can be cal-15

ibrated using anywater temperaturedataset, independently of its physical representativeness
(e.g. point measurements vs. spatial averages).Air Therefore,in principle, air temperature
series provided bygeneralatmosphericmodelsor climateprojectionsderivedfrom GCMs and
RCMs can be used as well. In this regard, the model is particularly attractive for climate change
impact studies, since predictions of air temperature are usually more reliableandavailablethan20

other meteorological variables (e.g. Gleckler et al., 2008). Based upon these considerations,
Piccolroaz (2013) exploited the same approachto reproducethe currentstatusandto predict
future modifications of surface water temperature of Lake Baikal (Siberia).

6 Conclusions

In this work a simple, physically-based model has been developed to estimate surface water25

temperature from air temperature. In particular, we show that our modeling framework is able
to reproduce the observed water temperature data with limited information on external meteo-
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rological forcingoverlong time scales,rangingfrom monthly to interannual.
Starting from the zero-dimensional heat budget, we deriveda simplified first-order differen-

tial equation for water temperature forced by a few terms representing the combined effects of
the seasonally varying externaltermterms and the exchange terms explicitly dependent on the
difference between air and water temperatures. Assuming annual sinusoidal cycles of the main5

heat flux components, 8 parameters have been identified, which can be calibrated iftemporal
series of air and surface water temperature are available. Such a calibration is supported by the
physical interpretation of the parameters, which providesreasonable initial conditions for the
parameters ranges.

The relative importance of the model’s parameters have beenevaluated by using the GLUE10

methodology. Thanks to this analysis we were able to identify and neglect parameters that,
under different conditions, appears less significant in themodel formulation leading to two
simplified versions retaining 6 and 4 parameters, respectively.

The model has been applied to the case of Lake Superior (USA – Canada) with reference
to different types of datasets, and all the versions of the model have shown to perform well in15

reproducing the measured water temperature data. This model has proved to be robust and able
to reproducewell suitably simulate the lake’s response to meteorological forcing, including
inter-annaulinterannual variability, representation of the variability of the epilimnion thick-
ness, and the inverse startification process which typically occurs in dimictic lakes.In our
view, Air2Water representsavaluablealternativetool to correlationmodels,which requirethe20

samedatain input asour modelbut arenot able to addresssomefundamentalprocesses(e.g.
the hysteresiscycle betweenair andwatertemperature).Furthermoreit can beusedin place
of full process-basedmodelswhen meteorologicaldataare not sufficient for their effective
application.In principle, thesimplemodelpresentedhereis likely to beeffectivelyappliedto
lakeswith different characteristics,althoughsomeinconsistenciescould arise in thosecases25

where the assumptionson which the model formulation hasbeenbased(seeAppendix A)
areno longervalid (e.g. tropical lakescharacterizedby intenseevaporation,basinsin which
the through-flowis consistent,lakeslocatedin regionswherethevariability of meteorological
forcing is significantatsub-annualfrequency).
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In the light of the these results, the model can represent a valuable tool in climate change
impact studies allowing for predictions of future trends oflake surface water temperature, given
future projections of air temperature only. Finally, it is worth noting that if the model is cali-
brated using air temperature series from climate models (global or regional scale) and measured
records of water temperature (lake scale), a downscaling operation is implicitly implemented in5

the conversion procedure (Piccolroaz, 2013).

Appendix A Simplified heat fluxes

Indicating withH the generic heat flux per unit surface [W m−2], defined as positive when it is
directed towards the considered layer, the net flux is assessed accounting for the following main
terms10

Hnet=Hs+Ha+Hw +He+Hc+Hp+Hi +Hd, (A1)

whereHs is the net short-wave radiative heat flux due to solar radiation (considering only the
incoming radiation that is actually absorbed),Ha is the net long-wave radiation emitted from
the atmosphere toward the lake,Hw is the long-wave radiation emitted from the water,He is the
latent heat flux (due to evaporation/condensation processes),Hc is the sensible heat flux (due to15

convection),Hp is the heat flux due to precipitation onto the water surface,Hi is the effect of the
throughflow of water by inlets and outlets, andHd is the heat flux exchanged with deep water.
Figure 1 shows a schematic representation of the heat exchanges at the epilimnion/atmosphere
and epilimnion/hypolimnion interfaces. All the components of Eq. (A1) are analyzed in detail
below to point out the main variables and physical parameters involved in the heat exchange20

process.
The incident short-wave solar radiation approximately follows a sinusoidal annual cycle.

Considering the short-wave reflectivityrs (albedo), which is a function of the solar zenith angle
and of the lake surface conditions (e.g. water waves height), the net solar radiationHs reads

Hs= (1− rs)

[
s1 cos

(
2π (t− s2)

ty

)
+ s3

]
, (A2)25
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wheret is time,ty is the duration of a year in the units of time considered in theanalysis, and
s1, s2, s3 are coefficients that primarily depends on the latitude and the shadowing effects of
the local topography. The effects of cloud cover, which could be accounted for by means of
empirical relationships, are not explicitly considered inthe present analysis.

Long-wave radiation terms are calculated according to the Stefan-Boltzmann law, yielding to5

the following formulations

Ha= (1− ra)ǫaσ
(
TK +Ta

)4
, (A3)

Hw =−ǫwσ
(
TK +Tw

)4
, (A4)

wherera is the long wave reflectivity, generally assumed to have a constant values (Henderson-
Sellers, 1986),ǫa andǫw are the emissivities of atmosphere and lake surface, respectively, σ10

is the Stefan–Boltzmann constant (5.67× 10−8 W m−2 K−4), TK = 273.15 K,Ta andTw are
the temperatures of air and water expressed in Celsius [◦C]. The emissivityǫw is essentially
constant and close to unity, as water is nearly a black body, while ǫa is more variable and
depends on several factors among which the most important are air temperature, humidity and
cloud cover (Imboden and Wüest, 1995).15

Air and water temperatures can be decomposed into a reference value representative of
the specific case study (Ta andTw) and a fluctuation (T ′

a andT ′

w). Hence, considering that
T ′

a/(TK +Ta) andT ′

w/(TK +Tw) are small parameters, the long-wave fluxes Eqs. (A3) and (A4)
can be linearised using a Taylor expansion as

Ha≃ ǫ̃aσ
(
TK +Ta

)4
(
1+4

T ′

a
TK +Ta

)
, (A5)20

Hw ≃−ǫwσ
(
TK +Tw

)4
(
1+4

T ′

w
TK +Tw

)
, (A6)

where ǫ̃a= (1− ra)ǫa. By choosingTa=Tw =T (henceT ′

a=Ta−T andT ′

w =Tw −T ), the
termsHa andHw can be easily combined to yield the following equation

Ha+Hw ≃ 4σǫ̃a
(
TK +T

)3
·

[
ǫ̃a− ǫw
4ǫ̃a

(
TK +T

)
+

ǫ̃a− ǫw
ǫ̃a

(
Tw −T

)
+Ta−Tw

]
. (A7)

27



Dis
ussionPaper|Dis
ussionPaper|Dis
ussionPaper|Dis
ussionPaper|

The sensible (Hc) and latent (He) heat fluxes are calculated through bulk semi-empirical
relations that can be derived from turbulence theory (Henderson-Sellers, 1986)

Hc = αc (Ta−Tw), (A8)
He= αe (ea− ew), (A9)

whereαc [W m−2 K−1] andαe [W m−2 hPa−1] are transfer functions primarily depending on5

wind speed and other meteorological parameters,ea is the vapor pressure in the atmosphere
andew is the water vapor saturation pressure at the water temperature (both in [hPa]). The
ratioαc/αe is known as Bowen coefficient and is often taken to be constant(≈ 0.61 hPa K−1)
(Imboden and Wüest, 1995). The saturated water pressureew is a function of temperature, and
can be calculated through several empirical formulas, as for example the exponential law10

ew = aexp

(
bTw

c+Tw

)
, (A10)

wherea= 6.112 hPa,b= 17.67 andc= 243.5◦C (Bolton, 1980).
In order to keep the formulation of the model as simple as possible, Eq. (A10) can be lin-

earized by Taylor series expansion around a reference temperature, whichcanbeassumedequal
to T15

ew ≈ aexp

(
bT

T + c

)(
1+

bc
(
T + c

)2
(
Tw −T

)
)
. (A11)

Finally, the heat exchange with deep waterHd can be formulated, as a first approximation,
as the combination of a constant contribution and a contribution depending on the gradient
of temperature between surface and hypolimnetic water. Considering that deep water has a
temperature that is approximately constant during the year, the second component ofHd is20

essentially dependent on surface water temperatureTw. The termHd is usually small with
respect to the flux components exchanged with the atmosphere, which have been described
above. Analogously, the contributionHp of precipitation onto the lake surface and the heatHi
exchanged with the inflows and the outflows are only rarely significant, thus are not explicitly
included in the balance. As a matter of fact, changes in surface temperature during rainy periods25

28



Dis
ussionPaper|Dis
ussionPaper|Dis
ussionPaper|Dis
ussionPaper|

generally result from changes of the main termsHw, Hc andHe, andHi is only important in
lakes with high flushing rate (Imboden and Wüest, 1995).

Under these hypotheses, and adopting the heat flux terms provided above, the net heat flux
at the surfaceHnet introduced in Eq. (A1) can be suitably written as the combination of the
linear and sinusoidal functions in Eq. (1), whereci (i from 1 to 5) are coefficients resulting by5

appropriately combining together the physical parametersthat appear in Eqs. (A2)–(A11).
By assuming the parameters inherently influenced by meteorological (e.g. wind, cloudiness

and precipitationpatterns) and astronomical phenomena (i.e.rs, αc, αe, ea) as the combination
of a mean (indicated by an overline) and a periodic (indicated by a prime) component, the
coefficientsci can be expressed as follows10

c1 ≈ (1− rs)s1 + f
(
r′s, α

′

c, α
′

e, e
′

a
)
, (A12)

c2 ∈ [0, 1], (A13)

c3 ≈ (1− rs)s3 +σ (ǫ̃a− ǫw)
(
TK +T

)3 (
TK − 3T

)
−αe

[
ea− aexp

(
bT

T + c

)(
1−

bc
(
T + c

)2 T
)]

, (A14)

c4 ≈ 4σǫ̃a
(
TK +T

)3
+αc, (A15)

c5 ≈ 4σ
(
TK +T

)3
(ǫ̃a− ǫw)−αeaexp

(
bT

T + c

)(
bc

(
T + c

)2

)
. (A16)15

It is worth noting that a A straightforward quantification of this set of coefficients is not
trivial. In fact, most of the physical parameters involved do not have a single, unambiguous
value, but rather they span a range of values that depends on several factors that are difficult to
specify (e.g. cloud cover).

As a final remark, it is worthto note noting that the first term on the right hand side of20

Eq. (1) is a periodic term accounting for all seasonal patterns of meteorological variables other
than air temperature (e.g. wind speed, air humidity, cloudiness, see the definition ofc1). As
a first approximation, these components have been treated assinusoidal functions having the
same frequency of the solar radiation (i.e. a period equal toone year), but possibly different
amplitudes and phases. The sum of such a set of functions produces another sinusoid having25

the same frequency but different amplitude,c1, and phase,c2.
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Table 1. Summary of the datasets adopted in this study, and their mainstatistics.

Source Variable Device Period Duration (cal + val) Frequency Missing data Mean value [◦C] Std [◦C]

NDBC Tw Offshore buoy 1985-2011 27 years (18 + 9) Hourly 46% 7.18 4.66
NDBC Ta C-MAN station 1985-2011 27 years (18 + 9) Hourly 9% 5.39 8.97
GLERL Tw Satellite 1994-2011 18 years (12 + 6) Daily 5% 6.52 5.26

Table 2. Estimated model parameters for NDBC, GLERL and GLERLmy simulations, and their physical
range of variation.

n par. p1 [
◦C d−1] p2 [−] p3 [

◦C d−1] p4 [d
−1] p5 [d

−1] p6 [
◦C] p7 [

◦C] p8 [
◦C]

min 0.00 0.00 -0.12 0.00 -0.02 0 0 0
max 0.33 1.00 0.28 0.01 -0.00 15 15 0.5

NDBC
8 1.35x10−2 2.62x10−1 1.47x10−3 6.18x10−3 -3.26x10−4 3.08 14.41 0.31
6 1.56x10−2 2.83x10−1 1.23x10−3 5.95x10−3 -2.36x10−4 3.01 - -
4 - - 1.41x10−2 5.87x10−3 -2.23x10−3 2.77 - -

GLERL
8 1.75x10−2 4.67x10−1 2.30x10−2 6.55x10−3 -2.57x10−3 3.50 13.32 0.44
6 2.36x10−2 4.37x10−1 1.93x10−2 5.91x10−3 -2.16x10−3 3.65 -
4 - - 2.57x10−2 9.63x10−3 -2.73x10−3 3.54 - -

GLERLmy

8 1.31x10−2 2.32x10−1 1.55x10−2 8.47x10−3 -1.09x10−3 3.26 11.93 0.45
6 2.01x10−2 2.06x10−1 1.49x10−2 9.69x10−3 -7.58x10−4 3.75 - -
4 - - 2.77x10−2 9.16x10−3 -2.87x10−3 3.13 - -
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Table 3. Efficiency index (E), Root Mean Square Error (RMSE) and Mean Error (ME) during cali-
bration and validation periods (NDBC, GLERL and GLERLmy simulations).

calibration validation
n par. E [−] RMSE [◦C] ME [◦C] E [−] RMSE [◦C] ME [◦C]

NDBC (cal: 1985-2002; val: 2003-2011)
8 0.91 1.40 -0.07 0.90 1.71 -0.01
6 0.91 1.35 -0.09 0.90 1.71 -0.02
4 0.89 1.50 -0.25 0.89 1.77 -0.01

GLERL (cal: 1994-2005; val: 2006-2011)
8 0.95 1.17 -0.13 0.97 1.02 0.30
6 0.95 1.16 -0.07 0.97 1.01 0.33
4 0.95 1.21 -0.05 0.97 1.08 0.38

GLERLmy (cal: mean year 1994-2005; val: 2006-2011)
8 0.99 0.48 0.06 0.97 1.07 0.23
6 0.99 0.43 0.01 0.97 0.98 0.15
4 0.99 0.47 0.03 0.97 1.11 0.29
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Fig. 1. Main heat exchange affecting the surface layer. For the description of the single terms refer to
Appendix A.
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Fig. 2. Seasonal evolution of the dimensionless thicknessδ of the surface well-mixed layer for the
general case of a dimictic lake.
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Fig. 3. Lake Superior with the location of the NDBC stations (45004 -Marquette and STDM4 - Stannard
Rock) used in this work. The inset shows the location of lake Superior in North America.
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Fig. 4. Dotty plots of efficiency indexes (E) for the 8-parameters model during the calibration period
1985-2002 (NDBC simulation). Highest efficiency is presented with an orange dot.
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Fig. 5. Comparison between simulated and observed surface water temperature during the calibration
period 1985-2002 (NDBC simulation). Simulated curves refer to the full 8-parameter and the simplified
4-parameter models, respectively. Observed air temperature data are also presented with cyan line.
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Fig. 6. Dotty plots of efficiency indexes (E) for the 4-parameters model during the calibration period
1985-2002 (NDBC simulation). Highest efficiency is presented with an orange dot.
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Fig. 7. Comparison between simulated and observed surface water temperature during the validation
period 2003-2011 (NDBC simulation). Simulated curves refer to the full 8-parameter and the simplified
4-parameter models, respectively. Observed air temperature data are also presented with cyan line.
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Fig. 8. Evolution of the dimensionless depthδ over the period 2003-2011: comparison between results
for the full 8- and simplified 4-parameter versions of the model obtained from NDBC and GLERL
simulations. a) Comparison of observed water temperature time series during the period 2003-2011
for the NDBC and GLERL dataset, respectively. b) Evolution of the dimensionless depthδ over the
period 2003-2011 for the full 8- and simplified 4-parameter versions of the model (NDBC and GLERL
simulations).
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Fig. 9. Comparison between simulated and observed surface water temperature during the calibration
period 1994-2005 (GLERL simulation). Simulated curves refer to the full 8-parameter and the simplified
4-parameter models, respectively. Observed air temperature data are also presented with cyan line.
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Fig. 10. Comparison between simulated and observed surface water temperature during the validation
period 2006-2011 (GLERL simulation). Simulated curves refer to the full 8-parameter and the simplified
4-parameter models, respectively. Observed air temperature data are also presented with cyan line.

43



Dis
ussionPaper|Dis
ussionPaper|Dis
ussionPaper|Dis
ussionPaper|
0 5 10 15 20

0

2

4

6

8

10

12

14

16

18

20

Measured [°C]

S
im

u
la

te
d
 [

°C
]

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

Measured [°C]

S
im

u
la

te
d
 [

°C
]

a) b)

Fig. 11. Parity diagram for monthly-averaged surface water temperature (8-parameters version of the
model): a) calibration and b) validation period of the GLERLsimulation. Blue dots refer to March, red
dots to August and grey dots to the remaining months of the year.
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Fig. 12.Comparison of the hysteresis cycles betweendaily air and surface water temperatures, as derived
by the data and by the 8- and 4-parameters versions of the model. Hysteresis cycles refer to the mean
year, calculated over the period 1994-2005, using GLERL andNDBC data forTw andTa, respectively
(GLERLmy simulation).
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