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Abstract

Water temperature in lakes |s governed by a complex heateh)uﬂgrereﬁqe&Hnge#IH*es

estrmatronof the srnglefluxes requiresthe use of severalhydro meteorolog|ca1/ar|ablesthat

are not generallyavailable. In order to address this issue, we developed Air2Waternma si
ple physically-based model to relate the temperature ofake superficial layer (epilimnion)

to air temperature only. The modebsthe form of an ordinary differential equationwhich
accounts for the overall heat exchanges with the atmospretéhe deeper layer of the lake
(hypolimnion) by means of simplified relationships, whi@ntain a few parameters (from four
to eight in the different proposed formulations) to be aalibd with the combined use of air
and water temperature measuremenitsparticular;the-The calibration of the parameters in

a given case study allowseto estimate, in a synthetic way, the influence of the main pro-
cesses controlling the lake thermal dynamics, and to rézedhe atmospheric temperature as
the main factor driving the evolution of the system. In fagtdercertainhypotheseghe air
temperature variation implicitly contains proper infotina about thevariationef other ma-

jor processesvolved, and hence in our approach is considered as the only inpiatilarof

the model.Furthermeorethemedeln particular,the modelis suitableto beappliedoverlong
time scales(from monthly to interannual),and can be easily used to predict the response of
a lake to climate change, since projected air temperatueegsaally available by large-scale
global circulation models. In this paper, the model is agptio Lake Superior (USA — Canada)
considering a 27-yr record of measurements, among whichr &8yused for calibration and
the remaining 9 yr for model validatiorT he calibrationof the modelis obtainedby usingthe
Generalized.ikelihood UncertaintyEstimation(GLUE) methodologywhich alsoallowsfor a
sensitivityanalysisof the parametersThe results show a remarkable agreement with measure-
ments, over the entire data period. The use of air temperadgonstructed by satellite imagery
is also discussed.
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1 Introduction

Water temperature is crucial for lakes physical, chemical biological dynamicsindeed:
temperature is the primary driver of the vertical stratifima, thus directly affects vertical
exchanges of mass, energy and momentum within the watemoolWater temperature plays a
key role influencing the aquatic ecosystem of lakes, whiclallg adapts to a specific range of
physical and environmental conditions. As a matter of faetier temperature can affect both
the chemical (e.g. dissolved oxygen concentration) anibdiical (e.g. fish growth) processes
occurring in the water body (e.g. Wetzel, 2001). Recentistudemonstrate that lakes are highly
sensitive to climate, and their physical, chemical, andolgical properties respond rapidly to
climate-related changes (Adrian et al., 2009). In the lgfithese considerations, it is evident
that any significant modification to current environmentahditions may influence the limnic
system, with direct impacts on the composition and richieésts ecosystem (MacKay et al.,
2009). There are indeed several reasons to look for a reltabl to have information about the
dependence of water temperature on the various factorenting the heat balance of the lake
compartments.

temperaturen lakesfollows complexdynamicsand s the result of acombinationof different

fluxes,whosesumis oftensmallcomparedothesingleterms(e.g. ImbodenandWiiest,1995).
Therefore,relatively small errorsin the estimateof the single contributionsmay resultin a
significantly large error in the evaluationof the net heatflux. This is particularly true for
the well-mixed surfacelayer, usually termedasepilimnion during stratifiedconditions,which
experiencestrongoscillationsat a variety of temporalscales:from short(hourly anddaily) to
long (annualandinterannual)up to climatic (decadedo centuries). Closing the heat balance
correctly at the different scales and predicting the futniead of surface water temperature
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is therefore challengingyutsemedifficulties-areessentiallyhardertotackle—andnot always

possible(e.g. if meteorologicaldataare not sufficient). As a consequence, some hydrody-
namic lake models prescribe surface water temperaturerisiboundary condition instead
of computing the net heat flux at the water-atmosphere mterfe.g. Goudsmit et al., 2002;
Piccolroaz and Toffolon, 2013). In general, large uncatias are associated to the estimates of
the various heat exchange components; however the vagigvtdved in the different processes
are either not all independent from each other or do not pteseong interannual variations,

suggestrng that some simplifications can be possrbly adop%eFmstaﬂee%hertwaveselar

For instance, shortwavesolar radiation substantlallydependson the latitude of the Iake and

on cloudiness,with the former presentinga rather regularannualtrend and the latter being
importantmainly at shorttime scales(from hourly to weekly) . Deep water temperature typi-
cally changes on time scales much longer than surface vilaterthe heat exchanged with the
hypolimnion can be reasonably assumed as constant in mamagiens. On the contrary, air
temperature is a significant index of the overall meteolicligconditions and can be reason-
ably assumed as the main variable influencing the heat alabe surface layer of the lake
(Livingstone and Padisak, 2007).

Thankfully, long-term, high-resolution air temperatutgservational datasets are in general
available, both for historical periods adopted to calibr@eneral Circulation Models (GCMs)
and Regional Climate Models (RCMs), and for future periodierg air temperature is a vari-

able commonly derived from GCMs or RCMs prorectro@mheefeherhaﬂdwa{eﬁemperawre

----- A

%empera{ureef—wa{erbedms—On the contrary, Watertempeaturemeasurementare far Iess

available and future projectionscould be only obtainedthrough the adoption of predictive
modelsfully coupledwith atmosphericand land surfacemodels,which at the presentstage
is not acommonpractice (MacKay et al., 2009)In orderto overcometheselimitations (i.e.

4
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scarceavailability anddifficult estimation) severakimplemodelshavebeenformulatedwhich
useair temperaturgwidely accessibldoth for pastandfuture periods)to derive surfacewater
temperaturef lakes.

Regression models (see Sharma et al., 2008, for a review)mcally adopted for this scope,
but their use may be questionable especially when it is sacg$o extrapolate temperature val-
ues beyond the maximum (or minimum) limit of the measure@ ts@ries. This is often the case
in climate change studies, where the regression relatiosm&uilt upon current climate condi-
tion are applied to estimate surface water temperatureifi@reht climate change scenarios,
with the possibility that the projected air temperature noayer a wider interval of values.
Regression-type models, either linear or non-linear, thean successfully applied to estimate
the temperature of rivers and streams, giving rise to a fiehature (e.g. Kothandaraman and
Evans, 1972; Crisp and Howson, 1982; Webb et al., 2003; Bsmyat al., 2007; Morrill et al.,
2005). Notwithstandingsignificanterrormay-ariseby-adeptingthisapproachthesemodels
cannotstraightforwardlybe extendedo the caseof lakes, especially for those water basins that
have a significant seasonal hysteresis. As a matter of fexwdriety of processes of heat ex-
change across the lake surface and the thermal inertia @fdter mass cause an annual phase
lag between air and water temperatures, which is hard tddemis regressions. In many cases
simplistic linear regressions are adopted for the converdollowing the assumption of a di-
rect monotonic relationship between air temperature arfdsiwater temperature (e.g. Shuter
et al., 1983; Livingstone and Lotter, 1998; Livingstonelet99), which do not allow for cap-
turing the hysteresis cycle. In other cases, seasonalrbgitas solved by estimating different
seasonal regression relationships, one for each brandiedfytsteresis loop (e.g. one for the
ascending and another for the descending branch) (e.g.,\V¥8@B), or by using linear regres-
sions to estimate the monthly means of surface water temyperftom the monthly means of
measured air temperature data (McCombie, 1959).

Besides regression analysis, water temperature of lakdsaastimated by means of process-
based numerical models (e.g. Arhonditsis et al., 2004; FanyStefan, 1999; Peeters et al.,
2002; Martynov et al., 2010), possibly coupled with an atphesic model (e.g. Goyette and
Perroud, 2012; Martynov et al., 2012) aimed at includingrtheual interaction between water
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and atmosphere. This kind of models can provide exhaugtigenation about the thermal
structure of lakes, and accurately characterize the diffeenergy fluxes involved in the lake
temperature dynamics. The major drawback of the processdbmodels is the requirement
of detailed time series of meteorological data in input.(&imd speed, humidity, cloudiness
etc. besides air temperature), which are often not availabhot accurate enough.

In order to overcome the limitations of traditional approes (both regression- and process-
based models), semi-empirical models based on physicadipies may represent a valid al-
ternative, having the key advantage of requiring less datagut than deterministic models,
whilst preserving a clear physical basis. Recently, Kedtlal. (2004) proposed a simple em-
pirical model to estimate mean daily water temperaturengusinly air temperature and the
theoretical clear-sky solar radiation as input informati@dhe model is based on the sensible
heat exchange model of Rodhe (1952) (see also Bilello, 1@6w) implicitly accounts for the
main heat exchange processes through 4 parameters. Théhaedmod performances, but its
application is limited to specific periods of the year wittarlg uniform stratification conditions
(it has been tested from late June to early September, Idagie¢ melts, when water temper-
ature is always above°€). indeedHowever, it does not account for the seasonal evolution
of the thermal structure of the lake, and hence of the miximpth (i.e. the depth of the epil-
imnion), which determines the volume of water respondingernaimeteorologicalforcing
and has a significant influence on the seasonal patterns optrare-lake heat exchange.

In the attempt to reliably estimate the cycle of surface wemperature of lakes from air
temperature measurements/projection only, both under @asent and projected climate con-
ditions, a simplified model has been developed. Such a megeimarily based on the energy
balance between atmosphere and lake surface water (Figutljyvoids the need to take into
account all heat budget terms explicitly. A simple paramizi¢ion of the seasonal evolution
of the mixing depth is included in the model equations, whoaly depend upon air temper-
ature. Fhis-allewsThe key objective of the presentwork is thusthe definition of a modeling
frameworkwhich could allow for a consistent description of the physical principlesagoing
lake surface temperature, and ensures a general appticalbithe model (e.g. over the entire
year).
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The paper is structured as follows. In Sect. 2 the governiu@geons are presented, and the
model is formulated. The heat budget is presented in detd@ippendix A. Section 3 provides
a general description of the data used in this study. Thdtsesoncerning model calibration
and validation are presented in Sect. 4 with reference tditferent versions of the modeind
thevanousdataseUsedln this work. Resu#sa%e#u%he%dﬁeussedﬂéeet%—mmereﬂqemedel

mage%y)—ﬁn&tﬁ%hem%meﬂemaeﬂsa%ed%mm%eeké—Resultsaremscussedn Sect 5,

andfinally we drawthe mainconclusionsn Sect.6.

2 Formulation of the model

The net heat flu¥/netin the surface layer of a lake results from the combinatiathetifferent
fluxes entering and exiting the upper water volume (see Big.The main heat exchanges
occur at the interface between the epilimnion and atmosplaed betweenthe epilimnion
and deep water (i.e. hypolimnigrespectively According to the simplifications discussed in
Appendix A, a simplified version of the net heat flux can be exped as
2m (t — Cg)
ty
wheret is time, ty is the duration of the year expressed in suitable time ufiigssand Tiy
are air and water temperature (expressed in CelS@Q§fpr simplicity), respectively, and;
(7 from 1 to 5) are coefficients with a physical correspondemdese definition is detailed in
Appendix A. Note that Eqg. (1) accounts for a sinusoidal ahfaraing term with amplitude:;
and phase, (which resultfrom a combinationof the seasonafluctuationsof solarradiation
andof sensibleand latentheatfluxes), an exchange air-water term(7a — Tw) (wherec, is
a coefficientthatis primarily ascribableto atransferfunction of sensibleheatflux), a constant
termcs and a residual correctiary Ty dependent on the water temperat(iree lasttwo terms
combinedtogetherbasicallyaccountfor the contribution of the latentheatflux). The only me-
teorological variablexplicitly included in the model i$5, while the remaining meteorological
7

Hpet= c1cos [ ] +c3+ca (Ta—Tw) + cs T, 1)
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forcing (erimaribywind-whichisamajerdrivingforceforlakese.g.wind speedsolarradiation,

humidity, cloudinesswhich besidesair temperaturearethe major factorscontrolling the heat

budgetof lakes) are inherently accounted for in the model’s parameters:In particular,the
formulationof the modelimplicitly accounts for the seasonal patternglta#seexternal forcing
termsthroughthe data-drivencalibration of the parameterswhile higher frequency fluctua-
tions are not considered, consistently with the main ainmhefrhodel that is to reproduce the
evolution of7{y at long time scales (i.eeasenramonthly, annual, interannual).

Considering the upper layer of the lake, the volume-integraeat equation can be expressed
as follows
dTw
Tt
wherep is the water density;, is the specific heat at constant pressiifand A are the volume
and the surface area of the layer, respectively. Bothnd A can be left undetermined in the

analysis if we define the depth of the well-mixed surfacedie. the epilimnion thickness) as
follows

14
D=~ 3)

The depthD typically depends on the stratification of the water columd & characterized
by a clear seasonal behavior. In order to include this eisédaature, a suitable parameteri-
zation of D in time is required. The most appropriate choice is to eséniaas a function
of the thermal stratification, thus of the vertical temperatgradient. As a first approxima-
tion, the strength of the stratification can be evaluatedaggstional to the difference between
the surface water temperatufgy and a reference valug. Ty is representative of deep wa-
ter temperature, thus can be suitably chosen dependingeatheémal regime of the lake (for
a classification of lakes refer to e.g. Hutchinson and Lffl®56; Lewis, 1983). In the case
of cold monomictic lake (i.e. never over the temperature akimum densityl,, max~ 4°C,
stably stratified in winter and circulating in summer; ingtbdakes the thermal stratification
is referred to as inverse since water temperature at thacgyffyy, is colder than in the hy-
polimnion) Ty can be assumed as the maximum surface temperature regjidteieg the year.

8

pepV = Hnet4, (2
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In the case of warm monomictic lakes (i.e. always abd\@, £irculating in winter and stably
stratified in summer; in these lakes the thermal stratificais referred to as direct since water
temperature at the surfacBy, is warmer than in the hypolimniori)y can be assumed as the
minimum surface temperature registered during the yeamallyi7y can be assumed equal to
the temperature of maximum density max~ 4 °C for the case of dimictic lakes (i.e. inversely
stratified in winter, stably stratified in summer and cirtinig twice a year at the transition be-
tween the two states, at aboutd). In all cases, when the water column is nearly isothermal
(i.e. Tiv — Ty), close to the onset of the seasonal turnover, the thermalfistation weakens
and, as a consequence, the surface mixed lBysraches its maximum thicknegg. On the
contrary, we assume that the stronger is the stratificatien iy — 7r| > 0), the thinner is the
surface mixed layebD.

For the period of direct stratificatiorf{y > 7t), the evolution ofD hasbeenis described
using the simple exponential decay law

Tw(t) — Tr> ’

Twarm

D(t) = Drexp <— 4)

where nwwarm [°C] is the inverse of the decay rate (the subsctipt-m refers to the case
Tw > Tr: direct stratification) and), indicates the maximum thickness of the mixed layer.
With the aim to consider the variation @f when the lake is inversely stratified (iBy < Tt,
subscript cold), a modified version of Eq. (4) has been dérive

D(t) = Dr [exp <_LTW“>> texp <_MC;“H , (5)

Tcold Ti
wherer.q|q [°C] and 7jce [°C] are the inverse of decay rates. In principtgg)q is not nec-
essarily equal tawarm, since the evolution oD below and abovéy is possibly different. In
addition, the second term in the exponential function hanbetroduced to account for the

potentlal formation of the ice cover at the surfat;etmseaseas”r”w—tetcrdsteg—%tmekeﬂs

tetheptﬁeseﬂeéﬁﬂeeaﬂdswwevetsAs TW tendsto 0°C, the alr-waterheatﬂux is |nh|b|ted

dueto the presenceof ice andsnowcovers.Our schemeéndirectly takesthis into accountby a
9
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fictitious increaseof thedepth D . It is worth te-netieenoting thatj.g Should have an upper
bound (approximately equal to 0.6-r-eur€asd, in order to include the effect of ice only
when the lake is inversely stratified, and avoid a discoityrin D at the transition from direct
to inverse stratification (i.e. whéhRy =4°C).

By substituting Egs. (1), (3), (4) and (5) into Eq. (2) we abta

dTi 1 27 (t —
— W _{picos 2m(t—p2) +p3+ps(Ta—Tw) +psTw ¢ (6)
dt 1) ty
with
Tr — T3
5:exp<r W), (Tw > Tr)
be
Tw — Ti Ty
5:exp< w r)—l—exp(——W), (Tw < Tr) ©)
b7 ps

where the model parameteis(i =1, 3, 4, 5) are the coefficients present in Eq. (1) divided by
the productocp Dr, p2 = c2, ps = Twarm, P7 = Teolds P8 = Ticer @NdJd = D/ Dy is the normalized
depth, whose seasonal evolution is schematically repredém Fig. 2 for the case of dimictic
lakes (monomictic regimes are particular cases of the dicniegime, which represents the
most general case).

In conclusion, we propose a semi-empirical lumped modeichvbolves the temporal evo-
lution of surface water temperature of lakes, using onlytemperature as input forcing. The
model requires the calibration of 8 physically-based pa&tans, whose range of variation can
be reasonably estimated according to their definitions Agpgendix A).

3 Study site

In order to apply the model described in Sect. 2, only twoeseoff data are required: air tem-
perature as input forcing, and surface water temperaturealibration purpose. A sufficiently
long dataset (i.e. more than one year) is an essential pisitegto perform a robust model

10
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calibration and validation procedure. Moreover, a longratelataset provides a clear picture of
the possible interannual temperature variability, thimaahg for the identification of a set of
parameters that is appropriate to investigate long-temmaté dynamics.

The model has been tested on Lake Superior (Surface are@3&21; Volume: 12 000 kri;
Maximum depth: 406 m), the largest of the five Great Lakes atiNAmerica (see Fig. 3), and
the largest freshwater basin in the world by surface areke Sauperior is a dimictic lake: the
temperature of the epilimnion is warmer thahClin summer and cools below’€ in winter.
While the surface water temperature varies seasonallytethperature of the hypolimnion is
almost constant over the year at aboGtC4 Twice a year, in December and in June, surface
water reachethetemperaturaf42Cthistemperature thus the thermal stratification weakens.
Under these conditions, and in the presence of a sufficistriiyg wind blowing at the surface,
the entire lake can mix (i.e. lake’s turnover).

Long-term temperature data (both for air and surface wditave been obtained from the
National Data Buoy Center (NDBC) and from the Great Lakesifenmental Research Lab-
oratory (GLERL), which are part of the National Oceanic ann8spheric Administration
(NOAA). In particular, the NDBC provides historical metetwgical and oceanographic data
for a network of offshore buoys and Coastal Marine Autom&tetivork (C-MAN) which are
installed all over the world, while the GLERL, through theaStWatch program, releases daily
digital maps of the Great Lakes surface water temperatuwldcancover (i.e. the Great Lakes

Surface Environmental Analy5|s GLSE/EeHheﬁ&Fpeseef—thrsweHeemy&w&ﬂdsuﬁaee

Concernmg NDBC dataset two dlﬁerent statlons have beseal in th|s work: (a) 45004 —
Marquette, an offshore mooring buoy that provides watemptmature measured at 1 m below
the water surface, and (b) STDM4 — Stannard Rock, a C-MANostatistalled on a lighthouse
that provides air temperature series measured at about 85ve ¢he lake surface. These two
stations have been chosen from the many that are availableak® Superior (both offshore
buoys and C-MAN), because of their central location (see ignd long-term data availabil-
ity, but time series registered in other stations presentlasi behavior (not presented here).
The observational dataset cover a 27-yr long period, fro86186 2011, and consists of mea-

11
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surements witka one-hour temporal resolution. Since NDBC buoys in the Gtekes are
removed during winter to prevent damage from icing, no measants are available at the
45004 — Marquette during winter months (except for 1991)|lerthe STDM4 — Stannard Rock
measurements do not shm@tmﬂean{systematlcgaps

DB i j esen
lEIC}e|e-eiﬂieel—ze%—zei—l—concermngGLERL datasetdally temperaturemapshave beenused
for the period 1994 to 2011. Datarefer to the daily lake averagesurfacewater temperature
obtainedfrom NOAA polar-orbiting satelliteimagery. The seriesdoesnot presentsystematic
gaps(missingdata,seeTable 1, are concentratedn the first, warm-upyearand hencedo not
contributeto the evaluationof the model efficiency, see Sect. 4.1), thus providing surface
watertemperaturealsoin winter, which, on the contrary, is almostcompletelyuncoveredby
the NDBC dataset. A mismatchbetweenNDBC and GLERL datasetss visible in the rising
limb of the annualcycle of temperaturdi.e. betweenApril andJuly, seeFig. 8a), which is
likely to be a consequencef the different spatial scalesof the two seriesof data: while the
NDBC datasetepresentsurfacewatertemperatureneasurechearly atthe centerof the basin,
the GLERL dataseprovidesvaluesaveragedverthe wholelake. In the latter case the spatial
variability of surfacewatertemperaturée.g. in spring,lakewaterheatsfrom theshoregowards
the offshoredeeperzones)isintrinsically includedin the estimatesthusdeterminingsmoother
annualcyclesof temperatureDespitethis discrepancy,Schwab et al. (199%)omparedSLERL
datawith measurementat someof the NDBC buoysfinding anoverall good agreement.In
particular,for the caseof the 45004 - Marquettebuoy usedin this work, the meandifference
betweerthetwo datasetgor the period1992 - 1997 is lessthan0.28°C, theroot meansquare

12
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erroris 1.10°C andthe correlationcoefficientis 0.96.

As customary, the available datasets have been dividedwudarts: the first part, con-
taining around two thirds of the available data, is used fodet calibration and sensitivity
analysis, while the second part, containing the remainimg third, is used for model valida-
tion. Missingdatain thewatertemperatureerieshavenotbeenreplacedtheydo notcontribute
to the evaluationof the efficiency of the model); on the otherhand,gapsin the air temperature
serieshavebeenreconstructedvith estimateobtainedasanaverageof the availabledatain the
sameday over the correspondingperiod (i.e. calibration or validation). The datasets used in
this work are Iisted in Table 1, together with their mainistats.

p%elmﬁarye&lebﬂa{eérem%heeﬁgmakdam)—ThedMerentlal Eq (6) hasbeensolvednumencally

by usingthe Euler explicit numericalscheme(see e.g. Butcher, 2003with a daily time step
(concerningNDBC data,meandaily temperaturefiavebeenpreliminary calculatedfrom the

original data).

4 Results
4.1 Sensitivity analysis and model calibration

Inverse modeling of complex systems, as such as those etecedrin hydrological applica-
tions, is inherently ill posed problem, as the informatiaciovyided by observational data is
insufficient to identify the parameters without uncertginih a typical situation many different
combinations of the parameters may provide similar fittothe observational data. For exam-
ple, even a simple model with only four or five parameters testenated may require at least
ten hydrographs for a robust calibration (e.g. Hornbergat.£1985).

This identification problem can be alleviated by reducing number of parameters used in
the model, for example through sensitivity analysis, whgcthe typical methodology used for
this purpose (e.g. Majone et al., 2010). In this work we penfgensitivity analysis by using

13
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Generalized Likelihood Uncertainty Estimation (GLUE), &thmodology proposed by Beven
and Binley (1992) that requires the identification of a vilfidange for each parameter, a strat-
egy for sampling the parameter space and finally a likeliho@ésure to be used in order to
rank the different parameters sets. We carried out 100 000/A&thte Carlo model realizations
using uniform random sampling across specified paramatgegsselected according to physi-
cal limitations of model’'s parameters. Indeed, the physiteaning of the parameters allowed
for a reasonable definition of the possible range of vaitgtmf each of them. Finally, we used
as likelihood measure the Nash-Sutcliffe model efficierasfficient, £/, which is a widely used
metric adopted in hydrological applications (e.g. Nash @attliffe, 1970; Majone et al., 2012,
and many others)

. 2
(TW,i - TW,Z')

(8)

t

1

—_

|
2,9
AM|® N

n
>
i=1
n ~ _ 27
> (TW,Z' - TW,Z’)
=1
wheren is the number of datas? ando? are the variance of the residuals and of the observa-
tions, respectivelyfw,i andTyy are the observed and simulated surface water temperature-at
time t;, andTy is the average dfw,i. Note that the residual is defined as the difference be-
tween the observational data and the model’s predictioth,agparameter set identifies a point

in the space of parameters.

The Nash-Sutcliffe efficiency index ranges freapo to 1. An efficiency equal to 1{=1)
corresponds to a perfect match between measured and schuldties, whils = 0 indicates
that the model prediction is as accurate as the mean of aigers. Efficiency values lower
than 0 < 0) occurs whemw? is larger tharr2, thus when the mean of observations is a better
estimator than the model itself.

Since its introduction in 1992, GLUE has found wide applmag and it is recognized as a
useful methodology for uncertainty assessment in manysfieldtudy especially in non-ideal
situations (e.g. Beven, 2006). Nevertheless, the goalisfwibrk is not to adopt a complete
informal Bayesian approach to estimate uncertainty of mpoktlictions, but rather to assess

14
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the impact of changes in uncertain parameter values on noodplit. Hence, the purpose is
to set up a general and effective strategy to select whicltherenost sensitive parameters of
the model, and to define which should be suitably adjustectadibration process. Indeed, the
GLUE methodology is a powerful and effective tool that carals® used for model calibration
besides uncertainty estimation procedures and sengiéiaelysis.

One of the most acknowledged limitation of the GLUE methodwlis the dependence on
the number of Monte Carlo simulation, especially in the preg of complex models with high
computational demand. However, in our case we were abldlyoekplore parameter response
surfaces by adopting a significantly high number of reatizest Therefore, the use of the
GLUE methodology, not only for parameter identifiabilityrpases but also as a calibration
tool, appears appropriate. Just as a sidenote, 100 000 0f€l nuois over a period of 18 yr with
a daily time step and adopting Intel(R) Xeon(R) CPU X5680 @3&Hz took around 2;tthe
codeis written in Fortran90.

Furthermore, in the attempt to test reliability and pradectapability of the model, a val-
idation procedure was undertaken by running the model cdatadn datasets (see Table 1)
by using the sets of parameters which maximize the efficiégndyring the calibration periods
(i.e. the set of parameters with the highest likelihood inletéh through the GLUE methodology).

In the ensuing sections, the GLUE methodology is preserdedifferent model configu-
rations (from 8 to 4 parameters), with reference to the caiibn periods of the NDBC and
GLERL datasets, respectively (see Table 1).

As a final comment, we point out that the first year of each tierées is used as warm-up
period (i.e. excluding the period from the calculation af tlash—Sutcliffe efficiency indek),
in order to remove any transient effect due to the initialdibon.

4.2 8-parameter model

As discussed in the previous section, the performance oftbdel has been tested in the
framework of the GLUE methodology, using the time seriesiofad surface water temper-
atures provided by the NDBC center (see Table 1). A first-stsitivity analysis has been
carried out by solving Eq. (6) over the calibration perio® yt, from 1985 to 2002) using
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randomly sampled set of parameters. We recall here that &faitte 8 parameters has been
allowed to vary over physically reasonable ranges of valudsch have been previously de-
termined through Eqgs. (A12)-(A16) in Appendix A by considgrthe lake location properties
(e.g. latitude, climate, typical temperatures) and by gisiaefficients available in literature
(e.g. Henderson-Sellers, 1986; Imboden and Wiest, 19@&imand McCutcheon, 1998). As
far as the exponential decay laws are concerned, paramgtersd p; have been allowed to
range within a wide interval comprised between 0 andd5andpg between 0 and 0.5C.
As already mentioned in Sect. 2, the rangeghas been set narrower (more stringent upper
bound), aimed at confining the correction due to ice only wihenlake is inversely stratified
(e=*05=0(107*) < 1). In the light of the results obtained from the first-steplgsis, the
ranges of variability of each parameter were narrowed, #tlosving for a detailed investiga-
tion of parameters space regions associated with high valug. Subsequently, a second-step
sensitivity analysis has been undertaken by samplingdutB0 000 000 parameters sets from
the narrowed parameters ranges.

Figure 4 shows the dotty plots of the efficiency indBxfor each of the 8 parameters of
the model, corresponding to the narrowed ranges (secepdgsirformance analysis). For the
sake of clarity in the presentation of results, Fig. 4 (ad aelFig. 6) shows only the set of
parameters witlty larger than 0.8. Model simulation during the calibratiomige 1985-2002
using the best set of parameters is illustrated in Fig. 5clvishows a noticeable agreement
between simulated and observed values, with an efficiertsxif > 0.9 (seefable2Tables2
and3 for a summary of the results).

A visual inspection of dotty plots of model efficiency canyide useful information on the
identifiability of each parameter. According to Fig. 4, &letparameters are characterized by
a good identifiability with the exception of parametersandps. This can be explained if we
consider that NDBC dataset preseatsy afew values of water temperature during winter peri-
ods. In particular, no data (except for one single year oliByfare available when surface water
temperature approaches©, which corresponds to the period of the year when the pdaeame
pg is relevant. We remark here that is the parameter associated to ice formation at the surface
of the lake. Although to a minor extent, alspdoes not show a clear identifiability, probably as
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a consequence of the importance that this parameter assunyeduring winter time (it plays
a role only wheriliy < 4°C), that is when water temperature measurements are nddlzeai
However, by analyzing the dotty plot an important inforroatcan be inferred: efficiency in-
creases for higher values pf, and approaches a nearly asymptotic high efficiency trershwh
p7 2, 5°C. Looking at the physical meaning of the parameter (see Ethig means that model
performance improves as the mixed deptlapproaches its maximum valdgy when the lake
is inversely stratified iy < 4°C).

Onln the light of these evidences, in the ensuing section théfplirameter version of the
model has been simplified by neglecting paramete@snd ps.

4.3 From 8 to 4 parameters

On the basis of the results discussed in the previous seciibmll the model parameters seem
to be significant and clearly identifiable. In particulare tharameteps has been found to be
insensitive to the model, and parameterprovides an overall high performance over most
of its variability domain 7 = 5°C). The peculiar behavior of these parameters, togethér wit
the fact that both appear in the definition of the mixing deptiwhen the lake is inversely
stratified, suggests that a simplification of the model magdssible by considering a different
(simpler) expression fob. As far as parameterg is concerned, since it is not significant for
the model, it can be easily neglected, thus eliminating ffezof ice formation. On the other
hand, according to Eq. (7) high valuesaf mean small decay rates @f, thus thick mixing
depths when the lake is inversely stratified. In the lighthafse considerations, we derived a
first simplified version of the model, where the mixing delassumed to be constant and at
its maximum thicknes® = Dy when the lake is inversely stratifiedi{f < Ty). Thanks to this
simplificationp; andpg are removed and the number of parameters diminishes frond3 to

As for the case of the full 8-parameter version of the modwa, dame sensitivity analysis
described in Sect. 4.2 has been carried out also for theifiskb-parameter version. The set of
parameters presenting the highest efficiency index dubagalibration period is summarized
in Table 2, whilst dotty plots deriving from the applicatiai GLUE methodology and the
comparison between simulated and measured surface wateetature during the same period
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are not presented here for the sake of brevity. Indeed,tsesd essentially equivalent to those
obtained using the full 8-parameter model, which is confirng the close similarity between
the best set of parameters and the efficiency indexes obtanehe two cases (sekable2
Tables2 and 3 ). The similarity of results supports the idea that the Gapaeter model is a
reasonable simplification, at least in the case considegegirhwhere the winter data are not
abundant (see also Sect. 5 for further discussion).

The number of parameters can be further diminished from @Gtoeliminating the parameter
p1 and, as a direct consequenge, beside®; andps. This simplification is justified since three
periodic terms appear in the model as characterized by ambperiodicity: the forcing term
picos(27(t — p2)), the exchange termy (Ta— Ty and the residual correctign; 7yy. The si-
multaneous co-presence of all these terms may be consigataddant in those cases in which
the annual cycles dfyy and/or ofT3 — Tyy can be suitably approximated as sinusoids. Indeed;
the sum of sinusoidal functions with the same frequency,difterent amplitude and phase,
yieldste another sinusoid with different amplitude and phase butesheyuency. Therefore,
two sinusoids are sufficient, and the forcing tesneos (27 (¢ — p2)) can be removed, relieving
the overall annual variations on the periodic terms coleddby the model variabl&y and the
external forcingl’a. Following this logic, the termpsTiy could be neglected alternatively (on
the contraryp, (Ta — Tw) cannot since it is the only term that includes informatioowttthe
external forcing), but this assumption would remove onlg parametern;) instead of two %,
andps), thus making it less attractive. In principle, bgthcos (27 (¢t — p2)) andps Ty could be
neglected contemporaneously, but in this case the pha$e afverall periodic term would be
forced to that of the temperature difference. It is wagthretenoting that in the 4-parameter
version of the model (retaining;, p4, ps andpg), the meaning of the parameters is distorted, as
the processes that were accounteg;imre now included ip4 andps.

Figure 6 shows the dotty plots of the efficiency indeXefor the 4-parameter version of the
model, where only the parameters p4, ps andpg are retained. In this case, since the number
of random samplings has been kept unchanged (i.e. 100 0Q0tBé(redictions of the Monte
Carlo realisations appear much less sparse (i.e. dendgrpdots) if compared to the case of
the 8-parameter version. Notice that all the parametershamcterized by high identifiability
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and the model does not present signs of overparametenzaigure 5 shows the comparison
between observed and simulated surface water temperatuniag the calibration period 1985—
2002 for the 4-parameter and the full 8-parameter modedperively. The difference igtle;
small, and mainly localized during the winter period, when no stefawater temperature data
are available for comparison. During the rest of the yearmwimeasurements are available
and E index can be effectively calculated, the two solutions am@garable and the efficiency
indexes are similar (just slightly lower for the simplifiegpdrameter version of the model, see
Table 2).

4.4 Model validation

The best set of parameters obtained during the calibratoiog for the different versions of
the model (with 8, 6 and 4 parameters, see Table 2) have bedrtausun the model during the
validation period 2003-2011 (see Table 1). In all the casiesilations have been character-
ized by high efficiency indexes, comparable to those obthivieh the best simulations during
the calibration periodf ~ 0.9, see Table 2). In Fig. 7 simulated water temperaturesti{o
versions with the 8 and 4 parameters) are compared with wdig@rs showing an overall very
good agreement. Results confirm the reliability of the meged valuable tool for surface water
estimation over long-term periods with different model foagurations.

Besides the evaluation of the surface water temperatieentitel provides additionablevant
gualitative information regarding the annual evolution of the epiliomihickness. In fact, as
discussed in Sect. 2, the model explicitly includes a slét@larameterization of the seasonal
behavior of the mixing depth through Eq. (7). In particuthe normalized thickness of the epil-
imnion 6 = D/ Dy is automatically determined once the parametgrg; andpg are defined.
Furthermore, it is evident that if an estimate of the refeeemixing depthDy were known, the
actual thickness of the well-mixed layér could be evaluated as well. With reference to the
NDBC dataset Fig. 8b shows the evolutiondobver the validation period 2003-2011, for the
8- and 4-parameter versions of the model (continuous lineghe first case (8 parameters) the
fictitious increase of depth due to the presence of ice |ssemq)eaks at values greater than 1).
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is relatedto the presenceof alargerwatervolume involved in the heat balance (see Fig. 2).
Thanks to this assumption the model accounts for the ineulaffect due to the presence of ice,
which may be even more significant when the ice surface is srow@red, and the penetration
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of solar radiation is strongly attenuated.

4.5 Satellite data

Resultsareremarkablébothusingthefull 8-parameteversionandthesimplified 6-and4-parameter

versionsof the model. In particular, little differencehasbeenfound regardingthe bestset of
parameterandthe efficiencyindexesobtainedusingthe 8- andthe 6-parameterersions(see
Tables2 and 3). Therefore,one may infer that no significantadvantagegan be expectedoy
usingamoreaccurateexpressiorfor D duringthe winter period(8-parametewversion),instead
of a constantvalue (6-parametewrersion). However, it is not possibleto statethis conclusion
by simply analyzingresultspresentedn Sects. 4.2, 4.3 and 4.4. Indeed,no surfacewater
temperaturgneasurementareavailableduring the winter periodfor the NDBC datasetexcept
for the year 1991, thus the model efficiency hasnot beentestedduring the period of inverse
stratification.

Aimed at overcomingthis limitation, the GLERL datasethasbeenused, which provides
daily lake-averagedurfacewatertemperaturdasedon satelliteimageryandcoversthewhole
year (seeTable 1). The sameGLUE procedurediscussedn Sect. 4.1 hasbeenperformed
by adoptingthe GLERL datasetasreferencesurfacewatertemperatureataand by repeating
the implementationdetails describedin Sect.4.2. The simulations(hereafterreferredto as
GLERL) havebeenrun over the calibrationperiod 1994-2005,using asinput forcing the air
temperaturedataretrievedfrom the NDBC dataset(C-MAN station, seeTable1). The 8-,
6- and 4-parametewnersionsof the model have beentested,obtaining remarkableefficiency
indexeq £ > 0.95), which arehigherwith respecto the previousapplicationgi.e. usingNDBC
dataset). Validation procedurehas beenconductedwith referenceto the period 2006-2011,
confirming high performancesf the model (F > 0.97). The parametersetsproviding the
highest efficienciesduring the calibration period and the associatedE’ valuesare given in
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Tables2 and 3, while comparisorbetweensimulatedand observedsurfacewatertemperature
datafor the 8- and 4-parametewnersionsof the model are shown in Figs. 9 and 10 for the
calibrationandvalidationperiods respectivelyFinally, the seasonagvolution of § is shownin
Fig. 8b for both versionsof the model (dashedines), and it is comparedwith thoseobtained
from the application of the model to the NDBC dataset. Resultsare consistent,with the
slight differencein the onsetof summerstratificationbeingdue to the earlierincreaseof water
temperaturen the GLERL datasetomparedo the NDBC datase{seeFig. 8a).

5 Discussion

The physically-based, semi-empirical model presented has been shown to provide an ac-

curate description of surface water temperature of lakéh migh values of Nash-Sutcliffe

efficiency indext ~9:96;0.9, and a root-mean-square error between observations and simu

lations of the order of 1C (resultsnetpresentedhereseeTable 3). This error in prediction
capability is comparable to those obtainable usmg prebased numerical models (e 9. Fang
and Stefan, 1996; Stefan et al., 1998%

e#%qw%mgﬂghresmﬂﬂemfea%heﬂa{&whlch howevemavethestrongllmltatlon of requmng
high resolutionweatherdataandthe calibrationof numeroudnternalparameters.

The close agreemenbetweenmeasurementand model estimatesis further confirmedin
Figs. 11aand 11b, which illustrate the parity diagramsfor monthly-averagedurfacewater
temperatureduring the calibrationand validation periodsof GLERL simulation,respectively.
No systematiceviation(bias)is observedndthedispersioralongthediagonaldoesnot exhibit
significanttrends. Both thesecharacteristicare confirmedby the small valuesof MeanError
(M E) and Root Mean SquareError (RM SFE) listed in Table 3. Figuresllaand11b also
illustrate that the modelis able to adequatelydescribeinterannualfluctuations,asis indicated
by the rangeof variability of monthly-averagedemperaturesissociatedo the coldest(March,
blue dots)andwarmest(August, red dots) months. This evidenceis also confirmedby Figs. 9
and10, wherethe modelcoherentlyreproduceshe occurrenceof relatively colder (e.g. 2004)
andwarmer(e.g.1998)periods.
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So far, the model has been tested with long-term series af(@#2BC: 27 yr, and GLERL.:
18 yr), anywayhowever long-term records are often not available, or are charaegiby sig-
nificant gaps due to missing data. Instead, it is relativalyier to have access to mean annual
cycles of temperature (both of surface water and air), whilgdermination also represents a
valuable strategy to overcome the possible lack of data.reftiee, a conversion model that
could be calibrated on mean annual cycles, and successippljed over long-term periods
without compromising the correct estimation of the intengad fluctuations, would represent a
valuable tool. For this purpose, the mean annual cycle dasairnwater temperature has been
derived from GLERL data during the calibration period 192@d85, and the corresponding cy-
cle of air temperature from NDBC dataset (C-MAN station). Aifie Carlo sensitivity analysis
(hereafter referred to as GLER{y, the subscripiny staying for mean year) has been carried
out following the same procedure adopted in the previousoses; but using mean annual cycles
of air and water temperature as forcing and reference degpectively. In order to eliminate
the influence of initial conditions the temperature cyclasehbeen replicated for two years
with the first one used as a “warm-up”. Results obtained bytidg the parameters providing
the highest efficiency (see Table 2) are presented in Figvhh shows the hysteresis cycles
between air and surface water temperatures derived fronsureraents and model estimates
(8- and 4-parameter versions). A very high efficiency indEx<(1.0) is achieved, and both
versions of the model are able to satisfactorily capturesdasonal pattern of thermal hystere-
sis. Parameters set providing the highest efficiency duhiagalibration process with the mean
annual temperature data and the associatedlue are summarized Fable2-Tables2 and 3.

Afterwards, a validation procedure has been conducted tdEREmy during the period
2006-2011 (the same as GLERL simulations, thus results eaotnpared). Results are char-
acterized by remarkable efficiency indexés~ 0.97), only slightly lower than the values ob-
tained with the simulations presented in the previous @estilndeed, the model calibrated on
the mean year is able to well capture the interannual vditiebj producing remarkable results
not dissimilar from those shown in Fig. 10 (for this reasiogy are not presented here). Further-
more, parameters values are significantly similar to thddeined calibrating the model with
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the whole 12-yr series of data (GLERL simulation, see Tahle 2

Onn_the light of the results presented in this section, we a$sattthe model can be cali-
brated and adopted using data of different origin (measenésnat buoys and coastal stations,
satellite estimates) and nature (long-term series of datan annual cycle of temperature).
This conclusion is corroborated by the excellent resultg $hown here for the sake of brevity)
of the performance analysis (entirely comparable to theesgmted in the present paper) ob-
tained using different datasets: (a) air temperature frahfferent C-MAN station (the PILM4
— Passage Island), whose sensor is installed at a differght(B2 m) respect to the Stannard
Rock station (35 m), (b) air temperature data measured &30@4 — Marquette offshore buoy
station at only 4 m from the lake surface, and (c) water teatpes measured at a different
off shore buoy (the 45001 — Hancock). Furthermore, in alesagven if the calibration is
performed considering mean annual cycles of temperatueenbdel suitably captures the in-
terannual variations that are likely to occur. On the ba$itheseevideneeghis evidence,
we can assert thatprineiplesthis simple model may be used with differeait temperature
datasetsa-as input—As-a-mattereffact-and, unlike process-based models, it can be cal-
ibrated using anyatertemperaturaataset, independently of its physical representatigenes
(e.g. point measurements vs. spatlal averagéené—Therefore in prlnC|pIe air temperature
series provided bgeneral om GCMs and
RCMs can be used as weII In this regard the model is paanlgmnractlve for climate change
impact studies, since predictions of air temperature anallysmore reliableandavailablethan
other meteorological variables (e.g. Gleckler et al., 20@ased upon these considerations,
Piccolroaz (2013) exploited the same approdotreproducethe currentstatusandto predict
future modifications of surface water temperature of Laki&dSiberia).

6 Conclusions

In this work a simple, physically-based model has been deeel to estimate surface water
temperature from air temperature. In particular, we shat ¢tlur modeling framework is able
to reproduce the observed water temperature data withelihiitformation on external meteo-
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rological forcingoverlong time scalesrangingfrom monthly to interannual.

Starting from the zero-dimensional heat budget, we derévsunplified first-order differen-
tial equation for water temperature forced by a few termsasggnting the combined effects of
the seasonally varying externakmterms and the exchange terms explicitly dependent on the
difference between air and water temperatures. Assumingahsinusoidal cycles of the main
heat flux components8 parameters have been identified, which can be calibratesniporal
series of air and surface water temperature are availahtgh & calibration is supported by the
physical interpretation of the parameters, which provigesonable initial conditions for the
parameters ranges.

The relative importance of the model’'s parameters have bealnated by using the GLUE
methodology. Thanks to this analysis we were able to idemtifd neglect parameters that,
under different conditions, appears less significant inrtfuglel formulation leading to two
simplified versions retaining 6 and 4 parameters, respagtiv

The model has been applied to the case of Lake Superior (USAnada) with reference
to different types of datasets, and all the versions of thdehbave shown to perform well in
reproducing the measured water temperature data. Thislmasi@roved to be robust and able
to repreducewell-suitably simulate the lake’s response to meteorological forcing, including
ter-annadlinterannual variability, representation of the variability of the epihion thick-
ness, and the inverse startification process which typiaadturs in dimictic lakes.In our
view, Air2Water represents valuablealternativetool to correlationmodels,which requirethe
samedatain input asour modelbut arenot able to addresssomefundamentaprocessese.g.
the hysteresicycle betweenair and watertemperature).Furthermoreit can beusedin place
of full process-basethodelswhen meteorologicaldata are not sufficient for their effective
application. In principle, the simple modelpresentedereis likely to beeffectively appliedto
lakeswith different characteristicsalthoughsomeinconsistenciegould arise in thosecases
where the assumptionson which the model formulation has beenbased(see Appendix A)
areno longervalid (e.g. tropical lakescharacterizedy intenseevaporation basinsin which
the through-flowis consistentJakeslocatedin regionswherethe variability of meteorological
forcing is significantat sub-annuafrequency).
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In the light ofthethese results, the model can represent a valuable tool in climbadage
impact studies allowing for predictions of future trends$aide surface water temperature, given
future projections of air temperature only. Finally, it i®sh noting that if the model is cali-
brated using air temperature series from climate modetbdé&lor regional scale) and measured
records of water temperature (lake scale), a downscaliegatipn is implicitly implemented in
the conversion procedure (Piccolroaz, 2013).

Appendix A Simplified heat fluxes

Indicating with H the generic heat flux per unit surface [W ), defined as positive when it is
directed towards the considered layer, the net flux is asdesscounting for the following main
terms

Hnet= Hs+ Ha+ Hw + He+ Hc+ Hp+ Hj + Hy, (A1)

where Hs is the net short-wave radiative heat flux due to solar ramhafconsidering only the
incoming radiation that is actually absorbed)g is the net long-wave radiation emitted from
the atmosphere toward the lakéyy is the long-wave radiation emitted from the watgg is the
latent heat flux (due to evaporation/condensation prosgdde is the sensible heat flux (due to
convection),Hp is the heat flux due to precipitation onto the water surfatés the effect of the
throughflow of water by inlets and outlets, afg is the heat flux exchanged with deep water:
Figure 1 shows a schematic representation of the heat eyebat the epilimnion/atmosphere
and epilimnion/hypolimnion interfaces. All the comporent Eqg. (Al) are analyzed in detail
below to point out the main variables and physical paramsédtewlved in the heat exchange
process.

The incident short-wave solar radiation approximatelfofes a sinusoidal annual cycle.
Considering the short-wave reflectivitg (albedo), which is a function of the solar zenith angle
and of the lake surface conditions (e.g. water waves heitfteé)net solar radiatiofl/s reads

Hs=(1-—rs) [31 cos (M) + 83} ) (A2)
y 26
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wheret is time, ty is the duration of a year in the units of time considered inahalysis, and
s1, 82, s3 are coefficients that primarily depends on the latitude &edshadowing effects of
the local topography. The effects of cloud cover, which ddu¢ accounted for by means of
empirical relationships, are not explicitly consideredtia present analysis.

Long-wave radiation terms are calculated according to ta@B-Boltzmann law, yielding to
the following formulations

4
Ha=Laalmy HeyTe) (A%
wherergis the long wave reflectivity, generally assumed to have atemh values (Henderson-
Sellers, 1986)¢g and ey are the emissivities of atmosphere and lake surface, risglgco
is the Stefan—-Boltzmann constant (56208 Wm~2K~%), Tk =273.15K,T3 and Tiy are
the temperatures of air and water expressed in CelS0p The emissivityey is essentially
constant and close to unity, as water is nearly a black bodijlewg is more variable and
depends on several factors among which the most importardgiatemperature, humidity and
cloud cover (Imboden and Wiest, 1995).

Air and water temperatures can be decomposed into a referemoe representative of
the specific case stud{4 andTiy) and a fluctuationT4 andTyy). Hence, considering that

T4/ (T +Ta) andTy,/(Tk +Tw) are small parameters, the long-wave fluxes Egs. (A3) and (A4)
can be linearised using a Taylor expansion as

- =4 T3
Ha~¢éaqo (Tk +1a 1+44—— |, A5
(K ) ( TK+Ta> (A3)
Hw ~ —ewo (TK —|—m)4 1—|—4i_ , (A6)
Tk + 1w

whereég=(1—ra)ea. By choosingla=Tw =T (henceT4=Ta—T andTyy,=Tw —T), the
termsHg and Hyy can be easily combined to yield the following equation
€a— €W =\ |, fa— ew =
T T Tw—T)+Ta—Tw]|. A7
M (G +T) + B (T - T) 4 Ta-Tw . (A7
27

Ha+ Hw ~40éa (T +T)° -
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The sensible fic) and latent f{e) heat fluxes are calculated through bulk semi-empirical
relations that can be derived from turbulence theory (HssweSellers, 1986)

He=ac(fa=1w (A8

wherea, [Wm~2K~!] and o, [Wm~—2hPa '] are transfer functions primarily depending on
wind speed and other meteorological parametegss the vapor pressure in the atmosphere
andew is the water vapor saturation pressure at the water temyperétoth in [hPa]). The
ratio ./ is known as Bowen coefficient and is often taken to be congtaft61 hPaK')
(Imboden and Wiuest, 1995). The saturated water presguigea function of temperature, and
can be calculated through several empirical formulas, maeXfample the exponential law

bTw
= A10
ew=aexp (210, (A10
wherea =6.112 hPah=17.67 and:=243.5°C (Bolton, 1980).

In order to keep the formulation of the model as simple asipblessEqg. (A10) can be lin-

earized by Taylor series expansion around a reference tatnpewhichecanrbeassumedgual
toT

bT be =
ew = aexp (T—l—c) <1+W(TW—T)>. (All)

Finally, the heat exchange with deep wat&j can be formulated, as a first approximation,
as the combination of a constant contribution and a contdbudepending on the gradient
of temperature between surface and hypolimnetic water. si@ering that deep water has a
temperature that is approximately constant during the, ytearsecond component &f 5 is
essentially dependent on surface water temperabiyre The termH is usually small with
respect to the flux components exchanged with the atmospiwiieh have been described
above. Analogously, the contributidifp of precipitation onto the lake surface and the hat
exchanged with the inflows and the outflows are only rarelgiB@ant, thus are not explicitly
included in the balance. As a matter of fact, changes in satiemperature during rainy periods
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generally result from changes of the main terfhg, Hc and He, and Hj is only important in
lakes with high flushing rate (Imboden and Wuest, 1995).

Under these hypotheses, and adopting the heat flux term&lpbabove, the net heat flux
at the surface{pet introduced in Eq. (Al) can be suitably written as the comtiamaof the
linear and sinusoidal functions in Eq. (1), whegd: from 1 to 5) are coefficients resulting by
appropriately combining together the physical paramdtatappear in Egs. (A2)—-(A11).

By assuming the parameters inherently influenced by mdtapoal (e.g. wind cloudiness
and precipitatiopattera¥ and astronomical phenomena (ice, a.., a., eg) as the combination
of a mean (indicated by an overline) and a periodic (inditdig a prime) component, the
coefficientse; can be expressed as follows

c1~(1-Ts)s1+ f (rg, al, al, eg), Al2
S T frs a) - (a1%)
cs~ (1-Ts) s+ 0 (éa—ew) (Tk —&-T)3 (Tk —3T) —a. [Ea—GGXp <be > <1 - (Tj—c )QT> ) (A14)
c c
ci~doéa(T +T)° +ac, (A15)
— 3, _ bT bC
cs~4do (T +T) (€a— ew) — @eaexp <_ > — . (A16)

H-is-werth-nretingthata-A straightforward quantification of this set of coefficiengsniot
trivial. In fact, most of the physical parameters involvea bt have a single, unambiguous
value, but rather they span a range of values that dependsveretfactors that are difficult to
specify (e.g. cloud cover).

As a final remark, it is wortlteretenoting that the first term on the right hand side of
Eqg. (1) is a periodic term accounting for all seasonal pasteff meteorological variables other
than air temperature (e.g. wind speed, air humidity, cloesls, see the definition of). As
a first approximation, these components have been treatsidesidal functions having the
same frequency of the solar radiation (i.e. a period equah®year), but possibly different
amplitudes and phases. The sum of such a set of functionsiggedanother sinusoid having
the same frequency but different amplitude,and phases;,.
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Table 1. Summary of the datasets adopted in this study, and their staistics.

Source Variable Device Period Duration (cal + val) Freqyendlissing data -~Mean value{’] Std [°C]
NDBC Ty Offshore buoy 1985-2011 27 years (18 + 9) Hourly 46% 7.18 4.66
NDBC T, C-MAN station 1985-2011 27 years (18 +9) Hourly 9% 5.39 8.97
GLERL Ty Satellite 1994-2011 18 years (12 + 6) Daily 5% 6.52 5.26
Table 2. Estimated model parameters for NDBC, GLERL and GLERIsimulations, and their physical
range of variation.
npar. pi [°Cd '] po[-]  ps[°Cd '] pald']  ps[d']  ps[°C] pr[°C] ps[°C]
min 0.00 0.00 -0.12 0.00 -0.02 0 0 0
max 0.33 1.00 0.28 0.01 -0.00 15 15 0.5
NDBC

8 1.35x102 2.62x10°" 1.47x10° 6.18x10° -3.26x10*  3.08 14.41 0.31

6 1.56x102 2.83x10°' 1.23x10% 5.95x10% -2.36x10*  3.01 - -

4 - - 1.41x102 5.87x10% -2.23x103  2.77 - -

GLERL

8 1.75x102 4.67x10' 2.30x102 6.55x10°% -2.57x10°%  3.50 13.32 0.44

6 2.36x102 4.37x10! 1.93x102% 5.91x10°3 -2.16x10°  3.65 -

4 - - 2.57x102 9.63x103 -2.73x103®  3.54 - -

GLERL,,,

8 1.31x102 2.32x10°' 1.55x102 8.47x103 -1.09x10°  3.26 11.93 0.45

6 2.01x10%2 2.06x10' 1.49x10%2 9.69x103 -7.58x10*  3.75 - -

4 - - 2.77x10% 9.16x103 -2.87x10°  3.13 - -
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Table 3. Efficiency index §), Root Mean Square ErroRRM SE) and Mean Error ¥/ E) during cali-
bration and validation periods (NDBC, GLERL and GLER}.simulations).

calibration validation
npar. E[-] RMSE[°C] MEI[°C] E[-] RMSE[°C] ME/[°C]
NDBC (cal: 1985-2002; val: 2003-2011)
8 0.91 1.40 -0.07 0.90 1.71 -0.01
6 0.91 1.35 -0.09 0.90 1.71 -0.02
4 0.89 1.50 -0.25 0.89 1.77 -0.01
GLERL (cal: 1994-2005; val: 2006-2011)
8 0.95 1.17 -0.13 0.97 1.02 0.30
6 0.95 1.16 -0.07 0.97 1.01 0.33
4 0.95 1.21 -0.05 0.97 1.08 0.38
GLERL,,, (cal: mean year 1994-2005; val: 2006-2011)
8 0.99 0.48 0.06 0.97 1.07 0.23
6 0.99 0.43 0.01 0.97 0.98 0.15
4 0.99 0.47 0.03 0.97 1.11 0.29
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Fig. 1. Main heat exchange affecting the surface layer. For thergi®en of the single terms refer to
Appendix A.
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Fig. 2. Seasonal evolution of the dimensionless thicknesd the surface well-mixed layer for the
general case of a dimictic lake.
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Fig. 3. Lake Superior with the location of the NDBC stations (45084&rquette and STDM4 - Stannard
Rock) used in this work. The inset shows the location of lakpesior in North America.
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Fig. 4. Dotty plots of efficiency indexesK) for the 8-parameters model during the calibration period
1985-2002 (NDBC simulation). Highest efficiency is presenwith an orange dot.
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Fig. 5. Comparison between simulated and observed surface wateetature during the calibration
period 1985-2002 (NDBC simulation). Simulated curvesré&dehe full 8-parameter and the simplified
4-parameter models, respectively. Observed air temperdaia are also presented with cyan line.
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Fig. 6. Dotty plots of efficiency indexesK) for the 4-parameters model during the calibration period
1985-2002 (NDBC simulation). Highest efficiency is presenwith an orange dot.
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Fig. 7. Comparison between simulated and observed surface wat@etature during the validation
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period 2003-2011 (NDBC simulation). Simulated curvesré&dehe full 8-parameter and the simplified —

4-parameter models, respectively. Observed air temperdata are also presented with cyan line.
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period 1994-2005 (GLERL simulation). Simulated curvesréd the full 8-parameter and the simplified ——
4-parameter models, respectively. Observed air temperdata are also presented with cyan line.
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Fig. 10. Comparison between simulated and observed surface wateetature during the validation
period 2006-2011 (GLERL simulation). Simulated curvesréd the full 8-parameter and the simplified ——
4-parameter models, respectively. Observed air temperdata are also presented with cyan line.
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Fig. 11. Parity diagram for monthly-averaged surface water tentpesg8-parameters version of the
model): a) calibration and b) validation period of the GLE8&mulation. Blue dots refer to March, red
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Fig. 12. Comparison of the hysteresis cycles betweeity air and surface water temperatures, as derived
by the data and by the 8- and 4-parameters versions of thelmidgsteresis cycles refer to the mean

year, calculated over the period 1994-2005, using GLERLNDBC data forT,, andT,, respectively
(GLERL,,, simulation).
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