Hydrol. Earth Syst. Sci. Discuss., 10, C2809–C2810, 2013 www.hydrol-earth-syst-sci-discuss.net/10/C2809/2013/ © Author(s) 2013. This work is distributed under the Creative Commons Attribute 3.0 License.

Interactive Comment

Interactive comment on "Using the nonlinear aquifer storage–discharge relationship to simulate the baseflow of glacier and snowmelt dominated basins in Northwest China" by R. Gan and Y. Luo

R. Gan and Y. Luo

luoyi.cas@hotmail.com

Received and published: 25 June 2013

Dear editors and reviewer,

The comment is appreciated. Accordingly, we have revised the manuscript. Following is the reply to the comment.

Anonymous Referee # 2

Comment: Dear Authors, thank you for adding evaluation indices which can be better used to evaluate model performance in low flow periods. Now it becomes very clear, that the two-linear and the one-nonlinear approach perform much better than the one-

Printer-friendly Version

Interactive Discussion

Discussion Paper

linear approach during low-flow periods. The differences in the evaluation indices for the two-linear and the one-nonlinear approach are very small, and often even higher values are achieved for the two-nonlinear approach. Therefore, it is not justified to conclude that the one-nonlinear approach performs better than the two-linear approach.

Response: No, it is not justified to make such a conclusion. We would conclude that the two-linear and the one-nonlinear approaches give much better performance than the one-linear approach based on the evaluation indices in this case study. Meanwhile, the differences in the evaluation indices for the two-linear and the one-nonlinear approach are very small, and often even higher values are achieved for the two-linear approach. The one-nonlinear reservoir approach has some advantages over the two-linear reservoir approach in parameterization. The two-linear reservoir approach has five parameters which need to be calibrated within the model (Luo et al., 2012). However, the one-nonlinear approach has only two parameters. And these parameters can be calibrated independent of the model through using the low-flow record and the discharge recession equation as in Wittenberg (1999).

We revised the conclusion section according to the comment.

References:

Luo, Y., Arnold, J., Allen, P., and Chen, X.: Baseflow simulation using SWAT model in an inland river basin in Tianshan Mountain, Northwest China, Hydrol. Earth Syst. Sci., 16, 1259–1267, 2012.

Wittenberg, H.: Baseflow recession and recharge as nonlinear storage processes, Hydrol. Process., 13, 715–726, 1999.

Interactive comment on Hydrol. Earth Syst. Sci. Discuss., 10, 5535, 2013.

HESSD

10, C2809–C2810, 2013

Interactive Comment

Printer-friendly Version

Interactive Discussion

