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Abstract 10 

Proper specification of model parameters is critical to the performance of land surface models 11 

(LSMs). Due to high dimensionality and parameter interaction, estimating parameters of an LSM is 12 

a challenging task. Sensitivity analysis (SA) is a tool that can screen out the most influential 13 

parameters on model outputs. In this study, we conducted parameter screening for six output fluxes 14 

for Common Land Model: sensible heat, latent heat, upward longwave radiation, net radiation, soil 15 

temperature and soil moisture. A total of 40 adjustable parameters were considered. Five qualitative 16 

SA methods, including Local, Sum-of-trees, Multivariate adaptive regression splines, Delta test and 17 

Morris methods, were compared. The proper sampling design and sufficient sample size necessary 18 

to effectively screen out the sensitive parameters were examined. We found that there are 2-8 19 

sensitive parameters, depending on the output type, and about 400 samples are adequate to reliably 20 

identify the most sensitive parameters. We also employed a revised Sobol' sensitivity method to 21 
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quantify the importance of all parameters. The total effects of the parameters were used to assess the 22 

contribution of each parameter to the total variances of the model outputs. The results confirmed 23 

that global SA methods can generally identify the most sensitive parameters effectively, while local 24 

SA methods result in type I errors (i.e. sensitive parameters labeled as insensitive) or type II errors 25 

(i.e. insensitive parameters labeled as sensitive). Finally, we evaluated and confirmed the screening 26 

results for their consistency with the physical interpretation of the model parameters.  27 

 28 

Keywords: sensitivity analysis; parameter screening; land surface model; common land model 29 

 30 

1. Introduction 31 

Land surface model (LSM) is an integral component of any numerical weather prediction (NWP) 32 

and climate models. The ability of an LSM to represent the land surface processes accurately and 33 

reliably depends on several factors (Duan et al., 2006). The first factor is the authenticity of the 34 

model structure (e.g. the equations or parameterization schemes of the model). The second is the 35 

quality of external forcing data and the initial and boundary conditions. The third is the 36 

appropriateness of model parameter specification. How to estimate model parameters has received 37 

increasing attention from the hydrology and land surface modeling community over the recent years 38 

(Franks and Beven, 1997; Gupta et al., 1999; Duan et al., 2001; Duan et al., 2003; Jackson et al., 39 

2003; Liu et al., 2004; Hou et al., 2012). 40 

In traditional hydrological modeling, model parameters are often estimated through model 41 

calibration, i.e. a process of matching model simulation with observation by tuning model 42 

parameters. However, calibrating the parameters of complicated LSMs is a challenging task because 43 
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of high dimensionality and nonlinear parameter interaction. With water, energy and, in some cases, 44 

carbon and nitrogen cycles being considered concurrently, a typical LSM usually has a large number 45 

of adjustable parameters (from O(10) to O(100)) that govern the model equations. Typically 10
5
~10

6 
46 

or even more model runs are required to calibrate a high-dimensional (>10) model (Vrugt et al., 47 

2008; Deb et al., 2002). To compound the problem, running an LSM at a large spatiotemporal scale 48 

can be very time-consuming, making traditional parameter calibration methods (e.g. genetic 49 

algorithm (GA) (Goldberg, 1989) and shuffled complex evolution method (Duan et al., 1993)) 50 

impractical. 51 

For the reasons above, we need to reduce the dimensionality by identifying which parameters 52 

have the most influences on model performance. Sensitivity analysis (SA) is a family of methods 53 

that are designed to identify the most sensitive (namely, influential) parameters from the insensitive 54 

ones (Saltelli et al., 2004). A good SA method is able to screen out the most sensitive parameters in a 55 

relatively low number of model runs (Tong and Graziani, 2008). 56 

There are two types of SA methods: qualitative and quantitative. Qualitative methods provide a 57 

heuristic score to intuitively represent the relative sensitivity of parameters, while quantitative 58 

methods tell how sensitive the parameter is by computing the impact of the parameter on the total 59 

variance of model output. Qualitative methods usually need fewer model runs while quantitative 60 

methods require a large number of model runs. Therefore, for a specific problem, choosing which 61 

kind of SA methods is very important. In recent decades, there are several comparisons of different 62 

SA methods, of which seven examples are shown in Table 1. We can see that the researchers got 63 

different conclusions: some suggested the quantitative SA methods are more reliable, some held that 64 

the qualitative SA methods can get consistent results with the quantitative methods; others supposed 65 
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that applying multiple SA methods was expected to lead to more robust conclusions. The difference 66 

of those comparisons implies that more works are needed to answer how to choose the most 67 

appropriate SA method. 68 

SA methods have been applied to practical problems in many fields (Campolongo and Saltelli, 69 

1997; De Pauw et al., 2008; Yamwong and Achalakul, 2011). For hydrological and land surface 70 

models, Collins and Avissar (1994) employed the Fourier amplitude sensitivity test (FAST) to 71 

evaluate the parameter importance to the sensible heat and latent heat in LAID land surface scheme. 72 

Bastidas et al. (1999) proposed the Multi-Objective Generalized Sensitivity Analysis (MOGSA) 73 

method and screened out 18 sensitive parameters from a total of 25 parameters in BATS model. It 74 

was demonstrated that the degradation in the quality of the calibrated model performance is 75 

negligible if the insensitive parameters were not calibrated. Tang et al. (2007) applied local and 76 

global SA methods on the lumped Sacramento soil moisture accounting model (SAC-SMA). They 77 

aimed to identify sensitivity tools that will advance the understanding of lumped hydrologic models. 78 

The relative efficiency and effectiveness of several SA methods have been analyzed and compared. 79 

Hou et al. (2012) introduced an uncertainty quantification framework to analyze the sensitivity of 10 80 

hydrologic parameters in CLM4-SP with generalized linear model (GLM) method. They found that 81 

the simulation of sensible heat and latent heat is sensitive to subsurface runoff generation parameters. 82 

In the aforementioned work, many SA methods have shown their effectiveness in screening out 83 

important parameters. However, for large complex dynamic system models which are expensive to 84 

run, we need to be able to screen out important parameters with as fewer model runs as possible. 85 

Therefore, the goal of this study is to investigate the effectiveness and efficiency of different 86 

qualitative SA methods for parameter screening.     87 
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Several SA methods were used to evaluate the importance of 40 adjustable parameters in the 88 

Common Land Model (CoLM). The work has two objectives: (1) to test and compare different 89 

qualitative SA methods for separating sensitive parameters from insensitive ones; (2) to validate the 90 

screening results using a quantitative SA method. Towards these objectives, this study first screened 91 

out the sensitive parameters qualitatively with a small amount of samples, and then quantified the 92 

sensitivity of all parameters using a quantitative SA method. 93 

The paper is organized as follows. Section 2 presents a brief introduction of the qualitative SA 94 

methods for parameter screening and the quantitative SA method for computing the parameter 95 

importance. Section 3 introduces the model used, CoLM, and its adjustable parameters. The study 96 

area, the forcing and validation data, and the design of sensitivity study are also described. Section 4 97 

presents the results and discusses the performance of qualitative and quantitative SA methods. The 98 

physical interpretations of the screening results are also examined. Section 5 provides the 99 

conclusions. 100 

 101 

2. Methods 102 

This study employed five qualitative SA methods to do parameter screening: local method 103 

(Turanyi, 1990; Capaldo and Pandis, 1997), sum-of-trees (SOT) (Breiman, 2001; Chipman et al., 104 

2010), multivariate adaptive regression splines (MARS) (Friedman, 1991), delta test (DT) (Pi and 105 

Peterson, 1994) and Morris method (Morris, 1991). Moreover, to validate the parameter screening 106 

results obtained by qualitative methods, the revised Sobol' method (Sobol', 1993, 2001), was applied 107 

to compute the total effects of parameters. Below, we provide a brief description of these methods. 108 

For detailed descriptions, please refer to related literature. 109 
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2.1  Local method 110 

Local method is a derivative-based sensitivity method. The sensitivity of variable 𝑥𝑖 ∈ [𝑎𝑖, 𝑏𝑖] 111 

is computed as the normalized local sensitivity scaled by the variable range:  𝑠𝑖 =
1

(𝑏𝑖−𝑎𝑖)

𝜕𝑦

𝜕𝑥𝑖
│𝑥𝑖=𝛼𝑖

, 112 

where 𝑠𝑖 is the local sensitivity measure, 𝛼𝑖 is a value of  𝑥𝑖 at which the sensitivity is evaluated, 113 

𝑎𝑖and 𝑏𝑖 are the lower and upper bounds of 𝑥𝑖. The variable with a high 𝑠𝑖 value is considered to 114 

have a high impact on the model output. Obviously the value of  𝑠𝑖 is dependent on location 𝛼𝑖. 115 

2.2  Sum-of-trees (SOT) Method 116 

The SOT method is a tree-based method. A single regression tree model is a step function, 117 

which is obtained by recursively partitioning the data space and fitting a simple prediction model 118 

(generally, the average value) within each partition (Breiman et al., 1984). In the process of 119 

recursively partitioning, the variables are split to cause maximum decrease in impurity function 120 

(residual sum of squares) until the impurity function falls below a threshold. The SOT model uses a 121 

certain number of bootstrapped samples to build independent regression trees and averages them 122 

(Breiman, 2001). The total number of splits for each variable in the model stands for the importance 123 

of this variable, i.e. the variable with the most splits in the model is considered to be the most 124 

important one. 125 

2.3  Multivariate adaptive regression splines (MARS) method 126 

The MARS method (Friedman, 1991; Shahsavani et al., 2010) is an extension of regression tree 127 

method. After recursively partitioning the data space, it builds localized regression models 128 

(first-order linear or second-order nonlinear) instead of step functions. Therefore, this method can 129 

produce continuous models with continuous derivatives and has better fitting ability. This method 130 

includes a forward procedure and a backward procedure. The forward procedure builds an 131 
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over-fitted model by considering all variables, while the backward procedure prunes the over-fitted 132 

model by removing one variable at a time. For each model, a generalized cross-validation (GCV) 133 

score can be computed: 134 

𝐺𝐶𝑉(𝑀) =
1

𝑁

∑ (𝑌𝑖 − 𝑌̂)
2𝑁

𝑖=1

[1 −
𝐶(𝑀)
𝑁 ]

2                                                                       (1) 

where 𝐶(𝑀) = 1 + 𝑐(𝑀)𝑑  , N is the number of observations, d is the effective degrees of freedom, 135 

and 𝑐(𝑀) is a penalty for adding a basic function. 136 

To screen out the important variables, the increase in GCV values between the pruned model 137 

and the over-fitted model is considered as the importance measure of the removed variable 138 

(Steinberg et al., 1999). The larger the GCV increase, the more important is the removed variable. 139 

The MARS method is actually a surrogate-model method. Shahsavani et al. (2010) showed that 140 

MARS provides acceptable estimates of total sensitivity indices at a much lower cost than using 141 

only runs of the original model. 142 

2.4  Delta test (DT) method 143 

DT method is a variable selection method based on the nearest neighbor approach. Let 𝑌 =144 

𝐹(𝑿) = 𝐹(𝑋1,⋯ , 𝑋𝑚) + 𝜺 , where the noise  𝜺 = (𝜀1,⋯ , 𝜀𝑚) , 𝜀𝑖(𝑖 = 1,⋯ ,𝑚)  is independent 145 

identically distributed random variable with zero mean. The DT criterion of a variable subset 𝑆 ⊆146 

{𝑋1,⋯ , 𝑋𝑚}, 𝛿(𝑆), can be computed as: 147 

𝛿(𝑆) =
1

2𝑁
∑(𝑌𝑁𝑆(𝑖) − 𝑌𝑖)

2

𝑁

𝑖=1

                                                           (2) 

where 𝑁𝑆(𝑖) = arg𝑚𝑖𝑛𝑘≠𝑖 ‖𝑋
𝑖 − 𝑋𝑘‖

𝑆

2
 represents the nearest neighbors of the input point 𝑋𝑖, 𝑌𝑖 is 148 

the function value corresponding to 𝑋𝑖, and N is the sample size. 𝛿(𝑆) is an estimate of the 149 

variance of the residual (converges to the true residual in the limit 𝑁 → ∞) when only the variables 150 
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in S are selected for regression. It has been demonstrated that either adding the unrelated variables 151 

or omitting the related ones will increase the 𝛿 value (Eirola et al., 2008). Therefore, the variable 152 

subset S with the smallest DT criterion corresponds to the most important subset of variables, i.e., 153 

the most sensitive parameters. 154 

 For high dimensional problems, it is impractical to compute all possible combinations of 155 

variable subsets (e.g. for 40 variables, the total configuration of subsets is 2
40

-1). Therefore, to speed 156 

up the search for the variable subset with a minimum 𝛿(𝑆), search algorithms such as GA are often 157 

used (Guillen et al., 2008). Thus, the reliability of DT results depends on the effectiveness of the 158 

search algorithm applied. 159 

2.5  Morris method 160 

Morris method is a gradient-based SA method using an individually randomized Morris 161 

one-factor-at-a-time (MOAT) design (Morris, 1991). This study employed an enhanced Morris 162 

method (Campolongo et al., 2007). Consider a model with k independent inputs 𝑋𝑖 ( 𝑖 = 1,⋯ , 𝑘) 163 

whose ranges are normalized to [0, 1]. The experimentation region Ω is a discrete k-dimensional 164 

p-level grid. For a given value of point 𝑿𝟎 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑘), the elementary effect of variable 𝑋𝑗 is 165 

defined as 166 

𝑑𝑗 =
𝑓(𝑥1, ⋯ , 𝑥𝑗 +△,⋯ , 𝑥𝑘) − 𝑓(𝑥1,⋯ , 𝑥𝑗 , ⋯ , 𝑥𝑘)

∆
,                                     (3) 

where △ is a value in 1 𝑝 − 1⁄ ,⋯ , 𝑝 − 2 𝑝 − 1⁄ . The sampling strategy generates a random starting 167 

point for each trajectory and then completing it by perturbing one input variable by + △  or −△ at a 168 

time in a random order. At the end of process, a trajectory spanning k+1 points is evaluated to 169 

compute the elementary effects for all k input variables. After repeating this procedure r times to 170 

construct r trajectories of k+1 points in the input space, the total cost of the experiment is thus 171 
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r×(k+1). The mean  of |𝑑𝑗| , 𝜇𝑗 , and the standard deviation of 𝑑𝑗 , 𝜎𝑗 , can be construed as the 172 

sensitivity indices of input variable 𝑋𝑗:  173 

 𝜇𝑗 =∑|𝑑𝑗(𝑖)| 𝑟⁄

𝑟

𝑖=1

   , and 𝜎𝑗 = √∑(𝑑𝑗(𝑖) −
∑ 𝑑𝑗(𝑖)
𝑟
1

𝑟
)2 𝑟⁄

𝑟

𝑖=1

                                                  (4) 

where 𝜇𝑗 assesses the overall influence of  𝑋𝑗 on the output, while 𝜎𝑗 estimates the higher order 174 

effects (i.e. effects due to interactions) of  𝑋𝑗. 175 

 Because of its characteristics of small computational demands, Morris method has been widely 176 

applied. Herman et al. (2013) demonstrated that it was able to correctly identify sensitive and 177 

insensitive parameters for a highly parameterized, spatially distributed watershed model with 300 178 

times fewer model evaluations than the Sobol' method. 179 

 180 

2.6  Sobol' method 181 

Sobol' method (Sobol', 1993) is a quantitative SA method based on the variance decomposition 182 

theory, which decomposes the variance of the output as 𝑉 = ∑ 𝑉𝑖
𝑛
𝑖=1 + ∑ 𝑉𝑖𝑗1≤𝑖<𝑗≤𝑛 +⋯+ 𝑉1,2⋯,𝑛, 183 

where n denotes the total number of parameters. The Sobol' sensitivity index is defined as 𝑆𝑖1,⋯,𝑖𝑠 =184 

𝑉𝑖1,⋯,𝑖𝑠 𝑉⁄ , where 𝑉𝑖1,⋯,𝑖𝑠 denotes the variance corresponding to (𝑖1, ⋯ , 𝑖𝑠), the integer s is called the 185 

order or the dimension of the index. All the values of 𝑆𝑖1,⋯,𝑖𝑠 are nonnegative, and their sum is 186 

∑𝑆𝑖

𝑛

𝑖=1

+ ∑ 𝑆𝑖𝑗
1≤𝑖<𝑗≤𝑛

+⋯+ 𝑆1,2⋯,𝑛   =  1                                                            (5), 

where  𝑆𝑖 = 𝑉𝑖 𝑉⁄  is the main effect (first order effect) of the ith variable,  𝑆𝑖𝑗 = 𝑉𝑖𝑗 𝑉⁄  is the 187 

interaction effect (second order effect) of the ith and jth variables (Sobol', 2001). The total effect of 188 

the ith variable can be obtained by Eq. (6), where 𝑉−𝑖 is the variance without considering the i-th 189 

variable (Homma and Saltelli, 1996).  190 
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𝑆𝑇𝑖 = 1 −
𝑉−𝑖
𝑉
                                                                                             (6) 

The total effect reflects the variable’s contribution to the variance of model output. The values 191 

of those indices for important variables are generally much higher than those for unimportant ones. 192 

The Sobol' method can provide reliable quantitative sensitivity information of the input 193 

variables. However, for a high dimensional problem, it needs a large number of samples (10
4
 to 10

5
 194 

or more). For example, Rosolem et al. (2012) used 45,000 samples to the Sobol' sensitivity indices 195 

of 42 parameters in the Simple Biosphere 3 (SiB3) model. Zhang et al. (2013) used 60,000 model 196 

runs to study the sensitivities of 28 parameters in the Soil and Water Assessment Tool (SWAT) 197 

model through Sobol' method. If a small sample size is used, the estimates of the total effects vary 198 

greatly around the analytical values, and at times can take on unphysical negative values (Saltelli et 199 

al., 2000). To avoid unphysical variance values and to reduce the need for extremely large sample 200 

size, we carried out Sobol' analysis on the respond surface model instead of the original model. The 201 

respond surface model here is constructed by the MARS method, which has been introduced in 202 

section 2.3. The effectiveness of respond surface model based Sobol' method (RSMSobol) has been 203 

demonstrated by Storlie et al. (2009).  204 

To assess the importance of parameter P(i), we computed the relative values of the total effects 205 

of parameter P(i):  206 

𝐶(𝑖) = 𝑆𝑇𝑖 ∑𝑆𝑇𝑘

𝑛

𝑘=1

⁄                                                                (7) 

The cumulative importance of a subset of parameters, A, can be computed as  207 

𝐶̃(𝐴) =∑𝐶(𝑖)

𝐴

                                                                  (8) 

 208 
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3. Experimental setup 209 

3.1. CoLM and adjustable parameters 210 

CoLM (Dai et al., 2003) is a widely used land surface model. It combines the advantages of 211 

three existing land surface models: Land Surface Model (LSM) (Bonan, 1995), 212 

Biosphere-atmosphere transfer scheme (BATS) (Dickinson et al., 1993) and Institute of Atmospheric 213 

Physics land-surface model (IAP94) (Dai and Zeng, 1997). In recent years, it has incorporated 214 

different physical processes such as glacier, lake, wetland and dynamic vegetation. It has also been 215 

successfully implemented in several global atmospheric models (Yuan and Liang, 2010). 216 

CoLM considers the biophysical, biochemical, ecological and hydrological processes. The 217 

energy and water transmission among soil, vegetation, snow and atmosphere is well described. The 218 

model contains one vegetation layer, 10 unevenly distributed vertical soil layers, and up to five snow 219 

layers (depending on the snow depth). The parameterization scheme of soil thermal and hydraulic 220 

properties are derived from Farouki (1986), Clapp et al. (1978) and Cosby et al. (1984). The 221 

parameterization scheme of snow is synthesized from Anderson (1976), Jordan (1991) and Dai et al. 222 

(1997). 223 

In this study, forty of time-invariant coefficients and exponents in CoLM, known as model 224 

parameters, are chosen as parameters that can be adjusted according to local conditions. Their 225 

physical meanings and value ranges are shown in Table 2. The adjustable parameters can be 226 

classified into three categories: canopy, soil and snow. The default parameters of canopy depend on 227 

the vegetation type in the 24-category (USGS) vegetation dataset. Soil parameters depend on the 228 

soil texture in 17-category (FAO-STATSGO) soil dataset. Snow parameters depend on the snow 229 

depth. In this paper, the parameter ranges are the lower and upper bounds among all the possible 230 
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types of canopy, soil and snow types (Ji and Dai, 2010). Note that the initial parameter ranges may 231 

have significant influence to the result of sensitivity analysis. For example, y = (a
2
+b)x where the 232 

range of input ‘x’ and parameter ‘b’ are both [0,1]. Obviously, parameter ‘a’ is sensitive when the 233 

absolute value of ‘a’ is very large and insensitive when ‘a’ is close to zero. The initial parameter 234 

ranges must be carefully selected and the analysis result may be valid only for these ranges. For 235 

convenience, these parameters are indexed from P1 to P40.  236 

This study screens sensitive parameters for six land surface fluxes: sensible heat, latent heat, 237 

upward longwave radiation, net radiation, soil temperature and soil moisture. The objective function 238 

is the root-mean squared error normalized by the geometric mean (Parada et al., 2003):  239 

𝑅𝑀𝑆𝐸𝑖 =
√∑ (𝑦𝑖,𝑗

𝑠𝑖𝑚 − 𝑦𝑖,𝑗
𝑜𝑏𝑠)

2𝑁
𝑗=1

√∑ (𝑦𝑖,𝑗
𝑜𝑏𝑠)

2𝑁
𝑗=1

                                                                      (9) 

where N is the number of observations, j indexes the time step, 𝑦𝑖,𝑗
𝑠𝑖𝑚 and 𝑦𝑖,𝑗

𝑜𝑏𝑠 are the simulated 240 

and observed values, i ranges from one to six standing for different flux types, respectively. All the 241 

objective functions and their descriptions are shown in Table 3. Objective function represents the 242 

performance of simulation, so a smaller RMSE means a better performance. 243 

 244 

3.2. Study area and datasets 245 

The Heihe river basin, the second largest inland river basin in the arid region of northwest 246 

China, is located between 96°42'-102°00'E and 37°41'-42°42'N, and covers an area of approximately 247 

130,000 km
2
. The Heihe river basin, whose altitude varies approximately from 0 to 5500m, is 248 

covered by a variety of land use types, including desert, farmland, forest, grassland, snow cap, etc. 249 

Therefore, it is an ideal region for the study of LSM. In this paper, A'rou observation station, which 250 
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is located at the upstream of Heihe river basin, is chosen for the study area. The results of SA 251 

methods inter-comparison will be helpful for following up researches of the whole region. The 252 

geographic coordinate of A’rou is 100°28'E, 30°08'N (see Fig. 1), the altitude is 3032.8m above sea 253 

level. It belongs to the typical continental climate. The underlying surface type is alpine steppe.  254 

The forcing data and validation data is shown in Table 4. The forcing data of CoLM includes 255 

downward shortwave and longwave radiation, precipitation, air temperature, relative humidity, air 256 

pressure and wind speed (Hu et al., 2008). The validation data contains observations of six fluxes. 257 

These six fluxes are all important physical quantities between land surface and atmosphere. The soil 258 

temperature and moisture data are available at the depth of 10cm, 20cm, 40cm and 80cm, while the 259 

soil column in CoLM is divided into 10 layers (the depths are shown in Table 5). We used the linear 260 

interpolation method to get soil temperature and moisture at the observed depths.  261 

The data for year 2008 was used to spin up CoLM. Model simulations from 1 January 2009 to 262 

31 December 2009 with a 3-h time step are used to evaluate model parameter sensitivity. 263 

 264 

3.3. Design of sensitivity study 265 

This study used a newly developed software package named Problem Solving environment for 266 

Uncertainty Analysis and Design Exploration (PSUADE) (Tong, 2005) for all SA analyses. 267 

PSUADE implements various uncertainty quantification (UQ) tools such as design of experiments, 268 

sampling methods, qualitative and quantitative sensitivity analysis, response surface, uncertainty 269 

assessment, and numerical optimization. 270 

 We conducted the SA study in two stages: qualitative parameter screening and quantitative 271 

validation. In the first stage, the study investigates the proper sampling designs and sample sizes for 272 
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different qualitative SA methods. Once the proper sampling design and sample size are determined 273 

for each qualitative method, the most sensitive parameters that control each of the six flux 274 

simulations are identified. In the second stage, the quantitative method, RSMSobol, is used to 275 

validate the parameter screening results from the first stage based on the contributions of screened 276 

parameters to the total variances of model outputs. The parameter screening results are also checked 277 

for their consistency with the parameters’ physical interpretations. 278 

 279 

4. Results and discussion 280 

4.1. Qualitative parameter screening 281 

4.1.1. Sampling methods and sample sizes 282 

We tested and compared different sampling methods and sample sizes (see Table 6). For SOT, 283 

MARS and DT, three sampling methods were evaluated: Monte Carlo (MC) (Hastings, 1970), Latin 284 

Hypercube (LH) (McKay et al., 1979) and LPTAU (quasi random sequences) (Statnikow and 285 

Matusov, 2002). For each sampling method, different sample sizes, 200, 400 and 1000 (i.e. 5, 10 and 286 

25 times of the number of parameters, respectively), were investigated. Morris method has its own 287 

sampling method. The sample size of Morris method is generally set as a multiple of n+1, where n is 288 

the number of parameters. So this study tested three sample sizes: 205, 410 and 1025 for Morris 289 

method. 290 

Take the results of SOT for example, which examines parameters most sensitive to sensible heat 291 

flux. The SOT sensitivity scores of 40 parameters given by different sampling designs are shown in 292 

Fig. 2. The numbers along each circle represent different parameters, with the length of the needles, 293 

which range from 0 to 100, indicating the relative sensitivities of different parameters. 294 
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From Fig. 2, we can see the most important parameters based on SOT method. With 1000 295 

samples, all sampling methods identified the same sensitive parameters: P36, P6, P30, P2, P34 and 296 

P17. When the sample size is reduced to 400, for LH and LPTAU, the results are similar to those at 297 

1000 samples, suggesting that a sample size of 400 is adequate for identifying the most sensitive 298 

parameters. With 400 samples, SOT based on MC sampling method can still screen out the same 299 

parameters, but the medium sensitive parameters: P2, P34 and P17, are not as clearly identified. 300 

With 200 samples, even though SOT using all the three sampling methods can still find all sensitive 301 

parameters, the relative sensitivities of the medium sensitive parameters are too small to be seen 302 

clearly (e.g. P17). This suggests that 200 samples may not be enough for SOT method. Thus, LH 303 

and LPTAU are considered to be better sampling designs for SOT, and 400 samples are enough for 304 

these sampling designs. 305 

Similarly, Figs. 3-5 show the results of MARS, DT and Morris methods. We have the following 306 

observations: (1) for MARS method, the results based on MC, LH and LPTAU are nearly the same, 307 

400 samples are enough for all sampling methods; (2) LH is more suitable for DT, 400 samples are 308 

enough; (3) for Morris method, 410 samples are enough. 309 

Based on above results, it seems clear that 10 times of the number of parameters are 310 

approximately enough for qualitative SA methods to screen 40 parameters of CoLM. In the 311 

following study, LH is chosen for SOT, LPTAU is chosen for MARS, and LH is chosen for DT. The 312 

sample size is set to 400 for these three designs. For Morris method, the sample size is set to 410. 313 

 314 

4.1.2. Intercomparison of qualitative SA methods  315 

The parameter screening results by all qualitative SA methods for all fluxes are summarized in 316 
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Figs. 6-11. The sensitivity scores of 40 parameters are normalized to [0, 1]. The most sensitive 317 

parameters get a score of 1, while the least sensitive ones get a 0 score. The vertical axis in these 318 

figures denotes different SA methods and the horizontal axis denotes the 40 parameters. The grey 319 

scale of each grid indicates the sensitivity level of each parameter by each SA method. In Fig. 6, for 320 

example, the dark grey color for P6 and P36 indicates that they are the most sensitive parameters for 321 

sensible heat flux. 322 

From these figures we have three interesting findings. First, for each land surface flux, the 323 

number of sensitive parameters appears to be less than 10. For latent heat and sensible heat fluxes, 324 

there are more sensitive parameters as compared to other fluxes, which have only 2-3 sensitive 325 

parameters. Second, the results of SOT, MARS and Morris methods are consistent with each other 326 

except for the case of latent heat. For latent heat, the number of sensitive parameters is relatively 327 

larger than that of other fluxes (this is confirmed in the following quantitative SA). SOT, MARS and 328 

Morris methods got similar results for the most sensitive parameters, but there are some 329 

discrepancies in indentifying the medium sensitive parameters for latent heat. Third, the results of 330 

Local method and DT appear very different from that of other methods. Local method often takes 331 

sensitive parameters as insensitive ones (type I error, e.g. P3 for soil moisture) or the insensitive 332 

parameters as sensitive ones (type II error, e.g. P20 and P27 for sensible heat). The possible reason 333 

is that the local behavior near one specific parameter set is different from the global behavior. The 334 

most sensitive parameters given by DT are similar with other methods, but results for medium 335 

sensitive parameters are significantly different, especially when there are a large number of sensitive 336 

parameters (e.g. in the cases of sensible heat and latent heat). We suspected that the GA used in DT 337 

failed to find the optimal parameter subset in those cases.  338 
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 339 

4.2. Validation of parameter screening results 340 

The qualitative SA methods identified the most sensitive parameters for different fluxes data, as 341 

shown in the previous section. Here we use RSMSobol method to confirm if these findings are 342 

reasonable. The total effect is computed by RSMSobol using 2000 samples to assess the importance 343 

of each parameter. The results are shown in Fig. 12, in which each slice of the pie chart indicating 344 

the relative importance of the parameter, as computed by Eq. (7). The RSMSobol results obtained 345 

are deemed as reliable since the training and testing errors of the respond surface are below 2.5%.  346 

The training error is computed by the training samples which are used to construct the respond 347 

surface, while the testing error is computed by the other samples. We note from Fig. 12 that the 348 

number of important parameters for each flux is indeed less than 10 (i.e. 2-8). This confirms that the 349 

results of qualitative SA methods are reasonable. 350 

Table 7 shows the cumulative importance of the 10 most sensitive parameters selected by 351 

different qualitative SA methods, as computed according Eq. (8). The SA method is regarded as 352 

effective if the cumulative importance of the 10 most sensitive parameters is close to 100%. 353 

Obviously, Local method is ineffective in screening the important parameters for sensible heat 354 

(79.74%), latent heat (57.98%), upward longwave radiation (51.57%) and net radiation (85.71%); 355 

while the other methods are effective because the cumulative importance of the 10 most sensitive 356 

parameters are close to 100%. Furthermore, to confirm the effectiveness of global SA methods, Fig. 357 

13 showed the cumulative importance of the top 10 sensitive parameters screened by different SA 358 

methods. According to Fig. 13, the SOT,MARS and Morris methods performed well for all the land 359 

surface fluxes as their cumulative importance curves are always higher than others. 360 
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DT is prone to selecting more parameters than other methods (commiting type II error) and does 361 

not distinguish the medium sensitive from highly sensitive parameters. But the result of validation 362 

shows that the most sensitive parameters selected by DT are nearly the same to that given by the 363 

other global methods, even though the medium sensitive parameters may differ the ones identified 364 

by other SA methods. This suggests that type II error that may have committed by DT is not as 365 

damaging as type I error, as in the case of local method.  366 

In summary, global SA methods, SOT, MARS, DT and Morris methods, are effective to screen 367 

the most sensitive parameters reliably with only 400 samples for a 40-parameters problem, even 368 

though DT may commit type II error. Local gradient SA is helpful if when we are interested in 369 

particular events or special parameter set, but it might give misleading result when we care about the 370 

global behavior.  371 

 372 

4.3. The consistency of the screening results and physical interpretations 373 

In previous sections, we used five different qualitative SA methods to identify the most 374 

sensitive parameters for all flux types. The quantitative RSMSobol method confirms that the 375 

qualitative SA results are reasonable. Here we try to explain the SA results based on physical 376 

interpretations of the screened parameters. 377 

P6 and P3 are shown to be the most important parameters for soil moisture (see Fig. 11 and Fig. 378 

12). From Clapp et al. (1978), P6 (Clapp and Hornberger “b” parameter) is the exponent of wetness 379 

in the formulas for soil hydraulic conductivity and water potential, and P3 (porosity) is a part of 380 

denominator in the formulas to compute the wetness. A small perturbation in these values would 381 

result in much change to soil moisture. Therefore these two parameters are sensitive for soil 382 
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moisture. It should be mentioned that P2 (saturated hydraulic conductivity) and P4 (minimum soil 383 

suction) will also affect the simulation of soil moisture (see Fig. 11). But they are not as sensitive as 384 

P6 and P3, which have exponential relationship with soil moisture.  385 

Besides soil moisture, P6 is also important for other land surface fluxes (see Fig. 12). This is 386 

because soil moisture is an important model output which is tied to the sensible heat flux, latent heat 387 

flux and radiant fluxes (Henderson-Sellers, 1996). A parameter which exerts great influence on soil 388 

moisture should have a big impact on related fluxes. This finding is also consistent with Lettenmaier 389 

et al. (1996). 390 

P36 (aerodynamic roughness length) is another important parameter for sensible heat, latent 391 

heat, upward longwave radiation, net radiation and soil temperature (see Fig. 12). Through the 392 

influence to friction velocity, P36 affects the magnitude of the aerodynamic resistance and the 393 

near-surface drag force for the simulation of sensible heat, latent heat, and radiant fluxes, and then 394 

indirectly affects the soil temperature (Dorman and Sellers, 1989). P17 (the inverse of square root of 395 

leaf dimension), P30 (longwave reflectance of living leaf) and P34 (longwave transmittance of 396 

living leaf) are sensitive to the simulation of surface temperature and air temperature. Accordingly 397 

they are important for sensible heat and net radiation. The sensitivity of other parameters, including 398 

P18 (quantum efficiency of vegetation photosynthesis) and P4 (minimum soil suction), to latent heat 399 

can be explained by their influence on evapotranspiration. 400 

But not all the parameters in the screening results can be explained based on physical 401 

interpretations (e.g. P12 in screening result for latent heat). Possible reasons are: (1) due to the 402 

limitation of the SA methods and the sample sizes, the insensitive parameters might be regarded as 403 

sensitive ones; (2) due to the authenticity of the model structure, the physical processes might not be 404 
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described perfectly; (3) due to local conditions or a lack of appropriate observations for sensitivity 405 

evaluation (e.g. saturated hydraulic conductivity P2 not sensitive because there is no runoff 406 

observations); (4) input uncertainty caused by observation error may have non-ignorable influence 407 

to the sensitivity analysis; (5) screening the sensitive parameters for a complex model may be a 408 

non-uniqueness issues. 409 

 410 

5. Conclusions 411 

In this study, we first identified the most sensitive parameters for sensible heat, latent heat, 412 

upward longwave radiation, net radiation, soil temperature and soil moisture using five different 413 

qualitative SA methods. We investigated the proper sampling design and sample size necessary for 414 

screening the parameters effectively. Based on the SA results, there are 2-8 parameters that are 415 

deemed as most sensitive in CoLM, depending on the flux type. We employed a quantitative SA 416 

method to confirm the screening results. The results of quantitative method are consistent with those 417 

of qualitative methods. Moreover, the screening results are generally consistent with the physical 418 

interpretations of the model parameters. 419 

By using meteorological and land surface observation data in A’rou, Heihe of Northwest China, 420 

this study demonstrates the feasibility of employing different qualitative global SA methods to find 421 

the most important parameters in a complex model, which is similar with Massmann and Holzmann 422 

(2012). Though different methods are compared, we confirmed that global SA methods are more 423 

suitable for complex models to screen out the most sensitive parameters from the insensitive ones. 424 

Because there exist some differences among the rank of screened parameters given by different SA 425 

methods, we suggest that multiple SA methods should be applied for a complex problem, which is 426 
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also supported by Neumann (2012). 427 

For a 40-parameter CoLM, we were able to screen out the most important parameters using only 428 

about 400 samples, which is similar with Confalonieri et al. (2010). The kind of parameter screening 429 

approach studied here should be applicable to other complicated models. However, caution must be 430 

exercised in interpreting these results. The parameters identified in this study were obtained with 431 

data of limited length and at a single site with particular geographical conditions. Results from a 432 

different location or a different condition can be quite different from the ones shown in this study. 433 

The screened parameters are also tied to available land surface fluxes used in the study. Parameters 434 

such as saturated hydraulic conductivity (P2) were not considered as important parameters because 435 

we did not examine parameter sensitivity to runoff generation. To truly understand the parameter 436 

sensitivity for CoLM, we need to conduct a more comprehensive SA study by including more 437 

geographical locations, more observation data types and longer data sets. In future research, 438 

parameter screening of CoLM will be extended to regional and even global scale by using more 439 

available data.  440 

Even though we identified the most important parameters for CoLM, we did not perform model 441 

calibration to obtain the most appropriate estimates for these parameters. Model calibration for 442 

complex multi-flux, high-dimensional LSMs such as CoLM can be extremely complicated. To do 443 

model calibration in such cases, future studies must explore more mathematical tools including 444 

surrogate modeling approach to save computational resources, multi-objective optimization strategy 445 

for model calibration of multi-physics models. 446 
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Table 1. The comparisons of different SA methods. 
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Table 2. Adjustable parameters and their ranges. 

Index Parameter Physical meaning Category  Unit Range 

P1 dewmx maximum ponding of leaf area canopy  - [0.05, 0.15] 

P2 hksati saturated hydraulic conductivity soil  mm/s [0.001, 1] 

P3 porsl Porosity, Fraction of soil that is voids soil  - [0.25, 0.75] 

P4 phi0 minimum soil suction soil  mm [50, 500] 

P5 wtfact fraction of shallow groundwater area soil  - [0.15, 0.45] 

P6 bsw Clapp and Hornberger "b" parameter soil  - [2.5, 7.5] 

P7 wimp a factor for controlling whether water is impermeable soil  - [0.01, 0.1] 

P8 zlnd roughness length for soil surface soil  m [0.005, 0.015] 

P9 pondmx maximum ponding depth for soil surface  soil  mm [5, 15] 

P10 csoilc drag coefficient for soil under canopy soil  - [0.002, 0.006] 

P11 zsno roughness length for snow snow  - [0.0012, 0.0036] 

P12 capr tuning factor of soil surface temperature soil  - [0.17, 0.51] 

P13 cnfac Crank Nicholson factor canopy  - [0.25, 0.5] 

P14 slti slope of low temperature inhibition function canopy  - [0.1, 0.3] 

P15 hlti 1/2 point of low temperature inhibition function canopy  - [278, 288] 

P16 shti slope of high temperature inhibition function canopy  - [0.15, 0.45] 

P17 sqrtdi the inverse of square root of leaf dimension canopy  - [2.5, 7.5] 

P18 effcon quantum efficiency of vegetation photosynthesis canopy  molCO2/molqua

nta 

[0.035, 0.35] 

P19 vmax25 maximum carboxylation rate at 25℃ canopy  - [10e-06, 

200e-06] 

P20 hhti 1/2 point of high temperature inhibition function canopy  - [305, 315] 

P21 trda temperature coefficient of conductance-photosynthesis model canopy  - [0.65,1.95] 

P22 trdm temperature coefficient of conductance-photosynthesis model canopy  - [300, 350] 

P23 trop temperature coefficient of conductance-photosynthesis model canopy  - [250, 300] 

P24 gradm slope of conductance-photosynthesis model canopy  - [4, 9] 

P25 binter intercept of conductance-photosynthesis model canopy  - [0.125, 0.375] 

P26 extkn coefficient of leaf nitrogen allocation canopy  - [0.5, 0.75] 

P27 chil leaf angle distribution factor canopy  - [-0.3, 0.1] 

P28 ref(1,1) shortwave reflectance of living leaf canopy  - [0.07, 0.105] 

P29 ref(1,2) shortwave reflectance of dead leaf canopy  - [0.16, 0.36] 

P30 ref(2,1) longwave reflectance of living leaf canopy  - [0.35, 0.58] 

P31 ref(2,2) longwave reflectance of dead leaf canopy  - [0.39, 0.58] 

P32 tran(1,1) shortwave transmittance of living leaf canopy  - [0.04, 0.08] 

P33 tran(1,2) shortwave transmittance of dead leaf canopy  - [0.1, 0.3] 

P34 tran(2,1) longwave transmittance of living leaf canopy  - [0.1, 0.3] 

P35 tran(2,2) longwave transmittance of dead leaf canopy  - [0.3, 0.5] 

P36 z0m aerodynamic roughness length canopy  m [0.05, 0.3] 

P37 ssi irreducible water saturation of snow snow  - [0.03, 0.04] 

P38 smpmax wilting point potential canopy  mm [-2.e5, -1.e5] 

P39 smpmin restriction for min of soil potential soil  mm [-1.e8, -9.e7] 

P40 trsmx0 maximum transpiration for vegetation canopy  mm/s [1.e-4, 100. e-4] 
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Table 3. The objective functions. 

Objective function Description 

      sensible heat 

      latent heat 

      upward longwave radiation 

      net radiation 

      soil temperature (average of 4 layers) 

      soil moisture (average of 4 layers) 
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Table 4. The forcing data and validation data taken from A'rou observation station. 

Forcing data Downward 

shortwave 

Downward 

longwave 

Precipitation Air temperature 

(2m) 

Relative 

humidity (2m) 

Air 

pressure 

Wind 

speed (10m) 

Unit   𝑚2   𝑚2 mm ℃ ％ hpa m/s 

Time period 1/1/2008 to 12/31/2009 

Time step 0.5h 0.5h 1h 0.5h 0.5h 1h 0.5h 

Validation 

data 

Sensible 

heat 

Latent 

heat 

Upward 

longwave 

Net radiation Soil 

temperature 

Soil 

moisture 

 

Unit   𝑚2   𝑚2   𝑚2   𝑚2 ℃  𝑚  𝑐𝑚   

Time period 11 Jun 2008 to 31 Dec 2009 1 Jun 2008 to 31 Dec 2009 1 Jan 2008 to 31 Dec 2009  

Time step 0.5h 0.5h 10min 10min 0.5h 0.5h  

Note: The soil temperature and moisture data contain the data of 10cm, 20cm, 40cm, 80cm and 120cm, respectively. 
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Table 5. The depth of each layer. 

layer  1 2 3 4 5 6 7 8 9 10 

depth(cm) 0.71 2.79 6.23 11.89 21.22 36.61 61.98 103.80 172.76 286.46 
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Table 6. The experiment designs to confirm the proper sampling methods and sample size for SA methods.    

SA methods SOT MARS DT Morris 

Sampling methods MC, LH, LPTAU MOAT 

Sample sizes 200, 400, 1000 205, 410, 1025 
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Table 7. The cumulative importace of the 10 most sensitive parameters screened by different qualitative SA 

methods. 

SA 

method 

Sensible 

heat 

Latent 

 heat 

Upward 

longwave 

Net radiation Soil 

temperature 

Soil moisture 

Local 79.74% 70.86% 51.57% 85.71% 96.15% 98.00% 

SOT 98.86% 87.24% 98.69% 98.66% 97.49% 99.71% 

MARS 99.15% 84.33% 99.82% 99.96% 97.93% 99.98% 

DT 96.86% 85.80% 98.67% 99.12% 95.09% 99.73% 

Morris 99.06% 82.99% 99.68% 99.51% 98.70% 99.93% 
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Figure 1. The location of study area. 
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Figure 2. The sensitivity score of sensible heat given by SOT. The length of needles, which range from 0 to 100, 

represents the sensitivity score of each parameter. 
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Figure 3. The sensitivity score of sensible heat given by MARS. The length of needles represents the sensitivity 

score. 
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Figure 4. The sensitivity score of sensible heat given by DT. The length of needles represents the sensitivity score. 
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Figure 5. The sensitivity score of sensible heat given by Morris method. The length of needles represents the 

sensitivity score. 

  633 



43 
 

 

Figure 6. The qualitative sensitivity analysis results of different methods for sensible heat. The sensitivity scores 

are normalized to [0, 1].1 means most sensitive and 0 means least sensitive. 
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Figure 7. The qualitative sensitivity analysis results of different methods for latent heat. The sensitivity scores are 

normalized to [0, 1].1 means most sensitive and 0 means least sensitive. 
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Figure 8. The qualitative sensitivity analysis results of different methods for upward longwave radiation. The 

sensitivity scores are normalized to [0, 1].1 means most sensitive and 0 means least sensitive. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



46 
 

 

Figure 9. The qualitative sensitivity analysis results of different methods for net radiation. The sensitivity scores 

are normalized to [0, 1].1 means most sensitive and 0 means least sensitive. 
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Figure 10. The qualitative sensitivity analysis results of different methods for soil temperature. The sensitivity 

scores are normalized to [0, 1].1 means most sensitive and 0 means least sensitive. 
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Figure 11. The qualitative sensitivity analysis results of different methods for soil moisture. The sensitivity scores 

are normalized to [0, 1].1 means most sensitive and 0 means least sensitive. 
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Figure 12. The relative importance of parameters obtained by RSMSobol' total effect analysis. 
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Figure 13. The relationship between the number of screened parameters and cumulated relative importance for 

different sensitivity analysis methods.  
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