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Abstract

This paper assesses the detectability of changegolval streamflow. First, a statistical
detection method is applied to observed (no missia which represent 42% of global
dischargg and reconstructed (gaps are filled in order tcec@vlarger areand about 60% of
global discharge streamflow. Observations show no change over 1i988-1992 period.
Further, extension to 2004 over the same catcharesis using reconstructed data does not
provide evidence of a significant change. Convegrsal significant change is found in
reconstructed streamflow when a larger area isideresd. These results suggest that changes
in global streamflow are still unclear. Next, chasagn streamflow as simulated by models
from Coupled Model Intercomparison Project 5 (CMIRSing the historical and future RCP
8.5 scenario are investigated. Most CMIP5 modedsfaund to simulate the climatological
streamflow reasonably well, except over South Aogerand Africa. Change becomes

significant between 2016 and 2040 for all but threslels.
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|. Introduction

Human influence has now been documented in separ&d of the water cycle: atmospheric
water vapour [e.g. Willett et al., 2007; Santemakt 2007], land precipitation [e.g. Zhang et
al., 2007], or land evapotranspiration [e.g. Ddevdt al., 2012]. The case of runoff or river
discharge is more contrasted. While some stutimsghtto have identified robust trends over
some specific regions [e.g. Stahl et al., 2010 @&weope, Krakauer and Fung, 2008 over the
US], other studies focused on the global scale hesteto somewhat contradictory results.
Based on 221 rivers, corresponding to 40% of glabalinental runoff, Labat et al. [2004]
documented an increasing global runoff at the ehdhe 20th century compared to the
beginning. In contrast, based on data from 925sjweorresponding to 80% of global runoff,
Dai et al. [2009] show a slight decrease in glababff over the second half of 20th century.
This discrepancy can be explained by the differemgtiner in the number glaugingstations
used, in the period of investigation, or in the moek used to fill the gaps. Indeed, both studies
were using some reconstructions (meaning gap djllim order to provide a more

comprehensive spatio-temporal coverage.

Over the last few years, several studies have pteimto explain the supposed observed
global runoff trend, sometimes based on Land Sarfdodels (LSMs). Labat et al. [2004]
were the first to relate the supposed positive ffumend to global warming. They pinpointed
a positive feedback between warming, an increasec@an evaporation and an increase in
continental precipitation. This assumption was thentradicted by many other studies. For
example, using MOSES LSM, Gedney et al. [2006] &xeld this positive trend by the

decrease in transpiration as a result of the s@inckdsure due to rising atmospheric CO2.
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Using ORCHIDEE LSM, Piao et al. [2007] concludedttkhe land use and climate change
are primarily responsible for the observed positiveoff trend. In the same way but using the
LPJmL model, Gerten et al. [2008] find that the &opof stomatal closure and land use
changes are very small and that the main factotagipg runoff change is precipitation
change. The relative importance of the fertilizatéord stomatal closure effects and land use
is still very model-dependent [Alkama et al., 2Q1@] a recent study, Alkama et al. [2011]
hypothesize that the observed surface warming lamas$sociated decline of permafrost and
glaciers, not yet included in most LSMs, could hawatributed to increased runoff at high
latitude. They also emphasize that runoff trendaigegional scale issue, if not basin
dependent. Finally, the majority of recent studiesclude that there was no significant global
runoff trend in the late twentieth century [Millimaet al., 2008; Dai et al., 2009; Alkama et

al., 2011].

This paper first aims to provide a novel assessroéiihe significance of recent observed
changes. This assessment is based on the TempuraiaDDetection (TOD) method [Ribes
et al., 2010]. While most previous studies consglebal mean runoff, the TOD method is
able to provide a single global diagnostic basedantinental-scale mean runoffs. The TOD
method is applied to both observed data only (nmganb missing data) and reconstructed
data (i.e. a substantial fraction of streamflowetigeries is missing and reconstructed by Dai

et al. 2009).

With regard to future projections, an intensifioatiof the hydrological cycle over the 21st
century is widely assumed [e.g., Liu et al., 201Rgwever, regional patterns of human-
induced changes in surface hydroclimate are compled less certain than those in

temperature. Indeed, both increases or decreasgdenaxpected in future precipitation and
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runoff, depending on the region [Milly et al., 200Blkama et al., 2010]. Our study
investigates the large-scale runoff change over ldte 20th and 21st century (with
atmospheric greenhouse gas and aerosol concengratirom the Representative
Concentration Pathway®RCP 8.5 scenario), as simulated by 14 CMI@&tp://cmip-
pcmdi.linl.gov/cmip5/)Atmosphere Ocean General Circulation Models (AOGEMirst, we
assess the extent to which these simulated ruaoéfonsistent with observations. To this
end, a comparison with observed streamflow is peréa for the past few decades. Second,
the same experiments are used to investigate hoantheopogenic perturbation (green house
gases) may lead to different responses, dependingeomodel. Third, the same detection
technique is applied to climate change scenariagder to determine the significance of the
simulated changes. The date at which the changmsri@esignificant is of particular interest,
and provides some information with respect to tbaststency or inconsistency between

observed and simulated changes.

This paper primarily addresses the following thresgor issues:
1. How does global observed and reconstructedmstfieav change over time?
2. Are simulated streamflow reasonably consistetit abservations?

3. How will streamflow change in the future?

|. Methodology

[1.1. Data

To the best of our knowledge, the most completerddngam discharge dataset in existence

was collected by Dai et al. [2009]. This data sgrresents historical monthly streamflow at
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the farthest downstream stations for the world’S B#gest ocean-reaching rivers from 1900
to 2004. However, the length and reliability of #neilable time series vary greatly from one
river basin to another, and gaps are usually fo@ikerved streamflows are subject to some
uncertainties, and in particular measurement uaiceyt (e.g. related to the estimation of
rating curves), potential homogeneity breaks, anskimg values. Measurement errors are
very difficult to address and no homogenized dasaaee currently available, so the results
provided in this study are conditional to this datafollowing previous work [e.g. Dai et al.,
2009] that also investigated the recent trendslobaj streamflows. Gaps may be filled by
using statistical techniques, numerical simulatiosgg land surface models (LSMs), or a
combination of both. In the present applicationpgyavere filled by applying a statistical
linear correction to the river discharge simulated a LSM with observed atmospheric
forcings [see Dai et al., 2009]. Such a reconswocthowever, is likely to introduce
additional uncertainty. Results may depend on piatermmaccuracy of the LSM used,
homogeneity breaks in the atmospheric forcing, tasgies coming from the observations
(sometimes only a few years) used to calibratestiagéistical correction, and others. As a
consequence, this study carefully distinguishesvéen two different treatments. First, we
analyse observed streamflows only, by consideiimg-series with no missing data. In this
way, the number of the selected rivers is reduoetbil over 1958-1992 period. This period
was chosen in order to find an optimal compromisevben spatial and temporal covering.
Note that even under this restrictive treatmenrg, lbriod investigated is similar to the one
considered in Gedney et al. [2006] or Alkama e{2010]. Second, in order to consider the
larger spatio-temporal coverage available, we afiysame analysis to the dataset including
reconstructed streamflows. As linear regression ataha used if there is too much missing
data, Dai et al. [2009] succeeded in reconstruatinly 687 gauging stations for the whole

1958-2004 period. We consider these 687 catchnreasaver this period. Finally, a third,
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productis used in order to extend the “observations” w2@04. We then consider the 161
rivers observed over the 1958-1992 period and aftogsing / reconstructed values over the
1993-2004 period. This extension does include rstroations, but the amount of

reconstructed values is much reduced compared forévéous case (i.e. 687 rivers).

River discharge, in addition to ing potentially influenced by anthropogenic climate raipe,
may be affected by direct human intervention, duevater resource management (dams),
water withdrawal (e.g. irrigation, industrial orrdestic uses), changes in land use that impact
evapotranspiration, and others. In terms of clin@iange detection attribution, these direct
influences may be regarded as “confounding factas’they may cause a substantial trend
without any climate change. Detailed estimation sofich direct perturbations is very
challenging and no global discharge data base afutalized streamflows” is currently
available. However, several studies addressed #seei of quantifying these direct
anthropogenic influences at the global scale, amgfyested that they had minor impact on

multi-year trends.

Wisser et al. [2010] an8terling et al. [2013]have quantified the impact of irrigation and
reservoir operations over the"™@entury. They concluded that “ttiend use expansion of
irrigation and the construction of reservoirs hasnsiderablyand gradually impacted
hydrological components in individual river basingariations in the volume of water
entering the oceans annually, however, are godepnenarily by variations in the climate
signal alone with human activities playing a mimole”. The lateris shown to hold at the
continental scale (i.e. for individual oceanic basvhich corresponds to scales similar to the
ones considered here, but with a different clus§gr Other studies [e.g. McCelland et al.,

2004; Adam et al., 2007; Adam and Lettenmaier, 2@08firmed that dams have altered the
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seasonality of discharge, especially owerstreamrivers, but are note responsible for
changing annual values. Then, the impacts of laedehanges on land surface hydrology are
still debated. On the one hand, when irrigationaglected, land use can haveieuportant
influence on runoff via a decrease in surface etrapepiration [Piao et al., 2007]. On the
other hand, Lui et al. [2008] and Sun et al. [200®]icate that deforestation over China,
associated with irrigation, leads to increased etrapepiration over the 20th century. Other
studies, over individual river basins, suggestad the sign of land-use induced change was
unclear (e.g. Twine et al. 2004 over the Missisgi@r basin, VanShaar et al. 2002, over the
Columbia River basin). Finally, some direct humafiuences via other activities have also
been investigated and shown to have limited imgaat.instance, McCelland et al. [2004]
demonstrated that increased forest fire frequenuy severity may have contributed to

changes in discharge, but can not be consideradregor driver.

We also used simulated runoff by different modefsnf to the Coupled Model Inter-
comparison Project Phase 5 (CMIP5). Those runs lgugpipee kinds of experiments:
historical runs in which all external forcings corinem observations, future runs which use
greenhouse gas and aerosol emissions from the RECgt@nario, and finally piControl runs
in which pre-industrial forcings are constant. Tpi€ontrol runs are used to evaluate the
internal climate variability. There are four RCRpds of possible future scenarios, and the
RCP 8.5 involves the highest greenhouse gas caatient at the end of the 21th century . It
expects taeachthe radiative forcing of 8,5 W/m2 (~ 4 times mdinan thecurrentvalue) at
the end of 2100 which correspond approximately 8701 ppmv of atmospheric GO
concentration. This scenario involves an intensige of fossil fuels, with little mitigation

stringency.
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For this entire study, an ensemble of 8 zones wheee basins are merged by continent and
climate area was selected. The motivation for sgay the northern cold climate from the
tropics comes from Dai et al. [2009] and Alkamale{2011], which found significant runoff
increase at high latitude that cannot be explaingdhe atmospheric forcing. While, the
motivation of merging all oAfrica’s river basins in a single zone, even existing ojdavide

of climates, is coming from an ensemble of previsuglies that shows that generally all
largest African river basins had significantly deased over the second half of"agentury
[e.g. Alkama et al. 2011, Dai et al. 2009, Gednewle 2006; Labat et al. 2004]. The 8
selected zones are North America, Central AmeBcaith America, North Europe (including
arctic basins), South Europe, North Asia (corregjpunto Siberia), South Asia (including

Oceania) and Africa (Figure 1).

Three steps are used before comparing the modeiteaff by different CMIP5 experiments
and observations over the 8 regions: (1) Interpolming bilinear method all of the CMIP5
modelled runoff into the same grid (0.5°x0.5°);) CGbmpute the river basins at the 0.5°x0.5°
grid. To beconsistentwith the data, river basins are defined at thewkndatitude and
longitude of the observed gauged stations which difierent to the river mouth; (3)
Simulated runoff are then averaged over the condptiter basins and merged into the 8

defined zones in the Figure 1.

I1.2. Statistical method

I1.2.a The Temporal Optimal Detection method

Detection is the process of demonstrating thattseiwed change is significantly different (in

a statistical sense) that cannot be explained hyralainternal variability. The statistical
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method used for detection is the Temporal OptimeteBtion method [Ribes et al., 2010]. We
review the main concepts here but refer to Ribeal.ef2010] for full details about the
method. The TOD method is based on a linear model:

Y(s,t) = a(sps) x(t) +&(s.t) 1)
where Y(s,t) denotes the observed streamflow attime s and time t, (8) is the
climatological mean, b(s) and x(t) are respectitkb/spatial and temporal patterns of change,
andeg(s,t) denotes the internal variability. TOD basigalsumes that the temporal pattern of
change is known while the spatial pattern is ndiisTis a substantial difference from other
methods, such as optimal fingerprinting, in whikh full spatio-temporal pattern of change is
assumed to be known (up to a scaling factor, eagselmann, [1993]). This assumption
makes the TOD method particularly suitable hereabse the spatial pattern of changes in
global runoff is still under debate and somewhatlet@lependent (see Section 3.2).
Regarding internal variability, the TOD method amss thatt has a red noise structure (or
autoregressive process of order 1, AR1, see eagkBell and Davis 1991). The red noise
structure means that the random te(sjt) satisfies:

g(s,t) =a g(s,t-1) +n(s,t), (2)

wheren(s,t) is a white noise in time, i.g(s,t) is independent from(s,t-1). This assumption
also means that, e.g., the autocorrelation funatemreases exponentially, with no long-range
memory effect. An AR1 process is then describea Bingle parameteq, (see Eq.2), which
Is the one-year lag autocorrelation &0fNote that in many statistical tests, residuaksre
assumed to be white noise (which corresponds lee=0), which makes the detection
easier.
Given Y(s,t), x(t) andx, the inputs, the TOD method provides an estimataefrend at each

location a(s). Based on this estimate, TOD perfoanstatistical test of the null-hypothesis
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“a=0", and so returns a single P-value describirgv hsignificantly observations have

changed.

[1.2.b. Application to global runoff data

Here we discuss the choice of the parameters rff)oa and the extent to which global
discharges satisfy the assumptions behind the T@had.

While assumed to be known, the temporal patterchahge x(t) is commonly evaluated from
simulations. In order to base our study on a vénpke temporal pattern that is not model-
dependent, we used only linear trends (i.e. x(t)N0te that the use of a linear trend instead
of a potentially more complex smooth temporal pati@ay be suboptimal. However, over
short periods like the ones investigated here fseovation (35 or 45 years) the non-linearity
of the change is probably not the dominant fea{see also Fig 4). In addition to be very
simple, this choice is consistent with several ey studies dealing with potential changes
in the globally hydrology (e.g. Labat at al. 20@®Eedney et al. 2006; Dai et al. 2009, Alkama

et al. 2010, 2011).

The choice ofo, as well as the discussion on the accuracy of édenpise assumption, are
here based on the analysis of pre-industrial consiotulations. As observations are
presumably influenced by external forcings, inténwveriability cannot be inferred directly
from observations. Conversely, control simulatiorese external forcings are constant over
time are expected to provide a physically-basedrge#sn of internal variability, and using
such simulations is quite common in detection atabation studies (e.g. Hegerl and Zwiers
2011).Figure 2(a) shows the value as estimated from the time-series of globabff, for

each CMIP5 control simulatiorit is computed as the correlation between y( s(t-1).



275 Although some discrepancies appear between diffenemels, all values are between 0.04
276 and 0.3 with a medium value close to.0OThese control simulations may also be used to
277 check the accuracy of the red noise assumptibgure 2(b) (c) and (d) illustrates the
278 distribution of the P-value if the TOD test is apglto different50-year segments fromll

279 control simulations using=0, 0.2or 0.3 respectively.Such segments could be regarded as
280 independent realizations under the null-distributiointhe test.If internal variability is
281 properly accounted fdjin particular, if the red noise assumption is aatel, the P-values of
282 the test applied to these segmestisuld be distributed uniformly between 0 and huFe
283 2(b) (c) and (d) suggests that the more suitabdécehisa=0.2 (distribution close to uniform),
284 while 0=0.3 (respa=0) is too conservative (permissive), leading &slémore) than expected
285 values under the 5% threshold. In the following, pvemarily discuss the results assuming
286 0=0.2 ora=0.3 (which makes the detection more conservatinecrresponds to the highest
287 value found in individual models). Tha>0.2 may reflect an important ground water
288 contribution to the stream flow. The results obgdirwith a=0 (i.e. white noise) are also
289 shown in some cases in order to provide a lowentdavhere no memory effect is accounted
290 for. Note that the red noise assumption wik0.2 seems also consistent with the
291 autocorrelation function of streamflow as simulatedontrol runs (not shown).

292

293 Finally, an important feature of the method witlspect to our study is that it performs a
294 multivariate diagnosis; i.e., it provide one singatistical diagnosis based on regional
295 (continental-scale) streamflow. In particular, arg@that generates increases or decreases in
296 runoff depending on the region would be capturedttby method. The TOD method as
297 implemented here may then be regarded as a stretetpsting trend significance that allows

298 the change to be spatially non-uniform and takés agcount a non-white internal variability.
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In particular, it differs from testing the signifioce of each regional trend individually, as a

single test is performed for all regions simultaunsy here.

1. Results

I11.1. Statistical test on observed and reconstructed runoffs

The coverage of the 161 resp. 687 rivers worldwisishown in Figure 1. Some regions (e.g.
Western part of Asia, desert regions and Southertnop&outh America) suffer from lack of
data. Indeed, only 31% (43%) of global land aredugling Antarctica are covered by the 161

(687) rivers basins which correspond to about 48984) of global land discharge.

We first applied the TOD method to observed rumviér the 1958-1992 period, based on 8
zones in which observed streamflow at 161 downstrgauged stations are merged. Results
are shown in Figure 3a in terms of P-value, foed¢hwalues of the coefficient. The P-value

of year 1980 for instancejs obtained by applying the test to the data l@efi880 i.e., the
1958-1980 period. This allows us to analyze thestawolution of the P-valu&he P-value
shown in 1992 provides the result of the statistiest over the full period of interest, 1958-
1992.As may be expected, larger year-to-year variatamesobserved at the beginning of the
period compared to the end, as one single yeartttagysr relative impact on the P-value (the
size of the sample being smallefhe change in the annual runoff is detected ayéae “t”
only if the P-value(t + i[Ji = 0) is less than the significance threshold vahe R-value (t-

1) is greater.
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Figure 3a (left) shows that the P-value remainfidrighan the significance threshold, 0.05,
over the 1958-1992 period. This reveals no sigaificchange in observed streamflow until
1992. This result is very robust here as it is ioletd even under the white-noise (ie0

which is very unlikely) assumption.

However, one can wonder what these results cowd bhaen over a more recent period. TOD
is then applied over the same 161 river basinshi@whole 1958-2004 period. As mentioned
above, this extension requires to use a few renaststl data over the 1993-2004 period, and
cannot be regarded as “observations only”. Aft&321Figure 3a reveals that changes are still
not detected fon=0.2 ora=0.3, as the P-value remains mainly higher than 10 dermits us

to conclude that there is no significant changelieerved global runoff on the observed 161
gauging stations from 1958 to 2004. Note that thalBe fora=0 becomes lower than 0.05
but, as discussed before, this doesn’t allow ugésonably claim that a change is detected.
The relative anomaly (trend over the whole periamnpared to the runoff mean value)
distribution in regional runoff shown in Figure 8aght) reinforces this conclusion. Trends
are rather small compared to the mean streamfleeep over Africa, where it reaches -30%.
This result is confirmed by applying the TOD testoeach individual region: a significant
change in runoff is detected only over Africa sid@80 Figure 4 which is consistent with
the previously published results (e.g. Alkama e8l1) which pinpoint to a large decrease

in precipitation and runoff over th8%half of 20" century.

In the same way, TOD is applied over the 687 rhvasins and over the same period (1958-
2004). Figure 3b shows a significant change in mettacted runoff since 2000 at the 95%
significance level forn=0 and, to a lesser extent, #@r=0.2. Foro=0.2, the P-value remains

below but close to the significance level of 5%. k0.3, no changes are found. Here, we
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conclude that a change is detected, because deteties occur with a medium valuecof
This result is not very robust, however, as debactio longer holds with a more conservative
choice ofa. Taking into account new rivers (687 rather théf)land/or reconstructed rather
than observed streamflow then seems to impactdhbelts. However, the distribution and
intensity of the relative discharge anomaly aremaitibly affected (Figure 3b). Africa is still

the only region that exhibits a significant (negajirunoff trend.

I11.2. Evolution of observed and simulated runoff

The evaluation of the CMIP5 simulated runoff wasfqened over the 8 zones and at the
global scale corresponding to the 161 river bagtigure 5 shows the temporal evolution of
the yearly mean runoff (mm/d) from 1958 to 2100 éaich of the 14 CMIP5 models. The
temporal evolution of the observed runoff from 18568992 corresponding to the same zones
is also shown. There are two outlying models, BQ@ &ISS, which show a large
underestimation of both the global and the regianaloffs (Figure 6)as well as a low
variability (Figure 7) At the global scale, all other CMIP5 models s@eraimulate runoff in
terms of mean state reasonably well (simulated furobbserved runoftt 25%). They
generally underestimate global runoff slightly, eptfor the MIROC model, which simulates
a global runoff overestimated by abdili%. The runoff simulated over South America is
underestimated by all models. The simulated ruisoffiso underestimated by the BCC, GISS
MRI and INM models over Africdn contrast, more than 50% overestimation is shbwall

of NorESM, MIROC, IPSL, CSIRO, GFDL, CCSM, CanESkMdaFGOALS modelsOver
this continent, the runoff simulated by both CNRMRFACS and MPI is closer to the
observationsOver all other regions, the error made by all medekcept of course BCC and

GISS) did not exceeds 50%, except FGOALS over Sautiope and Central America, and
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MRI over central America. The error in the standaegiations is also well simulated (Figure
7). Indeed, it did not exceed 50% except over Afidorth America) in where only CNRM,
MPI, FGOALS, CanESM and GFDL (GFDM and INM) aregeaable. We can also note the

large error of CSISRO (MPI) over South America (Ca&le America).

Over the same period 1958-1992, the observatiomsvsharge 0.05 mm/§r positive
(negative) runoff trends over South America (Afjitaut only MRI and MIROC (FGOALS
and MIROC) shows reasonable trends (Figure 8). s of models exhibits slight or
opposite trends. Over all regions, the models ditl show any consensus. Some of them
shows positive trends and others are negative. @oedpto the observations, some of theme
are reasonable and others are not (opposite trehlds)previous exercises CMIP3 (Milly et
al. 2005) and CMIP4 (Nohara et al. 2006) showsstree conclusion with the present study
in terms of the comparison between simulated ansemied runoff means, inter-annual

variability and trends.

Despitethe different bias existing in different model silation, no bias correction methods
are done in this study. It is known that bias odfom method can alter the inter-annual
variability of the discharge of small river basiasmd consequently could impact the
significance of the trend signal. Whereas, theriatenual variability of the large river basins
and especially when regionally merged are relativedll simulated by GCMs (e.g. Milly et

al. 2005; Nohara et al. 2006). Thus, the bias ctome method had a small impact on the

detection method used in this study.

Over the 21st century, all models show a positieda runoff trend except the INM model,

in which the simulated global runoff decreases.tid¢ regional scale, all models are in
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agreement and show a positive trend over Northesia,AScandinavia, North America and
South Asia. In contrast, the models simulate a thnegdrend over South Europe, except
CNRM-CERFACS and IAP models, which are positiver. the other regions (South America
and Africa), the models are in disagreement amotigghselves. For example, over South
America, a negative trend is simulated by CCCMA @8IRO, while MIROC, NCC, IPSL
show a positive trend. Over Africa, the simulateehaff increases in CNRM-CERFACS,
MIROC, MPMIP, NCAR, CCCMA, IPSL and NCC, decreasasCSIRO. Over Central
America, models show no clear trend except GFDL i{pestrend) and NCC and IAP

(negative trend).

[11.3. Statistical test on simulated runoff

In Figure 5, the TOD test is applied to each CMiR&del over the 161 global river basins
still merged into 8 zones, and over the whole 12580 period. In order to highlight an
central behavior, the median of these 14 P-values is ctedpeach year, and its time
evolution is illustrated. The P-values are also sihdov the observed and the reconstructed
data presented before. Note that the P-values @redid and simulated runoff are calculated
over the 161 river basins whereas reconstructeal atat computed over the 687 river basins.
The P-values obtained from the CMIP5 runoff caltedeover the 687 rivers are very similar
to those computed over the 161 rivers. The resrksonly shown foww = 0.2 (medium
value). We define the date at which detection cc@s the first year for which the P-value
remains lower than the 0.05 threshold up to 210@ fvo models that simulate low runoff
variability, BCC and GISS, are the first to detacsignificant runoff change (in 2002 and
2005, respectively). The INM model, simulating nlebgl significant trend, is the last to

detect a significant change, in 2060. All other mileddetect a significant change between
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2016 and 2040. This means that changes in runef§jiraulated by current climate models,
are expected to become significant in the comingades. As a consequence, the result
previously obtained on observed runoff (161 rivasihs) appears to be very consistent with

climate model projections.

The result obtained on reconstructed runoff (6&erribasins) seems less consistent, as a
change was found from 2000 onwards. In particukagure 9 suggests that the P-value
computed from reconstructed runoff is on the bor@enot outside) of the set of climate
model projections. This feature, together with substantial difference between the results
obtained on observed and reconstructed data, méyinta question the quality of
reconstructions, and/or the accuracy of climate efsg@rojectionsThe difference found in
detection date with 161 or 687 river basins coalde a lot of questions and the recent direct
human influence on global trends could be one efetkplanations. But this hypothesis is less
supported because we did not detect change eveg 161 basins over the same period with
the 687 basins (i.e. 1958-2004). The 161 rivernzasepresent 42% of global discharge and
the 687 basins represents about 60% of global aigeh The main difference (60%-42%) of
discharge are mainly coming from the northern Caradind South Asian rivers. Without
doubt, the human influence are far from being th@nndriver of the Northern Canadian
rivers. Whereas, the large land use and irrigatbanges over South Asia could be one

possible explanation of this difference.

The P-value spread between the CMIP5 models is haege especially over 20th century,
and reduces at the end of 21st century becomingfis@nt (less than 0.05) over northern

high latitude regions (Figure 4). While, over thaetregions (South Asia, South and Centre
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America), no change is detected by CMIP5 models2i00. Figure 4 suggests that the

northern high latitude regions represent the ketheffuture runoff change.

VI. Summary and conclusions

In this work, the TOD statistical test [Ribes et, &010] is used to evaluate the possible
changes on recent and future (RCP 8.5 conditionapff, based on fourteen CMIP5
experiments and streamflow data from Dai et al. 200his evaluation is made over 8
zones, merging the world’'s 161 largest rivers. @oalysis suggests some answers to the

three issues raised in the introduction.

1. How does global observed and reconstructedmsflea change over time?

No significant runoff change is found in the obséiorss over the whole set of 161 rivers
from 1958 to 1992. Extension to 2004, using recowstd streamflows over the same
catchment areas, does not lead to a different aeiwel. This confirms previous results by Dai
et al. [2009] and Alkama et al. [2011]. In contrasttonstructed data over 687 rivers shows
significant change at the 95% confidence level aher 1958-2004 period, at least with a
medium assumption regarding the internal variabp#rsistence. This change is not robust to
a more conservative choice regarding internal tdiie This result seems rather
contradictory with the conclusions by Dai et al. 2D who found no significant trend on
global rivers discharge based on the same data. diecrepancy much likely comes from
differences in the statistical method used. Whibke & al. [2009]were only looking at the

global mean time-series, our diagnosis is basedomtinental scale discharge, and can be
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explained by opposite changes over different centis, that tend to compensate themselves

and result in little change on the global mean.

Taken as a whole, these results suggest that chamggobal runoff are still unclear. Indeed,
positive detection is only obtained when considgandataset where a substantial amount of
data comes from reconstruction. It is not robus twarrowing of the spatial domain, nor to a
little change (considering an important slow precesich as groundwater on global
streamflow) in the description of the internal aility (i.e. usinga=0.3 instead 0t1=0.2).
The use of reconstructions also arises additionastpns with respect to the accuracy of the
reconstruction, which depends on the quality ofatreospheric forcing used, the capabilities
of the LSM, the relevance of the statistical caiimtapplied, and others. We finally conclude
that changes in global discharge cannot be robuddgtified from observations over the

recent decades.

2. Are simulated streamflows reasonably consistetht observations?

Except for BCC and GISS, which show large underestions of global runoff, the other

CMIP5 simulations perform reasonably well. Howevegional biases are far from being
negligible, as the model bias can exceed 50% oifrté@n observed runoff over some regions.
These biases are comparable to those found intheCIMIP3 exercise [Nohara et al. 2006,

Milly et al. 2005].

3. How will streamflow change in the future?
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The majority of CMIP5 models under RCP 8.5 condiigimulate an increase in runoff over
South Asia, Northern Europe, Northern Asia and NoMmerica, and a decrease over
Southern Europe. However, no significant changeearsp over Central America, and no
consensus can be found over South America andaffibese features are similar to what
Milly et al. [2005], Nohara et al. [2006] and IPQ@ZD07] have already shown. More globally,
all models show an intensification of the globaliological cycle over the 21st century.
Indeed, the global continental precipitation, evagion and runoff tend to increase. Change
in global runoff becomes significant between 20h@ 2040 for all but three models. This
suggests that our finding of no clear change fromdbservations is rather consistent with

current projections for the next century.
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Figure captions

Figure 1. Coverage of 161 (687) river basins up (down) ofier& selected zones which are:
1 South America, 2 Africa, 3 South Asia includingeg@nia, 4 North Asia corresponding to
Siberia, 5 South Europe, 6 North Europe includingi@a basins, 7 Central America and 8
North America. The circles represent the in-situggd stations for each river accounted for

in this study.

Figure 2. (a) Estimated alphan] based on the global runoff time-series from eabhiR%S
model (piControl simulations); (b), (c) and (d) &ne distribution of the P-value when TOD
test is applied to different segments of 50yearoperof all CMIP5 control runs usina=0,

0.2 and 0.3 respectively.

Figure 3. (a) (left) Temporal evolution of observed (19682P and reconstructed (1992-
2004) runoff P-value over 161 river basins mergeer & zones. The full horizontal black line
represent the threshold level at 5%. (right) distiion of the runoff relative anomalies
(AQ/Q) in percentage over 161 river basins. (b) sasm@) but using reconstructed data over

687 river basins rather than observations ovemhae 1968-2004 period.

Figure 4. Temporal P-value of observed (black) and simuldligtit blue) runoff over the 8

regions merging 161 river basins usingt 0.2. The median of the 14 is in blue.
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Figure 5. 1958 to 2100 global and regional time-series ofsinaulated (colors) and observed

(black) annual runoff. The median of the fourteewdeis is given by the thick red line.

Figure 6. Percent error (100(Sim-Obs)/Obs) of simulated riiaeéraged over 1958-1992.

Figure 7. Percent error (100(Sim-Obs)/Obs) of the standardatien runoff simulated by

CMIP5 models over 1958-1992.

Figure 8. Observed and simulated runoff trends over 1958-1992

Figure 9. Temporal P-value of observed (black), reconstrugted) and simulated (light

blue) global runoff over 161 river basins usingt 0.2. The median of the 14 CMIP5 models

is in blue.
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