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 29 

This paper assesses the detectability of changes in global streamflow. First, a statistical 30 

detection method is applied to observed (no missing data which represent 42% of global 31 

discharge) and reconstructed (gaps are filled in order to cover a larger area and about 60% of 32 

global discharge) streamflow. Observations show no change over the 1958-1992 period. 33 

Further, extension to 2004 over the same catchment areas using reconstructed data does not 34 

provide evidence of a significant change. Conversely, a significant change is found in 35 

reconstructed streamflow when a larger area is considered. These results suggest that changes 36 

in global streamflow are still unclear. Next, changes in streamflow as simulated by models 37 

from Coupled Model Intercomparison Project 5 (CMIP5) using the historical and future RCP 38 

8.5 scenario are investigated. Most CMIP5 models are found to simulate the climatological 39 

streamflow reasonably well, except over South America and Africa. Change becomes 40 

significant between 2016 and 2040 for all but three models.   41 
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 51 

I.  Introduction 52 

 53 

Human influence has now been documented in several parts of the water cycle: atmospheric 54 

water vapour [e.g. Willett et al., 2007; Santer et al., 2007], land precipitation [e.g. Zhang et 55 

al., 2007], or land evapotranspiration [e.g. Douville et al., 2012]. The case of  runoff or river 56 

discharge is more contrasted. While some studies thought to have identified robust trends over 57 

some specific regions [e.g. Stahl et al., 2010 over Europe, Krakauer and Fung, 2008 over the 58 

US], other studies focused on the global scale have led to somewhat contradictory results. 59 

Based on 221 rivers, corresponding to 40% of global continental runoff, Labat et al. [2004] 60 

documented an increasing global runoff at the end of the 20th century compared to the 61 

beginning. In contrast, based on data from 925 rivers, corresponding to 80% of global runoff, 62 

Dai et al. [2009] show a slight decrease in global runoff over the second half of 20th century. 63 

This discrepancy can be explained by the differences either in the number of gauging stations 64 

used, in the period of investigation, or in the method used to fill the gaps. Indeed, both studies 65 

were using some reconstructions (meaning gap filling) in order to provide a more 66 

comprehensive spatio-temporal coverage.  67 

 68 

Over the last few years, several studies have attempted to explain the supposed observed 69 

global runoff trend, sometimes based on Land Surface Models (LSMs). Labat et al. [2004] 70 

were the first to relate the supposed positive runoff trend to global warming. They pinpointed 71 

a positive feedback between warming, an increase in ocean evaporation and an increase in 72 

continental precipitation. This assumption was then contradicted by many other studies. For 73 

example, using MOSES LSM, Gedney et al. [2006] explained this positive trend by the 74 

decrease in transpiration as a result of the stomatal closure due to rising atmospheric CO2. 75 



Using ORCHIDEE LSM, Piao et al. [2007] concluded that the land use and climate change 76 

are primarily responsible for the observed positive runoff trend. In the same way but using the 77 

LPJmL model, Gerten et al. [2008] find that the impact of stomatal closure and land use 78 

changes are very small and that the main factor explaining runoff change is precipitation 79 

change. The relative importance of the fertilization and stomatal closure effects and land use 80 

is still very model-dependent [Alkama et al., 2010]. In a recent study, Alkama et al. [2011] 81 

hypothesize that the observed surface warming and the associated decline of permafrost and 82 

glaciers, not yet included in most LSMs, could have contributed to increased runoff at high 83 

latitude. They also emphasize that runoff trend is a regional scale issue, if not basin 84 

dependent. Finally, the majority of recent studies conclude that there was no significant global 85 

runoff trend in the late twentieth century [Milliman et al., 2008; Dai et al., 2009; Alkama et 86 

al., 2011]. 87 

   88 

This paper first aims to provide a novel assessment of the significance of recent observed 89 

changes. This assessment is based on the Temporal Optimal Detection (TOD) method [Ribes 90 

et al., 2010]. While most previous studies consider global mean runoff, the TOD method is 91 

able to provide a single global diagnostic based on continental-scale mean runoffs. The TOD 92 

method is applied to both observed data only (meaning no missing data) and reconstructed 93 

data (i.e. a substantial fraction of streamflow time-series is missing and reconstructed by Dai 94 

et al. 2009). 95 

  96 

With regard to future projections, an intensification of the hydrological cycle over the 21st 97 

century is widely assumed [e.g., Liu et al., 2012]. However, regional patterns of human-98 

induced changes in surface hydroclimate are complex and less certain than those in 99 

temperature. Indeed, both increases or decreases may be expected in future precipitation and 100 



runoff, depending on the region [Milly et al., 2005; Alkama et al., 2010]. Our study 101 

investigates the large-scale runoff change over the late 20th and 21st century (with 102 

atmospheric greenhouse gas and aerosol  concentrations from the Representative 103 

Concentration Pathways RCP 8.5 scenario), as simulated by 14 CMIP5 (http://cmip-104 

pcmdi.llnl.gov/cmip5/) Atmosphere Ocean General Circulation Models (AOGCMs). First, we 105 

assess the extent to which these simulated runoffs are consistent with observations. To this 106 

end, a comparison with observed streamflow is performed for the past few decades. Second, 107 

the same experiments are used to investigate how the anthropogenic perturbation (green house 108 

gases) may lead to different responses, depending on the model. Third, the same detection 109 

technique is applied to climate change scenarios in order to determine the significance of the 110 

simulated changes. The date at which the changes become significant is of particular interest, 111 

and provides some information with respect to the consistency or inconsistency between 112 

observed and simulated changes.  113 

 114 

This paper primarily addresses the following three major issues: 115 

1. How does global observed and reconstructed stream flow change over time?  116 

2. Are simulated streamflow reasonably consistent with observations?  117 

3. How will streamflow change in the future? 118 

 119 

II. Methodology 120 

 121 

II.1.  Data 122 

 123 

To the best of our knowledge, the most complete downstream discharge dataset in existence 124 

was collected by Dai et al. [2009]. This data set represents historical monthly streamflow at 125 



the farthest downstream stations for the world’s 925 largest ocean-reaching rivers from 1900 126 

to 2004. However, the length and reliability of the available time series vary greatly from one 127 

river basin to another, and gaps are usually found. Observed streamflows are subject to some 128 

uncertainties, and in particular measurement uncertainty (e.g. related to the estimation of 129 

rating curves), potential homogeneity breaks, and missing values. Measurement errors are 130 

very difficult to address and no homogenized datasets are currently available, so the results 131 

provided in this study are conditional to this dataset, following previous work [e.g. Dai et al., 132 

2009] that also investigated the recent trends in global streamflows. Gaps may be filled by 133 

using statistical techniques, numerical simulations using land surface models (LSMs), or a 134 

combination of both. In the present application, gaps were filled by applying a statistical 135 

linear correction to the river discharge simulated by a LSM with observed atmospheric 136 

forcings [see Dai et al., 2009]. Such a reconstruction, however, is likely to introduce 137 

additional uncertainty. Results may depend on potential inaccuracy of the LSM used, 138 

homogeneity breaks in the atmospheric forcing, uncertainties coming from the observations 139 

(sometimes only a few years) used to calibrate the statistical correction, and others. As a 140 

consequence, this study carefully distinguishes between two different treatments. First, we 141 

analyse observed streamflows only, by considering time-series with no missing data. In this 142 

way, the number of the selected rivers is reduced to 161 over 1958-1992 period. This period 143 

was chosen in order to find an optimal compromise between spatial and temporal covering. 144 

Note that even under this restrictive treatment, the period investigated is similar to the one 145 

considered in Gedney et al. [2006] or Alkama et al. [2010]. Second, in order to consider the 146 

larger spatio-temporal coverage available, we apply the same analysis to the dataset including 147 

reconstructed streamflows. As linear regression cannot be used if there is too much missing 148 

data, Dai et al. [2009] succeeded in reconstructing only 687 gauging stations for the whole 149 

1958-2004 period. We consider these 687 catchment areas over this period. Finally, a third, 150 



product is used in order to extend the “observations” up to 2004. We then consider the 161 151 

rivers observed over the 1958-1992 period and allow missing / reconstructed values over the 152 

1993-2004 period. This extension does include reconstructions, but the amount of 153 

reconstructed values is much reduced compared to the previous case (i.e. 687 rivers). 154 

 155 

River discharge, in addition to being potentially influenced by anthropogenic climate change, 156 

may be affected by direct human intervention, due to water resource management (dams), 157 

water withdrawal (e.g. irrigation, industrial or domestic uses), changes in land use that impact 158 

evapotranspiration, and others. In terms of climate change detection attribution, these direct 159 

influences may be regarded as “confounding factors”, as they may cause a substantial trend 160 

without any climate change. Detailed estimation of such direct perturbations is very 161 

challenging and no global discharge data base of “naturalized streamflows” is currently 162 

available. However, several studies addressed the issue of quantifying these direct 163 

anthropogenic influences at the global scale, and suggested that they had minor impact on 164 

multi-year trends.  165 

 166 

Wisser et al. [2010] and Sterling et al. [2013], have quantified the impact of irrigation and 167 

reservoir operations over the 20th century. They concluded that “the land use, expansion of 168 

irrigation and the construction of reservoirs has considerably and gradually impacted 169 

hydrological components in individual river basins. Variations in the volume of water 170 

entering the oceans annually, however, are  governed primarily by variations in the climate 171 

signal alone with human activities playing a minor role”. The later is shown to hold at the 172 

continental scale (i.e. for individual oceanic basin, which corresponds to scales similar to the 173 

ones considered here, but with a different  clustering). Other studies [e.g. McCelland et al., 174 

2004; Adam et al., 2007; Adam and Lettenmaier, 2008] confirmed that dams have altered the 175 



seasonality of discharge, especially over upstream rivers, but are note responsible for 176 

changing annual values. Then, the impacts of land-use changes on land surface hydrology are 177 

still debated. On the one hand, when irrigation is neglected, land use can have an important 178 

influence on runoff via a decrease in surface evapotranspiration [Piao et al., 2007]. On the 179 

other hand, Lui et al. [2008] and Sun et al. [2008] indicate that deforestation over China, 180 

associated with irrigation, leads to increased evapotranspiration over the 20th century. Other 181 

studies, over individual river basins,  suggested that the sign of land-use induced change was 182 

unclear (e.g. Twine et al. 2004 over the Mississipi river basin, VanShaar et al. 2002, over the 183 

Columbia River basin). Finally, some direct human influences via other activities have also 184 

been investigated and shown to have limited impact. For instance, McCelland et al. [2004] 185 

demonstrated that increased forest fire frequency and severity may have contributed to 186 

changes in discharge, but can not be considered as a major driver. 187 

 188 

We also used simulated runoff by different models from to the Coupled Model Inter-189 

comparison Project Phase 5 (CMIP5). Those runs supply three kinds of experiments: 190 

historical runs in which all external forcings come from observations, future runs which use 191 

greenhouse gas and aerosol emissions from the RCP 8.5 scenario, and finally piControl runs 192 

in which pre-industrial forcings are constant. The piControl runs are used to evaluate the 193 

internal climate variability. There are four RCPs types of possible future scenarios, and the 194 

RCP 8.5 involves the highest greenhouse gas concentrations at the end of the 21th century . It 195 

expects to reach the radiative forcing of 8,5 W/m2 (~ 4 times more than the current value) at 196 

the end of 2100 which correspond approximately to 1370 ppmv of atmospheric CO2 197 

concentration. This scenario involves an intensive use of fossil fuels, with little mitigation 198 

stringency.  199 

 200 



For this entire study, an ensemble of 8 zones where river basins are merged by continent and 201 

climate area was selected. The motivation for separating the northern cold climate from the 202 

tropics comes from Dai et al. [2009] and Alkama et al. [2011], which found significant runoff 203 

increase at high latitude that cannot be explained by the atmospheric forcing. While, the 204 

motivation of merging all of Africa’s river basins in a single zone, even existing of large wide 205 

of climates, is coming from an ensemble of previous studies that shows that generally all 206 

largest African river basins had significantly decreased over the second half of 20th century 207 

[e.g. Alkama et al. 2011, Dai et al. 2009, Gedney et al. 2006; Labat et al. 2004]. The 8 208 

selected zones are North America, Central America, South America, North Europe (including 209 

arctic basins), South Europe, North Asia (corresponding to Siberia), South Asia (including 210 

Oceania) and Africa (Figure 1). 211 

 212 

Three steps are used before comparing the modelled runoff by different CMIP5 experiments 213 

and observations over the 8 regions: (1) Interpolate using bilinear method all of the CMIP5 214 

modelled runoff into the same grid (0.5°x0.5°);  (2) Compute the river basins at the 0.5°x0.5° 215 

grid. To be consistent with the data, river basins are defined at the known latitude and 216 

longitude of the observed gauged stations which are different to the river mouth; (3) 217 

Simulated runoff are then averaged over the computed river basins and merged into the 8 218 

defined zones in the Figure 1. 219 

 220 

II.2.  Statistical method 221 

 222 

II.2.a The Temporal Optimal Detection method 223 

Detection is the process of demonstrating that an observed change is significantly different (in 224 

a statistical sense) that cannot be explained by natural internal variability. The statistical 225 



method used for detection is the Temporal Optimal Detection method [Ribes et al., 2010]. We  226 

review the main concepts here but refer to Ribes et al. [2010] for full details about the 227 

method. The TOD method is based on a linear model:        228 

                                    Y(s,t) = a(s) + b(s) x(t) +  ε(s,t)                                (1) 229 

where Y(s,t) denotes the observed streamflow at location s and time t, a(s) is the 230 

climatological mean, b(s) and x(t) are respectively the spatial and temporal patterns of change, 231 

and ε(s,t) denotes the internal variability. TOD basically assumes that the temporal pattern of 232 

change is known while the spatial pattern is not. This is a substantial difference from other 233 

methods, such as optimal fingerprinting, in which the full spatio-temporal pattern of change is 234 

assumed to be known (up to a scaling factor, e.g. Hasselmann, [1993]). This assumption 235 

makes the TOD method particularly suitable here, because the spatial pattern of changes in 236 

global runoff is still under debate and somewhat model-dependent (see Section 3.2).  237 

Regarding internal variability, the TOD method assumes that ε has a red noise structure (or 238 

autoregressive process of order 1, AR1, see e.g. Brockwell and Davis 1991). The red noise 239 

structure means that the random term ε(s,t) satisfies: 240 

ε(s,t) = α ε(s,t-1) + η(s,t),  (2) 241 

where η(s,t) is a white noise in time, i.e. η(s,t) is independent from η(s,t-1). This assumption 242 

also means that, e.g., the autocorrelation function decreases exponentially, with no long-range 243 

memory effect. An AR1 process is then described by a single parameter, α (see Eq.2), which 244 

is the one-year lag autocorrelation of ε. Note that in many statistical tests, residuals ε are 245 

assumed to be white noise (which corresponds here to α=0), which makes the detection 246 

easier.   247 

Given Y(s,t), x(t) and α, the inputs, the TOD method provides an estimate of the trend at each 248 

location a(s). Based on this estimate, TOD performs a statistical test of the null-hypothesis 249 



“a=0”, and so returns a single P-value describing how significantly observations have 250 

changed. 251 

 252 

II.2.b. Application to global runoff data 253 

 254 

Here we discuss the choice of the parameters x(t) and α, and the extent to which global 255 

discharges satisfy the assumptions behind the TOD method.  256 

While assumed to be known, the temporal pattern of change x(t) is commonly evaluated from 257 

simulations. In order to base our study on a very simple temporal pattern that is not model-258 

dependent, we used only linear trends (i.e. x(t)=t). Note that the use of a linear trend instead 259 

of a potentially more complex smooth temporal pattern may be suboptimal. However, over 260 

short periods like the ones investigated here for observation (35 or 45 years) the non-linearity 261 

of the change is probably not the dominant feature (see also Fig 4). In addition to be very 262 

simple, this choice is consistent with several previous studies dealing with potential changes 263 

in the globally hydrology (e.g. Labat at al. 2004; Gedney et al. 2006; Dai et al. 2009, Alkama 264 

et al. 2010, 2011). 265 

 266 

The choice of α, as well as the discussion on the accuracy of the red noise assumption, are 267 

here based on the analysis of pre-industrial control simulations. As observations are 268 

presumably influenced by external forcings, internal variability cannot be inferred directly 269 

from observations. Conversely, control simulations were external forcings are constant over 270 

time are expected to provide a physically-based description of internal variability, and using 271 

such simulations is quite common in detection and attribution studies (e.g. Hegerl and Zwiers 272 

2011). Figure 2(a) shows the α value as estimated from the time-series of global runoff, for 273 

each CMIP5 control simulation. It is computed as the correlation between y(t) and y(t-1). 274 



Although some discrepancies appear between different models, all values are between 0.04 275 

and 0.3 with a medium value close to 0.2. These control simulations may also be used to 276 

check the accuracy of the red noise assumption. Figure 2(b) (c) and (d) illustrates the 277 

distribution of the P-value if the TOD test is applied to different 50-year segments from all 278 

control simulations using α=0, 0.2 or 0.3 respectively.  Such segments could be regarded as 279 

independent realizations under the null-distribution of the test. If internal variability is 280 

properly accounted for (in particular, if the red noise assumption is accurate), the P-values of 281 

the test applied to these segments should be distributed uniformly between 0 and 1. Figure 282 

2(b) (c) and (d) suggests that the more suitable choice is α=0.2 (distribution close to uniform), 283 

while α=0.3 (resp. α=0) is too conservative (permissive), leading to less (more) than expected 284 

values under the 5% threshold. In the following, we primarily discuss the results assuming 285 

α=0.2 or α=0.3 (which makes the detection more conservative and corresponds to the highest 286 

value found in individual models). The α>0.2 may reflect an important ground water 287 

contribution to the stream flow. The results obtained with α=0 (i.e. white noise) are also 288 

shown in some cases in order to provide a lower bound where no memory effect is accounted 289 

for. Note that the red noise assumption with α=0.2 seems also consistent with the 290 

autocorrelation function of streamflow as simulated in control runs (not shown). 291 

 292 

Finally, an important feature of the method with respect to our study is that it performs a 293 

multivariate diagnosis; i.e., it provide one single statistical diagnosis based on regional 294 

(continental-scale) streamflow. In particular, a change that generates increases or decreases in 295 

runoff depending on the region would be captured by this method. The TOD method as 296 

implemented here may then be regarded as a strategy for testing trend significance that allows 297 

the change to be spatially non-uniform and takes into account a non-white internal variability. 298 



In particular, it differs from testing the significance of each regional trend individually, as a 299 

single test is performed for all regions simultaneously here.  300 

 301 

III.  Results 302 

 303 

III.1.  Statistical test on observed and reconstructed runoffs 304 

 305 

The coverage of the 161 resp. 687 rivers worldwide  is shown in Figure 1. Some regions (e.g. 306 

Western part of Asia, desert regions and Southern part of South America) suffer from lack of 307 

data. Indeed, only 31% (43%) of global land area excluding Antarctica are covered by the 161 308 

(687) rivers basins which correspond to about 42% (60%) of global land discharge. 309 

 310 

We first applied the TOD method to observed runoff over the 1958-1992 period, based on 8 311 

zones in which observed streamflow at 161 downstream gauged stations are merged. Results 312 

are shown in Figure 3a in terms of P-value, for three values of the α coefficient. The P-value 313 

of year 1980, for instance, is obtained by applying the test to the data before 1980 i.e., the 314 

1958-1980 period. This allows us to analyze the time evolution of the P-value. The P-value 315 

shown in 1992 provides the result of the statistical test over the full period of interest, 1958-316 

1992. As may be expected, larger year-to-year variations are observed at the beginning of the 317 

period compared to the end, as one single year has stronger relative impact on the P-value (the 318 

size of the sample being smaller). The change in the annual runoff is detected at the year “t” 319 

only if  the P-value(t + i, ∀  i ≥ 0) is less than the significance threshold value and P-value (t-320 

1) is greater.  321 

 322 



Figure 3a (left) shows that the P-value remains higher than the significance threshold, 0.05, 323 

over the 1958-1992 period. This reveals no significant change in observed streamflow until 324 

1992. This result is very robust here as it is obtained even under the white-noise (ie α=0 325 

which is very unlikely) assumption.  326 

 327 

However, one can wonder what these results could have been over a more recent period. TOD 328 

is then applied over the same 161 river basins for the whole 1958-2004 period. As mentioned 329 

above, this extension requires to use a few reconstructed data over the 1993-2004 period, and 330 

cannot be regarded as “observations only”. After 1992, Figure 3a reveals that changes are still 331 

not detected for α=0.2 or α=0.3, as the P-value remains mainly higher than 0.1. It permits us 332 

to conclude that there is no significant change in observed global runoff on the observed 161 333 

gauging stations from 1958 to 2004. Note that the P-value for α=0 becomes lower than 0.05 334 

but, as discussed before, this doesn’t allow us to reasonably claim that a change is detected. 335 

The relative anomaly (trend over the whole period compared to the runoff mean value) 336 

distribution in regional runoff shown in Figure 3a (right) reinforces this conclusion. Trends 337 

are rather small compared to the mean streamflow, except over Africa, where it reaches -30%. 338 

This result is confirmed by applying the TOD test over each individual region: a significant 339 

change in runoff is detected only over Africa since 1980 (Figure 4) which is consistent with 340 

the previously published results (e.g. Alkama et al. 2011) which pinpoint to a large decrease 341 

in precipitation and runoff over the 2nd half of 20th century.  342 

  343 

In the same way, TOD is applied over the 687 river basins and over the same period (1958-344 

2004). Figure 3b shows a significant change in reconstructed runoff since 2000 at the 95% 345 

significance level for α=0 and, to a lesser extent, for α =0.2. For α=0.2, the P-value remains 346 

below but close to the significance level of 5%. For α=0.3, no changes are found. Here, we 347 



conclude that a change is detected, because detection does occur with a medium value of α. 348 

This result is not very robust, however, as detection no longer holds with a more conservative 349 

choice of α. Taking into account new rivers (687 rather than 161) and/or reconstructed rather 350 

than observed streamflow then seems to impact the results. However, the distribution and 351 

intensity of the relative discharge anomaly are not notably affected (Figure 3b). Africa is still 352 

the only region that exhibits a significant (negative) runoff trend. 353 

 354 

III.2. Evolution of observed and simulated runoff 355 

 356 

The evaluation of the CMIP5 simulated runoff was performed over the 8 zones and at the 357 

global scale corresponding to the 161 river basins. Figure 5 shows the temporal evolution of 358 

the yearly mean runoff (mm/d) from 1958 to 2100 for each of the 14 CMIP5 models. The 359 

temporal evolution of the observed runoff from 1958 to 1992 corresponding to the same zones 360 

is also shown. There are two outlying models, BCC and GISS, which show a large 361 

underestimation of both the global and the regional runoffs (Figure 6) as well as a low 362 

variability (Figure 7). At the global scale, all other CMIP5 models seem to simulate runoff in 363 

terms of mean state reasonably well (simulated runoff = observed runoff ± 25%). They 364 

generally underestimate global runoff slightly, except for the MIROC model, which simulates 365 

a global runoff overestimated by about 15%. The runoff simulated over South America is 366 

underestimated by all models. The simulated runoff is also underestimated by the BCC, GISS 367 

MRI and INM models over Africa. In contrast, more than 50% overestimation is shown by all 368 

of NorESM, MIROC, IPSL, CSIRO, GFDL, CCSM, CanESM and FGOALS models. Over 369 

this continent, the runoff simulated by both CNRM-CERFACS and MPI is closer to the 370 

observations. Over all other regions, the error made by all models (except of course BCC and 371 

GISS) did not exceeds 50%, except FGOALS over South Europe and Central America, and 372 



MRI over central America. The error in the standard deviations is also well simulated (Figure 373 

7). Indeed, it did not exceed 50% except over Africa (North America) in where only CNRM, 374 

MPI, FGOALS, CanESM and GFDL (GFDM and INM) are reasonable. We can also note the 375 

large error of CSISRO (MPI) over South America (Centrale America). 376 

 377 

Over the same period 1958-1992, the observations shows large 0.05 mm/yr2 positive 378 

(negative) runoff trends over South America (Africa) but only MRI and MIROC (FGOALS 379 

and MIROC) shows reasonable trends (Figure 8). The rest of models exhibits slight or 380 

opposite trends. Over all regions, the models did not show any consensus. Some of them 381 

shows positive trends and others are negative. Compared to the observations, some of theme 382 

are reasonable and others are not (opposite trends). The previous exercises CMIP3 (Milly et 383 

al. 2005) and CMIP4 (Nohara et al. 2006) shows the same conclusion with the present study 384 

in terms of the comparison between simulated and observed runoff means, inter-annual 385 

variability and trends. 386 

 387 

Despite the different bias existing in different model simulation, no bias correction methods 388 

are done in this study. It is known that bias correction method can alter the inter-annual 389 

variability of the discharge of small river basins and consequently could impact the 390 

significance of the trend signal. Whereas, the inter-annual variability of the large river basins 391 

and especially when regionally merged are relatively well simulated by GCMs (e.g. Milly et 392 

al. 2005; Nohara et al. 2006). Thus, the bias correction method had a small impact on the 393 

detection method used in this study. 394 

 395 

Over the 21st century, all models show a positive global runoff trend except the INM model, 396 

in which the simulated global runoff decreases. At the regional scale, all models are in 397 



agreement and show a positive trend over Northern Asia, Scandinavia, North America and 398 

South Asia. In contrast, the models simulate a negative trend over South Europe, except 399 

CNRM-CERFACS and IAP models, which are positive. For the other regions (South America 400 

and Africa), the models are in disagreement amongst themselves. For example, over South 401 

America, a negative trend is simulated by CCCMA and CSIRO, while MIROC, NCC, IPSL 402 

show a positive trend. Over Africa, the simulated runoff increases in CNRM-CERFACS, 403 

MIROC, MPMIP, NCAR, CCCMA, IPSL and NCC, decreases in CSIRO. Over Central 404 

America, models show no clear trend except GFDL (positive trend) and NCC and IAP 405 

(negative trend). 406 

 407 

III.3. Statistical test on simulated runoff 408 

 409 

In Figure 5, the TOD test is applied to each CMIP5 model over the 161 global river basins 410 

still merged into 8 zones, and over the whole 1958-2100 period. In order to highlight an 411 

central behavior, the median of these 14 P-values is computed each year, and its time 412 

evolution is illustrated. The P-values are also shown for the observed and the reconstructed 413 

data presented before. Note that the P-values of observed and simulated runoff are calculated 414 

over the 161 river basins whereas reconstructed data are computed over the 687 river basins. 415 

The P-values obtained from the CMIP5 runoff calculated over the 687 rivers are  very similar 416 

to those computed over the 161 rivers. The results are only shown for α  = 0.2 (medium 417 

value). We define the date at which detection occurs as the first year for which the P-value 418 

remains lower than the 0.05 threshold up to 2100. The two models that simulate low runoff 419 

variability, BCC and GISS, are the first to detect a significant runoff change (in 2002 and 420 

2005, respectively). The INM model, simulating no global significant trend, is the last to 421 

detect a significant change, in 2060. All other models detect a significant change between 422 



2016 and 2040. This means that changes in runoff, as simulated by current climate models, 423 

are expected to become significant in the coming decades. As a consequence, the result 424 

previously obtained on observed runoff (161 river basins) appears to be very consistent with 425 

climate model projections.  426 

 427 

The result obtained on reconstructed runoff (687 river basins) seems less consistent, as a 428 

change was found from 2000 onwards. In particular, Figure 9 suggests that the P-value 429 

computed from reconstructed runoff is on the border (if not outside) of the set of climate 430 

model projections. This feature, together with the substantial difference between the results 431 

obtained on observed and reconstructed data, may call into question the quality of 432 

reconstructions, and/or the accuracy of climate models projections. The difference found in 433 

detection date with 161 or 687 river basins could raise a lot of questions and the recent direct 434 

human influence on global trends could be one of the explanations. But this hypothesis is less 435 

supported because we did not detect change even using 161 basins over the same period with 436 

the 687 basins (i.e. 1958-2004). The 161 river basins represent 42% of global discharge and 437 

the 687 basins represents about 60% of global discharge. The main difference (60%-42%) of 438 

discharge are mainly coming from the northern Canadian and South Asian rivers. Without 439 

doubt, the human influence are far from being the main driver of the Northern Canadian 440 

rivers. Whereas, the large land use and irrigation changes over South Asia could be one 441 

possible explanation of this difference. 442 

 443 

The P-value spread between the CMIP5 models is very large especially over 20th century, 444 

and reduces at the end of 21st century becoming significant (less than 0.05) over northern 445 

high latitude regions (Figure 4). While, over the other regions (South Asia, South and Centre 446 



America), no change is detected by CMIP5 models till 2100. Figure 4 suggests that the 447 

northern high latitude regions represent the key of the future runoff change. 448 

 449 

VI.  Summary and conclusions 450 

 451 

In this work, the TOD statistical test [Ribes et al., 2010] is used to evaluate the possible 452 

changes on recent and future (RCP 8.5 conditions) runoff, based on fourteen CMIP5 453 

experiments and streamflow data from Dai et al. [2009]. This evaluation is made over 8 454 

zones, merging the world’s 161 largest rivers. Our analysis suggests some answers to the 455 

three issues raised in the introduction. 456 

 457 

1. How does global observed and reconstructed streamflow change over time?  458 

 459 

No significant runoff change is found in the observations over the whole set of 161 rivers 460 

from 1958 to 1992. Extension to 2004, using reconstructed streamflows over the same 461 

catchment areas, does not lead to a different conclusion. This confirms previous results by Dai 462 

et al. [2009] and Alkama et al. [2011]. In contrast, reconstructed data over 687 rivers shows 463 

significant change at the 95% confidence level over the 1958-2004 period, at least with a 464 

medium assumption regarding the internal variability persistence. This change is not robust to 465 

a more conservative choice regarding internal variability. This result seems rather 466 

contradictory with the conclusions by Dai et al. [2009] who found no significant trend on 467 

global rivers discharge based on the same data. This discrepancy much likely comes from 468 

differences in the statistical method used. While Dai et al. [2009] were only looking at the 469 

global mean time-series, our diagnosis is based on continental scale discharge, and can be 470 



explained by opposite changes over different continents, that tend to compensate themselves  471 

and result in little change on the global mean.  472 

 473 

Taken as a whole, these results suggest that changes in global runoff are still unclear. Indeed, 474 

positive detection is only obtained when considering a dataset where a substantial amount of 475 

data comes from reconstruction. It is not robust to a narrowing of the spatial domain, nor to a 476 

little change (considering an important slow process such as groundwater on global 477 

streamflow) in the description of the internal variability (i.e. using α=0.3 instead of α=0.2). 478 

The use of reconstructions also arises additional questions with respect to the accuracy of the 479 

reconstruction, which depends on the quality of the atmospheric forcing used, the capabilities 480 

of the LSM, the relevance of the statistical correction applied, and others. We finally conclude 481 

that changes in global discharge cannot be robustly identified from observations over the 482 

recent decades.  483 

 484 

2. Are simulated streamflows reasonably consistent with observations? 485 

 486 

Except for BCC and GISS, which show large underestimations of global runoff, the other 487 

CMIP5 simulations perform reasonably well. However, regional biases are far from being 488 

negligible, as the model bias can exceed 50% of the mean observed runoff over some regions. 489 

These biases are comparable to those found in the last CMIP3 exercise [Nohara et al. 2006, 490 

Milly et al. 2005].  491 

 492 

3.    How will streamflow change in the future? 493 

 494 



The majority of CMIP5 models under RCP 8.5 conditions simulate an increase in runoff over 495 

South Asia, Northern Europe, Northern Asia and North America, and a decrease over 496 

Southern Europe. However, no significant change appears over Central America, and no 497 

consensus can be found over South America and Africa. These features are similar to what 498 

Milly et al. [2005], Nohara et al. [2006] and IPCC [2007] have already shown. More globally, 499 

all models show an intensification of the global hydrological cycle over the 21st century. 500 

Indeed, the global continental precipitation, evaporation and runoff tend to increase. Change 501 

in global runoff becomes significant between 2016 and 2040 for all but three models. This 502 

suggests that our finding of no clear change from the observations is rather consistent with 503 

current projections for the next century.  504 

 505 
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Figure captions 622 

 623 

Figure 1. Coverage of 161 (687) river basins up (down) over the 8 selected zones which are: 624 

1 South America, 2 Africa, 3 South Asia including Oceania, 4 North Asia corresponding to 625 

Siberia, 5 South Europe, 6 North Europe including arctic basins, 7 Central America  and 8 626 

North America. The circles represent the in-situ gauged stations for each river accounted for 627 

in this study. 628 

 629 

Figure 2. (a) Estimated alpha (α) based on the global runoff time-series from each CMIP5 630 

model (piControl simulations); (b), (c) and (d) are the distribution of the P-value when TOD 631 

test is applied to different segments of 50year periods of all CMIP5 control runs using α=0, 632 

0.2 and 0.3 respectively. 633 

 634 

Figure 3. (a) (left) Temporal evolution of observed (1968-1992) and reconstructed (1992-635 

2004) runoff P-value over 161 river basins merged over 8 zones. The full horizontal black line 636 

represent the threshold level at 5%. (right) distribution of the runoff relative anomalies 637 

(∆Q/Q) in percentage over 161 river basins. (b) same as (a) but using reconstructed data over 638 

687 river basins rather than observations over the whole 1968-2004 period. 639 

 640 

Figure 4. Temporal P-value of observed (black) and simulated (light blue) runoff over the 8 641 

regions merging 161 river basins using α at 0.2. The median of the 14 is in blue. 642 

 643 



Figure 5. 1958 to 2100 global and regional time-series of the simulated (colors) and observed 644 

(black) annual runoff. The median of the fourteen models is given by the thick red line. 645 

 646 

Figure 6. Percent error (100(Sim-Obs)/Obs) of simulated runoff averaged over 1958-1992. 647 

 648 

Figure 7. Percent error (100(Sim-Obs)/Obs) of the standard deviation runoff simulated by 649 

CMIP5 models over 1958-1992. 650 

 651 

Figure 8. Observed and simulated runoff trends over 1958-1992. 652 

 653 

Figure 9. Temporal P-value of observed (black), reconstructed (red) and simulated (light 654 

blue) global runoff over 161 river basins using α at 0.2. The median of the 14 CMIP5 models 655 

is in blue. 656 
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