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ABSTRACT

The Flood Frequency Analysis (FFA) concentratespoobability distribution of peak flows of flood
hydrographs. However, examination of floods thairtted and devastated the large parts of Polandugad
to revision of the views on the assessment of flagkl of Polish rivers. It turned out that floodilgycaused
not only by overflow of the levees’ crest but mgsilie to the prolonged exposure to high water gade
structure causing dangerous leaks and breachegshttegiten their total destruction. This is becaube,
levees are weakened by long-lasting water pressuteas a matter of fact their damage usually ocaites
the culmination has passed the affected locatitwe. @robability of inundation is the total of proiaies of
exceeding embankment crest by flood peak and thigapility of washout of levees Therefore, in aduitio
the maximum flow one should consider also the domaaf high waters in a river channel.

In the paper the new two-component model of flogdasnics: ‘Duration of high waters—Discharge
Threshold—Probability of non-exceedance’ (DgF),hwihe methodology of its parameters estimation was
proposed as a completion to the classical FFA nasthBuch model can estimate the duration of stages
(flows) of an assumed magnitude with a given prditalof exceedance. The model combined with the
technical evaluation of probability of levees bieatue to thed-days duration of flow above alarm stage
gives the annual probability of inundation causgdhe embankment breaking.

The results of theoretical investigation were fiifaged by a practical example of the model
implementation to the series of daily flow of thesla River at Szczucin. Regardless promisingltestine
method of risk assessment due to prolonged expaduesees to high water is still in its infancyspéte its
great cognitive potential and practical importantieerefore, we would like to point out the need &md
usefulness of the DgF model as complementary t@tadysis of the flood peak flows, as in classkiBA.
The presented two-component model combined withrdldine flood frequency model constitutes a new
direction in FFA for embanked rivers

Keywords:inundation risk, embanked rivers, modelling ofthigaters duration, annual flow peaks, levee leakage

1 INTRODUCTION

The most popular way of flood protection in Polasidhe embankment of the rivers. In consequendhisf
passive way of protection, floods in Poland occwstly due to the levee breach or to flow over trestcof
dikes. Sense of security in floodplains of embanieers results from the belief that levees protegainst
the flood magnitude for which they were designedlit8reates the illusion that if the actual forgtea flood
peak does not exceed the safety levels relatezl/gels designed value one can assume that thefrsater
overtopping the dike crest is negligible and sthis risk of flooding in the protected area. Theords of
floods in Poland show that this is not true; mofterothe floods are the result of the prolongedosxipe to
high water on levees. The levees are weakened Br\&ad their disruption occurs when it seems tifiat
danger is over, so after passing culmination. Tikisparticularly dangerous because when the staff
responsible for flood protection and local resigddimeathe sigh of relief the worst is yet to come.

Therefore, apart from the magnitude of the peawsl@another important factor should be taken into
consideration, the duration of high water levatsfact, a parameter of the wave’s shape. LongAgdtigh
stages may weaken the levees’ structure (soakimfjcause dangerous leaks, blurs and breaks tleatteinr
their destruction. That is why the classical FIdodquency Analysis (FFA) concerning only the fregmye
of the annual maximum (AM) flows is not suitabletlimis case and ought to be supplemented by thgsisal
of the duration of flows over the given threshdibgdanowiczet al.,2011, also Eagleson, 1972; Sivapalan
et al, 1990; Gioieet al, 2008; lacobelli®t al, 2011). The joint risk of inundation making allamce for the
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two main sources of vulnerability to flood hazaod &reas protected by embankments, over-crest diwav
levees failure, has been proposed and defined.

In Poland, as in many other countries for each dipdical station two benchmark water levels, called
the warning stage and the alarm stage, have beeifisd. Although warning and alarm stages aregassl
to the places where water levels are observedhettydrological stations, their determination pthaes as
well as other inundation risk characteristics take accountjnter alia, the elevation of the embankment
system for the whole river reach. So, the resultsebow analysis refer to the river reaches represk by
data observed at hydrological stations. The frequesf annual maximum uninterrupted duratid,(in
days), of flows over the flood alarm stage (Figcah be used to assess the risk of flooding duweatong of
the levees’ strength. The aim of this study isniwoduce formal aspects of the Duration—flow—Frexmye
(DgF) modelling in stationary and non-stationaryaitions, to use it to assess the inundation risk t the
levees breach and to combine it with the AM flowdabto get the cumulative probability of inundatidm
the presented statistical model, the duration issictered as a random variable while the alarm flow
discharge is the fixed value. The approach predemeee for non-stationary conditions can to sontergx
resemble the Peak Over Threshold (POT) with cotesigechniques developed by Davison and Smith
(1990). Looking for similarities to other approashesed in hydrology one can find that the likelithoo
function of DgF model is for stationary conditicsisilar to the likelihood function of the censorsaimple
introduced to FFA by Kaczmarek (1977).

The paper is built as follows: in the second sectlee concept of the inundation risk for embanked
river is defined. Then a short review of literatune statistical modelling of flood shape hydrogmaptith
emphasis on one-dimensional models is presentectigSe3). In the next section the Duration—Flow
discharge—Frequency (DgF) model is introduced astiinations of its parameter for stationary and non-
stationary case are described and discussed. Takingaccount the embankment resistance, the annual
probability of inundation caused by levees breaghis introduced. To illustrate the proposed way of
inundation risk assessment the case study for #egusin gauging station at the Vistula River (Seuth
Poland) is presented (Section 5). The probabilitynondation due to levees breaching is compareH thie
conventional probability of peak flow exceeding teeee crest and the cumulative probability of idation
are computed. The section 6 concludes the paper.

Fig. 1 Definition of the threshold flow dischargedaduration in DgF model:
a) the flood wave of;;, duration entirely in the yedy
b) the flood wave starts in the year t and contiriné¢ + 1.

2 FLOOD-RISK

Floods occur as a result of water spilling overdtest of embankmen@(> Qg) or more often as a result of
prolong existence of high water in the embankedrrohannel, so when the peak flow discharge exdéeds
alarm flow Qa) but is lower than the overtopping flovQq is the discharge that overtops levee crests)
(Qnao < Qmax < Qs). One can also distinguish many other causesooflff, such as back water and ice-jams,
etc., but they do not stem from the embankmentries and will not be considered in this study.

The annual probability of inundation for embankagkr reach is expressed as the total of probability
of the two exclusive event§l(stands for ‘flood’) (see Fig. 2):

P(FI)=R(FI)+PR,(FI) (1)
where the first term comes from the conventiona\ FF

Pl(FI) = p(Qmax > QB) (2)

The second term of Eq.(1) defines the probabilitynondation caused by levees breaching which
depends on both the flood persistency and levesstaace to high water stages which in turns depend
their design and technical condition. Therefore, RiFI) is expressed as the integral of the product ef th
value of the hazard inddXFl|d) which is defined as the probability density ofde breaching caused by the
d-days duration of flow over the flow lev€l, and of the pdf of the the&— duration, sd(d) for annual peak
flows in the intervalQa < Qmax(t) < Qs .

P, (F1) = p( FI|(Qa < Quax s QB)):Ir(qu)Df(d)md 3)
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where
f(d) — pdf of the duration of flows above the alarm stage;
h(Fl|d) — the hazard index being the probability of lelseeaching caused by a high water of the duration

The value of the hazard indégl|d) tends to O fod going to 0 and to 1 fad going to infinity (e.g. Fig. 6).
The hazard indexh(Fl|d) is determined administratively for the river rkaby the Regional Water
Management Board based on the technical assessfrfeadd embankments.

Fig. 2 Two reasons of inundation — an illustration.

Note that collating the annual maximum high flowation data for analysis one puts= 0 (indext marks
thet-th year in a series in which the particular evértO occurredt = 1, 2,...,T andT is the length of the
series in years) the both fQax < Qa andQmax > Qg, SO 1 inundation yearly is considered and thaseduy
spilling over crest has the priority over one caubg prolonged high stages. Furthermore note that t
weaker is the relationship between annual maxinaéles of peak flow and duration of flows above the
alarm flow Q,) the more justified is the separate analysis eflibth random variables. The DgF approach is
the extension of the conventional FFA performedaasingle annual peak flow series. But, even thatgh
does not have to be the same flood that givesrihaa flood peak and last longest in the year atteual
peak flows are usually assumed to be temporarypemdgent what has been verified by several investiga
and so is assumed here for the annual maximalidnsatDue to the poor measurement material — short
samples — it would be eve hard to analyse autdediors in the series of durations.

The ratio of probabilitie®, to P; and their total is helpful to determine the actiém reduce the risk of
flooding, namely the strengthening or heightenl¢vees (or building parallel levees).

3 THE STATISTICAL MODELLING OF FLOOD HYDROGRAPHS SH APE

Due to complexity of stochastic nature of rivervilprocess one has to accept a rational ignorandie wh
dealing with flood risk management. In responsprttical needs several simple conceptual strustare
being developed for statistical modelling of flobgdrographs. The methods of constructing desigodfio
hydrographs are most popular for modelling floodidographs. Their reviews is available in e.g. Sddin
and Grimaldi (2010), Strupczewski (1964, 1966) Stdipczewsket al. (2013). The design hydrograflft)
with the defined return period of its peak servethbin flood—risk mapping procedures and for desigra
reservoir storage capacity and other hydrauliccttines sensitive for flood hydrograph magnitude stmabe.

The common feature of most of the approaches tmiffoydrographs analysis is an avoidance of using
a joint probability distribution of parameters désing the shape of the hydrographs while limitimglti-
dimensional analysis to conditional expectatiorshier reduced to a regression. The most commordg us
variables are flood peak and flood volume.

Extension of the standard FFA for statistical asialyof peak part of flood hydrographs is the one-
dimensional model Flow-duration Frequency (QdR)iateéd by NERC (1975) and Askhar (1980). In the
nineties, Sherwood (1994), Balocki and Burgess 419%alea and Prudhomme (1997) laid out the
foundations of the present form of the QdF metiBaked on the assumption of the convergence ofrelifte
flood distributions for small return periods Jaee#it al (1999), Javelle (2001) introduced a converging
approach to the QdF modeling. Here the annual neaximum peak flood volume (or equivalently the

mean excess discharge(_gd) corresponding to the given duratiod) (s taken (Fig. 3a) as the random

variable. Therefore consequently the maximditlays annual outflow volum¥, =d [(_Qd is the random

variable as wellln fact, the above idea of flood peaks analysimaglelled on the analyses of the Intensity-
duration-Frequency (IdF) commonly used for stodbasbdelling of high intensity rainfalls and of tigglF
analysis of low flows.

To cater for the conventional FFA, the flow disd&iQ,) corresponding to the alarm stadg&) is
used here, so the upper limb of the rating curveeggarded as time invariant. The frequency of ahnua
maximum uninterrupted duration of flowB, (in hours, days, etc.), over the flood alarm stédg (or
equivalently over the alarm flowQg)) but excluding floods pouring over the embankmergst (which
corresponds to flows exceeding the overtopping flQyy serves to assess the inundation risk of flood
spilling out of river channel caused by scouring liévees (Fig. 2). Therefore, the= 0 in the [d] time-series
means that the threshold dischai@g,has not been exceeded during tttieyear of the serienaxt) < Qa)
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or that the peak flow has exceeded the overtopfliowg (Qmax(t) > Qg) Where Qmax(t) denotes the annual
maximum discharge occurred in théh year of the sample series. In other words,ethiemo risk of the
dike’s damaging due to the prolonged exposure ¢ohigh water because the flood wave was either too
small to reach the weaken construction of the l@reéhe contrary, the flood is such big and suddtien the
water immediately overtops the levee’s crest. Nbg& if more than one flood appears in a year,Orend

the annual peak flowQyay can correspond to different floods (Fig. 1).

Using multi-duration approach, by fitting the appmrate statistical distribution to the extracted
samples for various durationsom the relations QdF for various one can roughly construthe scaled
Flood-duration-Frequency curve (QdF). To avoid mgistency of the estimates of quani@d, F) for
variousd, the same distribution function is applied for aliration (Javelleet al., 1999, Castellarin et al.,
2004; lacobellis 2008; Botter et al. 2008) and gnantiles are reduced by the appropriate funcgih v)
which is decreasing function df

Q(d,F)=¢(d,v)0Y0,F) ford=0,1,2,.. p( D = (4)

where thev denotes the vector of parameters which are egtthfabm the data.

It means that differences in the distributions afieusd values result from the differences in the mean
value only. Note tha®Q(0, F) corresponds to the distribution of annual instaebus peak discharges. The
parameters of the functig#(d, v) andQ(0, F) [Eq.(5)] are estimated separately.

Finding that flood persistence is a factor of fldwalzard for embanked rivers, Bogdanowiet al.
(2008) modified the above model redefini@yas the annual maximum flow discharg@q)( which is
continuously exceeded during the permdwvherein thed variable is still treated as a deterministic value
(Fig. 3b) The applied way of determining the scaled distrdoufunction does not differ much from the
method described by Javekl¢ al(1999). In parallel, the use of ML method in thegance of the as the
covariate (Strupczewsldt al. 2001abc, Katzt al.,2002, Stasinopoulos and Rigby, 2007, Stasinopcetios
al., 2008, 2012) is demonstrated for Weibull disttitm with the lower bound parameter and the cortstan
shape parameter. Here all parameters are estijoéndg.

However to address the 1-D statistical analysithefpeak part of flood hydrographs directly to the
problem of softening and breaching of river embaakinthe durationd) of high stages should be taken as a

random variable rather than the mean excess dgxel'@g (Javelle, 2001) (Fig. 3a) or the the annual

maximum flow discharge(y) (Fig. 3b) (Bogdanowicet al.,2008). Note that the duration of flood) (can
be more accurate assessed than the peak flow digcbBlarge floods.

Fig. 3 Definition of the random variables in theFJuodels:
a) the mean maximuutdays flow,
b) the annual maximum flow discharge (Qd) contirslpexceeded during the peridd

4 FORMAL ASPECTS OF THE DURATION-FLOW-FREQUENCY MOD ELLING

To address the flood risks arising from softening savashing out the river embankments, Bogdanowicz
al. (2011) proposed to take as the subject of analysisfrequency of annual maximum uninterrupted
duration,D (in days), of flows over the flood alarm sta@&), the duration) is considered as a random
variable while the alarm flow discharg®@,] is the fixed value (Fig. 1).

The time-series of annual maximum uninterruptectiom, D (in days), of flows over the flood alarm
flow Qp, d = (dy, dp,..., d..., dy), is the subject of statistical modelling in stagry and non-stationary
conditions. Thal, = 0, denotes that tH@, has not been exceeded during ttie year Qmaxt) < Qn) or that
the peak flow has exceeded the overtopping fléWa.{t) > Qs), which means that the priority of
overtopping over breaching is given and we rule thet possibility of two inundation floods of thedw
different origins within one year. Note that thendition Qma(t) > Qg is equivalent to the unconditional
inundation, from Eq.(2P1(FI|Qmaxt) > Qg) = 1, while Qg > Q(t) > Q4 points only possible inundation [see
Eq.(3)].

Frequency analyses of hydrological sample with zisarete values have received relatively little
attention. Still there are several approaches fualysis of censored data, including probability tplo
regression, weighted-moment estimators, maximunelitikod estimators, and conditional probability
analyses (Gilliom and Helsel, 1986; Hass and ScH&®0; Harlow, 1989; Helsel, 1990). A consistent
approach to the frequency analysis of such dataine=sy using discontinuous probability distribution
functions. Jennings and Benson (1969), Interagébyisory Committee on Water Data (1982), Woo and
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Wu (1989), Wang and Singh (1995) among others deeel empirical three-parameter models for
frequency analysis of hydrologic data containingpaalues.

When the available data represent mean daily digehahed values are in fact the integer numbers
(the exposition can last 1, 2, 3, etc. days) bumaintain the continuity of time we treat them @al numbers
and consided as if it corresponded to the duration rande- (0.5 dayd + 0.5 day). In particular, fad = 0
(beginning of the time axis) the interval corresg®ito the range (@ + 0.5 day). If a flood starts before the
end of a year and is continuing to the next yds dtvalue is derived for the entire flood wave (frot® i
beginning in one year to its end in the next ydnr) attributed to the yedrwhen the flood culmination
occurred. To get an insight into flood persistepaaperties, the several threshold staggg ére considered
but not only the alarm staggx.

4.1 Stationary conditions

As far as the probability theory is concerned, dlseurrence of zero events can be expressed bynglaci
non-zero probability mass on a zero valBéd = 0) # 0, whereD is the random variable, arfdlis the
probability mass (e.g. Strupczewsdd al, 2002, 2003, Weglarczykt al, 2005). Therefore, the parent
distribution functions of such hydrologic seriesubbe discontinuous (with discontinuity at 0) anding
the theorem of total probability, their forms canveritten as:

f(d)=B9(d)+(1-B) f°(d;g) 1 d) (5)

wheref denotes the probability of the zero eveht P(D = 0),f°(d; g) is the conditional probability density
function (CPDF)f°(d; g) = f(d|D > 0), which is continuous in the range (6)+with a lower bound of 0, and
g is the vector of parameters (containfhgr not), dd) is the Dirac’s delta function andd)(is the unit step
function. Assuming the infinite upper bound fbDr seems acceptable and facilitates modelling. Due to
discretisied duratiord intervals, the probability of exceeding t@g flow during one day only equals to

d+1/2
P(d)= [ f(d)wd.

d-12

Hydrological samples with zero values are mostuesly of exponential-like shape. Weglarczstk

al. (2005) modeled CPD(d; g) of (5) by two-parameter distributions, namely Ggneralized Pareto,
Weibull and Gamma, estimating parameters by theimax likelihood (ML) and the moments (MOM)
methods.

4.1.1 Estimation of the weight parameter 8

i) From the pdf of the duration d [Eq.(5)] and the records d = ¢, dy,..., d,..., dr) for given alarm
flow Qa

From Eq.(5) one can write the likelihood functien a
L=p"[{1-p)" |_l t°(d;;g) (6)
j:

wheren; andn, denote the number of zeros and non-zeros valeggectively.
If B¢ g, from ML-equations:

olnL _n n,
=220 W)
o8 B (1-8)
one can easily find that the ML-estimatefa
p=—1 ®)
m+ny

sof andg are estimated by MLM independently
i)  From CDF of annual maximum floods obtained from FFA

The better estimate of tifeparameter in the sense of definition [Eq.(9)], m®standard error, can be
obtained from the CDF of annual peaks providing shkected for Annual Maxima (AM) model fits well
upper tail data. Note that tHe = 0, denotes that th@, has not been exceeded during th# year
(Qmax(t) <Qa) or that the peak flow has exceeded the overtgpfiinw (Qmaxt) > Q) WhereQnmax denotes the
annual maximum discharge, therefore, probabilitgesb value oD
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P(D=0)=P(Qu< Q)+ A Qu> Q)= )
shouldbe estimated from CDF of annual peak flows got filei#\ rather than from the (0, 1) time series of
thed record.Having derived from FFA the CDF of the annual pe@(@max) = (0( Qnax,ﬁ) whereh is the

vector of parameter estimates, one can get thm&gtiofs as
B=6(Qu= Q) +(1- 6( Qu = Q). (92)
Note that if more than one flood appears in a yeanay happen that thel, and the annual peak flow

Qmax(t) correspond to different floods.
Floods in excess dg are unique in Polish rivers, but if they were tis&puld be in the FFA treated
as of unknown magnitude over the theresli@id thus one deals with first order right censoreda.

4.1.2 Estimation of parameters of the continuous part of Eq.(5)

ML estimate of the parametery) ©f the continuous part of PDF [Eq.(6)]: the cdimtial probability density
function (CPDF)f°(d; g) = f(d|D > 0) off°(d; g), can be obtained by solving the ML system of ¢igna:

alnL _ 0 &
=—>» Inf°(d,;g)=0for f0g (10)
ag ag; (J )

Since thed-samples deprived of the zero values are most émityu of exponential-like shape, the
distribution functions in Table 1 are recommendedandidates fdf (d;; g) model.

Table 1. Distribution functions recommended°4s;; g) model.

Distribution name Probability density function Parameters | Equation nr:
E tial (E — 11
xponential (Ex) f°(d;a)=%exp(—d/a) a— scale (11)
Weibull (We) b(d\°? a—scale (12)
distribution f°(d;a,b) :;(;] exp(-d/a) b > 0 — shape
Generalized Pareto (Pa) 1/ k Wt a>0—scale (13)
f°(d;a,k)==—|1-—d _
( ) a( P j k <0 - shape
Generalized Exponential Ly y1 |a>0-scale (14)
(GE) f°(d;a,y) —Eexp(—d/a)[l— exif- d/a)} y> 0 — shape
Gamma (Ga) of 4. 1 A1 _—(d/a) a>0- scale (15)
f (d,A,a)—aAr(A)d e >0 — shape

Note that Exponential distribution is a specialecatall other mentioned above distributions, E3{(15).

The detailed information on the models mentioneavabwith the methods of ML estimation, one can
easily find in hydrological and statistical litema¢, e.g. in Rao and Hamed (2000) andG&rin Gupta and
Kundu (2000).

4.2 Non-stationary case

The non-stationary Flood Frequency Analysis haslseasubject of numerous publications. Davison, and
Smith (1990) dealt with time-related POT appro&gtnupczewski and Mitosek (1991) (later completed an
published e.g. in Strupczewski and Feluch, 19974B88ab and Strupczewski et al, 2001abc) dealt with
maximum estimation of flood distribution functiomsthin the presence of time as the covariate. Simil
approach is presented e.g. in Katz et al (2002) @tadinopoulos and Rigby (2007), Stasinopoetbsl,
(2008, 2012). The basic assumption in the classttabd Frequency Analysis and the Duration-Flood-
Frequency modelling is that neither the adoptedridigion function nor its parameters change inetim
However, the longer the hydrological series, thelbrato maintain the assumption of stationarityhia face

of a changing environment and climate. (Milgt,al, 2008). The non-stationarity of hydrological dateght

to be taken into account in FFA for theoretical @antpirical reasons, but practical aspects of it®duction
into design and planning procedures are not sooolsvand simpland pose significant ongoing challenges
to the hydrological research and water managemaidyp One could easily accept the increasing trend
design upper gquantiles, but decreasing detectetisrenay distort decision-making in the engineering
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design, evaluation of flood risk and in other flamdiated issues. Especially when statistical infeeeis
based on peak flow series of average length cuyreavering barely 60, 70 elements or on climatarale
scenarios and their hydrological response that mesume, we are able to predict in a realistic manne
Herein the formal aspects of at site non-statiofuiyation-Flow-Frequency modelling are presentedevh
regional Flow-Duration-Frequency modeling beingaduiced by Cunderlik and Ouarda (2006).

Assuming that only the values of parameters ofcthtinuous part of the PDF may vary with time,
but its form remains unchanged, the Pifan be written as:

t(d]t)=B8(t)a(d)+[1-B(1)] t°[ dig (9]0 d) (16)

Assuming the forms of trends and denoting the vsatb their parameters, respectively 8aand§ we have
got:

f(d]t)=B(t6)5(d)+[1-B(t:6)] f°[d;t&] O d) ;0 0E. (17)
For compact notation let us define the dichotomaurgableY; given by:
{1forD =0
= (18)
OforD>0

For the time seried = (d, dy,..., d,..., dr) of the maximal annual duration of river flows erding the
given threshold, the likelihood function can beregsed as:

L= ”ﬁtey‘q_jl A(t;0) y‘q‘lf (d;te)™ (19)

and the Log-likelihood function

Iangych(,G(t;e)) Z(l y,) On(1- ﬂ(te))+i( y) On( f°(d;tg)) (20)

t=1 t=1

l

As one can see from Eq.(20), the paraméensdg, as they are independent, can be estimated sepyaratel

4.2.1 Estimation of parameters of the continuous part of Eq.(16) [f°(d; t, &)]
The ML estimate of the parametéref CPDF {°(d; t, &)) are obtained by solving the system of equations:

dinL _ 0
1-y )0On( f°(d;t&))=0 21
% % _l( v)n(f(d;te)) (21)
while the candidate functiorf$ are given by Egs.(11)-(15) however with time defet parameters in this
case (Strupczewslat al, 2001, Strupczewski & Kaczmarek, 2001). The emtir® can also be found by
direct search for the maximum of Log-likelihood &tion [the last component of Eq.(20)] with resptxt
trend parameter vectér

The consequence of making allowance for time depeinparameters of:(d; g) is an increase of the
number of parameters to be estimated. Given thdl sramber of non-zero elements in the time series
d=(dy, dy,..., d, ..., dy), the number of parameters which can be effegtigstimated is small. Therefore, we
decided to adopt the values of these parametenslegendent of timeThen the only non-stationarity lies in
the weighting parametéi(t; ) which plays the role of the time-dependent fumctiswitching’ on and off
the event of dikes’ prolonged exposure to high vgatdlote here that the durati@his a parameter that
describes the shape of the flobwdrograph,so we assume that the persistence of flood of madmi
Qa < Qmax < Qg is not subject to time variability

4.2.2 Two ways of estimation the time dependent weight parameter S(t; 0)

The estimation of paramete®sof the discrete part — weighting paramegér 0), in the joint distribution
Eq.(17) can be performed in two ways: by regressitalysis and on the base of non-stationary digtdb
of annual maxima with time dependent parameters.

Regression analysis

The variableY; represents binary outcomes and has a binomiaildigon with parameter:

A(1:0)=P(Y =1)= P D=0) (22)
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However the trend i can not be found by means of frequently assumeziinegression. The reasons of
being that

= in general linear trend may take the values of abdlty A(t, 0) outside the range from 0 to 1,

= the error term is not homoscedastic, nor it is radlyrdistributed as in normal regression.

In order to avoid values outside the range frono @ ta monotonic transformation of the interval Jdsl
performed to the range s +w).There are many transformations with this propdstyt the most popular are
two: probit and logit transformations. Both givengsar results but logit transform is more conveniér

calculations. Probit transformation consists invating the probability to corresponding quantitésthe
standard normal distribution. Logit transformatismiven by:

logit = In[g/(B — 1)] (22a)
And the trend is modelled as:
logit =a + bt (22b)
Inverse transformation leads to the logistic (L@)dtionS of timet with parameter vectd® = [a, b.

. _ 1
'B(t’ a, b) - 1+ e—(a+bt) (23)

Logistic regression is used in many disciplinesditiee, social science, econometrics, in engingerin
especially for predicting the probability of faikiof a system or product.

The logistic regression coefficiens and b are usually determined using maximum likelihood
estimation by iterative process until the improveinef the solution is minute and the procedureaisl $0
have converged. Sometimes, when the consideredtimghold is high and thus number of ‘ones’ gyeat!
exceeds number of zero valuesygfthe convergence cannot be reached. The failureohwerge may
indicate that the trend coefficients are not sigaiit or other methods of inference about the triend
should be applied.

Several measures enable to evaluate the goodnétedtrend model. Deviance, pseuBdand odds
ratios confidence intervals are the most frequemsigd. There are two measures of deviance corrdsmpn
to the likelihood ratio. One, called model devianicecompare fitted model to saturated model (artstical
model with perfect fit) and second, null devianadich represents the difference between null mdalel
model with only intercept, so representing theiatairy casef given by Eq.(8)] and saturated model. Model
deviance is given by equation:

likelihood of the fitted model

Dmodel = _2 In - - (24)
likelihood of the saturated mod

and similarly, null deviance:
N likelihood of the null model
likelihood of the saturated mod

D, =2l

null —

(25)

Note that in logistic regression the likelihoodtloé saturated mode}; (= f(t; 0)) is equal 1.

The deviance has an approximate chi-square disisibwith 1 degree of freedom for each predictor,
so 1 in our case. Smaller values of deviance inelichetter fit what corresponds to non-significalmit
square values.

Pseudo R is calculated on the base of deviances:

D D

null

D

and interpreted almost like a coefficient of detigation in linear regression.

Pseudo- R? = model (26)

null

The method via annual maxima distribution with time-varying parameters

An alternative way of analyzing a trend finis to use the non-stationary CDF of annual peaikls time
dependent parameters. From NFFA (Strupczewski.e2@D1) one geté = ¢(Q, h, t) whereh — the vector
of PDF parameters of the annual flood peaks digioh. Then per analogy to Eqg.(9a) one can write:

A(t1)=P[D(1)=0]=P[Qu()< Q]*+{ H Qu(}> Q} = § Q[ }+[1- ¢ Q (27)
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providing the selected distribution and trend maufats parameters fits well upper tail of dattawould be
advisable to compare the results of both methodmpatibility of the results could serve as the alldest
of correctness of the assumptions made.

4.2.3 Probability of inundation during the period (t, t2)

Dealing with hydrologic design, due to non-statiityathe notion of return period is no longer daéind the
probability of inundation should refer to the whelkeriod of life of a hydraulic structurapt to a single year
as has been agreed in the stationary case.

When the parameters of DgF distribution are timpedelent, consequently the annual probability of
leves breach [Eq.(3)] becomes time dependBs(El, t). The probability that at least once in the period
(t1, ) the inundatiortaused by levees breach occurs is expressed as:

R, (Fl(tut,)) =1~ |‘|[1— (FI1)]

=t (28)

Similarly, if the distribution of annual maximum ges is time dependenG = ¢Q, h,t), the
exceedance probability of overflow of the leveegest, so the probability that [see EQ.(2)],
P(Qmax> Qg, t) = 1 —G(Qg, t) = Py(FI, t) is time dependent. Then the probability that ithendation caused
by overtopping the embankment crest occurs at teast in the periody( t,) and can be expressed as

R(FL(t.t,)) = p(Q> Q.(tt)) = 1—|‘|[1— (FLY] (29)

=,

The total probability of inundation in the peridg ;) equals to:

P(FL(t.t,)) = B FIL(tyt,)) + Py FI(t41 ) (30)

5 EXAMPLE — SZCZUCIN AT VISTULA RIVER (SOUTHERN POL AND)

To illustrate how the proposed approach works iacfice the Szczucin gauge (southern Poland) at the
Vistula River has been selected as an example.niRéoeding in the upper Vistula bared the weaknafss
the system of flood protection, especially unsatigfry condition of the embankments in the regién o
Szczucin. One, but not only, major reason for tlreent state of flood protection infrastructur@isomplex
history of these lands. When Western European cdesntormed an effective flood protection schemes
Polish south-eastern lands were periphery of tamgires, two of which were among the most undewsop
countries of the continent. After regaining indegemce, social and economic problems associated with
merging the various districts of the reborn Polarllienced the poor development of an efficienttgction
system. For these reasons, embankments built bwtréd War Il do not meet current requirements \hic
were lately even put to higher level. The Polistof®e's Republic period did not bring any important
changes. Although, the embankments have been pEilydincreased and strengthened, the high cost of
post-war reconstruction and industrialization erout under conditions of socialist economy, ditiailow

to catch up with Western standards. Lately, theenwdt excavated on the flood land, very often a th
immediate vicinity of the embankments, was usedHerre-construction. As a consequence, the togr lafy
inactivated meadow was damaged, what facilitatedfittration of water from the horizontal residuayer
under the layer of permeable sealer coat. Therprasent plans to modernise the dikes and firsksvbave
been carried out. The investor claims that the muogation will reduce the flooding risk by 80%. @esess

the risk before and after modernisation (provideat the statement of the investor is right) théofeing
analysis was performed.

The daily flows record covering the period 1951-2@ = 56 years) was used in this study. At first
the daily records have been controlled and testddregard to the sharp discontinuities and junmpdata —
no particular irregularities have been detected.(#).

The overtopping flowQg was assessed from the rating curve as 10,568 which roughly
corresponds to two-hundred-years return periochafial peak flow Qq 54, the base design value for thk |
class embankments. In fact, there are no annuél fimas exceeding this value in the record. Therefine
Qg value does not affect the composition of the veafmbservation valuesl{. The alarm threshold for the
Szczucin statioa = 1690 ni/s (which means flow of ca. 2-year return peridedge 660 cm), however, for
completion a few other thresholds will be analyded, namelyQr, = 700, 1000, 1300 and 2000/m The
hazard indeX(Fl|d) for Qa = 1690 n¥/s [Eq.(3)] was assessed as:
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h(FI|d) :{o.osm ford< 20 day: (32)

1 ford > 20 days

so the embankments cannot withstand the pressinigloivaters of more than 20 days.

Fig. 4 Hydrograph of the daily flows at the Szcmugauging station. Horizontal dashed lines refieeQ+, values used
in this study.

5.1 Stationary case

The weak correlation between the durations wiigh> 0 (see Fig. 5) and the respective annual maxima
Qmaxt) indicates the variety of shapes of flood hydrpisaand, as a consequende&annot be represented
(or replaced rather) in FFA b®max It implies the analysis of botth and Qnax by (perhaps) two different
types of models. As a model for the parameterf@f°tfunction Generalised Exponential (GE) distribatio
has been chosen (e.g. Gupta & Kundu, 2000). Ambegdistributions presented in Eqgs.(11)-(15) the GE
distribution Eq.(14) performs relatively well inrtes of the AIC value and shows stability of numakielL
solutions in estimation df(d; g) parameters, regardless Qg threshold applied for the calculations. The
list of the GE estimated parameters of the two-comapt DgF model ang values for differentQr,
including Q, is presented in Table 2.

Fig. 5 The durations (in days) of the discharge atf@gv= 1690 n¥/s for Szczucin gauging station (1951-2006).
The annual maximal durations are in black.

The annual maxima are believed to be adequatelgrided by the heavy-tailed distributions (e.g.
Strupczewskigt al, 2011), so to cater for the Flood Frequency AnalyBFA) for extreme values (annual
maxima) theg values [Eq.(8)] andP.(FIl) [Eq,(2)] by means oQ.x series were calculated with the three-
parameter Generalised Extreme Value distribution:

Yy
. — 4 —
awae)=enl- [+ £(a-s)] |- (3 @
From the AM sample covering the period 1951-200656 years) we got the ML estimates of GEV

parameters equal (for calculations we used oulir@igoft-packagefloodDurations NonstationaryMLM
andSDEPwhich we can eagerly share with others):

location= £= 1260.02 n¥'s, scale= @ = 671.39 n¥s andshape= jy= —0.33.

For completion note that the value of log-likelildlolmnction In. = —463.231 and thus AIC = 932.461.

Substituting forg into Eq.(33)the chosery, andQg values and then putting the corresponding proibiisil
to Eqg.(9a), one gets the estimates of the weightargmeters display in Table 2.

Table 2. The parameters of the two-component Dgéeinfior Szczucin data.

First component Second component,
(by two methods) f°is the two-parameter Generalised Exponential
QOn | m B=nin B=AQn) scale shape INML/n,
by Eq.(8) by Eq.(9)

700 51 0.089 0.076 2.8799 0.2938 -2.63
1000 40 0.286 0.226 4.0392 0.5228 -2.10
1300 32 0.429 0.395 4.8616 0.7464 -1.77

1690* 23 0.589 0.577 3.4238 0.8357 -1.62
2000 17 0.696 0.683 3.7411 0.9126 -1.54

*Qrr=Qa

One can notice from the Table 2 thiagot by means of Eq.(8) and Eq.(9) are quite sinpkticularly for
higher values of)r; and for all cases the confidence interval for prtipn $ includes the value estimated
from AM distribution [Eq.(9)].
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5.1.1 Assessment of probability of levee breach along Szczucin reach.

Since the event of levee breach is conditionedhbypeak flow being in the range @4 Qg], Eq.(3) can be

written as (see also Fig. 6)

R, (FI)=(2-8) [ h(FI|d)0f(d) d (34)
0+

The pdf of GE [Eq.(15)] fofr, = Qa = 1690 n¥/s (Table 2) takes the form

(1-B)F° (d:a = 3.4238y = 0.835)= 0.428 2448exd/ 34298
[1-exp(-d/ 3.4138]" (35)

while the ML estimate off equals (Table 2) 0.577. Substituting them anchdmard index function defined
by Eq.(32) into Eqg.(34) and integrating one gets @nnual probability of levee breachiRg(Fl) = 0.064.
Note that at the same time, and when the same G&Nbdtion is used [see the EQ.(33) and its patamse
below the equation], the probability of flood cadid®y exceeding embankment crest by annual peak flow
P1(F1) = P(Qmax> Qg = 10,500 r¥s) = 1 —G(Qg) is equal to 0.005, so it is almost insignificgntore than
ten times smaller tha®,), hence, the overall probability of flood alongc8acin reachP = P, + P, = 0.069.

Variety of shapes of flood hydrographs one cariuata by a measure of correlation strength between
Qmaxt) andd(t). Due to shape similarity of flood peak parts t@rsy dependence between the peak flows
(Qmay and the duration above the alarm flady ¢an take place. If it is a case, the probab®iffFl) can be
assessed on the basd@fdistributiong(Qmay. Assuming thatl = ¢Qmay One can expressed in Eqg.(34) the
d variable by th&na.x getting

Py (F1)= p(F1|(Qa < Quaxs ) :Qf { o Qua)) Tl Q) T Qe (36)

where per analogy to Eq.(32(FI|¢AQmnay) equals 0 and 1 fo@Q, and Qg, respectively. The Pearson’s
correlation coefficient(Qmax d) for Szczucin equals to 0.83.

Fig. 6 Components of the integral Eq.(34).

Of course, when estimating the risk of a levee thieaxcept the time of high water residence, more
technical parameters of levees should be analgseth, as the construction of the levee, the matesiadl for
its building, its age, susceptibility to softeninbe regime of the river, wind-induced waving andos. All
in all, those who decided to build their houseshia river’s proximity behind the levees, soonefater do
experience a catastrophe.

5.2 Non-stationary case

Analysis of long series of hydrological observasioon Polish rivers lead us to the conclusion that t
random variables whose probability distributiongénheen considered as components of DgF analysig sh
different behaviour versus time. The continuousalde — duration of water level above certain stage
general, shows no trend. It describes the shapleeclood waves which has been stated to be ratiable
and, if any trend there exists, it does not poseedfect on the final results of the DgF calculagoOn the
other hand, a visual assessment of records forusiztzand other hydrological stations show that the
frequency of occurrence of extreme flows)(and flows above (so well below) a given thresh@ X may
reveal some trend. Therefore in this study we fedusnly on the search of trends in the probabRityand

in the weighting factof that plays the role of the time-dependent functgwitching’ on and off the event
of dikes’ prolonged exposure to high waters. Theseds have been estimated from the annual peak flo
series and by direct analysis df][vector represented by the sequence of 0 anddivas by Eq.(18). In
both cases the maximum likelihood method (MLM) basn used for calculation, while the logistic fuoet
(23) serves to model the (0,1) duration series.

The estimation3t) for the threshold corresponding to the alarmesi@y = 1690 n¥s) in the form of
the logistic function (26) revealed the decreasirgd b < 0), whereaa = 0.405, so thg#(t) takes the form:

B0 (t) =[1+exp( 0.0028 - 0.40 " (37a)

and the parameters of station#tryunction for selected fvalues can be found in Table 2.
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The above equation [Eq.(37a)] says that the odde (atio of probabilities of events against
noneventsAt)A1 — At)) decreases in average by 0.2% from year to yedrgitas the change ¢ffrom ca.
0.60 in 1951 to about 0.58 in 2006. However thémdris not statistically significant. The model idexe
Dmodel being equal to 75.8286 and the null deviabgg = 75.8372 give the difference with p-value of
0.9264 from chi-square distribution. The value sépdo -R? = 0.046 is close to 0. It is likely that this résu
points on almost stable risk of inundation causgdiite breaches for summer floods that prevailhe t
reach of the Vistula river represented by Szczigidrological station, where changes in the rived bad
on the floodplains have not influenced considerahly transportation of high waters. Winter floods c
reveal stronger trends due to greater variabilftynelting condition and observed temperature risg,as
consequence, the volume of runoff. Small catchmee&n to be more susceptible for trendg.iMhese
statements ought to be verified on the larger Hpdioal data set.

If instead of the logistic (LO) we take the nontistaary Generalised Extreme Value (GEV)
distribution function (see stationary case aboas}ume linear trends in mean value and standardtidev
(but not in the parameters of location, scale dmps) and calculate th&t) by means of Non-stationary
Flood Frequency Analysis (e.g. Strupczewskial, 2001, 2009) we obtain:

[t[(33.067% - 22453+ 3.812 1§

IBGEV (t) = exp - (37b)

3.08

[1.43[n+ 1.33q)t ([ 33.06@- 224533 3.812°10 275.269

The comparison of the values of the non-statiohegylikelihood function and AIC, Ibh = -463.078
and AIC = 936.157, respectively with the stationaegults reveals that the supplement by two extra
parameters to the model (those responsible folirtear trend in mean and standard deviation) wotken
estimation results. It means that for a given sesige N = 56) the detected trends are in fact weak, and
perhaps addition of a few new measurements inssedap dramatically change their value or even Sigpe.
weakness of the trends in moments are confirmeatidoyweakness gf time-variability.

The time variability of8functions got by the two approaches are showherFig. 7.

Fig. 7 Non-stationaryit) by two approaches

The above equations [Egs.(37a) and (37b)] and idgraim (Fig. 7) point at the difference in trend
sign of 5 between the results received by the two approati@snd GEV). However, there are similarities,
too. The results for both cases say that the valugs is practically time independent (statistically
insignificant) within time period 1951 to 2006 atiis maintain the relatively constant balance betwbe
first and the second terms of the DgF probabilépgity function [Eqg.(17)]. In consequence, the dares of
water stay abov@®, described by th& function are actually as frequent nowadays ag were in past. On
the other hand, the probabiliBy andP, (and thusP) are now the functions df If we take the GEV-based
At) as an example (as more reliable than LO-bg&&d andt=1 (year 1951) one obtairf® = 0.066.
Further, with the non-stationary GEV (by the samaeameters as fof{t)): P, = 0.007, so in consequence
P =0.073. Fort =56 (year 2006)P; = 0.004,P, = 0.064, soP = 0.068, thus the probability of flood in
Szczucin dropped by 7% over the half of the centugyjudgement whether it is much or not we leavre f
the reader and decision makers. Please also retteetpardless the point in time the rd®g@P, is similar to
the stationary conditions.

However, the probability for the certain point imé& may not carry information sufficient for flood
protection authority. Therefore, it is interestiogknow what is the probability of inundation ovke certain
period, e.g. 20 years of the exploitation of theediin Szczucin. For the GEV non-stationary moddth(the
parameters mentioned above) and last 20 year®dinie series (1986-2006) the probability of ovepiog
over the levee crest is equalRp= 0.048, whereas the dike’s breach probabilitpage than 10 times larger:
P, =0.516. Overall risk of inundatioR = 0.563, it is almost 10 times larger than foriregke year. The
reader also notes easily that again the Mi{iB, is alike the ratios for the point-in-time non-giagry case
as well as for the stationary case.

One has to bear in mind, however, that the lineard in parameters (in case of the LO) and first tw
moments (as it was in GEV) is just the simplesthef countless trend patterns that may be employetthé
time-dependent models and application of other wWays parabolic, polynomial, exponential, etc.yally
leads to the overparametrisation and noteworthyptication of numerical calculations. It is so, besa



maximum likelihood estimates for time-dependant etedequire multi-parameter optimisation of relatw
‘flat’ log-likelihood functions with use of relately short data-series.

6 CONCLUSIONS

In the paper the new two-component model of floaVes, ‘duration of flooding-discharge-probabilityy o
non-exceedance’ (DgF), with the methodology opasameters estimation was proposed as a completion
the classical FFA methods. Such model can estithaeluration ) of stages (and flows) exceeding the
assumed magnitude with a certain probability wigchf key importance when the river’s dikes arengrto
the prolonged impact of high waters. The embankmerdy be weaken by the water, soak and eventually
break — this is the most frequent cause of floodBaland. However, in this study the two main causfe
inundation of embanked rivers, namely over-crast/fand wash out of the levees, were combined tesass
the total risk of inundation. The proposed DqgF nilig approach was generalised to the non-stationar
conditions. Therefore, in addition to the maximuowf one should consider also the duration of higttens
above the alarm flo@, in a river channel. The model combined with thahtecal evaluation of probability
of levees breach expressed by the hazard indes dghe annual probability of inundation caused by th
embankment failure. The probability of inundati@nthe total of probabilities of exceeding embankimen
crest by flood peak and the probability of washafuevees.

The DgF modelling is the consequence of QdF appraveloped by Javellet al. (1999, 2000,
2002) and Bogdanowiazt al(2008) but in the first model the gravity is put the probability of the certain
duration above alarming stage/dischar@g) father than on magnitude of flood itseli,(.4) like in the latter
case (Fig. 3).

The DgF model in the form of Eq.(5) consists of tieoms:5-dd) deals with the zero everid, = 0,
whereas the latter term (18)-f°(d;g) -1(d) stands for the events when the durafibrn 0. In general botl
andf® in non-stationary case may depend on time. Thammamn likelihood method (MLM) was proposed
for estimation off andg parameters. In the non-stationary case it is aoiewe to describe thgt; 6) by
means of the logistic function (23). Howevgrand At; 0) can be also estimated by means of annual peak
flows seriesQmax UsiNg the routine flood frequency techniques (Wi distribution functions commonly
used in FFA (e.g. GEV) for stationary and non-etadry case, respectively. Note that estimating the
weighting factorg and At; 8) from the duratiord time series the information (0,1) for excess threghold
level Qr, is used exclusively, while basing on the annualkpiow time-serieQmnax the information from
whole range of recorded flood magnitude is useasgess the trend in the alarm flQw Forf°(d;; g) model
(both stationary and non-stationary) the exponklikia shaped distribution functions are recommehde
such as: Exponential, Weibull, Pareto, Generalisgabnential, Gamma and similar.

The calculations for the Szczucin at the VistulaeRicase study made for several threshold values
(Qm) including the alarm flow@,) have showed the similar results for the weighfexgtor Sestimated by
ML method from the duration time-series and fromual peaks time-series (Table 2). The peak flowas th
could overtop the embankments have not been ddtecttie Szczucin’s record (1951-2005). Accordiag t
the hazard function (32) the possibility of levdmgaching increases almost tenfold the probabdity
inundation.

Variability in the Szczucin time series of tdeduration (understood as a time-dependence ofjthe
parameters of°(d; g)) has not been subject of modelling because ofrthfficient data and the conviction
based on the visual judgment of tlaét) vs. t) diagram that the trend would be negligismall. The only
trend considered is the trend in the weightingda@ The significant difference in trend estimatessdt)
got by ML method from the direct analysis df][vector represented by the sequence of 0 and 11&x
assuming the logistic function (LO) of time andnraGEV distributed annual peak flow series is stiki
The results for both cases differ in sign (Fig.6jl aoreover they point that the valuefik practically time
independent within time period 1951 to 2006. Newadss, as long as the change of river regimaria i
visible (regardless its origin), one should considen-stationary modelling accepting (sadly) thet fhat
the tools available are in their infancy.

The DgF model proved to be the important completionthe traditional FFA concentrating on
maximal seasonal or annual discharges. The DgFoapbris especially useful in polish specific coidis
where the flood protection infrastructure is dated often does not survive confrontation with pngjed
pressure of high waters.

Reliable data and information about floods arespdnsable for better understanding the interactions
between rivers and flood protection system: embamks) reservoirs and polders. Improvement of sicis
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models is essential for engineering design in génand in particular for implementation of floodski
mitigation procedures. Not only has the DgF modglishown that actual flood risk is greater thanrible
assessed by means of classical FFA but also p\jdantitative measures which can be used in flood
protection systems planning, exploitation and cora@n. This measures in form of dependence of
inundation risk on river flow (or water level) sidbe established for other hydrological stationsPolish
rivers and their dimensionless versions comparde: geographic information systems technique (GIS)
could be used to indicate locations prone to intindaAlso the GIS can be a helpful tool to visgation
and testing trends in the structure of river nelinamd to the regional analysis. These results castitute

the theoretical background to a number of practieaisions in water management issues.
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a) the flood wave ofit duration entirely in the yedy
b) the flood wave starts in the ydand continues ih+ 1.




g A Risk of overflow (P,)
L ————

QA _____

Fig. 2 Two reasons of inundation — an illustration.



GObhwN P

s

A 4

t 1+1 t

Fig. 3 Definition of the random variables in thefFJuodels:

a) the mean maximuwhdays flow,

b) the annual maximum flow discharge (Qd) contirslpexceeded during the peridd

r+1



A O WNPE

5500

5000 |

4500 ¢

4000 ¢

3500

3000

2500 ¢

Q (m®/s)

2000 Ff------- R B EEN T B B bt ;

1500

1000 §-

500 ¢

1950
1953
1956
1958
1961
1964
1967
1969
1972
1975
1978
1980
1983
1986
1988
1991
1994
1997
1999
2002
2005

Year
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values used in this study.
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Tables

Table 1. Distribution functions recommended’éd;; g) model.

Distribution name Probability density function Parameters | Equation nr:
Exponential (Ex) f°(d;a) :lexp(—d/a) a — scale (11)
a
Weibull (We) b(d\? a — scale (12)
distribution f°(d;a,b) =;(;] exp(-d/a) b > 0 — shape
Generalized Pareto (Pq) 1( Kk WKt a>0 - scale (13)
f°(d;a,k)==|1-—d _
( ) a( P j k <0 - shape
Generalized Exponential _, .- Ly y1 |a>0-scale (14)
(GE) fo(d;a,y) —;exp(—d/a)[l— ex{- d/a)] y> 0 — shape
Gamma (Ga) of . _ 1 A1 _—(d/a) a>0- scale (15)
f (d,A,a)—aAr(/‘)d © A>0 - shape

Table 2. The parameters of the two-component Dgéeiimr Szczucin data.

First component Second component,
(by two methods) f°is the two-parameter Generalised Exponential
QOn | n, B=nin B=AQr) scale shape INML/n,
by Eq.(8) by Eq.(9)

700 51 0.089 0.076 2.8799 0.2938 —2.63
1000 40 0.286 0.226 4.0392 0.5228 -2.10
1300 32 0.429 0.395 4.8616 0.7464 -1.77

1690* 23 0.589 0.577 3.4238 0.8357 -1.62
2000 17 0.696 0.683 3.7411 0.9126 -1.54
* Qrr=Qa




