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 27 

Abstract 28 

The accuracy of streamflow composition simulated by different models has been rarely discussed. In 29 

this study, total 23 flood events covering full rainfall spectrum were simulated by using HBV and 30 

TOPMODEL. Simulated streamflow compositions were compared with hydrograph decomposed by 31 

independent geochemical data via end-member mixing analysis (EMMA). Results showed that both 32 

models gave satisfactory streamflow simulation in terms of the Nash efficiency coefficient, correlation 33 

coefficient, and discharge volume. However, the modeled interflow and base flow behaved differently 34 

with the changing storm intensity and duration. The HBV simulated base flow considerably increased 35 

as the storm duration prolonged; by contrast, the TOP-derived base flow remained stable. On the other 36 

hand, HBV prefers generating less interflow to percolate more to the base flow for fitting the stream 37 

flow. Accordingly, HBV is more suitable for thin soil layer. We suggested that a proper model 38 

selection should take the implicit environmental background into account for simulating reliable 39 

streamflow composition. Compared with the EMMA-derived flows, both models showed a significant 40 

time lag (2-4 hr). If EMMA-derived hydrograph is real, the modeled base flow responses are required 41 

to speed up. Our model’s intercomparison against independent validation by geochemical data is a 42 

good means of studying the model behaviors. The selection of a more appropriate hydrological model 43 

should consider the characterization of the model structure and the watershed characteristics. 44 

 45 
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 51 

1. Introduction 52 

Simulating the stream flow accurately is one of the main concerns of scientists and managers, 53 

particularly in hydrology science and water resource assessment. For this goal, hydrological models 54 

are implemented through different conceptualizations of simplified representations of the real world 55 

(Beven, 2001; Refsgaard and Henriksen, 2004). Therefore, a number of hydrological models with 56 

different model structures were proposed and applied around the world. Undoubtedly, this significant 57 

progress in hydrological modeling works has been facilitating many discharge-relevant applications. 58 

Currently, the attentions have shifted to understanding more on the model structure and the 59 

corresponding behaviors for advanced interpretations (Reed et al., 2004; Clark et al., 2008). For 60 

example, some previous studies applied different model structures (e.g., runoff generations or routings) 61 

on the same catchment to determine the model suitability and applicability (Winchell et al., 1998; 62 

Valeo et al., 2001; Johnson et al., 2003). These comparative studies revealed that models with 63 

different structures could satisfactorily simulate the stream discharge for the same catchment. 64 

However, the selection of the hydrological models and the model structure uncertainties are still not 65 

fully understood. Clark et al. (2008) have applied 79 unique model structures by combining the 66 

components of four existing hydrological models into catchments. They concluded that the model 67 

structure uncertainty is as important as the parameter uncertainty, indicating that intercomparison 68 

among models can give insight into the understanding of hydrological models. In addition, Weiler et al. 69 

(2003) integrated the instantaneous unit hydrograph and the temporal variability of rainfall isotopic 70 

composition to interpret the runoff processes and pathways. The series of studies conducted by the 71 

McDonnell’s laboratory demonstrated that the transit time plays a crucial role in testing the 72 

hydrological models and indicated the importance of geochemistry on hydrological modeling (Fenicia 73 

et al., 2008; Sayama and McDonnell, 2009).  74 

Although the abovementioned studies made a significant step forward on the choice and 75 

suitability of hydrological models, the accuracy of the simulated stream flow composition controlled 76 

by different model structures still needed further studies. Such result raises two interesting issues. 1. 77 

Why does the model prefer to provide such streamflow composition? 2. What kind of streamflow 78 

composition from the models is more realistic or reliable? Obviously, the model preference or model 79 

behavior is dominated by the model structure, governing equations, and calibration. Therefore, this 80 

study incorporated the same base-flow equation (linear reservoir concept) into different model 81 
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structures (Hydrologiska Byrans Vattenbalans-avdelning (HBV) and TOPMODEL) to investigate the 82 

influence of the model structure on the simulations (Wagener et al., 2010). Understanding the two 83 

questions not only provide insight into hydrology but also water resource planning. 84 

To investigate the two model behaviors, this study applied the hydrological models with the same 85 

base-flow component to a steep mountainous watershed in Taiwan. Altogether, 23 events covering a 86 

wide rainfall spectrum in hourly basis were used. The Nash efficiency coefficient (Nash_EC) and its 87 

logarithmic form (Nash_EClog) were used to calibrate parameters. The Nash_EC, volume bias ratio, 88 

and correlation coefficient were used to evaluate the model applicability. The simulated streamflow 89 

compositions were intercompared to investigate the model behaviors among the different events. 90 

Finally, the two rainstorms, supplemented by an intensive geochemical dataset, were independently 91 

introduced to assess and validate the simulated streamflow composition. This study improved our 92 

understanding on model selection and the role of the parameters in streamflow composition,  93 

 94 

2. Materials and Methods 95 

2-1 Study Area 96 

This study chose the Chi-Chia-Wan watershed in central Taiwan as study area which is a typical 97 

forested, steep, and mountainous watershed with a drainage area of 105 km2 (Fig. 1). The elevation 98 

varies from 1,131 m to 3,882 m above sea level, and the steep slope (average of approximately 33.3°) 99 

represents a high runoff velocity and sediment transport (Kao et al., 2011; Lee et al., 2013). The 100 

majority of soils are colluvial soils (including greyish yellow and dark greyish) and lithosols with high 101 

permeability. The soil depth is various due to the frequent mass movements, but most soil depths vary 102 

from 40 -120 cm (Soil and Water Conservation Bureau, 1985). The annual average air temperature is 103 

15.8 °C, and the monthly average air temperatures in January and July are 4 and 23 °C in 2000–2009 104 

(Huang et al., 2006). The original and secondary forests covering nearly 87% of the area are the 105 

dominant land cover in this watershed. Most agricultural lands (e.g., orchard and vegetable farms) 106 

locate along the road or the riparian zone. The annual precipitation is as high as 2,551 mm (based on 107 

2000–2011 data) with distinct seasonality. Approximately 75% of the annual precipitation rains during 108 

the wet season (May to October), and tropical cyclone (typhoon) is the main contributor. The annual 109 

evapotranspiration here is estimated between 600-1200 mm and the daily evapotranspiration in 110 

summer may be as high as 6-8 mm (Water Resources Agency, 2011). The annual discharge is 111 

approximately 2,129 mm (from 2000–2011 data) with a mean daily discharge of 7.09 m3/s (equivalent 112 
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to 5.83mm/day).  113 

For the rainstorm selection, a total of 23 rainstorms with significant water level rise (over 2 m) were 114 

selected to evaluate the model applicability (Table 1). In general, the average cumulative rainfall was 115 

approximately 430 mm within 102 h. The total rainfalls varied from 184.5 mm to 836.4 mm and the 116 

maximum rainfall intensity ranged from 10.7 mm/h to 39.5 mm/h. The total runoff depth ranged from 117 

37.8 mm to 672.6 mm and was significantly positively correlated with the total rainfall and rainfall 118 

duration. The peak discharges ranged from 66.5 m3/s to 510.4 m3/s (equivalent to 2.28 mm/h to 17.5 119 

mm/h) and were positively correlated with the total rainfall, average rainfall intensity, and maximum 120 

rainfall intensity (Table 1). The streamflow responding to the rainfall within a short time lag (generally 121 

less than 2 h) indicates that the watershed has a steep slope and short traveling time. These events, 122 

which crossed a wide spectrum in terms of the total rainfall and duration, are the critical factors to 123 

detect the limit of model applicability. 124 

 125 

2-2 Hydrological Modeling: TOPMODEL and HBV 126 

The two hydrological models [HBV (Hydrologiska Byråns Vattenbalans-avdelning) and 127 

TOPMODEL (hereafter, TOP)] were used in this study. Both models are regarded as conceptual 128 

distributed model and have been widely applied in many studies. Here, the two models were briefly 129 

introduced. 130 

 131 

2-2.1 HBV Model 132 

The HBV model was originally developed by the water balance section of the Swedish 133 

Meteorological and Hydrological Institute and has been modified into several versions (e.g., 134 

Bergström and Forsman, 1973; Bergström, 1992; Lindström et al., 1997; Krysanova et al., 1999; 135 

Haberlandt et al., 2001; Blöschl et al., 2008). Aghakouchak and Habib (2010) modified this model into 136 

a distributed-based model, and we used this version in the current study. The HBV model consists of 137 

four modules: (1) snowmelt and snow accumulation, (2) soil moisture and effective precipitation, (3) 138 

evapotranspiration, and (4) runoff response. For rainstorm (short-term) simulation, the hourly time 139 

step was used. In this study, the snow accumulation, snowmelt, and evapotranspiration modules were 140 

turned off. Although the elevation in the study site is high (> 3,000m), very little or no snow appears in 141 

subtropical summer. The amount of evapotranspiration during rainstorms (~3 days) should be less than 142 
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24mm which is much smaller compared to the average of rainstorm precipitation (~ 430mm). 143 

Therefore, the two modules can be neglected to reduce the parameters involved in calibration.  144 

In the HBV model, precipitation is usually divided into two components: the first part contributes 145 

to the soil root zone, and the second one contributes to the interflow storage. The second component is 146 

usually known as effective precipitation. This component is estimated by an exponential coefficient 147 

and the saturation level in the soil root zone. In the soil root zone, saturation level is defined as the soil 148 

moisture over the field capacity (FC), the parameter that describes the maximum water storage. 149 

Adopting this concept, the higher the saturation is, the larger is the precipitation proportion recharged 150 

into the inter flow storage. Equation (1) describes the calculation of the effective precipitation, which 151 

is a function of the current soil moisture content. 152 

      (1) 153 

 154 

where Peff is the effective precipitation [L], SM is the current soil moisture [L], FC is the maximum soil 155 

storage capacity [L], P is the hourly precipitation [L], and β is a model parameter (shape coefficient) 156 

[–]. The soil moisture status temporally evolves by receiving the rest of rainfall in each time step until 157 

reaching FC. An initial value of the soil moisture is required to start the calculations.  158 

The interflow and baseflow estimations at the watershed outlet are based on the linear reservoir 159 

concept (Fig. 2a). The reservoirs are directly connected to each other by a constant percolation rate (Pr). 160 

Two outlets (Qs and Qi) are in the upper reservoir and one outlet (Qb) is in the lower reservoir. When 161 

the water level in the upper reservoir exceeds the threshold value (L), surface runoff (Qs) occurs. For 162 

the surface flow routing, the unit response function implemented by the diffusive transport approach is 163 

used (Liu et al., 2003; Huang et al., 2009). The water level in the upper reservoir is used to generate the 164 

interflow (Qi). The base-flow response in the lower reservoir is relatively slower and controlled by the 165 

water level in that reservoir. The recession coefficients Ks, Ki, and Kb, control the response functions of 166 

the three flows. The three recession coefficients and the percolation rates are all model parameters, 167 

which are estimated via calibration. Equations (2) and (3) illustrate the calculation of the three flows 168 

in the outlet: 169 

    (2) 170 

 171 

 172 

    (3) 173 
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 174 

where Qs, Qi, and Qb represent the surface flow, interflow, and base flow [L3/T], respectively. The 175 

parameters Ks, Ki, and Kb are the recession coefficients of the surface flow, interflow, and base flow 176 

[T-1], respectively. Si is the upper reservoir water level [L], Sb is the lower reservoir water level [L], and 177 

L is the threshold of water level [L]. A and Ac are the watershed and cell area [L2], respectively (Fig. 178 

2a).  179 

 180 

2-2.2 TOPMODEL 181 

TOPMODEL proposed by Beven and Kirkby (1979) has been applied widely around the world 182 

(Beven, 1996). The kernel feature of this model is to use the topographic index (defined as the 183 

contributing area over the gradient, see Equation 4) to estimate the variable source area and then 184 

simulate the discharge.  185 

     (4) 186 

where  is the local topographic index. Parameter Ti is the lateral transmissivity as the soil is 187 

saturated [L2/T]. a is the specific contributing area defined as the drainage area per unit contour length 188 

[L], and tan β is the local gradient [-]. Because of its concise structure, numerous modifications have 189 

been introduced in the past three decades. We used the three-layer TOPMODEL (Huang et al., 2009) 190 

in this study. This modification has been widely used in Taiwan for relevant hydrological applications 191 

either for hourly or for daily time step input (Huang et al., 2011; Huang et al., 2012). The conceptual 192 

scheme is shown in Fig 2(b). This model divides the soil column into three layers: upper, middle, and 193 

bottom layers, to simulate the surface flow, interflow and base flow, respectively (composing the 194 

stream discharge). In this model, the following 9 parameters need calibration: maximum root zone 195 

storage ,Srmax [L], initial root zone storage, Sr0 [L], Mannings’ surface roughness, n [-], maximum 196 

draining capacity in the middle layer, Td [L/T], lateral transmissivity, Ti [L
2/T], interflow recession 197 

coefficient, mi [L], base-flow recession coefficient, Kb [T
-1], groundwater recharge or percolation, Kper 198 

[L/T] and bypass flow rate, Qby [L/T].  199 

For the upper layer, there are two ways to reduce the storage. One way is the evapotranspiration, 200 

which is turned off as mentioned before. The other way is the quick bypass flow (Qby) from the upper 201 

layer to the bottom layer when the saturation exceeds 0.6. When the storage is fully filled by 202 

precipitation, the surplus rainfall infiltrates into the middle layer. However, the infiltrating water 203 

depends on the remaining space in the middle layer or on the maximum draining capacity Td. Therefore, 204 
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the saturation excess runoff can be described as the following: 205 

       (5) 206 

 207 

where Pi and Di are the rainfall on ith cell [L] and the local soil moisture deficit [L], respectively.  is 208 

the surplus rainfall [L], which transforms to the surface runoff. In this equation, Di is only the condition 209 

to determine the rainfall converted to surface runoff. For the second equation in equation (5), the 210 

maximum drainage capacity, Td, is the upper limit to avoid too much rainfall infiltrating into dryer or 211 

near-ridge cell so rapidly. The observational study in New Zealand revealed the larger contribution 212 

from new water in ridge top sites, indicating the possible generation of infiltration excess runoff 213 

(Sklash et al., 1986). Although the second equation is somehow similar to infiltration capacity based 214 

runoff, this equation mainly followed the concept of saturation excess runoff in most cases. 215 

For the middle layer, the local soil moisture deficit Di can be estimated by 216 

       (6) 217 

where  is the mean value of the soil moisture deficit over the catchment area. This equation uses the 218 

difference between the local topographic index and the average topographic index to estimate the 219 

possible local soil moisture deficit everywhere. Meanwhile, the subsurface flow for each time step can 220 

be estimated by the following recession curve function: 221 

     (7) 222 

where Qi is the interflow [L3/T] and Q0  is the discharge when the average soil moisture 223 

deficit is zero. 224 

For the base flow, the same linear reservoir concept is applied to simulate the base flow as follows: 225 

  (8) 226 

where Qb is the base flows [L3/T]. Sb [L] and Kb [L
2/T] are water level and the recession coefficient, 227 

respectively. The initial Sb can be derived from the initial observed discharge at time t = 0. The above 228 

three flows compose the stream discharge at the catchment outlet.  229 

The two models show different model structures, particularly in the surface flow generation. The 230 

TOPMODEL generates the surface flow depending on the variable source area. The saturation in the 231 

middle layer is the key factor in generating surface flow. However, the HBV model separates the 232 

rainfall into root zone and inter-flow storage through the effective precipitation calculation, which is 233 

proportional to the soil moisture content and shape factor. In other words, the effective precipitation is 234 
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the valve that controls the recharge into interflow storage before reaching full saturation in the root 235 

zone. In addition, the surface flow occurs only when the water level in the interflow storage is higher 236 

than the threshold L, which means that the surface flow in HBV is controlled by threshold L. Hence, 237 

the maximum interflow is somewhat limited. To set the common ground for the two models, we 238 

introduced the same base-flow governing equation to investigate the different model behaviors. The 239 

experiment design can aid us in understanding more about the model behaviors. Further, the 240 

sensitivities of the parameters were also evaluated to clarify the role of the allocation of the three flows. 241 

Hydrograph shapes, runoff volumes, and correlation coefficient were three measures used to discuss 242 

the model performance. Finally, the two rainstorms, supplemented by the intensive geochemical 243 

dataset for the stream flow compositions, were used to validate the simulated compositions. 244 

 245 

2-3 Calibration and Performance Evaluation 246 

In hydrological modeling, calibration is intensively used to determine the unknown and/or 247 

non-measurable parameters by ranking the performance measure between simulations and 248 

observations. However, many previous studies showed that no unique performance measure is better 249 

suited than another for the calibration of a model (Gupta et al., 1998; Yapo et al., 1998; Madsen, 2000; 250 

Vrugt et al., 2003); therefore, multi-objective calibration has been proposed and applied widely. For 251 

the multi-objective calibration, the simulations laid on the Pareto front can be regarded as the best 252 

simulations, and the corresponding parameters are good candidates for further applications (e.g., 253 

parameter uncertainty estimation). Here, we use two performance measures for calibration. One 254 

measure is Nash efficiency coefficient, Nash_EC (proposed by Nash and Sutcliffe, 1970). This 255 

coefficient (Equation 9) varies from negative infinity to unity, where unity represents a perfect match 256 

and zero indicates that the simulation performance is identical to the expected value (mean) of the 257 

observations. However, this coefficient using the squared difference between simulation and 258 

observation leads to high sensitivity in the high flow. To consider the low-flow properly, a variant 259 

Nash_EClog, which transfers the simulated and observed discharges into a logarithmic scale, is applied 260 

as the other performance measure. In this study, over 80,000 parameter sets were generated by the 261 

uniform or log-uniform distribution for the two models. The detailed description of parameter range 262 

and used distribution was illustrated in Table 2. The best simulations and the corresponding parameter 263 

sets, defined by the highest values of the Nash_EC and Nash_EClog, are selected for further discussion. 264 

    (9) 265 
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 266 

where Qsim and Qobs are the simulated and observed discharges, respectively, and T is the total of time 267 

step during the evaluation period. 268 

In addition to the two performance measures for calibration, we also used the following three 269 

indexes, namely, Nash_EC, EQV, and CC, to show the extent of the agreement between simulations 270 

and observations. EQV defines as the ratio of the total simulated volume over the total observed  271 

volume. This index is useful in investigating the volume bias which is important for irrigation, 272 

reservoir operation, and flood control. CC is the correlation coefficient between simulations and 273 

observations. Notably, a high CC with poor EQV indicates that the simulation has a highly similar 274 

shape with the observations but biases in the runoff volume. Based on the three indexes, the 275 

simulations in terms of hydrograph shape, volume, and correlation can be assessed comprehensively.  276 

 277 

3. Results 278 

After intensive simulations and calibration, the performances of Nash_EC and Nash_EClog for the 279 

HBV- and TOP-derived simulations are shown in Fig. 3. The overall Nash_EC and Nash_EClog values 280 

were scattered in an awl shape, and the maximum values met at approximately 0.65 in both axes for the 281 

two models. In general, both models could simulate the rainstorm fairly well showing a good 282 

agreement between the two model-derived simulations and observations. Notably, the pareto front 283 

may not exist when the performance measures are inherently similar or the simulation has the similar 284 

tradeoff weight between the performance measures. In this circumstance, all the simulations approach 285 

to a specific point. Therefore, we selected the best 15 simulations (the highest values of the sum of the 286 

two measures) as the representative simulations, and their corresponding parameter sets were regarded 287 

as the well-performed sets for each model (discussed later). The detailed simulation results are 288 

tabulated in Table 3.  289 

In the HBV-derived simulations, the Nash_EC values varied from 0.16 to 0.91 with a mean of 0.70. 290 

For the TOPMODEL, the Nash_EC values ranged from 0.10 to 0.89 with a mean of 0.64. The 291 

HBV-derived simulations were slightly better than the TOP-derived simulations. The standard 292 

deviations for the HBV- and TOP-derived models were 0.22 and 0.19, respectively, showing a similar 293 

level of variations among events. For EQV, the average performance of the two models was similar 294 

(0.92 and 0.93 for HBV and TOP, respectively). However, the range varied from 0.56 to 1.52 for HBV 295 

and from 0.68 to 1.20 for TOP, respectively, showing that TOPMODEL could make the simulated 296 

volume more consistent (less variation) with observations. For the correlation coefficient, the average 297 
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CC for HBV and TOP was 0.94 and 0.88, respectively, which indicated that the HBV simulations 298 

might give a higher correlation than the TOP simulations. The standard deviation of the TOP-derived 299 

CC was larger than that of the HBV-derived CC.  300 

In summary, both model could simulated the streamflow in the similar performance level in 301 

terms of the hydrograph shape. TOP-derived simulation has the more consistent discharge volume 302 

than the HBV-derived simulation. However, HBV gave higher correlation coefficient than 303 

TOPMODEL. However, the outperformed parameter sets do not guarantee applicability for the all 304 

events (Huang et al., 2009). Although the pursuit of higher performance measures (e.g., average 305 

Nash_EC and Nash_EClog in this study) is the main consideration of calibration, pursuing the smaller 306 

variation in order to increase the applicability for all events (e.g., different hydrological conditions) 307 

should be emphasized as well.  308 

 309 

4. Discussions 310 

4-1 Well-performed simulation and corresponding parameter sets 311 

The well-performed simulations and the performance in terms of Nash_EC, EQV, and CC are 312 

illustrated to reveal the variation in the simulations among the rainstorms (Fig. 4). In Fig. (4a.1) and 313 

4(b.1), we found that the Nash_EC values of the 15 well-performed simulations for each event were 314 

quite diverse for the models, particularly in the small events. For the correlation coefficient, the HBV 315 

model presented good and consistent simulations for all events (Fig. 4a.2). The higher correlation 316 

coefficient values indicated that the simulations and observations all agreed well in terms of 317 

hydrograph shape. In contrast, the TOP-derived simulations for small events were highly divergent 318 

(Fig. 4b.2). For the runoff volume estimations, the HBV-derived simulations for small events were 319 

distinctly overestimated but were underestimated for large events (Fig. 4a.3). However, the 320 

TOP-derived simulations estimated the runoff volume better and remained more consistent compared 321 

to the HBV model (Fig. 4b.3).  322 

This comparison showed the both models could not simulate the small events very well. It may 323 

be due to the fact that the spatial rainfall distributions of the small rainstorm are usually more 324 

heterogeneous than that of large events (Huang et al., 2012). Nevertheless, HBV could outperform in 325 

correlation coefficient, but it significantly overestimated the discharge. In contrast, TOPMODEL 326 

showed a promising and consistent result in runoff volume, but failed in correlation coefficient. The 327 

diverse values for some small events in TOPMODEL may result from the surface runoff mechanism. 328 
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The surface runoff mostly generates in source area. Given a biased precipitation pattern on source 329 

area it would lead to a significant over- or underestimation in surface runoff rather than infiltration 330 

excess runoff (Huang et al., 2011). We cannot expect that the hydrological models can simulate such 331 

events well only based on the limited data. As for runoff volume estimation, the TOP-derived 332 

simulations maintained the water balance better than that derived by HBV. Taking a closer look at the 333 

model structures we found that the runoff estimation by HBV strongly depends on the storage status 334 

and the yield parameters (e.g., Ks, Ki, and Kb); therefore, it may not keep the water mass balance. In 335 

other words, HBV is more flexible in adjusting the simulated streamflow. In reality, many watersheds 336 

may not follow the mass balance, but it has been the basic assumption in many hydrological models. 337 

Therefore, the water mass balance assumption may need other environmental backgrounds to support.  338 

For the corresponding parameter sets, the retrieved parameter values were normalized to the upper 339 

and lower limits and linked to one another for showing the connectivity (Fig. 5). This figure shows that 340 

different parameter combinations could produce virtually equal model simulations. However, some 341 

parameters are constrained within a limited range indicating the parameters are more sensitive and 342 

dominant in simulation (Madsen, 2000; Madsen et al., 2003). The pattern of parameter combination 343 

also represents the model behavior. For HBV, once the parameters, Sramx, Ks, L, and Kb are fixed or 344 

determined; the similar simulations can be expected. Meanwhile, the similar parameter combinations 345 

show a similar model behavior in simulation. In contrast, only the parameter DEi and Kper are sensitive 346 

and other parameters are diverse in TOPMODEL simulations. It seems that more than one type of 347 

parameter combinations can achieve similar performance which indicates that more than one type of 348 

streamflow compositions can be obtained. In this regard, a model which gives the more types of 349 

parameter combinations with similar performance has high flexibility. 350 

 351 

4-2 Comparison of HBV- and TOP-derived Stream Composition 352 

The simulated three flows for all rainstorms are listed in Table 4. The proportions of the 353 

HBV-derived flows are 0.22, 0.29, and 0.49 for the surface flow, interflow, and base flow, respectively. 354 

By contrast, the TOP-derived flows for the surface flow, interflow, and base flow are 0.27, 0.50, and 355 

0.23, respectively. Obviously, the base flow in HBV model plays a dominant role in simulating the 356 

streamflow; however, in TOPMODEL interflow is the major component for streamflow. Furthermore, 357 

the three flow proportion against average rainfall intensity and storm duration are shown in Figs. 6–8. 358 

Figure 6 shows that both simulated surface flow proportions increase from 0.1 to 0.5 with the increase 359 

in the average rainfall intensity from 2.0 mm/h to 11.0 mm/h. Meanwhile, both simulated surface flow 360 
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proportions decrease from 0.5 to 0.1 with the increase in the storm duration from 40 h to 160 h. 361 

However, the HBV-derived surface flows among events show larger variation than those derived from 362 

TOPMODEL. Nevertheless, the consistent results in surface flow derived from the two model 363 

structures, even for extreme events, reveal that the surface flow proportions which, as expected, 364 

increase and decrease with the average rainfall intensities and storm durations, are fairly reliable and 365 

realistic. 366 

For the interflow, the models showed discrepant relationships with the average rainfall intensity 367 

and storm duration (Fig. 7). The HBV model showed lesser interflow (~0.3) than TOPMODEL (~0.5). 368 

Notably, the two model behaviors had opposite responses to the storm duration. As the storm duration 369 

increased, the TOP-derived interflow increased from ~0.3 to 0.6. However, the HBV-derived 370 

interflow decreased from ~0.4 to 0.15. The opposite behaviors were due to the model structure. 371 

Theoretically, TOPMODEL simulates a larger interflow as using the decrease in the average soil 372 

deficit, which is also used to determine the variable source area. In our case, the maximum variable 373 

source area was approximately 30% to 65%. Therefore, TOPMODEL can be expected to give even 374 

larger interflow for more torrential rainstorms. By contrast, the HBV model simulates the interflow 375 

using the limited depth of L. When heavy rainfall exceeds L, surface runoff occurs and the inter-flow 376 

storage is reduced rapidly. Therefore, the inter flow proportion is relatively limited even when the 377 

storm duration increases.  378 

For the base flow, the two models showed similar patterns with average rainfall intensity (Fig. 8). 379 

However, the HBV ranges from 0.7 to 0.1, which is much wider than that derived from TOP (from 0.4 380 

to 0.1). It is an indication that for small events, the base flow is dominant in HBV, but the inter flow 381 

is important in TOPMODEL. Meanwhile, the HBV-derived base flow increases with the increase in 382 

the storm duration; however. TOP-derived base flow (avg = 0.23; std. = 0.098) is stable for all events. 383 

In the TOPMODEL structure, the middle layer yields interflow efficiently and thus the base flow 384 

remains unchanged. By contrast, the HBV model recharges more to the lower reservoir in order to fit 385 

the streamflow. Therefore, the base flow is compelled to increase, particularly during extreme 386 

rainstorms, which indicates that HBV may be more suitable for watersheds with thin soil layer. 387 

Likewise, TOPMODEL is expected to be preferable for watersheds with thick soil layer. In this regard, 388 

we could expect that the proper model choice should be based on the extensive spectrum of rainstorms 389 

and the extra environmental background, instead of intensive calibration. Meanwhile, such 390 

intercomparison between models also increased our understanding of the model structure and 391 

behavior. 392 

 393 
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4-3 Comparison with Chem-hydrograph 394 

Furthermore, geochemical dataset was introduced to derive the streamflow composition through 395 

the end-member mixing analysis (EMMA). Lee et al. (2010; 2011; 2013) collected water samples in 396 

wells and soil columns for the end member of the base flow and interflow. Besides, we sampled the 397 

stream and rainwater at high frequency (~3 h interval) during event no. 15 and 17. The 398 

chem-hydrographs of the three components after the EMMA are shown in Figs. 9(a) and (b) for event 399 

nos. 15 and 17, respectively. It shows that the base flow was quite stable and only changed during the 400 

flood peak time. In general, the base flow occupied approximately 25% of the total runoff. The 401 

response of interflow surged and diminished rapidly. The interflow proportion was similar to the base 402 

flow. The remaining discharge was attributed to the surface flow. From the geochemical perspective, 403 

the surface flow is the most important component during the rainstorm period, which occupies 404 

approximately 40% to 50% of the total runoff volume. 405 

EMMA is recognized as a useful analysis tool for hydrograph separation, although the number and 406 

selection of geochemical tracers are sometimes questionable (Barthold et al., 2011; Carrera et al., 407 

2004). Despite the uncertain proportion of discharge components and the objective identification of the 408 

end members, the result of the stream composition, in terms of relative proportion, is relatively reliable. 409 

It substantially provides another perspective for stream flow composition. More importantly, the 410 

time-series changes of the flows should be realistic. In this regard, the EMMA-derived stream 411 

composition could be a good reference for comparison with the model-derived ones. 412 

    The EMMA- and the model-derived results are listed in Table 4. The HBV model simulation 413 

shows that the interflow and base flow are dominant components for event nos. 15 and 17, respectively. 414 

By contrast, TOPMODEL considers the interflow as the superior component; the surface flow is only 415 

secondary. No model yields the same EMMA-derived composition with regard to the proportion. 416 

From the quantity perspective, the TOP-derived surface flow shows a good agreement with that 417 

derived by EMMA. By contrast, the HBV-derived interflow is close to the EMMA-derived results, 418 

although the surface flow is underestimated.  419 

The quantity and the response-time results are shown in Figs. 10 and 11 for event nos. 15 and 17, 420 

respectively. These two figures show that the HBV-simulated discharge is slightly underestimated, and 421 

TOPMODEL overestimated in the streamflow. However, TOPMODEL exhibits a good agreement in 422 

the recession segment for the two events. For the interflow, the two models produce fair results. HBV 423 

model simulates the base flow as a gentle dome. By contrast, the TOP-derived base flow shows a 424 

quick-response steep-bell shape. In the shape comparison, the TOPMODEL outperforms the HBV 425 
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Model. However, a significant time lag of approximately 2 h to 4 h is observed. In our case, the base 426 

flow responds with the streamflow simultaneously. The base flow could thus be considered a type of 427 

piston flow. In this regard, incorporating the piston flow theory into the hydrological models can 428 

improve the time lag, which aids in the interpretation of the base flow. 429 

430 
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 431 

5. Summary 432 

Many hydrological models can simulate the stream flow satisfactorily and plausibly. However, 433 

different runoff compositions can result in the similar streamflow. Therefore, recent attention has 434 

shifted to model structures to ensure the accuracy of inferences derived from modeling. In our study, 435 

HBV presented consistent parameter combinations; however, TOPMODEL achieved more parameter 436 

combinations, which implied that HBV preferred to give only one composition for simulated 437 

streamflow, but TOPMODEL could yield more. Rethinking is thus necessary to identify which model 438 

structure is better. 439 

In the comparison of the simulated components, both simulated surface flows realistically reflect 440 

the nature. The simulated surface flows increased with the increasing the rainfall intensity and 441 

decreased with the increasing storm duration. Both base flows also showed the same patterns, although 442 

HBV-derived base flow was the dominant. However, the two modeled interflows exhibited a 443 

contrasting relationship with the storm duration. The HBV interflow decreased with the increase of 444 

duration. Because of the limited interflow storage, this model compelled to percolate much water to the 445 

base flow storage in order to fit the observed streamflow, which indicated that HBV could be more 446 

suitable for the thin-soil environment. On the other hand, TOPMODEL could be a better choice for 447 

catchments with thick soil. Compared with the EMMA-derived flows, a significant 2 h to 4 h time lag 448 

was observed, which indicated that the real base flow responses are faster than the models have 449 

presented. Possibly, an explicit consideration of the piston-flow characteristics in the base flow should 450 

be incorporated to improve the time lag and aid in the interpretation of the base flow. 451 

Obviously, intercomparison between models under a wide spectrum of rainstorms is a good way to 452 

better understand the model behaviors. Besides, the independent geochemical data (e.g. 453 

EMMA-derived components) provides another perspective in examining the model behaviors. 454 

Undoubtedly, rejecting a model completely is difficult. Alternatively, it is very likely that more than 455 

one model structure is essential to capture the streamflow and tracer dynamics simultaneously when 456 

the rainstorm cases and environment background are insufficient. In this regard, we need to revisit the 457 

model behavior and the model structure again independently validation for testing hydrological 458 

models. 459 

460 
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 605 

Table 1 the rainstorm characteristics in Chi-Chia-Wan catchment since 1986 606 
Event 

no. 
Date Duration 

(hr) 
Rainfall 
(mm) 

Max. 
RI*2 

(mm/hr)

Runoff 
volume 
(mm) 

Peak 
flow 

(mm/hr)

RC*3

1 1986/09/18 108 316.0 26.5 140.3 5.4 0.44  
2 1986/08/22 95 247.2 15.6 69.9 2.9 0.28  
3 1989/09/10 120 595.3 38.4 330.7 13.4 0.56  
4 1990/09/07 96 454.9 28.6 237.6 7.9 0.52  
5 1990/08/18 121 425.6 24.9 245.5 6.9 0.58  
6 1990/06/22 105 359.7 28.8 132.2 3.7 0.37  
7 1996/07/30 110 451.1 27.3 363.8 13.5 0.81  
8 1997/08/28 90 228.5 17.5 120.8 5.2 0.53  
9 1998/10/15 120 273.6 23.3 128.6 2.8 0.47  

10 2000/08/22 94 398.8 25.7 107.3 3.5 0.27  
11 2004/08/23 80 452.9 25.9 351.1 17.5 0.78  
12 2004/07/02 96 431.3 35.3 112.3 4.5 0.26  
13 2005/08/31 40 426.9 39.5 198.3 17.4 0.46  
14 2006/06/08 144 409.4 20.3 247.9 5.5 0.61  

15*1 2007/08/17 87 490.2 38.5 334.3 13.9 0.68  
16 2007/09/17 97 184.5 15.0 75.8 2.3 0.41  

17*1 2007/10/05 120 629.7 35.4 403.2 15.4 0.64  
18 2008/07/17 90 200.0 21.7 93.0 2.6 0.47  
19 2008/09/12 144 836.4 10.7 672.6 11.6 0.80  
20 2008/09/27 91 672.9 33.3 483.4 16.5 0.72  
21 2009/08/06 154 829.4 22.0 622.6 11.6 0.75  
22 2009/10/05 72 220.5 14.9 37.8 2.0 0.17  
23 2010/9/19 72 253.1 28.9 103.7 4.9 0.41  

 Average 102 430.0 26.1 245.1 8.4 0.52 

 607 

*1 meant the events had the chem-hydrographs for validation 608 

*2 Max RI was the maximum rainfall intensity during the event 609 

*3 RC, runoff coefficient indicated the total runoff over the total rainfall 610 

 611 

612 
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 613 

Table 2 the descriptions, ranges, and distributions of parameters for HBV and TOPMODEL 614 

 615 

HBV TOPMODEL 

Parameter Unit Range Distribution Parameter Unit Range Distribution 

n [-] 0.0 – 1.0 Uniform n [-] 0.0 – 1.0 Uniform 
Srmax [L] 0.0 – 35.0 Uniform Srmax [L] 0.0 – 35.0 Uniform 

Sr0 [L] 0.0 – 35.0 Uniform Sr0 [L] 0.0 – 35.0 Uniform 

Beta [-] 1.0 – 10.0 Uniform Td [L/T] 10.0 – Uniform 

L [L] -3.0 – -1.0 Log uniform mi [L] 0.0 – 2.0 Log uniform 

Ks [T-1] 0.0 – 1.0 Uniform Ti [L2/T] 1.0 – 10.0 Uniform 

Ki [T-1] -3.0 – -1.0 Log uniform Kb [T-1] -3.0 – -1.0 Log uniform 

Kb [T-1] -3.0 – -1.0 Log uniform Kper [L/T] -3.0 – -1.0 Log uniform 

Kper [L/T] -2.0 – 1.0 Log uniform Qby [L/T] -3.0 – -1.0 Log uniform 

Qby [L/T] 0.0 - 13.0 Uniform     

 616 
617 

註解 [R23]: For detailed comment #6
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 619 
Table 3 the HBV- and TOP-derived simulations evaluated by Nash_EC, EQV, and CC 620 

Event 
no. 

HBV Model TOP Model 
Nash EC EQV CC Nash EC EQV CC 

1 0.87 0.91 0.96 0.86 0.91 0.94 
2 0.72 1.37 0.97 0.68 0.81 0.86 
3 0.80 0.72 0.97 0.89 0.84 0.95 
4 0.16 0.56 0.96 0.79 0.85 0.93 
5 0.25 0.56 0.97 0.78 0.76 0.97 
6 0.84 1.07 0.97 0.67 1.11 0.93 
7 0.81 0.73 0.95 0.75 0.78 0.92 
8 0.77 0.86 0.92 0.47 0.87 0.74 
9 0.86 0.92 0.96 0.43 0.83 0.73 

10 0.91 0.97 0.97 0.61 0.84 0.82 
11 0.84 0.89 0.95 0.88 1.05 0.97 
12 0.66 1.11 0.87 0.54 1.06 0.89 
13 0.69 0.98 0.84 0.70 1.17 0.89 
14 0.56 0.79 0.92 0.78 1.00 0.92 
15* 0.82 0.78 0.96 0.61 1.00 0.94 
16 0.75 1.14 0.93 0.60 0.94 0.83 
17* 0.83 0.82 0.97 0.81 1.15 0.98 
18 0.85 1.06 0.95 0.10 0.68 0.63 
19 0.43 0.64 0.92 0.59 0.95 0.90 
20 0.89 0.86 0.96 0.40 1.20 0.94 
21 0.60 0.70 0.92 0.69 0.88 0.86 
22 0.30 1.52 0.95 0.62 0.82 0.85 
23 0.78 1.14 0.97 0.38 0.80 0.75 

Average 0.70 0.92 0.94 0.64 0.93 0.88 
Std. 0.22 0.24 0.03 0.19 0.14 0.09 

*Note that the value for each event is the average of the representative simulations. 621 

622 
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 624 
Table 4 The proportion of the simulated surface-, inter-, and base-flows derived from the two models   625 

Event no. 
HBV Model derived TOP Model derived 

Surface flow Inter flow Base flow Surface flow Inter flow Base flow 
1 0.26 0.31 0.43 0.30 0.51 0.19 
2 0.17 0.32 0.51 0.26 0.46 0.28 
3 0.27 0.31 0.41 0.33 0.50 0.16 
4 0.17 0.23 0.60 0.21 0.56 0.23 
5 0.15 0.22 0.63 0.16 0.57 0.27 
6 0.18 0.27 0.55 0.18 0.56 0.26 
7 0.34 0.35 0.31 0.44 0.44 0.13 
8 0.14 0.26 0.60 0.10 0.58 0.32 
9 0.11 0.23 0.66 0.10 0.55 0.35 
10 0.26 0.32 0.42 0.32 0.49 0.18 
11 0.41 0.39 0.20 0.51 0.41 0.07 
12 0.18 0.30 0.52 0.24 0.56 0.20 
13 0.43 0.40 0.17 0.53 0.39 0.08 
14 0.07 0.16 0.77 0.09 0.54 0.37 

15* 0.31 0.42 0.27 0.39 0.46 0.16 
16 0.09 0.24 0.67 0.09 0.52 0.40 

17* 0.29 0.31 0.40 0.30 0.55 0.15 
18 0.11 0.25 0.64 0.16 0.46 0.38 
19 0.25 0.27 0.48 0.27 0.58 0.15 
20 0.36 0.34 0.31 0.40 0.44 0.16 
21 0.20 0.25 0.55 0.22 0.61 0.17 
22 0.13 0.29 0.58 0.27 0.38 0.36 
23 0.26 0.35 0.39 0.45 0.30 0.24 

Average 0.22 0.29 0.49 0.27 0.50 0.23 
Std. 0.10 0.06 0.16 0.13 0.08 0.10 

 626 
627 
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 629 
Table 5 Stream discharge composition derived from two models and EMMA 630 
 631 

E
ve

nt
  

Flow type 
Chem-hydrograph HBV Model TOP Model 

Amount 
(m3/sec) 

Proportion 
(%) 

Amount 
(m3/sec)

Proportion 
(%) 

Amount 
(m3/sec)

Proportion 
(%) 

N
o.

 1
5 Surface-flow 3949 40.5 2428 31.1 3711 38.5 

Inter-flow 2905 29.8 3305 42.3 1689 45.5 
Base-flow 2896 29.7 2076 26.6 1537 16.0 

N
o.

 1
7 Surface-flow 5562 47.3 2690 29.2 4116 30.4 

Inter-flow 2928 24.9 2837 30.8 7460 55.1 
Base-flow 3269 27.8 3685 40.0 1963 14.5 

 632 
633 
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 635 

 636 

Figure 1. The landscape, stream network and topographic index pattern within the Chi-Chia-Wan 637 

catchment. The raingages and flow stations are labeled by red square and black dot. 638 

639 
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 640 

 641 

Figure. 2 The conceptual diagrams of HBV-Model (left) and TOP-Model (right). The bold and italic 642 

symbols mean the flow is modeled by linear reservoir 643 

644 
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 646 

 647 

 648 

Figure. 3 The Nash_EC and Nash_EClog values corresponding to the generated parameter sets in 649 

calibration process. The HBV-derived and TOP-derived results are shown in left and right panel, 650 

respectively. The x-axis and y-axis represent the Nash_EClog, and Nash_EC, respectively. The gray 651 

circles represent the simulations partly and the black ones are the best 15 simulations sorted out by the 652 

equally weighted ranking. 653 
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 655 

 656 

Figure 4. The performances of the best HBV- (a) and TOP-derived simulations (b), respectively, 657 

against the rainstorm magnitude in terms of observed runoff volume. The performance measure of 658 

Nash_EC, coefficient of correlation, and volume bias are shown in the upper, middle, and bottom 659 

panels, respectively. The dash lines are shown for reference.  660 
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 662 

 663 

Figure 5. Normalized range of parameter values of the 15 best simulations (gray lines) for HBV Model 664 

(a) and TOP Model (b). The vertical dashed lines represent the parameter in logarithmic scale.  The 665 

black lines indicate the best one for the two models. 666 
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 670 

 671 

Figure 6. The variation of HBV-derived surface flow against averaged rainfall intensity (a) and storm 672 

duration (b). The variation of TOP-derived surface flow against averaged rainfall intensity (c) and 673 

storm duration (d). The black dot and gray line represent the mean and the standard deviation among 674 

the best simulations. 675 
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 679 

 680 

Figure 7. The variation of HBV-derived inter-flow against averaged rainfall intensity (a) and storm 681 

duration (b). The variation of TOP-derived inter-flow against averaged rainfall intensity (c) and storm 682 

duration (d). The black dot and gray line represent the mean and the standard deviation among the best 683 

simulations. 684 
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 688 

 689 

Figure 8. The variation of HBV-derived base-flow against averaged rainfall intensity (a) and storm 690 

duration (b). The variation of TOP-derived base-flow against averaged rainfall intensity (c) and storm 691 

duration (d). The black dot and gray line represent the mean and the standard deviation among the best 692 

simulations. 693 
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 698 

Figure 9. The EMMA-estimated three discharge components of event no. 15 and no. 17 are shown in 699 

(a) and (b), respectively. The black lines represented the observed stream discharge. The green and red 700 

lines indicate the estimated inter- and base-flow derived from EMMA. (seeing text in section 4-3 for 701 

details) 702 
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 705 

 706 

Figure 10. Comparison between the measured stream discharges (event no. 15) and the best 15 707 

simulations derived from HBV model (a.1) and TOP model (b.1). The comparison of interflow derived 708 

from mixing analysis (green dots) with the simulated inter-flows (sky blue zone) derived from HBV 709 

model (a.2) and TOP model (b.2), respectively. The comparison of base flow derived from mixing 710 

analysis (red dots) with the simulated inter-flows (blue zone) derived from HBV model (a.3) and TOP 711 

model (b.3), respectively. 712 
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 714 

Figure 11. Comparison between the measured stream discharges (event no. 17) and the best 15 715 

simulations derived from HBV model (a.1) and TOP model (b.1). The comparison of interflow derived 716 

from mixing analysis (green dots) with the simulated inter-flows (sky blue zone) derived from HBV 717 

model (a.2) and TOP model (b.2), respectively. The comparison of baseflow derived from mixing 718 

analysis (red dots) with the simulated inter-flows (blue zone) derived from HBV model (a.3) and TOP 719 

model (b.3), respectively. 720 


