
HESSD
10, 9999–10034, 2013

Modeling insights
from distributed

temperature sensing
data

C. R. Buck and S. E. Null

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Hydrol. Earth Syst. Sci. Discuss., 10, 9999–10034, 2013
www.hydrol-earth-syst-sci-discuss.net/10/9999/2013/
doi:10.5194/hessd-10-9999-2013
© Author(s) 2013. CC Attribution 3.0 License.

EGU Journal Logos (RGB)

Advances in 
Geosciences

O
pen A

ccess

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

Annales  
Geophysicae

O
pen A

ccess

Nonlinear Processes 
in Geophysics

O
pen A

ccess

Atmospheric 
Chemistry

and Physics

O
pen A

ccess

Atmospheric 
Chemistry

and Physics

O
pen A

ccess

Discussions

Atmospheric 
Measurement

Techniques

O
pen A

ccess

Atmospheric 
Measurement

Techniques

O
pen A

ccess

Discussions

Biogeosciences

O
pen A

ccess

O
pen A

ccess

Biogeosciences
Discussions

Climate 
of the Past

O
pen A

ccess

O
pen A

ccess

Climate 
of the Past

Discussions

Earth System 
Dynamics

O
pen A

ccess

O
pen A

ccess

Earth System 
Dynamics

Discussions

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Discussions

Geoscientific
Model Development

O
pen A

ccess

O
pen A

ccess

Geoscientific
Model Development

Discussions

Hydrology and 
Earth System

Sciences

O
pen A

ccess

Hydrology and 
Earth System

Sciences

O
pen A

ccess

Discussions

Ocean Science

O
pen A

ccess

O
pen A

ccess

Ocean Science
Discussions

Solid Earth

O
pen A

ccess

O
pen A

ccess

Solid Earth
Discussions

The Cryosphere

O
pen A

ccess

O
pen A

ccess

The Cryosphere
Discussions

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

Discussions

This discussion paper is/has been under review for the journal Hydrology and Earth System
Sciences (HESS). Please refer to the corresponding final paper in HESS if available.

Modeling insights from distributed
temperature sensing data

C. R. Buck1 and S. E. Null2

1Butte County Department of Water and Resource Conservation, Oroville, California, USA
2Department of Watershed Sciences, Utah State University, Utah, USA

Received: 17 June 2013 – Accepted: 13 July 2013 – Published: 1 August 2013

Correspondence to: C. R. Buck (cbuck@buttecounty.net)

Published by Copernicus Publications on behalf of the European Geosciences Union.

9999

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/9999/2013/hessd-10-9999-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/9999/2013/hessd-10-9999-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 9999–10034, 2013

Modeling insights
from distributed

temperature sensing
data

C. R. Buck and S. E. Null

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Abstract

Distributed Temperature Sensing (DTS) technology can collect abundant high resolu-
tion river temperature data over space and time to improve development and perfor-
mance of modeled river temperatures. These data can also identify and quantify ther-
mal variability of micro-habitat that temperature modeling and standard temperature5

sampling do not capture. This allows researchers and practitioners to bracket uncer-
tainty of daily maximum and minimum temperature that occurs in pools, side channels,
or as a result of cool or warm inflows. This is demonstrated in a reach of the Shasta
River in Northern California that receives irrigation runoff and inflow from small ground-
water seeps. This approach highlights the influence of air temperature on stream tem-10

peratures, and indicates that physically-based numerical models may under-represent
this important stream temperature driver. This work suggests DTS datasets improve
efforts to simulate stream temperatures and demonstrates the utility of DTS to improve
model performance and enhance detailed evaluation of hydrologic processes.

1 Introduction15

Advances in instrumentation and monitoring techniques have made collecting temper-
ature data easier and made data robust. This has provided opportunities to explore hy-
drological processes in greater detail and model them in new ways (Macfarlane et al.,
2002; Moffett et al., 2008; Selker et al., 2006a; Tyler et al., 2009; Westhoff et al., 2011,
2007). Recent applications of Distributed Temperature Sensing (DTS) technology to20

hydrologic studies have opened up an exciting and rapidly expanding area of field re-
search. DTS methods allow for temperature measurement with high spatial resolution
(1 m resolution for up to a 1000 m cable) and temporal resolution (fractions of a minute)
(Selker et al., 2006a; Tyler et al., 2009).

DTS technology has a variety of applications for environmental science, including25

soil moisture research (Steele-Dunne et al., 2010), exploration of snow thermal pro-
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cesses (Tyler et al., 2008), analysis of temperature anomalies in a saltmarsh tidal
channel system (Moffett et al., 2008), deployment in a fumarolic ice cave to estimate
flank degassing rates (Curtis and Kyle, 2011), leakage detection in sewer-storm water
systems and dikes (Hoes et al., 2009; Khan et al., 2010), lake hydrology (Vercauteren
et al., 2011), deployment in deep well boreholes for characterization of aquifer dynam-5

ics (Macfarlane et al., 2002; Yamano and Shusaku, 2005), atmospheric study of the
stable boundary layer (Keller et al., 2011), and multiple applications in rivers to explore
and quantify groundwater-surface water interactions (Fleckenstein et al., 2010; Lowry
et al., 2007; Selker et al., 2006b; Slater et al., 2010; Vogt et al., 2010; Westhoff et al.,
2011).10

The potential to obtain stream temperature measurements continuously – from main-
stem conditions to side channel or micro-habitat areas – provides opportunities to im-
prove field and modeling studies. It can be useful to collect these data prior to or follow-
ing simulation modeling. DTS data can help improve stream temperature modeling by
providing high quality input and calibration data, and by identifying mixing zones where15

model nodes should be located at more frequent intervals. DTS can also be used to
post-process model results to explore heating processes and temperature variability of
micro-habitats relative to the mainstem. High-resolution measured data builds on pre-
vious modeling efforts by more accurately quantifying the range of measured thermal
variability, estimating the rate of longitudinal heating as water moves downstream, or20

identifying thermal refugia from small springs or other inflows.
Only a few studies in the literature use DTS data to improve stream temperature

model calibration, even though obtaining temperature data with spatial resolution of
less than 1 m and temperature resolution of ±0.01 ◦C provides abundant data (Selker
et al., 2006a; Tyler et al., 2009). Westhoff et al. (2007) use DTS data as input and to25

calibrate an energy-based temperature model of a first order stream in central Lux-
embourg. The temperature model is based on a series of well-mixed two meter length
reservoirs and simulates seven days in April 2006. Model simulation of stream temper-
atures is compared to DTS temperature data. DTS measurements from this first order
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stream were used in two other studies to calibrate, improve, or expand the energy
balance model by adding instream rock clasts as heat storage zones and describing
hyporheic exchange (Westhoff et al., 2010, 2011). Roth et al. (2010) used Westhoff
et al.’s (2007), energy balance modeling approach, comparing modeled temperatures
against measured DTS data to explore effects of varying riparian vegetation conditions5

on stream temperatures. Their application is in the Boiron de Morges River in south-
west Switzerland over a three day period in August 2007.

The objective of this study is to show the utility and value of DTS data in recalibrating
an existing temperature model for river temperatures over a multiple week study period,
and to provide insights on hydrologic processes that can enhance model development10

and interpretation of modeled results. Our hypothesis is that DTS input data will im-
prove model result accuracy. To date, studies have focused on short-term experiments
exploring in-stream processes over a period of a week or less. The DTS dataset for
the Shasta River in Northern California used in this study extends from mid-August to
mid-October 2010. This period of time spans the transition from irrigation season to15

non-irrigation season and captures atmospheric changes that occur as summer tran-
sitions into fall. This research contributes to the literature by demonstrating the value
of long-term DTS observations for model calibration and increased confidence in sim-
ulated temperatures. The methods and findings developed here can be applied to river
management and assessment of habitat suitability by deploying DTS in reaches of in-20

terest for restoration or reaches with more complex temperature dynamics due to pools
or inflows. DTS data also could be used with existing simulation results to post-process
a more realistic range of variability in stream temperature not captured in simulation re-
sults.

We show the value of post-processing existing modeled stream temperature results25

to quantify micro-habitat and the range of variability in stream temperatures that are
not captured by modeling. This has widespread applications because models do not
have to be rerun. In fact, simulation results can be used to highlight promising locations
for restoration or other changes, and DTS can be deployed to better measure temper-
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atures or monitor changes. In this way, we show that DTS technology complements
simulation modeling and can provide much greater benefit than simulation modeling
with standard temperature logger protocols.

2 Site description

The Shasta River is the last tributary on the Klamath River before Iron Gate Dam, the5

lowest dam on the Klamath River (Fig. 1). Native salmonid populations in the Klamath
Basin have declined due to low flow conditions, warm stream temperatures, and mi-
gration barriers (NRC, 2004). Restoring the Shasta River for native trout and salmon is
a no-regrets action to ameliorate poor in-stream conditions and future dam decommis-
sioning activities on the Klamath River (Null et al., 2010). Three species of salmonids,10

coho salmon (Oncorhynchus kisutch), fall-run Chinook salmon (O. tshawytscha), and
steelhead trout (O. giardneri) are present in the Shasta River. Spring-run Chinook trout
were extirpated with construction of Dwinnell Dam at river kilometer (RK) 65 (Moyle,
2002). Klamath Basin coho salmon belong to the Southern Oregon/Northern California
Coast evolutionarily significant unit, which was listed as federally threatened by the Na-15

tional Marine Fisheries Service in 1997 (EPA, 1997). Coho salmon are the only listed
salmonid species, although all trout and salmon fish populations have been drastically
reduced compared to historical populations that reportedly exceeded 80 000 returning
adults in the 1930s (NRC, 2004; DWR, 2008). Stream temperatures are one of the
major factors limiting salmonid survival in the Shasta River (NRC, 2004).20

The Shasta River originates in the Eddies Mountains of rural Northern California and
flows across the Shasta Valley for approximately 95 km northwestward to the Klamath
River, with a catchment area of 2070 km2. The valley is bounded by the Scott Mountains
to the west, Siskiyou Mountains to the north, and the Cascade Range to the south and
east. In the rain shadow of Mount Shasta, the valley is a high desert environment with25

hot, dry summers and cool winters. Mean annual air temperature for 2010 was 11.3 ◦C.
Annual mean precipitation varies considerably with elevation with a minimum of 33 to
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38 cm in the low elevation areas of the valley (DWR, 2008). The diverse geology of
the area influences the region’s complex hydrology. Volcanic deposits make up much
of the valley floor’s surficial deposits and most prolific groundwater aquifers (DWR,
2008). Mount Shasta, an active Cascade volcano, contributes recharge to a highly pro-
ductive aquifer characterized by preferential flow paths through basalt flows. Volcanic5

debris flow material (older than the basalt flows) is the result of a debris avalanche
from Mount Shasta. It is composed of a block and matrix facies of volcanic rocks and
fine sandy ash-rich material, respectively. Its chaotic deposition leads to a lack of inter-
nal structure and low permeability and is understood to serve as a boundary impeding
groundwater flow from the basalt, therefore giving rise to numerous springs along the10

contact between the formations (DWR, 2008).
The lower Shasta River is sustained by significant baseflows from springs, most no-

tably, the Big Springs Complex, which joins the mainstem at RK 54.246 (Fig. 2a) and
contributes approximately 2.5 m3 s−1 to the Shasta River during the non-irrigation sea-
son and about 1.7 m3 s−1 during the irrigation season. Groundwater springs are an15

important source of cold water (12–14 ◦C) to the Shasta River, which is otherwise sub-
ject to atmospheric heating and cooling. During spring and summer, river temperatures
exceed 20 ◦C (Null et al., 2010), which surpasses the thermal tolerance for salmonid
species (Myrick and Cech Jr., 2001).

Mean annual discharge (years 1934–2010) near the mouth of the Shasta River is20

5.18 m3 s−1, with a range of 2.21–10.3 m3 s−1. Mean daily discharge for 2010 (an above
average year) exemplifies the pattern of peak snowmelt runoff and subsequently re-
duced flows during the irrigation season from April through September (Fig. 3).

Our study site is approximately 0.8 km of the mainstem Shasta River downstream
of Dwinnell Dam and upstream of the confluence with Big Springs Creek (Fig. 2), RK25

54.898–55.699. This stretch has an average slope of 0.0028 mm−1. The course of
the river in this area runs along the base of the debris flow and averages a width
of 11.3 m. Basalt outcrops are dispersed along the Shasta River and several small
groundwater seeps contribute small amounts of cold (∼ 14 ◦C) water. The flow rate,
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size, and prevalence of these seeps have not been quantified. Most stream flow in
this stretch originates from snowmelt runoff and groundwater accretion upstream and
small seeps along the course of the mainstem. Summertime flows are on the order of
0.71 m3 s−1 or less during the irrigation season.

The complex spring hydrology and prevalence of coldwater seeps makes better mea-5

suring, simulating, and characterizing the thermal diversity of the Shasta River a pri-
ority. Previous simulation modeling has indicated that restoration could enhance cold-
water habitat in this river (Null et al., 2010). While it is generally known that coldwater
springs and seeps exist in this system and that they play a role in maintaining a stable
thermal regime, it is not well understood how exactly they influence stream tempera-10

tures or the role they play for thermal refugia. High resolution temperature monitoring
in the Shasta River can help to fill these information gaps and also provide better input
data for calibrating stream temperature models.

3 Methods

3.1 Measurements15

A 4 channel Sensornet Oryx DTS was deployed to measure stream temperatures. DTS
systems send a laser light down an optical fiber and measure the Raman backscatter,
whose intensity is related to the temperature of the optical fiber (Selker et al., 2006a;
Tyler et al., 2009). The DTS data logger is enclosed in a weather proof shelter with
a 3G compatible cell phone data link. 200 Watt solar panels with two 70 amp-hour deep20

discharge batteries provide power. In our application, the DTS recorded water temper-
ature every meter along a 1 km cable every 5 min 17 August to 6 September and then
every 15 min 6 September thru 12 October because quarter hour resolution is sufficient
for the purposes of this study and reduces excessive data storage and transmittal. The
location of the DTS system at the upstream end of the cable is hereafter referred to as25

the DTS Base Station (DTS-BS) (Fig. 2). The cable was secured with fence posts or
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rocks and typically rested a few inches above the river bed. Macrophyte growth in the
Shasta River (Jeffres et al., 2009) made the cable difficult to see and protected it from
direct solar radiation. Instrumentation also included an eKo-brand remote weather sta-
tion that measured precipitation, solar radiation, wind speed, temperature and relative
humidity. This weather station was located in the middle of an open damp grassy area5

30 m east of the river and recorded atmospheric data every 15 min.
An ice bath, periodically maintained over the study period, and ambient bath were

located at the DTS-BS and another ambient bath was at the end of the cable. These
calibration baths housed 20–30 m of coiled fiber optic cable situated such that the cable
did not touch the sides of the bath. A Hobo temperature logger with accuracy of ±0.2 ◦C10

for the 0–50 ◦C temperature range and a high resolution temperature probe from the
DTS system was placed in the middle of the coil for cable calibration to account for
signal attenuation and temperature offset (Tyler and Selker, 2009). The cable measured
and recorded stream temperatures in the mainstem Shasta River from approximately
RK 55.649 to 54.898, the side channel of Parks Creek Overflow (PCO), and at two15

small groundwater seeps on river left (Fig. 2). The cable was placed in PCO and the
groundwater seeps to quantify thermal differences between them and the mainstem
Shasta River.

3.2 Stream temperature model

The Tennessee Valley Authority’s River Modeling System (TVA-RMS v.4) was used to20

simulate flow and stream temperature in the Shasta River for 21 August thru 9 Octo-
ber 2010 with an hourly time step. RMS is a one-dimensional longitudinal, physically-
based numerical model composed of a hydrodynamics module (ADYN) and a water
quality module (RQUAL) (Hauser and Schohl, 2002). ADYN solves equations for con-
servation of mass and momentum (St. Venant equations) using a four point implicit25

finite difference scheme with weighted spatial derivatives outputting velocity and depth
at each node. Required inputs include channel geometry, roughness coefficients, up-
stream and lateral inflows, and initial conditions specified as either flow or water sur-
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face elevation (Hauser and Schohl, 2002). The dynamic water quality model (RQUAL)
solves the mass transport equation using the Holly–Priessmann numerical scheme
and can simulate time varying temperature, dissolved oxygen, carbonaceous BODu,
and nitrogenous BODu at multiple locations (nodes) along a river reach. Modeling tem-
perature was the focus of this study, and the other water quality aspects were not5

simulated. Model inputs for RQUAL include velocity and water surface elevation from
ADYN, meteorological data (air temperature, dew point temperature, wind speed, cloud
cover, barometric pressure, and solar radiation), temperatures of inflow sources, and
initial stream temperatures (Hauser and Schohl, 2002).

The temperature component of the water quality module uses a heat budget ap-10

proach estimating heat fluxes for net solar radiation adjusted by a shading factor, atmo-
spheric long-wave radiation, channel bed heat flux, back radiation from the river, evap-
orative heat loss, and conductive heat transfer (Hauser and Schohl, 2002). Changes to
the RMS code to represent riparian shading were made by Abbot (2002) allowing for
a separate shading fraction for the left and right bank of a river.15

Meteorology input data for RQUAL (dry bulb temperature, atmospheric pressure,
wind speed, solar radiation and relative humidity) were obtained from the eKo-brand
weather station located near the river. Dew point temperature was calculated from dry
bulb temperature and relative humidity. Cloud cover was estimated using measured
short wave solar radiation.20

Modeling efforts for this study began with a previously developed RMS model of the
Shasta River simulating temperatures from Dwinnell Dam to the confluence with the
Klamath for 2001 (Null et al., 2010). That model represented the Shasta River with
999 unevenly-spaced nodes over a modeled length of 65.4 km. Meandering reaches,
as in the currently modeled section, have a higher density of nodes than straighter25

reaches (Fig. 2). The approximately 0.8 km fiber optic cable placed in the mainstem in
summer 2010 corresponds to eleven of the nodes from the 2001 model. A five-point
channel cross-sectional geometry defines each node. The new Shasta River model
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for 2010 has a boundary condition node and 11 nodes modeling stream temperature,
representing approximately 0.72 km.

The most upstream RMS node (node 0) is assigned boundary condition temperature
and flow inputs and in the 2010 model is located upstream of the DTS stretch (Fig. 2).
A Hobo temperature logger located about 40 m downstream of the boundary condition5

node (node 0) but upstream of the DTS cable provided hourly upstream boundary
condition temperature data.

3.3 Calibration

Modeled water temperature was compared to DTS measured data averaged over 15–
50 m upstream and downstream of each node. This was done rather than taking tem-10

perature at a single point closest to the model node to avoid capturing localized tem-
perature conditions of the cable at a single location. This is important because the
DTS cable captures spatial variability that is not represented with the model. Averag-
ing measured temperature over space better represents water temperature conditions
corresponding to each modeled reach.15

Mean bias is calculated for each node by averaging the difference between hourly
modeled and measured temperature for the model period, 21 August to 9 October.
A positive mean bias indicates overestimation by the model. Similarly, the root mean
square error (RMSE) is calculated for the same hourly time series by averaging the
squared residuals (absolute value of modeled minus measured) and taking the square20

root.

4 Results and discussion

This section describes the model calibration process and results followed by DTS tem-
perature results. Daily thermal variability of measured and modeled stream tempera-
tures are also presented and discussed. Finally an examination of longitudinal heating25
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for measured vs. modeled results explores the roles of solar radiation and air temper-
ature on stream temperatures.

4.1 Boundary condition calibration

We explored the sensitivity of stream temperatures to the upstream flow boundary
condition, as well as the inflow of Parks Creek Overflow (PCO) during calibration5

since these flows were estimated rather than measured. Overall, temperatures were
not highly sensitive to the upstream flow boundary condition. The order of change to
modeled stream temperatures was thousandths of a degree (◦C) and the largest im-
provement from one model run to another was a mean bias of 0.039 ◦C. Changing the
upstream inflow within its likely flow range has negligible effects on river temperature.10

A new lateral flow (not included in the 2001 RMS model) was added at node 9 to rep-
resent the inflow of PCO. PCO may be an abandoned channel of Parks Creek, but now
is a narrow, rocky channel with dense vegetation that mostly conveys tail water return
flow from flood-irrigated pasture. Flow data for this lateral was unavailable, but was es-
timated to be 0.05 to 0.11 m3 s−1 based on five flow measurements taken above and15

below the inlet. We believe the inflow of PCO varies based on irrigation events. During
calibration, models were run with uniform daily flows of 0.06 to 0.14 m3 s−1. Based on
model performance and knowledge of the river system, a uniform daily flow rate of ap-
proximately 0.11 m3 s−1 was assigned to PCO lateral. Lack of flow data for this inflow
is a limitation and may affect downstream temperatures. For nodes 10–11, changes in20

the lateral flow from 0.06 to 0.14 m3 s−1 affects the mean bias on the order of a tenth of
a degree (◦C) and the RMSE as much as 0.058 ◦C. Boundary condition inflow temper-
atures for PCO were an average of temperatures along 15 m of DTS cable looped into
the side channel.

A number of inputs were adjusted slightly from 2001 RMS model values for model25

calibration and are still within the recommended range (Hauser and Schohl, 2002)
(Table 1). These included bank width, the wind coefficient in wind-driven evaporative
cooling (AA), thermal diffusivity of bed material (DIF), and bed albedo (BEDALB). Other
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parameters, including bed heat storage capacity, effective channel bed thickness of the
upper layer for bed heat conduction, wind exponent in wind-driven evaporative cooling,
and the light extinction coefficient (CV, XL, BB, EXCO, respectively), were tested but
either had little or no effect on modeled temperatures or worsened model performance.

4.2 Calibration results5

Overall, modeled data represented stream temperatures in the Shasta River well. Mod-
eled stream temperatures were compared with measured data (Fig. 4) and mean bias,
root mean square error (RMSE), and mean absolute error (MAE) statistics were cal-
culated for each node. MAE is less than 0.3 ◦C for all nodes and mean bias for all
nodes is −0.04 ◦C. 2001 RMS model results had MAE of 1.48 and 1.90 ◦C for nearby10

reaches (Parks Creek and Louie Road) (Table 2). Using DTS as input data and for
calibration improved model performance considerably for this short reach (0.8 km) with
a decrease of the RMSE from 2.00 to 0.35 ◦C from the earlier 2001 RMS model to the
newly calibrated model and MAE improved by 1.19 ◦C. A couple degrees (◦C) can be
significant when evaluating the suitability of temperature conditions for fish habitat or15

ranking ecosystem management alternatives, and using DTS for initial stream temper-
ature helps improve model accuracy. Model accuracy could not be further improved
because DTS data captures spatial thermal variability which is not as well represented
in the coarser resolution stream temperature model.

We compared measured and modeled river temperatures at node 4 for visual cor-20

roboration of results (Fig. 4). Daily minimum modeled temperatures of nodes 1–9 tend
to be warmer than measured temperatures by approximately 0.2 ◦C. In other words, not
enough cooling occurs at nighttime in model results. Modeled daily maximum temper-
atures for nodes 1–9 are warmer than measured temperatures about half the days by
an average of 0.05–0.09 ◦C and cooler than measured temperatures by an average of25

0.05–0.14 ◦C. Temperatures downstream of PCO (nodes 10 and 11) are strongly influ-
enced by the inflow of that lateral and therefore are less accurate since flow volumes
are uncertain (Table 2). Modeled maximum daily temperatures are warmer than mea-
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sured temperatures at node 10 and 11 by approximately 0.3 ◦C, which occurs about
80 % of the days.

4.3 Measured temperature results

The DTS data show local thermal variability that was not evident from temperature sim-
ulation or from previous stream temperature measurements using thermistors located5

tens of kilometers apart. PCO and the two measured cold water seeps contribute wa-
ter noticeably warmer and cooler, respectively, than the mainstem temperature (Fig. 5).
The measured temperature range, calculated as the difference between maximum and
minimum temperature for each meter along the cable over the period of record, shows
sites with high and low temperature variability (Fig. 5a). The groundwater seeps are10

both consistently about 15.2 and 14.4 ◦C. Though significantly colder than the main-
stem, these seeps do not contribute enough flow to affect mainstem temperatures
significantly, although they could provide very localized thermal refugia for coldwater
species. PCO is shallower than the mainstem with less thermal mass, and thus is colder
than the mainstem at night and warmer during the day, with higher temperatures than15

the mainstem on average. Examining the range of temperature for each location along
the cable is one way to identify groundwater inflows as they dampen diurnal temper-
ature fluctuations. Aside from the two seeps, previously discussed, the dataset does
not reveal significant groundwater inflows. Temperature affects from other seeps and
any diffuse baseflow that may be occurring along the reach is not great enough or near20

enough to the DTS cable to influence the measured temperature. The warmer temper-
atures just downstream of PCO indicates a mixing zone where the PCO mixes with the
mainstem and persists for about 40 m downstream of the PCO channel (Fig. 5). The
length of the mixing zone would be expected to change with flow volume of both the
mainstem and side channel. With DTS, we were able to specify stream temperatures,25

cold water seeps, and thermal variability of a side channel, and quantify the size of
mixing zones in the Shasta River from the PCO return flow channel. This is useful for
evaluating potentially beneficial thermal features or thermal barriers to fish passage.
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Mean weekly maximum and mean weekly minimum stream temperatures are typi-
cally used as metrics for habitat suitability and fish survival (Welsh et al., 2001; McCul-
lough, 1999). Temperature measurements using DTS allow for an evaluation of mean
weekly minimum and maximum temperatures at a 1 m spatial resolution (Fig. 6). Thus,
weekly metrics can be created with high spatial resolution and used to identify specific5

problem reaches or barriers to fish passage. One of the warmest sites in the study
reach of the Shasta River is the mixing zone downstream of PCO inlet (Fig. 5), which
reached a daily maximum of 24.15 ◦C during the study period. Although it has high daily
maximum temperatures that may provide a thermal barrier during warm periods, this
mixing zone cools sufficiently at night (average minimum of about 13 ◦C) thus would10

probably not prevent fish passage during the observed season. With detailed temper-
ature data over space and time, potential thermal barriers can be better defined, and
fitting restoration measures identified. For instance, the reach downstream of the PCO
channel might be a promising reach to plant riparian vegetation to shade the channel
and preserve cold temperatures from the cold water seeps. This could provide cover15

and thermal refugia for trout and salmon that hold until stream temperatures cool at
night for fish to bypass the PCO confluence.

4.4 Daily thermal variability

Stream temperatures are driven by both source temperatures and response to atmo-
spheric conditions. Thus both modeled and measured daily maxima and minima were20

influenced by atmospheric conditions. However, modeled stream temperatures were
less variable than measured DTS temperatures (Fig. 7). The measurement period
from mid-August to the first week in October had a combination of hot and milder
days with maximum daily air temperature ranging from 15.4 to 36.9 ◦C (Fig. 8). DTS
daily maximum river temperatures were generally warmer than modeled peak temper-25

atures. Likewise, DTS daily minima were cooler than modeled daily minimum temper-
ature. Therefore, not quite enough heating occurs during the day and not quite enough
cooling at night in the model for most locations. This leads to lower thermal variability
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of modeled compared to measured temperatures for all nodes upstream of PCO. The
average difference between modeled and measured daily thermal variability for nodes
1 to 9 is between 0.10–0.63 ◦C for 22 August thru 9 October.

Stream temperatures at nodes 10 and 11 located downstream of PCO are influenced
by the contribution of this side channel and often modeled thermal variability (temper-5

ature range) is more extreme than measured (this occurs 41 out of 50 days). More
accurate inflow data (rather than estimated constant flow value of 0.11 m3 s−1) would
likely improve results. In reality, PCO inflow is not steady, but rather varies with tail wa-
ter return. It is probable that input PCO inflow volume is too high on days that modeled
thermal variability is more extreme than measured data. This illustrates why irriga-10

tion tail water (which is variable based on water rights, water availability, and watering
schedules of multiple irrigators) can be challenging to model accurately. Furthermore
the difference in volume between tail water return flow channels and the mainstem river
means that return flows or other smaller channels typically heat and cool at different
rates and thus can contribute warmer or cooler water based on season, time of day,15

and water year (wet years vs. dry years). The Shasta River is characterized by inflows
of tail water returns and cool groundwater seeps and springs that are unquantified and
often unmapped. This makes assessing habitat suitability difficult because modeled
mainstem temperatures do not capture these local complexities. DTS technology al-
lows measurement of thermal variability of these small micro-habitats. DTS data can20

be used to bracket the uncertainty and range of temperature that may occur in side
channels, pools, and mixing zones of cool or warm inflows, or to gain more information
on reaches that simulation modeling indicate may provide suitable habitat for coldwater
species or are promising for restoration.

For example, the PCO mixing zone is influenced by inflow from the side channel and25

maximum and minimum temperatures significantly differ from mainstem temperatures
just upstream. This thermally complex mixing zone is modeled with a single node (node
9). Maximum and minimum temperatures modeled at node 10 are compared to temper-
atures measured by DTS to explore the extent to which thermal variability differs due
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to the lateral inflow. Figure 9 shows maximum DTS temperatures can exceed modeled
temperatures by as much as 5.6 ◦C. A difference of this magnitude could be significant
in affecting the movement of coldwater species, like salmon and trout, though it is not
captured by model results. Conversely, measured DTS daily minimum temperatures
are less than modeled minimums by as much as 2.72 ◦C.5

This demonstrates the utility of DTS data in providing insight on thermal variability of
micro-habitats not simulated by modeling efforts. This could be important for analysis
and application of modeling results used for evaluating habitat suitability. Analyzing the
increased (or in cases of groundwater inflow, decreased) thermal variability resulting
from local inflows can bracket the uncertainty of modeled temperatures.10

4.5 Longitudinal rate of heating

Generally, river temperatures warm in the downstream direction when the atmosphere
is warmer than water temperatures (summer and early autumn). Examining longitudinal
heating shows how stream temperatures change as water moves downstream, and is
a function of source inflows and temperatures, travel time, and atmospheric conditions.15

This is important for managing temperature for aquatic species because it identifies
where heating occurs most rapidly and can highlight those areas for restoration (e.g.,
by planting riparian vegetation) or other management efforts to preserve cooler, up-
stream temperatures. Longitudinal rate of heating is calculated for DTS as the average
of measured temperatures near node 8 minus the average temperatures near node 120

normalized by the distance between them (386 m). The same is done for RMS results
for node 1 and 8. This stretch of river does not have known inflows affecting mainstem
temperatures.

We focus on the rate of longitudinal heating of water temperatures between nodes 1
and 8 on 25–31 August; these six days span a period of higher to lower air (and corre-25

sponding water) temperatures and have a wide range in maximum daily solar radiation.
Figure 10 shows the rate of longitudinal heating from DTS measured temperatures
and RMS modeled temperatures with solar radiation (Fig. 10a) and air temperature
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(Fig. 10b). Modeled temperatures are driven primarily by solar radiation, following cur-
rent understanding of solar radiation as a major factor influencing both air and water
temperatures (Johnson, 2003) and a major driver of heat energy flux (Caissie, 2006).
Measured peak heating rates lag peak solar radiation by four to five hours (especially
on days with high maximum solar radiation), and appear to more closely coincide with5

the timing of peak air temperature. Measured daily maximum stream temperatures also
lag peak solar radiation by approximately the same amount of time. This observation
that air temperature correlates well with stream temperature reinforces similar findings
of other investigators (Mackey and Berrie, 1991; Mohseni and Stefan, 1999; Sahoo
et al., 2009), although improving understanding of causation or driving factors is out-10

side the scope of this research. Regardless, our results show that the heat balance
approach used by the numerical model may overemphasize the influence of solar radi-
ation or incorrectly represent the lag between solar radiation and stream temperature
response, and fail to capture the full influence of air temperature on longitudinal rates
of heating, particularly at night when modeled heating rates are significantly lower than15

measured heating.
These results suggest that high resolution measured stream temperatures, such as

DTS datasets, are helpful for re-examining the assumptions of stream temperature
drivers. Considerable research exists on air- and insolation-water temperature rela-
tionships (Caissie, 2006; Danehy et al., 2005; Mohseni and Stefan, 1999; Webb and20

Nobilis, 2007). Continuing research is needed to improve understanding of the role
of air temperature and solar radiation in physically-based models, particularly at dif-
fering scales (stream temperature modeling at fine-, landscape-, or meso-scale may
be driven by different processes and conditions). DTS datasets that provide abundant
temperature data in space and time could be useful for exploring and calibrating such25

efforts.
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5 Limitations

Modeling provides the opportunity to explore hydrological processes as well as man-
agement alternatives, yet any modeling effort has limitations. Necessary simplification
of physical processes and river geometry are inherent limitations to modeling river tem-
perature. These have been described in greater detail for the Shasta River model else-5

where (Null, 2008). For this study, an additional limitation is that upstream boundary
condition data for the mainstem and Parks Creek Overflow (PCO) tributary were un-
available. Inability to develop a rating curve for mainstem flow due to excessive macro-
phyte growth and limited flow measurements introduced uncertainty in specifying the
boundary condition for daily flow of the Shasta River. Although this affects the accuracy10

of the model to some degree, sensitivity analysis performed during model calibration
show river temperatures are not very sensitive to this input. More importantly, DTS tem-
perature data demonstrates that PCO inflow significantly affects downstream mainstem
temperatures, therefore uncertainty in this inflow boundary condition reduces accuracy
of modeled temperatures. This model could be further improved by measuring dis-15

charge for PCO and other small seeps that contribute flow to the mainstem and that
may affect thermal variability.

Although DTS technology provides high resolution data spatially and temporally, it
still has limitations in its ability to fully capture stream temperature dynamics. In this
deployment, the DTS data is limited to capturing temperatures in a longitudinal transect20

upstream to downstream in the river and generally does not provide lateral stream
temperatures. The cable placement also may vary with respect to its distance from the
river bed. This makes it difficult to conclude with certainty that groundwater accretion
does not occur at all within the monitored reach even though the data suggests that it
does not, other than from the small observable seeps. However, a strength of DTS is25

its flexibility. Results from this deployment could further highlight locations of particular
interest where cross-sections or coiling of the cable to measure temperatures in the
water column could be done.
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6 Conclusions

River temperature datasets using DTS technology provide a rich opportunity to explore
and compare measured and modeled river temperatures, and to improve model per-
formance and development, post-process existing modeled temperature results, and
refine our understanding of processes governing stream temperature heat budgets.5

Using DTS data as input and to recalibrate the existing 2001 RMS stream temperature
model for the Shasta River improved performance of modeled temperatures by reduc-
ing RMSE by almost 2.0 ◦C. Increasing confidence in simulated temperatures can make
models more useful and effective for evaluating temperature conditions and therefore
management alternatives. DTS data helps improve model performance by providing10

high quality input and calibration data.
DTS data-sets are also valuable for identifying and quantifying inflows and thermal

variability from tail water, ungaged tributaries, side channels, and groundwater springs.
DTS data helps identify mixing zones and in-stream thermal complexities to aide model
node placement and frequency, thereby improving stream temperature model develop-15

ment. Side channels and groundwater seeps could be explicitly represented in future
modeling studies if high resolution spatial data exits to define initial conditions, bound-
ary conditions, and inform understanding of thermal dynamics.

Additionally, DTS data can be valuable for better interpreting existing simulation re-
sults. Deterministic stream temperature models most often solve a one-dimensional20

problem simulating temperatures longitudinally (Caissie, 2006). This means areas of
increased thermal variability and complexity are not well captured in modeled temper-
ature results, as explored by this work. Measured DTS data can be used with existing
simulation results to post-process a more realistic range of variability in stream tem-
perature, especially when simulation results are used to assess habitat suitability or25

management alternatives. In these cases, the details regarding timing and measured
temperature variations are important. This will more realistically define potential ther-
mal barriers to fish passage, thermal variability of micro-habitats, and more accurately
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capture the variety of temperature conditions present in rivers. Collecting DTS data af-
ter model development has utility and value for post-processing modeled temperature
results and understanding local thermal variability in relation to the mainstem temper-
ature.

Analysis of longitudinal heating of measured vs. modeled temperatures revealed the5

overemphasis models such as RMS may place on solar radiation when estimating
stream temperatures. This highlights the value of DTS data in revealing the strengths
and weaknesses of heat budget representation in stream temperature models. Al-
though research generally indicates solar radiation is the most important factor driv-
ing heat flux (Johnson, 2003), air temperature may still play a major role particularly10

with regards to the timing of longitudinal rates of heating and cooling or the timing of
solar radiation heat transfer to streams may be currently mis-represented in models.
Future work should further explore representation of solar radiation and air tempera-
ture in temperature models to improve model performance, longitudinal heating rates,
and more accurately model the timing and magnitude of daily maximum and minimum15

stream temperatures. DTS data can help refine our understanding of processes gov-
erning stream temperature heat budgets.
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Table 1. RQUAL parameters evaluated during calibration.

Parameter Recommended Range 2001 RMS Current Value
(Hauser and Schohl, 2002) (Null et al., 2010)

AA1 0E–09–4E–09 m3 mb−1 s−1 0.5E–09 m3 mb−1 s−1 0.2E–09 m3 mb−1 s−1

BB2 1E–09–3E–09 m2 mb−1 1.5E–09 m2 mb−1 1.5E–09 m2 mb−1

DIF3 25–50 cm2 h−1 25 cm2 h−1 50 cm2 h−1

XL4 5–50 cm 15 cm 15 cm
EXCO5 0.05 for clean water 0.1 (1 m−1) 0.1 (1 m−1)

0.30 for turbid water
CV6 0.4–0.7 calcm−3 ◦C 0.68 0.68
BEDALB7 0.1–0.5 (unitless) 0.25 0.3

1 AA wind coefficient in wind-driven evaporative cooling.
2 BB wind exponent in wind-driven evaporative cooling.
3 DIF thermal diffusivity of bed material.
4 XL effective channel bed thickness of upper layer for bed heat conduction.
5 EXCO light extinction coefficient.
6 CV bed heat storage capacity.
7 BEDALB albedo of bed material.
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Table 2. Calibration statistics at each node (n = 1201 for all nodes).

Node Mean bias (◦C) RMSE (◦C) MAE (◦C)

1 0.04 0.14 0.11
2 0.03 0.15 0.12
3 0.05 0.14 0.11
4 0.02 0.15 0.12
5 0.00 0.15 0.13
6 −0.02 0.17 0.14
7 −0.06 0.18 0.15
8 −0.11 0.21 0.17
9 −0.16 0.24 0.19
10 −0.10 0.30 0.24
11 −0.16 0.35 0.29

Average −0.04 0.20 0.16

Earlier 2001 RMS Model Results

Parks Creek −0.96 2.00 1.48
Louie Road −0.09 2.27 1.90
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Figure 1.  Shasta River and Klamath River watersheds 

The Shasta River originates in the Eddies Mountains of rural northern California and flows across the 

Shasta Valley for approximately 95 km northwestward to the Klamath River, with a catchment area of 

2070 km
2
.  The valley is bounded by the Scott Mountains to the west, Siskiyou Mountains to the north, 

and the Cascade Range to the south and east.  In the rain shadow of Mount Shasta, the valley is a high 

desert environment with hot, dry summers and cool winters.  Mean annual air temperature for 2010 was 

11.3
o
C.  Annual mean precipitation varies considerably with elevation with a minimum of 33 to 38 cm in 

the low elevation areas of the valley (Ward and Eaves, 2008).  The diverse geology of the area influences 

the region’s complex hydrology.  Volcanic deposits make up much of the valley floor’s surficial deposits 

and most prolific groundwater aquifers (Ward and Eaves, 2008).  Mount Shasta, an active Cascade 

volcano, contributes recharge to a highly productive aquifer characterized by preferential flow paths 

through basalt flows.  Volcanic debris flow material (older than the basalt flows) is the result of a debris 

avalanche from Mount Shasta.  It is composed of a block and matrix facies of volcanic rocks and fine 

sandy ash-rich material, respectively.  Its chaotic deposition leads to a lack of internal structure and low 

permeability and is understood to serve as a boundary impeding groundwater flow from the basalt, 

therefore giving rise to numerous springs along the contact between the formations (Ward and Eaves, 

2008). 

Fig. 1. Shasta River and Klamath River watersheds.
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Fig. 2. (A) Shasta River DTS study area (B) descriptions of river kilometer locations (RMS is
River Modeling System).

10026

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/9999/2013/hessd-10-9999-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/9999/2013/hessd-10-9999-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 9999–10034, 2013

Modeling insights
from distributed

temperature sensing
data

C. R. Buck and S. E. Null

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

7 

 

 

Figure 3. Shasta River mean daily discharge (m
3
s

-1
) at USGS 11517500 gauge near Yreka  

Our study site is approximately 0.8 km of the mainstem Shasta River downstream of Dwinnell Dam and 

upstream of the confluence with Big Springs Creek (Figure 2), RK 54.898-55.699.  This stretch has an 

average slope of 0.0028 m/m.  The course of the river in this area runs along the base of the debris flow 

and averages a width of 11.3 meters.  Basalt outcrops are dispersed along the Shasta River and several 

small groundwater seeps contribute small amounts of cold (~14°C) water.  The flow rate, size, and 

prevalence of these seeps have not been quantified.  Most stream flow in this stretch originates from 

snowmelt runoff and groundwater accretion upstream and small seeps along the course of the mainstem.   

Summertime flows are on the order of 0.71 m
3
s

-1
 or less during the irrigation season.   

The complex spring hydrology and prevalence of coldwater seeps makes better measuring, simulating, 

and characterizing the thermal diversity of the Shasta River a priority.  Previous simulation modeling has 

indicated that restoration could enhance coldwater habitat in this river (Null et al., 2010).  While it is 

generally known that coldwater springs and seeps exist in this system and that they play a role in 

maintaining a stable thermal regime, it is not well understood how exactly they influence stream 

temperatures or the role they play for thermal refugia.  High resolution temperature monitoring in the 

Shasta River can help to fill these information gaps and also provide better input data for calibrating 

stream temperature models. 

3. Methods  

3.1. Measurements 

A 4 channel Sensornet Oryx DTS was deployed to measure stream temperatures.  DTS systems send a 

laser light down an optical fiber and measure the Raman backscatter, whose intensity is related to the 

temperature of the optical fiber (Selker et al., 2006a;Tyler et al., 2009).  The DTS data logger is enclosed 
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Fig. 3. Shasta River mean daily discharge (m3 s−1) at USGS 11 517 500 gauge near Yreka.
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Figure 4. Modeled and measured river temperature for node 4 with modeled temperature largely overlapping 
measured temperature except at the peaks and the troughs 

4.3. Measured temperature results 

The DTS data show local thermal variability that was not evident from temperature simulation or from 

previous stream temperature measurements using thermistors located tens of kilometers apart.  PCO and 

the two measured cold water seeps contribute water noticeably warmer and cooler, respectively, than the 

mainstem temperature (Figure 5).  The measured temperature range, calculated as the difference 

between maximum and minimum temperature for each meter along the cable over the period of record,  
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Fig. 4. Modeled and measured river temperature for node 4 with modeled temperature largely
overlapping measured temperature except at the peaks and the troughs.
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Figure 5. a) Longitudinal measured and modeled mean temperature and temperature range for measured 
period of record. b) Mean daily temperature indicated by color ramp at meter increments along DTS cable for 

period of record. 
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for measured period of record. (B) Mean daily temperature indicated by color ramp at meter
increments along DTS cable for period of record.
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Figure 6. Measured mean weekly maximum and minimum stream temperatures at each location for the 
hottest and coolest week 

4.4. Daily thermal variability  

Stream temperatures are driven by both source temperatures and response to atmospheric conditions.  

Thus both modeled and measured daily maxima and minima were influenced by atmospheric conditions.  

However, modeled stream temperatures were less variable than measured DTS temperatures (Figure 7).  

The measurement period from mid-August to the first week in October had a combination of hot and 

milder days with maximum daily air temperature ranging from 15.4 to 36.9
o
C (Figure 8).  DTS daily 

maximum river temperatures were generally warmer than modeled peak temperatures.  Likewise, DTS 

daily minima were cooler than modeled daily minimum temperature.  Therefore, not quite enough heating 

occurs during the day and not quite enough cooling at night in the model for most locations.  This leads to 

lower thermal variability of modeled compared to measured temperatures for all nodes upstream of PCO.  

The average difference between modeled and measured daily thermal variability for nodes 1 to 9 is 

between 0.10-0.63
o
C for 22 August thru 9 October. 
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Fig. 6. Measured mean weekly maximum and minimum stream temperatures at each location
for the hottest and coolest week.
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Figure 7. Daily thermal variability of stream temperature (daily max-min) from DTS measured and modeled 

results for the week of 22 August 

 

Figure 8. Measured maximum daily air and water temperature for model period 
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Fig. 7. Daily thermal variability of stream temperature (daily max–min) from DTS measured and
modeled results for the week of 22 August.
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10032

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/9999/2013/hessd-10-9999-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/9999/2013/hessd-10-9999-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 9999–10034, 2013

Modeling insights
from distributed

temperature sensing
data

C. R. Buck and S. E. Null

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

19 

 

 

Figure 9. Maximum and minimum modeled and measured temperatures in mixing zone of Parks Creek 
Overflow and mainstem Shasta River (node 9) 

4.5. Longitudinal rate of heating 

Generally, river temperatures warm in the downstream direction when the atmosphere is warmer than 

water temperatures (summer and early autumn).  Examining longitudinal heating shows how stream 

temperatures change as water moves downstream, and is a function of source inflows and temperatures, 

travel time, and atmospheric conditions.  This is important for managing temperature for aquatic species 

because it identifies where heating occurs most rapidly and can highlight those areas for restoration (e.g., 

by planting riparian vegetation) or other management efforts to preserve cooler, upstream temperatures.  

Longitudinal rate of heating is calculated for DTS as the average of measured temperatures near node 8 

minus the average temperatures near node 1 normalized by the distance between them (386 m).  The 

same is done for RMS results for node 1 and 8.  This stretch of river does not have known inflows 

affecting mainstem temperatures.    

We focus on the rate of longitudinal heating of water temperatures between nodes 1 and 8 on 25-31 

August; these six days span a period of higher to lower air (and corresponding water) temperatures and 

have a wide range in maximum daily solar radiation.  Figure 10 shows the rate of longitudinal heating 

from DTS measured temperatures and RMS modeled temperatures with solar radiation (Figure 10A) and 

air temperature (Figure 10B).  Modeled temperatures are driven primarily by solar radiation, following 

current understanding of solar radiation as a major factor influencing both air and water temperatures 

(Johnson, 2003) and a major driver of heat energy flux (Caissie, 2006).  Measured peak heating rates lag 
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Fig. 9. Maximum and minimum modeled and measured temperatures in mixing zone of Parks
Creek Overflow and mainstem Shasta River (node 9).
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Figure 10. a) Hourly downstream rate of longitudinal heating (node 8 – node 1) with hourly solar radiation. b) 

Hourly downstream rate of longitudinal heating (node 8 – node 1) with hourly air temperature 

5. Limitations 

Modeling provides the opportunity to explore hydrological processes as well as management alternatives, 

yet any modeling effort has limitations.  Necessary simplification of physical processes and river geometry 

are inherent limitations to modeling river temperature.  These have been described in greater detail for 

the Shasta River model elsewhere (Null, 2008).  For this study, an additional limitation is that upstream 

boundary condition data for the mainstem and Parks Creek Overflow (PCO) tributary were unavailable.  

Inability to develop a rating curve for mainstem flow due to excessive macrophyte growth and limited flow 
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Figure 10. a) Hourly downstream rate of longitudinal heating (node 8 – node 1) with hourly solar radiation. b) 

Hourly downstream rate of longitudinal heating (node 8 – node 1) with hourly air temperature 

5. Limitations 

Modeling provides the opportunity to explore hydrological processes as well as management alternatives, 

yet any modeling effort has limitations.  Necessary simplification of physical processes and river geometry 

are inherent limitations to modeling river temperature.  These have been described in greater detail for 

the Shasta River model elsewhere (Null, 2008).  For this study, an additional limitation is that upstream 

boundary condition data for the mainstem and Parks Creek Overflow (PCO) tributary were unavailable.  
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Fig. 10. (A) Hourly downstream rate of longitudinal heating (node 8 – node 1) with hourly solar
radiation. (B) Hourly downstream rate of longitudinal heating (node 8 – node 1) with hourly air
temperature.
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