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Abstract

This study describes the emulation of an Ensemble Kalman Filter (EnKF) algorithm on
a 1-D flood wave propagation model. This model is forced at the upstream boundary
with a random variable with gaussian statistics and a correlation function in time with
gaussian shape. This allows for, in the case without assimilation, the analytical study5

of the covariance functions of the propagated signal anomaly. This study is validated
numerically with an ensemble method. In the case with assimilation with one observa-
tion point, where synthetical observations are generated by adding an error to a true
state, the dynamic of the background error covariance functions is not straightforward
and a numerical approach using an EnKF algorithm is prefered. First, those numeri-10

cal experiments show that both background error variance and correlation length scale
are reduced at the observation point. This reduction of variance and correlation length
scale is propagated downstream by the dynamics of the model. Then, it is shown that
the application of a Best Linear Unbiased Estimator (BLUE) algorithm using the back-
ground error covariance matrix converged from the EnKF algorithm, provides the same15

results as the EnKF but with a cheaper computational cost, thus allowing for the use of
data assimilation in the context of real time flood forecasting. Moreover it was demon-
strated that the reduction of background error correlation length scale and variance at
the observation point depends on the error observation statistics. This feature is quan-
tified by abacus built from linear regressions over a limited set of EnKF experiments.20

These abacus that describe the background error variance and the correlation length
scale in the neighboring of the observation point combined with analytical expressions
that describe the background error variance and the correlation length scale away from
the observation point provide parametrized models for the variance and the correla-
tion length scale. Using this parametrized variance and correlation length scale with25

a diffusion operator makes it possible to model the converged background error co-
variance matrix from the EnKF without actually integrating the EnKF algorithm. This
method was finally applied to a case with two different observation point with different
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error statistics. It was shown that the results of this emulated EnKF (EEnKF) in terms
of background error variance, correlation length scale and analyzed water level is close
to those of the EnKF but with a significantly reduced computational cost.

1 Introduction

With flood frequency likely to increase as a result of altered precipitation patterns trig-5

gered by climate change (Drogue et al., 2004) there is a growing need for improved
flood modeling. While significant advances have been made in recent years in hy-
draulic data assimilation (DA) for water level and discharge prediction (Schumann et al.,
2009; Biancamaria et al., 2011), as well as for parameters correction (Pappenberger
et al., 2005; Durand et al., 2010), using insitu as well as remote sensing data (An-10

dreadis et al., 2007; Neal et al., 2009) they are yet to be fully taken advantage of
in the operational forecast of flood and inondation areas. Recent studies shown the
benefit hydrology and hydraulics can draw from the progress of DA approaches using
either variationnal inverse problem (Valstar et al., 2004), particle filtering (Matgen et al.,
2010; Giustarini et al., 2011), Extended Kalman Filter (Thirel et al., 2010), Ensemble15

Kalman filter for state updating (Moradkhani et al., 2005b; Weerts et al., 2006), or for
dual state-parameter estimation (Moradkhani et al., 2005a; Hendricks and Kinzelbach,
2008). In the field of hydraulic, amongst the numerous research studies in DA that aims
at overcoming the limitations of the hydraulics models, only a few are formulated in an
operational setting and demonstrate the peformance gained from DA (Madsen and20

Skotner, 2005; Malaterre et al., 2010; Weerts et al., 2010; Jean-Baptiste et al., 2011;
Ricci et al., 2011).

For most DA algorithms, the description of the background error covariance matrix
is essential but fastidious. Indeed the background error covariance matrix plays a key-
role in DA as this matrix spreads the information brought by the observations over the25

domain and between the state variables. These covariances must be modeled as ap-
proximations of the true covariances of backgound errors. In sequential DA algorithms
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such as the Kalman Filter (KF) algorithm this matrix is propagated by the dynamic of
the model and is updated each time an observation is available (Bouttier, 1993, 1994),
namely for each cycle of analysis. The KF algorithm decomposes in two steps. A first
step where the state vector and the analysis error covariance matrix are updated using
information from the observations. In the second step, the analyzed state vector and5

the analysis error covariance matrix are propagated from the current assimilation cycle
to the next to respectively describe the new background state vector and the new back-
ground error covariance matrix. This last step requires the computation of the tangent
linear of the dynamical model and computation of the matrix products. As stochastic
methods (Evensen, 2009; Moradkhani et al., 2004, 2005b) offer an alternative method10

to these issues, they require a large number of model integrations and should often be
complemented with cost reduction methods such as localization (Tippett et al., 2003;
Szunyogh et al., 2008). For large dimension problem and also when the computation-
nal time is an issue (for operational purpose for instance), the explicit formulation and
propagation of the covariances is not possible and the covariance matrix should be de-15

scribed using a model. This is done for instance by parametrizing the covariances using
smoothing functions and balance relationships (Daley, 1991; Weaver et al., 2005) that
are formulated with a limited number of parameters such as correlation length scales
and standard deviations (Weaver and Courtier, 2001; Pannekoucke et al., 2008a). In
the framework of 1-D hydraulics modeling, Madsen et al. (2005) proposed an invariant20

formulation of the KF using a panel of simple covariance functions at the observation
point.

In this paper, a parametrization for the background error covariance matrix in a se-
quential filter is proposed as a reduced cost alternative of the EnKF in order to allow
for the use of DA in the context of operational flood forecasting and the form of the25

parametrization is fully justified. The first step of the study stands in the implementa-
tion of an EnKF from which the background error covariance model parametrization is
derived and validated. It was shown that the parametrized filter successfully emulates
the EnKF at a much reduced cost and that the parametrization can be extended for
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a different observation network. The study is carried out on a simplified 1-D diffusive
flood wave propagation model that approximates the Saint-Venant equations usually
derived in 1-D and 2-D hydraulic models used for flood forecasting. The uncertainty
in the model are supposed to be due to uncertainties in the upstream forcing that are
not easy to take into account in the formulation of the KF algorithm which is why an5

ensemble method was favored.
It was first shown that without assimilation, the evolution of the water level anomaly

(WLA) covariances, initially prescribed as gaussian, can be described analytically and
validated with an ensemble approach via the computation of the covariance matrix Be.
When the diffusion is small, the covariances remain gaussian with an increasing corre-10

lation length scale and decreasing variance as the signal propagates. Then DA experi-
ments were carried out in the framework of Observing System Experiment (OSE) with
a steady observation network. It was shown that an initial correlation function of gaus-
sian shape turns into an anisotropic function at the observation point, with a shorter
correlation length scale downstream of the observation point than upstream (which15

is one of the functions proposed in Madsen et al., 2005), and that the error variance
of the state is significantly reduced downstream of the observation point. The result-
ing converged matrix BEnKF can be used as an invariant background error covariance
matrix with the deterministic DA algorithm BLUE to emulate the EnKF (EEnKF) with
a significantly reduced computational cost. A parametrized model for background er-20

ror correlation length scale Lp(x) and variance σ2(x) in BEnKF was finally established
over the whole domain. Along with a diffusion operator (Pannekoucke and Massart,
2008b; Mirouze and Weaver, 2010; Weaver and Mirouze, 2012), this model allows to
emulate the EnKF for observing networks where the number of observations and the
observation error statistics vary.25

The outline of the paper is as follows: Sect. 2 describes the diffusive flood wave
propagation model. It also provides theoretical proof for the generation of a signal with
a Gaussian spatial covariance function and for the evolution of the correlation func-
tion and length scale without assimilation. The numerical validation, with an ensemble
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approach, for these theoretical results is presented as well. A brief description of the
ensemble based DA algorithms used in the paper and of the diffusion operator are
given in Sect. 3. In Sect. 4 the results of the EnKF and EEnKF algorithms regarding
the evolution of water level and its error statistics are outlined. The parametrization
of the reduction of the background error correlation length scale and variance at the5

observation point as a function of the observation and background error statistics is
also presented and used when the observing network is modified. Some conclusive
remarks and perspectives are given in Sect. 5.

2 Dynamic of the flood wave propagation model

2.1 The flood wave propagation model10

2.1.1 Equation

The shallow-water equations can be approximated by the diffusive flood wave propa-
gation equation when the river slope is important:

∂h
∂t

+c
∂h
∂x

= κ
∂2h
∂x2

, (1)

where h is the Water Level Anomaly (WLA), namely a perturbation to the equilibrium15

state (hm,Um) such that Um = Ks(sinγ)1/2h2/3
m , with Ks the Strickler coefficient. Equa-

tion (1) is a classical advection-diffusion equation where c = 5Um
3 is the advection speed

and κ = Umhm
2tanγ is the diffusion coefficient, with a constant slope γ on a 1-D domain

defined for x ∈ [0,L], with L = 200 km, discretised in N = 200 points. An open bound-
ary condition is imposed downstream with ∂h

∂t (L,t)+c∂h
∂x (L,t) = 0 and the upstream20

boundary condition hup is described in Sect. 2.1.2.
A fourth order Runge–Kutta (RK4) scheme was used in place of an Euler first order

temporal scheme allowing for a proper diffusion in the numerical resolution of Eq. (1).
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The RK4 scheme lies on four evaluations of f and reads:

hn+1 = hn +
∆t
6

(K1 +2K2 +2K3 +K4)+O(∆t5) (2)

where: K1 = f (tn,hn), K2 = f
(
tn +

∆t
2 ,hn +

∆t
2 K1
)
, K3 = f

(
tn +

∆t
2 ,hn +

∆t
2 K2
)

and K4 =
f (tn +∆t,hn +∆tK3). Still, it should be noted that for high frequency signals the RK4
scheme can also lead to spurious dispersion thus implying a lower limit for the choice5

of the initial correlation length (this limit was estimated numerically). This effect is small
compared to an explicit Euler scheme (see Appendix).

2.1.2 The upstream forcing

The upstream boundary condition is imposed by h(0,t) = hup(t), where hup is charac-
teristic of a flow up to a multiplicative constant. Here hup is modeled as a stationnary10

Gaussian random process characterised by a temporal auto-covariance function in
time ρt(δt) =

〈
hup(t)h∗

up(t+δt)
〉

that has a gaussian shape of correlation time scale

τ, ρt(δt) = q2
me

− δt2

2τ2 . The Gaussian hypothesis on the random process hup implies that
it can be fully described by the first and second order moments of its distribution and
the Kalman filter equations can be used. This forcing translates into a WLA signal with15

a spatial covariance function that has a gaussian shape as shown in Sect. 2.2.1. This
choice was made in order to prescribe a known covariance function for the WLA signal
and study how it is evolved by the flood wave propagation model.

The construction of the upstream forcing requires the formulation of hup(t) using
Fourier transform, hup(t) can be written as a sum of harmonic signals20

hup(t) =
∫
R

hup,ωe
−iωt dω. (3)

The identification of the hup,ω coefficients relies on the knowledge of the covariance
function ρt(δt). Due to the stationnarity of the random process, the complex amplitudes
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Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

hup,ω are uncorrelated so that 〈hup,ωh
∗
up,ω′〉 = ρωδ(ω−ω′) where δ is the Dirac distri-

bution and where the energy spectrum ρω = τ√
2π
q2
me

−ω2τ2

2 is the Fourier transform of

ρt(δt) =
∫
R

ρωe
−iωδt dω (4)

from the Wiener–Khintchine theorem.5

Since the random process is Gaussian, hup,ω in Eq. (3) can be written as

hup,ω = ζωlω (5)

where ζω is a complex gaussian random variable whose module has zero mean and
standard deviation 1 and ζω = ζ ∗−ω and the lω are complex number of arbitrary phases.
Using the definition of the correlation function in time of hup one can show that10

ρt(δt) =
∫
R

|lω|2e−iωδt dω. (6)

By identification of the two expressions of ρt in Eqs. (4) and (6) it comes that | lω |=√
ρω. Therefore from a numerical point of view the upstream forcing hup can be built as

the inverse Fourier transform of hup,ω = ζωlω.

2.2 Study of the covariances dynamic15

Given an upstream forcing with a known temporal covariance function for the propaga-
tion model, the description of the WLA covariance function is first described analytically
in Sect. 2.2.1 and corroborated with a numerical ensemble approach in Sect. 2.2.2
when no data are assimilated. The study of the covariance dynamics when data
assimilation is applied is only studied with a numerical approach in Sect. 3 since no20

analytical solution is available.
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Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

2.2.1 Analytical study of the covariances dynamic

Knowing the characteristics of the temporal covariance of the boundary condition flow
hup(t), the spatial covariance of the WLA state can be derived. Given the linearity of the
problem, the solution h(x,t) can be formulated as the superposition of modal solutions.
Assuming that the forcing is a sinusoidal function hup(t) = qωe

−iωt, a modal solution for5

Eq. (1) is of the form

h(x,t) = qωe
−iωthω(x) (7)

where qω is the magnitude of the mode that in the particular case of the upstream
forcing can be identified to ζω | lω | in Eq. (5). For any forcing hup(t), the general solution
reads10

h(x,t) =
∫
R

qωe
−iωthω(x)dω. (8)

In the case of advection only (κ = 0), the solution of the form given in Eq. (7) is
hω(x) = eiω x

c . Thus the general solution reads

h(x,t) =
∫
R

qωe
−iωteiω x

c dω (9)

of which the spatial covariance function ρ is a gaussian, defined as:15

ρ(x,x+δx) = 〈h(x,t)h∗(x+δx,t)〉

=
∫
R

| qω |2 eiω δx
c dω = ρt

(
δx
c

)
. (10)

In summary, in the case of advection only, a forcing signal with a gaussian temporal
covariance function translates into a WLA signal with a gaussian spatial covariance20

function of constant length scale L0 = cτ and constant variance σ2
0 = q2

ω.
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In the case of advection and small diffusion, which reads κ � cx, a straightforward
expansion leads to,

hω(x) = e

(
c

2κ−
√

c2−4iωκ
2κ

)
x
≈ eiω x

c−
ω2κ
c3 x

(11)

and a more elaborated asymptotic analysis shows that ρ can locally be approximated
by5

ρ(x,x+δx)≈
∫
R

q2
m√
2π

Lp(0)e−
ω2L2

p(x)

2 e−iωδx dω = q2
m
Lp(0)

Lp(x)
e
− δx2

2Lp(x)2 , (12)

that is a locally Gaussian covariance function of correlation length scale:

Lp(x) =

√
L2

0 +4κ
x
c

(13)

and variance:

σ2(x) = σ2(0)
Lp(0)

Lp(x)
. (14)10

In summary, in the case of advection and small diffusion a forcing signal with a gaus-
sian temporal covariance function translates into a WLA signal with a spatial covariance
function that can be approximated by a gaussian of length scale Lp(x).

2.2.2 Validation with an ensemble approach

These theoretical results were validated computing the covariance matrix Be of an15

ensemble of Ne WLA states xk = (h1,k , · · · ,hN,k) on the 1-D domain [0,L], generated
with different forcings hup,k(t) with k ∈ [1,Ne] that follows the statistics described in
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Sect. 2.1.2. The correlation length scale Lp is computed by the gaussian based ap-
proximation (Pannekoucke et al., 2008a):

Lp(x) =
δx√

2(1−ρ(x,x+δx))
(15)

where ρ(x,x+δx) is the correlation estimated from data or analytical formula such as
Eq. (12).5

Figure 1a displays the covariance function at 3 different points of the 1-D domain
for the advection only case (dashed lines) and for the advection–diffusion case (solid
lines), for Ne = 10000 (so that the sampling noise is less than 10−2 m2), σ2(0) = 1m2

and τ = 5×103 s. In the first case, the initially gaussian function is advected. The
characteristics of the covariance function remain unchanged as illustrated in Fig. 1b10

where Lp, estimated from Eq. (15) is constant (dashed thick line), and in agreement
with the theoretical value L0 (dashed thin line). When diffusion occurs, the covariance
function of the WLA state is diffused as shown in Fig.1a and Lp increases with x (solid
thick line in Fig. 1b), still in agreement with the theoretical value from Eq. (13) (solid thin
line in Fig. 1b). The WLA variance represents the maximum amplitude of the covari-15

ance functions in Fig. 1a. The initial value prescribed at 1 m2 remains constant for the
advective case (dashed lines) and decreases with x for the advective-diffusive (solid
lines) case in agreement with the theoretical results in Eq. (14).

3 Data assimilation algorithms

The classical equations for EnKF are presented in Sect. 3.1 while the EEnKF is pre-20

sented in Sect. 3.2. For these algorithms, the background error covariance matrix is
characterized by the correlation length scale Lp(x) and the variance σ2(x) for which
a parametrized model is presented is Sect. 4.3. Given these information only, the diffu-
sion operator described in Sect. 3.3 allows to fully describe a covariance matrix to be
used in the EEnKF for various observing networks.25
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3.1 The Ensemble Kalman Filter algorithm

The EnKF algorithm (Evensen, 2009) was implemented on Eq. (1), using an OSE (Ob-
serving System Experiment) framework. A reference run was integrated using a given
forcing htrue

up (t), to simulate the true WLA htrue(x,t). The observation

hobs(xobs,t) = htrue(xobs,t)+εo(t) (16)5

was then calculated in the middle of the 1-D domain xobs =
L
2 where εo(t) is a Gaussian

noise defined by its standard deviation σo (σo = 0.2354m in the following), thus defining
the observation yo. The background trajectories hb

k(x,t) for the ensemble approach
were integrated using a perturbed set of forcing hup,k(t) with k ∈ [1,Ne], defining the

background vectors xb,k(t) for the DA analysis at time t. The observation frequency is10

set to 10 model time steps. In the following DA is applied over a cycle between two
observation times t = i and t = i +1 (assimilation cycle i +1).

As illustrated on Fig. 2 for the assimilation cycle i +1, the ensemble of previously
analyzed states xa,k

i are propagated by the diffusive flood wave model Mi ,i+1 from the

observation time i to i +1 to provide the background states xb,k
i+1 =Mi ,i+1(xa,k

i ) over15

which the background error covariance matrix BEnKF,i+1 is computed.

BEnKF,i+1 =
1
Ne

Ne∑
k=1

(
xb,k
i+1 − x̄i+1

)(
xb,k
i+1 − x̄i+1

)T
(17)

where x̄i+1 =
1
Ne

∑Ne

k=1 xb,k
i+1 and T stands for the transposition operator.

The assimilation step at i +1 consists in assimilating a perturbed observation yo
i+1 +

εo,k
i+1 (Burgers et al., 1998) to correct the background vector xb,k

i+1, using the Kalman20

Filter gain matrix KEnKF,i+1:
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xa,k
i+1 = xb,k

i+1 +KEnKF,i+1

(
yo
i+1 +εo,k

i+1 −Hxb,k
i+1

)
with (18)

KEnKF,i+1 = BEnKF,i+1HT
(

HBEnKF,i+1HT +R
)−1

. (19)

Assuming that the observation network remains the same, after 1000 assimilation cy-
cles BEnKF,i converges to a steady matrix denoted BEnKF (its associated correlation5

matrix is CEnKF, CEnKF is computed with ΣBEnKFΣ
T where Σ is the diagonal matrix

with the inverse of the standard deviation of BEnKF on its diagonal). (Li and Xiu, 2008)
showed that ensemble errors due to the Monte Carlo sampling in EnKF can be domi-
nant compared to other errors (numerical or model errors) and that in order to estimate
converged statistics in BEnKF,i+1 a large number of members Ne is required.10

3.2 Emulation of the EnKF algorithm

The BLUE (Best Linear Unbiased Estimator, Bouttier and Courtier, 1999) algorithm
can be viewed as a simplification of the Kalman Filter in which the background error
covariance matrix is not propagated over the cycles. The analysis equation Eq. (18) is
applied sequentially with a constant matrix BBLUE:15

KBLUE = BBLUEHT
(

HBBLUEHT +R
)−1

. (20)

If BBLUE = Be (where Be is the covariance matrix computed without assimilation in
Sect. 2.2.2), one misses the fact that the background error covariance matrix should be
impacted by the previous assimilation steps. When the BLUE algorithm is applied with
BBLUE = BEnKF, the algorithm is called the Emulated EnKF and is denoted by EEnKF.20

Once BEnKF is computed, this algorithm only requires the integration of a single mem-
ber (with a single upstream forcing hup) and its computational cost is thus significantly
lower than the EnKF.
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Still, the BLUE algorithm can of course be applied to an ensemble of forcings hup,k
so that a comparison of the correlation length scale and variance of the EnKF and this
ensemble of BLUE algorithms can be made, as pictured in Fig. 2. In the following, the
ensemble of BLUE analysis using BBLUE = Be or BBLUE = BEnKF are called respectively
EnBLUEBe

and EnBLUEBEnKF
. The correlation length scale and variance of the covari-5

ance matrix computed over the members for both algorithm are compared to those of
BEnKF in Sect. 4.

3.3 The diffusion operator

The columns and lines of the matrix BEnKF contain the discretization of the background
error covariance functions for each grid point of the domain. In this section we present10

how the covariance functions in BEnKF can be fully described simply using the diag-
nosed correlation length scale and variance when the EnKF is converged. This can
be done using the diffusion operator (Weaver and Courtier, 2001) that comes down
to formulating the matrix, vector product Bx instead of formulating the matrix B. The
diffusion operator is a mathematical tool that allows to model covariances and correla-15

tions for DA algorithm. It is widely used in meteorology and oceanography, where the
dimension of the control vector is large and the covariance matrix should be formu-
lated as an operator (applied to a vector) rather than as a matrix. The solution of a 1-D
pseudo-diffusion equation on an infinite domain for a pseudo-time T reads

η(x,T ) =
1

√
4πκ̃T

+∞∫
−∞

e− (x−x′)2
4κ̃T η0(x′)dx′ (21)20

where κ̃ is the constant pseudo-diffusion coefficient, η0 is the initial condition and η

vanishes as x →±∞. Equation (21) is the convolution product of g(x) = 1√
4πκ̃T

e− x2

4κ̃T

and η0(x). Since g is positive definite, Eq. (21) describes a covariance operator of cor-
relation length scale Lp =

√
2κ̃T applied to η0. The corresponding correlation operator
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is obtained with a normalization factor λ =
√

4πκ̃T . The multiplication of the desired
variance σ2 finally describes the expected covariance operator. This result can be

extended to heterogeneous diffusion tensor κ̃(x) =
L2
p(x)
2T (Pannekoucke and Massart,

2008b). In the following, Lp(x) and σ2(x) are specified with the analytical equations
(Eqs. 13 and 14) away from the observation points and with the abacus from EnKF5

experiments (presented in Sect. 4) at the observation point. From a numerical point
of view, the pseudo-diffusion model is applied at each grid point to a Dirac function.
The result is then normalized and multiplied by the background error variance to pro-
vide the background error covariance function at the grid point and thus the complete
background error covariance matrix with correlation length scale Lp(x) and variance10

σ2(x).

4 Results

4.1 Comparison of EnKF and EEnKF results

The EnKF is applied for the observing network described in Sect. 3.1 with the initial
background error covariance matrix Be computed over the integrated members without15

DA (Sect. 2.2.2) – the associated correlation function is noted Ce. Figure 3a illustrates
how the initially isotropic correlation function in Ce (dashed line) at the observation point
(xobs = 100) is modified by the analysis and propagation steps of the EnKF algorithm,
at the end of the assimilation procedure. Considering a steady observation network, the
shape of the correlation function in CEnKF (solid line) converges towards an anisotropic20

function with a shorter correlation length scale downstream of the observation point
than upstream. The correlation between the observation point and its neighbors is
reduced since information at the observation point was introduced at this location by
the analysis procedure through the observation at the previous analysis cycles.
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The correlation length scale Lp and variance σ2 are computed for the EnKF as well
as for the ensemble of BLUE analysis using either the initial covariance matrix Be
(EnBLUEBe

algorithm) or BEnKF (EnBLUEBEnKF
algorithm). Equation (15) is used to es-

timate the correlation length scale Lp at each point away from the observation point.
Figure 4a shows that the evolution of the background error correlation length scale for5

the EnKF (thick solid line) follows the theory (thin solid line) upstream of the observation
point. At the observation point, where a discontinuity occurs, the upstream and down-
stream correlation length scales (respectively L−

p and L+
p) differ. For the EnKF algorithm

(thick solid line), the reduction of the correlation length scale spreads over the entire
domain downstream of the observation point. This result is well reproduced by the10

EnBLUEBEnKF
(thick dashed line that overlaps the thick solid one) algorithm, whereas

for EnBLUEBe
(thin dashed line), the reduction is local. The upstream correlation length

scale at the observation point L−
p is approximated by Eq. (13) with x = 100km, meaning

that the assimilation has no impact on the correlation function upstream of the obser-
vation point, which is consistent with the flood wave approximation in the propagation15

model. The downstream correlation length scale at the observation point L+
p should be

extrapolated from the ensemble based estimate function for x > 100km that is of the
form given in Eq. (13). L+

p can thus be used in place of L0 in Eq. (13) to derive the
analytical function in Eq. (24) for the rest of the domain.

The variances of the background error covariance matrix are presented in Fig. 4b.20

The standard deviations at the observation point before assimilation and after assim-
ilation are respectively σ− =

√
Be(xobs,xobs) and σ+ =

√
BEnKF(xobs,xobs). The error

variance is significantly reduced at the observation point and beyond with the EnKF
(thick solid line), compared to the initially prescribed variances (thin solid line). How-
ever, when B is kept invariant and isotropic (EnBLUEBe

), the reduction of the vari-25

ance is only located in the close neighboring of the observation point (thin dashed
line); the invariant matrix is not optimal. In this case, the merits of using a DA al-
gorithm that evolves the background error statistics with the dynamics are demon-
strated; the shorten length scale of BEnKF prevents from overcorrecting downstream
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of the observation once information from the observation was taken into account. The
EnBLUEBEnKF

algorithm shows the same results (thick dashed line that overlaps the
thick solid line) as the EnKF.

Since the analysis for the different members in the EnBLUEBEnKF
are independent,

these results demonstrate that the computation of the EnKF converged background5

covariance matrix can be achieved at first and then used with the EEnKF with a sin-
gle analysis algorithm such as BLUE with a much reduced computational cost, thus
emulating the EnKF. This result is of particular interest in the framework of real-time
flood forecasting where a single analysis is usually carried out instead of an ensemble
of analysis (what we are looking for is the forecasted WLA state and not its covariance10

matrix). Assuming that an EnKF analysis has previously been carried out, the real-time
data assimilation procedure can be achieved with a non expensive EEnKF algorithm,
using BEnKF as the invariant background error covariance matrix for a single EEnKF
analysis. This approach is illustrated in Fig. 5 where the improvement of the WLA for
a single BLUE analysis (with B = Be) and for a single EEnKF is shown: the analyzed15

state ha for the EEnKF (thick dashed line) is significantly closer to the true state htrue

(thin solid line) than the analyzed state for the BLUE using Be(thin dashed line).

4.2 Influence of the observation error standard deviation on the correlation
length scale and the variance

Both the reduction of the background error variance and the correlation length scale20

depend on the ratio r = σ−

σo
. In Sect. 4.1 σo has been chosen so that r = 3. In the

following σ− is assumed to be fixed and σo varies to represent different observation
error statistics so that r ranges from 0.5 to 4. Figure 6 shows the diagnosed correla-
tion length scale (a), correlation functions at xobs (b) and variance over the domain (c)
with the EnKF for different values of the ratio r . When r = 0.5, the observation error25

standard deviation is large (the observations are not reliable), the correlation function

at the observation point is close to the initial isotropic one
(L+

p

L−
p
' 1

2

)
, the reduction of
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variance is small, hence the analyzed WLA remains close to the background. On the
contrary when r = 4 the observation error standard deviation is small (the observations
are reliable), the correlation function at the observation point evolves into an anisotropic

function
(L+

p

L−
p
� 1
)
, the reduction of variance at the observation point and downstream

of that point is significant, hence the assimilation provides good results and the ana-5

lyzed WLA is brought closer to the true state. Figure 6a and b show that when the ob-

servation error decreases (r increases), the ratio
L+
p

L−
p

decreases (the anisotropy of the

correlation function at the observation point increases). Similarly, Fig. 6c shows that
when the observation error decreases (r increases), the ratio σ+

σ− decreases. It should
be noted that the data assimilation algorithm leads to a reduction of the variance in-10

side the interval Iε = [xobs −ε−;xobs +ε+] (where ε− = 2.L−
p and ε+ = 2× max

r∈[0.5;4]
{Lp+}).

In order to describe the variance outside this interval downstream of the observation
point with Eq. (14), the variance in xobs +ε+ should be estimated and used in place of

σ2(0). In the following, for x ∈ Iε, the ratio σ+(x)
σ−(x) is defined with σ−(x) =

√
Be(x,x) and

σ+(x) =
√

BEnKF(x,x).15

A set of EnKF experiments was achieved for r ∈ [0.5;4] by 0.5 increments of r . It was

shown that the relation between r and
L+
p

L−
p

at the observation point can be described with

an abacus built from a linear regression in logarithmic scales, represented in dashed
lines on Fig. 7a, while the results of the EnKF are represented with thick solid lines:

ln

(
L+
p

L−
p

)
= α ln(r)+β. (22)20

Similarly, for any x ∈ Iε, the relation between r and σ+(x)
σ−(x) can be described with an

abacus built from a linear regression in logarithmic scales using the same set of EnKF
experiments. The linear regresion is shown in Fig. 7b with a thick dashed line, for
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x = xobs +ε+. In the following, σ−(xobs +ε+) and σ+(xobs +ε+) are respectively noted
σ+
ε and σ−

ε and are represented in Fig. 6c for r = 0.5:

ln

(
σ+
ε

σ−
ε

)
= γ ln(r)+δ. (23)

Abacus in Eqs. (22) and (23) have been established for xobs = 100 but numerical
experiments show that the coefficients α, β, γ and δ do not depend on the position of5

the observation point xobs. These equations allow for the quantification of the impact of
the assimilation and the dynamics on the background correlation length scale and vari-
ance. More importantly, they lead to the parametrization of the correlation length over
the whole domain (see Sect. 4.3) allowing for the modeling of the converged back-
ground error covariance matrix from the EnKF. Using this parametrization, the EnKF10

can be emulated for any observation network described by the number of observa-
tions, their locations and the variance of their respective error (see Sect. 4.4).

4.3 Parametrized model for correlation length scale and variance reduction at
the observation point

This section presents how Eqs. (22)–(25) provide a parametrized model for the back-15

ground error correlation length scale Lp(x) and variance σ2(x), for any observation

error variance σ2
o . These information are used to model the converged background er-

ror covariance matrix from the EnKF using the diffusion operator presented in Sect. 3.3
in order to integrate the EEnKF. While the methodology is applicable for any r ∈ [0.5;4],
illustrations are given here for r = 0.75.20
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Away from the observation point the expression of the correlation length scale Lp(x)
is derived from the analytical expression in Eq. (13):

Lp(x) =

√
L2
p(0)+4κ

x
c

, x ≤ xobs and

Lp(x) =

√
(L+

p)2 +4κ
x−xobs

c
, x > xobs

(24)

where L+
p is the downstream correlation length scale at the observation point computed5

using the abacus from Eq. (22) with L−
p =
√
L2
p(0)+4κ xobs

c . Figure 8a illustrates how
the correlation length scale obtained from the EnKF (thick solid line) compares with the
parametrized one (thick dashed line). It should be noted that here, the EnKF is run for
validation purpose only.

The variance σ2(x) away from the observation point is derived from the analytical10

expression in Eq. (14):

σ2(x) = σ(0)2
Lp(0)√

L2
p(0)+4κ x

c

, x ≤ xobs −ε−

σ2(x) =
(
σ+
ε
)2 Lp(xobs +ε+)√

L2
p(xobs +ε+)+4κ x−(xobs+ε+)

c

, x > xobs +ε+

(25)

where Lp(xobs +ε+) is computed with Eq. (24) and
(
σ+
ε
)2

is the background error vari-
ance at xobs +ε+ computed using the abacus from Eq. (23). In the neighboring of the15

observation, the reduction of variance is computed from the application of the Eq. (23)
for x ∈ Iε. Depending on how many points in Iε are used to derive linear regressions as
shown in Eq. (23), the reduction of variance is more or less finely described. Figure 8b
illustrates how the variance obtained from the EnKF compares with the parametrized
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variance using only 2 points in Iε (thin dashed line) or 25 points (thick dashed line that
almost overlaps the thick solid line). It was shown that when a crude approximation
for the variance in the neighboring of the observation point is used, the results of the
EEnKF are degradated.

4.4 Application to any observation network5

The parametrized model for background error correlation length scale and variance
was validated for DA experiments with a single observation point and various observa-
tion error standard deviations. Here the results are extended to an observing network
with two observation points xobs,1 = 50 and xobs,2 = 150 with respective observation er-

ror variance σ2
o,1 and σ2

o,2. The distance between xobs,1 and xobs,2 is bigger than the10

background error correlation length scale diagnosed previously. In order to estimate
the correlation length scale and variance in the neighboring of xobs,2 and downstream,
the impact of the assimilation at xobs,1 should be taken into account.

The parametrized correlation length scale Lp(x) for this observation network is given
by:15

Lp(x) =

√
L2
p(0)+4κ

x
c

, x ≤ xobs,1

Lp(x) =

√
(Lp+

1 )2 +4κ
x−xobs,1

c
, xobs,1 < x ≤ xobs,2

Lp(x) =

√
(Lp+

2 )2 +4κ
x−xobs,2

c
, x > xobs,2

(26)

where Lp+
1 and Lp+

2 are the downstream correlation length scales at point xobs,1 and
xobs,2 respectively. Lp+

1 and Lp+
2 are computed using Eq. (22) with the upstream cor-

relation length scales Lp−
1 =
√
L2
p(0)+4κ

xobs,1
c and Lp−

2 =
√(

Lp+
1

)2 +4κ
xobs,2−xobs,1

c .20
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The parametrized variance σ2(x) is given by:

σ2(x) = σ(0)2
Lp(0)√

L2
p(0)+4κ x

c

, x ≤ xobs,1 −ε−

σ2(x) = (σ+
ε,1)2

Lp(xobs,1 +ε+)√
L2
p(xobs,1 +ε+)+4κ

x−(xobs,1+ε+)
c

, xobs,1 +ε+ < x ≤ xobs,2 −ε−

σ2(x) = (σ+
ε,2)2

Lp(xobs,2 +ε+)√
L2
p(xobs,2 +ε+)+4κ

x−(xobs,2+ε+)
c

, x > xobs,2 +ε+

(27)

where Lp(xobs,1 +ε+) and Lp(xobs,2 +ε+) are computed using Eq. (26) and where σ+
ε,1

and σ+
ε,2 are computed using Eq. (23) with respectively σ−

ε,1 and σ−
ε,2 described from5

Eq. (14).
Thus the background error correlation length scale and variance are fully param-

eterized as shown in Fig. 9 and are very close to the correlation length scale and
variance diagnosed with the EnKF (here again, run was validation purpose only). The
parametrized Lp(x) and σ2(x) are used with the diffusion operator to model the con-10

verged background error covariance matrix from the EnKF with two observation points,
B̃EnKF. The analyzed WLA for the EEnKF algorithm using the constant B̃EnKF matrix
(only one member to integrate) compares very well with that of the EnKF algorithm
as shown in Fig. 10, for a much reduced computational cost, which is compatible with
real-time flood-forecasting constraint.15

This method can be extended to any observation network building on the
characterization of the correlation length scale and variance reduction that were es-
tablished in Eqs. (22) and (23) in the neighboring of an observation point and the
analytical solutions in Eqs. (13) and (14) away from the observation point.
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5 Summary and conclusions

This study describes the evolution of the background error covariance matrix with an
EnKF algorithm in the framework of OSE, for a steady observation network, meaning
that the observation frequency and locations remain the same through the assimilation
cycles. It was shown that the filter converges to an optimal and invariant matrix, char-5

acterized, at the observation point by an anisotropic correlation function with a shorter
correlation length scale downstream of the observation point and a reduction of the
error variance. As the model is forced at its upstream boundary with a random vari-
able characterized by a gaussian correlation function over time, the background error
correlation length scale and the background error variance away from the observation10

points are described by analytical equations. The correlation length scale and vari-
ance reduction at the observation point are described by abacus as functions of the
observation error variance. The construction of such abacus requires the integration
of a very small set of EnKF experiments and can be used for any observation point.
Thus a parametrization of the background error correlation length scale and variance15

is proposed over the entire simulation domain for any observation network given the
number of observations, their locations and their respective error variance.

The parametrized model was then used to build the invariant matrix using a diffu-
sion operator, which is a convenient tool especially for large dimension problems. This
methods allows to emulate the EnKF at a much reduced computational cost with a de-20

terministic BLUE algorithm where the background error covariance matrix does not
evolve in time. It was shown that the resulting algorithm, denoted by EEnKF (for Emu-
lated EnKF), leads to similar results to the EnKF allowing for the use of DA for real-time
flood forecasting.

A perspective for this work is to study how the background error statistics evolve25

with the full shallow-water equations instead of the flood wave propagation model. This
would give a closer idea of what to expect with an operational hydraulic model such as
MASCARET, MIKE or LISFLOOD. In this context, it is expected that the impact of the
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assimilation would also spread upstream of the observation points thus leading to the
reduction of the background error correlation length scale and variance on both side of
the observing stations. Whether the resulting correlation would be isotropic or not, and
to what extend still need to be investigated.

Appendix5

Impact of an Euler first order temporal scheme on the numerical resolution of
the advection-diffusion equation

Let us consider the advection-diffusion equation:
∂th+c∂xh = κ∂2

xh (x,t) ∈ [0,L]×R+

h(x,0) = h0(x) x > 0

h(0,t) = hup(t) t > 0

∂th+c∂xh = 0 t > 0.

(A1)

Let us denote ∆x = L
N the space step and ∆t the time step. Let us denote also hi

j the10

value of the discrete solution of Eq. (A1) at point (i∆t, j∆x). Using the finite difference
method one can write the following numerical scheme for Eq. (A1):

hi+1
j −hij
∆t +c

hij+1−h
i
j−1

2∆x = κ
hij+1−2hij+h

i
j−1

∆x2 j = 2, . . . ,N −1

h0
j = h0(j∆x) j = 1, . . . ,N

hi
j = q(i∆t) j = 1

hi+1
j −hij
∆t +c

hij−h
i
j−1

∆x = 0 j = N.

(A2)

The Scheme A2 allows for the numerical resolution of the advection-diffusion equa-
tion with an error. Now let us demonstrate why the numerical solution of Eq. (A2) is15

a solution of the Eq. (A5). Using Taylor expansion one can write:
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ui+1
j −ui

j

∆t
= (∂tu)ij +

∆t
2

(∂2
t u)ij +O(∆t2)

ui
j+1 −ui

j−1

2∆x
= (∂xu)ij +

∆x2

6
(∂3

xu)ij +O(∆x3)

ui
j+1 −2ui

j +ui
j−1

∆x2
= (∂2

xu)ij +
∆x2

12
(∂4

xu)ij +O(∆x3).

(A3)

Thereafter to lighten the notations we note u instead of ui
j the value of u at point

(i∆t, j∆x). It comes from Eqs. (A2) and (A3) that u solves the following equation:

∂tu+c∂xu− κ∂2
xu+

∆t
2
∂2
t u+∆x2

(c
6
∂3
xu− κ

12
∂4
xu
)
+O(∆t2,∆x3)︸ ︷︷ ︸

ε

= 0. (A4)5

Using the derivation of the advection-diffusion equation with respect to time one
can write the expession of the temporal derivatives ∂2

t u with respect to the spatial
derivatives: ∂2

t u = c2∂2
xu−2cκ∂3

xu+ κ2∂4
xu that allows for, using (A4), writing:

∂ν
∂t

+c
∂ν
∂x

+

(
c∆x2

6
−cκ∆t

)
︸ ︷︷ ︸

µ

∂3ν
∂x3

=

(
κ − c2∆t

2

)
︸ ︷︷ ︸

κ′

∂2ν
∂x2

−
(

κ2∆t
2

− κ∆x2

12

)
∂4ν
∂x4

+O(∆t2,∆x3).

(A5)

10

Practically, the numerical model solves Eq. (A5) instead of Eq. (A2) inducing
spurious dispersion due to the term µ (particularly for high frequencies) and spurious
diffusion due to the term κ ′ (as neither c nor ∆t is equal to zero, the numerical diffusion
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κ ′ is not equal to the physical diffusion κ). Numerical experiments highlighted that the
numerical model can under or over estimate the diffusion and for κ ′ < 0 the scheme
is unstable because the CFL (Courant–Friedrichs–Lewy) condition is not verified
(Quarteroni et al., 2007).

5
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(a) (b)

Fig. 1. (a) Covariance function from Be for x= 50, 100, 150, (b) Correlation length scale over the
domain. The case of advection only is represented with dashed lines and the case of advection-diffusion
is represented with solid lines. In (b), the results from the theoretical analysis are represented with thin
lines and the results from the numerical analysis are represented with thick lines.
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Fig. 1. (a) Covariance function from Be for x = 50, 100, 150, (b) Correlation length scale over
the domain. The case of advection only is represented with dashed lines and the case of
advection-diffusion is represented with solid lines. In (b), the results from the theoretical analy-
sis are represented with thin lines and the results from the numerical analysis are represented
with thick lines.
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Fig. 2. Ensemble data assimilation algorithms, assimilation cycle i +1.
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Fig. 3. Background error correlation function at the observation point, for the initial correlation matrix
Ce (dashed line) and for CEnKF (solid line) a- on the whole domain, x∈ [0;200] and b- on the domain
x∈ [70;130] with the upstream and downstream correlation length scale, L−p and L+

p respectively.
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Fig. 3. Background error correlation function at the observation point, for the initial correlation matrix
Ce (dashed line) and for CEnKF (solid line) a- on the whole domain, x∈ [0;200] and b- on the domain
x∈ [70;130] with the upstream and downstream correlation length scale, L−p and L+

p respectively.
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(b)

Fig. 3. Background error correlation function at the observation point, for the initial correlation
matrix Ce (dashed line) and for CEnKF (solid line) (a) on the whole domain, x ∈ [0;200] and (b)
on the domain x ∈ [70;130] with the upstream and downstream correlation length scale, L−

p and
L+
p respectively.
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(a) (b)

Fig. 4. a- Background error correlation length scale Lp(x) and b- Variance σ2, in theory without as-
similation (thin solid line), for BEnKF (thick solid line), for EnBLUEBe (thin dashed line) and for
EnBLUEBEnKF (thick dashed line). As BEnKF and EnBLUEBEnKF provide the same results for the
variance and the correlation length scales the corresponding curves overlap.
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Fig. 4. (a) Background error correlation length scale Lp(x) and (b) Variance σ2, in theory without
assimilation (thin solid line), for BEnKF (thick solid line), for EnBLUEBe

(thin dashed line) and for
EnBLUEBEnKF

(thick dashed line). As BEnKF and EnBLUEBEnKF
provide the same results for the

variance and the correlation length scales the corresponding curves overlap.
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Fig. 5. WLA for the EnKF analysis (thick solid line for haEnKF), the single BLUE analysis with
Be (thin dashed line for haBLUE,Be

) and the single EEnKF analysis with BEnKF (thick solid line for
haBLUE,BEnKF

). The observation is denoted by a black dot, the true state htrue by a thin solid line.
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Fig. 5. WLA for the EnKF analysis (thick solid line for ha
EnKF), the single BLUE analysis with

Be (thin dashed line for ha
BLUE,Be

) and the single EEnKF analysis with BEnKF (thick solid line for

ha
BLUE,BEnKF

). The observation is denoted by a black dot, the true state htrue by a thin solid line.
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Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

(a) (b)

(c)

Fig. 6. a- Correlation length scale Lp(x) b- Correlation function at xobs c-Variance σ2 in theory without
assimilation (thin solid line), for r= 0.5 (thin dashed line), for r= 1.75 (thick dashed line) and for r= 4
(thick solid line).
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Fig. 6. (a) Correlation length scale Lp(x). (b) Correlation function at xobs. (c) Variance σ2 in
theory without assimilation (thin solid line), for r = 0.5 (thin dashed line), for r = 1.75 (thick
dashed line) and for r = 4 (thick solid line).
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(a) (b)

Fig. 7. Abacus for (a)
L+

p

L−p
and (b) σ+

ε

σ−ε
as function of the ratio r in solid lines and linear regression in

logarithmic scales in dashed lines.
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Fig. 7. Abacus for (a)
L+
p

L−
p

and (b) σ+
ε

σ−
ε

as function of the ratio r in solid lines and linear regression

in logarithmic scales in dashed lines.
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(a) (b)

Fig. 8. (a) Background error correlation length scale and (b) variance computed with the EnKF (thick
solid lines) and with the parametrized model for r= 0.75, using 25 points in Iε (thick dashed line) or 2
points (thin dashed line) for the description of the variance reduction

.
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Fig. 8. (a) Background error correlation length scale and (b) variance computed with the EnKF
(thick solid lines) and with the parametrized model for r = 0.75, using 25 points in Iε (thick
dashed line) or 2 points (thin dashed line) for the description of the variance reduction.
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(a) (b)

Fig. 9. a- Background error correlation length scale Lp(x) and b- variance σ2(x) for the EnKF (solid
line) and the parametrized model (dashed line).
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Fig. 9. (a) Background error correlation length scale Lp(x) and (b) variance σ2(x) for the EnKF
(solid line) and the parametrized model (dashed line).
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Fig. 10. Analyzed WLA for the EnKF (thick solid line) and the EEnKF (thick dashed line). The true
state is represented by the thin solid line and the observations by the black dots.
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Fig. 10. Analyzed WLA for the EnKF (thick solid line) and the EEnKF (thick dashed line). The
true state is represented by the thin solid line and the observations by the black dots.
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