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Abstract

Streamflow cannot be measured directly and is typically derived with a rating curve
model. Unfortunately, this causes uncertainties in the streamflow data and also influ-
ences the calibration of rainfall-runoff models if they are conditioned on such data. How-
ever, it is currently unknown to what extent these uncertainties propagate to rainfall-5

runoff predictions. This study therefore presents a quantitative approach to rigorously
consider the impact of the rating curve on the prediction uncertainty of water levels. The
uncertainty analysis is performed within a formal Bayesian framework and the contri-
butions of rating curve versus rainfall-runoff model parameters to the total predictive
uncertainty are addressed. A major benefit of the approach is its independence from10

the applied rainfall-runoff model and rating curve. In addition, it only requires already
existing hydrometric data. The approach was successfully tested on a small urbanized
basin in Poland, where a dedicated monitoring campaign was performed in 2011. The
results of our case study indicate that the uncertainty in calibration data derived by the
rating curve method may be of the same relevance as rainfall-runoff model parameters15

themselves. A conceptual limitation of the approach presented is that it is limited to
water level predictions. Nevertheless, regarding flood level predictions, the Bayesian
framework seems very promising because it (i) enables the modeler to incorporate
informal knowledge from easily accessible information and (ii) better assesses the in-
dividual error contributions. Especially the latter is important to improve the predictive20

capability of hydrological models.

1 Introduction

Rational flood hazard management not only requires predictions of peak flows and
associated inundation and water levels, but also information on their uncertainty (Mon-
tanari, 2007; Ramos et al., 2010) because, among other things, flood risk is expected25

to grow further in the future due to social and climate changes (Di Baldassarre and
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Uhlenbrook, 2012). In hydrological flood forecasting, the problem of quantitative as-
sessment and reduction of predictive uncertainties has been widely recognized (Re-
nard et al., 2010; Wagener and Montanari, 2011). However, it is not always clear to
what extent uncertainties in calibration data have an impact on the reliability of flood
predictions (Domeneghetti et al., 2012).5

Typically, calibration data refer to streamflows for rainfall-runoff (RR) models. Typ-
ically, the influence of the uncertainty in streamflow data for RR models on the pre-
dictive uncertainty is hardly assessed quantitatively by hydrologists. One reason for
this is that streamflow is usually not measured directly but must be derived from other,
directly measurable quantities such as a water level and velocity with the help of an-10

other model. Another is that modellers often only work with the derived quantities, such
as streamflow, and not with the raw data. Implicitly, the uncertainty in calibration data
themselves is assumed to be much smaller than that from imperfect rainfall information
and to be therefore negligible (Di Baldassarre and Claps, 2011; Di Baldassarre and
Montanari, 2009). For example, the World Meteorological Organisation (WMO, 2008)15

suggests that streamflow measurement errors of 5 % may be assumed. This, however,
can only be valid when streamflow measurements are of a high quality, e.g. when de-
rived by flow meters with the area-velocity method. This method links streamflows to
a cross sectional area and an average velocity, which is often obtained from manual
velocity measurements on a dense grid for each cross section of interest. It is proba-20

bly the most widely used approach to derive streamflows when those are not directly
measured (Di Baldassarre and Montanari, 2009; WMO, 2008). Unfortunately, the area-
velocity method is impracticable in the field when continuous or frequent measure-
ments are required. The method becomes cost-inefficient and time consuming when
numerous records are required because the grid measurements are labour-intensive.25

Therefore, streamflow is usually computed from water level only as that is simple to
measure and has a small measurement error of 1–2 cm (WMO, 2008). Usually this
water level-streamflow relation is modelled with a rating curve (RC) that is calibrated
for a certain cross section on area-velocity measurements (Le Coz, 2012). The water
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level-streamflow relation could also be represented by a more sophisticated model
such as a numerical hydraulic model (Di Baldassarre and Claps, 2011). Unfortunately,
hydraulic models are less practical than rating curves because they require detailed
data on the river channel properties, which are more often than not unavailable.

RC models, however, should not be considered error-free for several reasons. First,5

the RC is based on streamflow data that are uncertain as they are calculated with
a model (e.g. area-velocity method). Second, the uncertainty of the RC is caused by
parameter uncertainty and structural limitations of the RC. Third, temporary hydrolog-
ical conditions such as a seasonal variation of vegetation within the cross section,
stream bed dynamics, debris, ice jams in winter, unsteady flow conditions and the hys-10

teresis effect add uncertainty to the calculated streamflows (e.g. Di Baldassarre et al.,
2012). Fourth, in most situations the calibration data for rating curves is limited to nor-
mal conditions. However, flood forecasts usually focus on extreme events. This means
that the RC must be extrapolated outside of the observed range (Pappenberger et al.,
2006). Consequently, all these factors may introduce a large degree of uncertainty into15

the streamflows predictions. Unfortunately, although a number of recent publications
have studied rating curves uncertainties, the contribution of the rating curve to predic-
tion uncertainties has not yet been investigated systematically.

For instance, Di Baldassarre and Montanari (2009) investigated uncertainty present
in river flow records when derived with the rating curve method and concluded that20

those may include errors of up to 25 % of estimates in the extrapolation range. More-
over, Domeneghetti et al. (2012) showed that those extrapolation errors dominate over
all other sources of uncertainty in rating curves. The usage of rating curves to derive
streamflows in the extrapolation range was further investigated by Di Baldassarre and
Claps (2011), who recommended using a numerical hydraulic approach to derive water25

level-streamflow curves for cross sections instead of a traditional extrapolation method.
The main drawback of this approach is that it requires detailed data on the topology
and input. In addition, it is also not free from errors due to (i) structural limitations of
the hydraulic model, (ii) uncertainty about its parameters and (iii) measurement errors
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(Di Baldassarre et al., 2012). While exploring the uncertainty of calibration data is an
ongoing issue, considerable progress has been made in the uncertainty assessment of
hydrological predictive models. Several methods have been proposed to separate total
prediction uncertainty into the individual contributions from (i) input uncertainty e.g. due
to poor rainfall data (Kavetski et al., 2006; McMillan et al., 2011), (ii) model structure5

deficits (Reichert and Mieleitner, 2009; Renard et al., 2011), (iii) parameter uncertain-
ties (Ajami et al., 2007; Vrugt et al., 2008) and (iv) measurement errors (Di Baldassarre
and Montanari, 2009; McMillan et al., 2010). All of these studies, however, focus either
on the analysis of the predictive uncertainty of hydrological models, with rather crude
assumptions on the uncertainty in calibration data, or on the uncertainty of calibration10

data alone without considering the resulting uncertainty in hydrological predictions.
However, a systematic approach to integrate both the rainfall-runoff and rating curve
models is currently lacking. The only attempt towards integration was undertaken by
McMillan et al. (2010), who investigated the impact of errors in streamflow measure-
ments on the streamflow predictions informally. Unfortunately, they only mapped the15

resulting prediction uncertainty onto RR model parameter uncertainty. This prohibits
reliable assessment of the importance of the different sources of uncertainty, such as
rating curve and rainfall-runoff model parameters.

In this manuscript, we therefore propose an approach to quantify the uncertainty
in hydrological predictions of water levels by means of an integrated assessment of20

a rainfall-runoff (RR) model and the corresponding rating curve (RC). Specifically, we
use a Bayesian framework (Yang et al., 2007) to formally derive the predictive distri-
bution of water levels and to simultaneously assess the uncertainty contribution of the
RC to the total predictive uncertainty. For the first time, we compare the contribution of
the RC to those of the parameters of the RR model. The proposed approach is readily25

applicable because no additional hydrometric data on a rating curve than those already
existing are required. Due to the low data demand and the possibility to use informative
prior distributions, it can also be applied in poorly gauged basins.
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The remainder of the manuscript is as follows. First, we demonstrate analytically
what implicit assumptions are made by ignoring the RC uncertainty. Second, we detail
our approach for the joint Bayesian analysis of the RC and the RR model uncertainty.
Third, we demonstrate its feasibility in a case study on a small urbanized basin in
Poland (Warsaw, Sluzew Creek). Fourth, we discuss the strength and limitations of5

our approach and derive practical recommendations as well as directions for future
research. Finally, we draw our main conclusions.

2 Methods

2.1 Water level-runoff model

Unfortunately, in many hydrological applications streamflow is not directly measurable,10

although reliable flood modelling and prediction ideally requires continuous or frequent
measurements. Therefore, streamflow has to be derived from other, measurable vari-
ables by a model that converts them into streamflow. Usually, this is done with a water
level-runoff model (LR) that relates the streamflow Qt to the water level Lt:

Qt = LR(Lt,θLR)+ELR
t (1)15

where θLR is the parameter vector of the LR and ELR
t is an error term.

Typically, the LR model (Eq. 1) has empirical parameters that can only be calibrated
if some simultaneous observations of Lt and Qt are available; Lt is measured directly
and Qt usually indirectly by means of the area-velocity method (WMO, 2008). Thereby,
uncertainties in Qt are about 3–6 % on average but may increase to about 20 % under20

poor measurement conditions (Sauer and Meyer, 1992). The error term ELR
t therefore

represents uncertainties due to the computation of Qt and due to structural limitations
of the LR model. These are always present, if only due to the hysteresis effect, where
the same Lt can be observed for different Qt at the rising and the falling limb of a flood
hydrograph.25
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2.2 Rainfall-runoff modelling

Rainfall-runoff models (RR) predict the streamflow Qt based on input information X1:t
that typically contains at least mean areal precipitation within the catchment. Every RR
model can be written as:

Qt = RR(X1:t,θRR)+ERR
t (2)5

where θRR is the parameter vector of the RR model and ERR
t is an error term. In con-

trast to common practice, ERR
t does not necessarily need to have an expected value

of zero (Dietzel and Reichert, 2010). Therefore, ERR
t here represents structural deficits

of the RR model and all other uncertainty not explicitly accounted for as input un-
certainty. Usually, RR models are calibrated against “measured” streamflow (McMillan10

et al., 2010; Wagener and Montanari, 2011). The calibration, however, is complicated
by the fact that the output of the RR model (Qt) cannot be measured directly.

2.3 Standard rainfall-runoff model calibration procedure

RR models are typically calibrated in four steps:

1. The water level is measured and the corresponding streamflow is computed for15

few conditions, e.g. with the area-velocity approach described in Sect. 2.1.

2. Based on this data, the water level-runoff (LR) model is then calibrated. Mostly,
a model according to the Eq. (1) is used and normally distributed errors with zero
mean are assumed.

3. Streamflow data Qt are calculated from the water level Lt using the previously20

calibrated LR at the best parameter estimates while neglecting the error of the
LR.

4. The RR model is calibrated to match the computed streamflows Qt. This can be
formalized as
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LR(Lt, θ̂LR) = RR(X1:t,θRR)+ERR
t (3)

where θ̂LR is the parameter vector that led to the best fit of the LR at step 2.
This procedure might be suitable if only the “best fitting” parameters are of interest.

However, for predictive uncertainty analysis it has two conceptual flaws. First, the error
term of the LR model is “lost” in the third step, which can be seen by comparing Eqs. (1)5

and (2):

LR(Lt,θLR)+ELR
t = RR(X1:t,θRR)+ERR

t

It is important to realize that the remaining error term in Eq. (3) cannot not include the
LR uncertainty as the RR model is calibrated against the average value of Q for a given
water level. Therefore, ELR

t is never “seen” by the RR model.10

Second, the uncertainty of the estimated parameters θ̂LR is neglected. Unfortunately,
both flaws might lead to overconfident predictions.

2.4 Modelling water level

The two problems of the RR model calibration procedure presented above can be cir-
cumvented by modelling the water level directly. To this end, instead of an RR model15

a rainfall-water level (RL) model is formulated that relates the inputs Xt to the direct
measurable water level Lt. Such a RL model can be constructed by combining the de-
terministic parts of an RR model (Sect. 2.2) with the inverse of the LR model (Sect. 2.1):

Lt = RL(X1:t,θRL)+ERL
t = LR−1(Q̂t,θLR)+ERL

t = LR−1(RR(X1:t,θRR),θLR)+ERL
t (4)20

where the parameters of the RL model are denoted by θRL. ERL
t represents an error

term and now includes structural deficits of both, LR and RR submodels, as well as
(a presumably small) measurement error of the water level. Additionally, ERL

t will also
compensate for all other uncertainty contributions that are not explicitly accounted for
here. Indirectly, input uncertainty is also represented in ERL

t .25
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2.5 Inference and predictive distribution

2.5.1 Likelihood function

Statistical parameter estimation uses a likelihood function, which requires assumptions
of the error term ERL

t . As it is well known that the residuals of hydrological models are
heavily auto-correlated (e.g. Sikorska et al., 2012; Yang et al., 2007), we assume a con-5

tinuous error process that is equivalent to a first order autoregressive process, and
combine it with a Box-Cox transformation as proposed by Yang et al. (2007). The ad-
vantage of such a lumped error model, in contrast to the traditional Gaussian approach,
which assumes independent and identically distributed errors with a zero mean, is that
it helps to meet the underlying statistical assumptions with regard to temporal auto-10

correlation and heteroscedasticity (Sikorska, 2012; Sikorska et al., 2012; Yang et al.,
2008). The lumped error model introduced describes all error sources that are not ex-
plicitly acknowledged, here mainly input and structural uncertainty of the model. The
error model parameters (θERL) are the asymptotic standard deviation (ERL1) and char-
acteristic correlation time (ERL2) of the autoregressive process. For details we refer to15

Sikorska et al. (2012).
The proposed likelihood function has a frequentist interpretation and therefore

a maximum likelihood estimation would be possible. However, RR models are usually
over parameterized with correlating parameters (Wagener et al., 2004). For these rea-
sons, the Bayesian inference is more suitable for hydrological models as it allows prior20

knowledge to be incorporated in the calibration process by means of a prior probabil-
ity distribution of the model parameters. Thus, identifiability problems in the calibration
process are avoided (Gelman et al., 2003). The same holds for the RL model.

2.5.2 Bayesian inference and predictions

Given a likelihood function pRL(L|θRR,θLR,X) of the RL model and the data {L,X}25

(where L is the calibration data and X is the input data), the prior parameter distribution
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p(θRR,θLR) is updated as

p(θRR,θLR|L,X) ∝ pRL(L|θRR,θLR,X)p(θRR,θLR). (5)

The uncertainty of the predicted model output is described by the predictive distribution.
The distribution of the predicted water level Lp, conditioned on past calibration and input
data {L,X} and future input Xp is described by5

p(Lp|L,X,Xp) =
∫ ∫

pRL(Lp|θRR,θLR,Xp)p(θRR,θLR|L,X)dθLRdθRR (6)

For almost all models the posterior and the predictive distribution must be approximated
by Markov Chain Monte Carlo methods (see Sect. 2.7).

2.5.3 Prior distribution of RR and RC model parameters

Several methods are available to define the prior distribution on RR submodel param-10

eters without a need for calibration data. One possibility would be to use methods
that derive model parameters from catchment properties, as described by Sikorska
et al. (2012). In contrast, defining the prior distribution of the LR parameters, and in
particular of the RC method, requires some field observations. An informative prior on
the RC parameters can be easily obtained from already existing hydrometric measure-15

ments of cross-sectional average velocities and corresponding water levels. Here, we
suggest calibrating the RC as in Eq. (1) with the standard maximum likelihood method.
The distribution of the parameter estimator can then be derived using large sample
size properties of the maximum likelihood estimator (e.g. Harrell, 2010) and can serve
as a prior afterwards.20

2.6 Cross-validation for predictions

To assess the predictive distribution of water levels, we performed a leave-one-out
cross-validation. Thereby a single event is randomly selected as a validation data and
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the remaining events as a model calibration set. The computation was repeated in
order to use each event once to validate the model.

2.7 Influence of the RC on total prediction uncertainty

To assess the influence of the RC on total prediction uncertainty, we compare it to the
uncertainty of the RR model by means of a simple sensitivity analysis (Table 1). To5

this end, we compare the total prediction uncertainty to two scenarios where either
the RR parameters (A) or the RC parameters (B) are kept constant at the maximum
of their posterior marginals. Remaining parameters are sampled from the posterior
distribution conditional on the maximal posterior marginals of those parameters that
are kept constant in each of two scenarios (RR in A and RC in B). Then, we compare10

the uncertainty of each scenario to that of the full predictive distribution. The reduction
of uncertainty then indicates the relative importance of the RR and RC components.
This comparison of prediction uncertainty is preferable to a local sensitivity analysis
because it takes into account estimated mutual interactions between the parameters.

2.8 Implementation15

The RL model and the inference procedure were implemented in R (R Development
Core Team, 2011). The posterior probability distribution was sampled with the adap-
tive Monte Carlo Markov Chain (MCMC) algorithm proposed by Haario et al. (2001).
Specifically, we used the implementation of Chivers (2012) to produce three chains with
100 000 samples each. The number of samples and chains resulted in a reasonable20

compromise between fully exploring the posterior distribution and fast computations.
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3 Case study

3.1 Test catchment and data

For a case study, we chose the upper part of the urbanized Sluzew Creek basin (War-
saw, Poland), which has an area of about 28.7 km2 (Ared: 18.3 km2) (see Supplement).
It is located in the lowland and therefore the basin is rather flat, with an elevation from5

95 m to 110 m a.s.l. and surface runoff dominated by land use characteristics. The
Sluzew Creek catchment has undergone rapid urbanization in the last three decades
and today urban areas cover 58.7 % of the catchment. As a consequence, it is strongly
affected by floods dominated by torrential rainfalls which mostly occur during spring-
summer seasons (Sikorska and Banasik, 2010; Sikorska et al., 2012).10

As for most small urbanized basins, no routine monitoring programme exists. We
therefore performed our own monitoring program that consisted of continuous mea-
surement of precipitation data (3 locations) and stream water levels at the basin outlet
(Supplement). In addition, we measured a cross-sectional mean velocity during a set
of field experiments by means of the area-velocity method (WMO, 2008), see Fig. 1.15

In total, data on 8 storm events were collected during 2011 which were all used
in cross-validation (Sect. 2.6.). An empirical RC was constructed based on 11 water
level-streamflow records using a power-law model (see Fig. 1).

3.2 Water level-runoff submodel

As an LR in Eq. (1), we used a power law equation, which is widely used as a rating20

curve (Di Baldassarre and Claps, 2011; Domeneghetti et al., 2012). It fits our observa-
tions well (Fig. 1):

LR(Lt,θRC) = RC1(Lt −RC2)RC3 ⇔ LR−1(Qt,θRC) =
(

Qt

RC1

)1/RC3

+RC2 (7)
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where the parameters of the LR submodel are here combined to θRC =
{RC1,RC2,RC3}.

3.3 Conceptual rainfall-runoff submodel

We applied a conceptual RR model that combines the SCS-CN method (Mishra and
Singh, 2010) to separate the effective rainfall from the total precipitation with an in-5

stantaneous form of unit hydrograph model (IUH) (Khaleghi et al., 2011; Nash, 1957).
The parameters of the RR model, θRR = {RR1,RR2,RR3,RR4}, are: catchment area
(RR1), maximal potential retention of a catchment (RR2), retention time of a linear
reservoir (RR3) and the number of identical linear reservoirs (RR4). The RR model
based on the SCS-CN method, due to the limited number of parameters, is a common10

choice to model rainfall-runoff processes in small urbanized basins with no long time
series available; see Sikorska et al. (2012).

3.4 Formulating prior knowledge on the RR and LR model parameters

The prior distribution for the parameters of the RR and LR submodel has been derived
from catchment characteristics as described in Sikorska et al. (2012). For the RC sub-15

model parameters θRC, the prior was inferred from reference measurements of water
level and velocity shown in Fig. 1, Sect. 2.5.3. To allow for a fair comparison of RC and
RR error contributions, we only used data from a relatively short period. This should
avoid bias due to seasonal or long-term changes, such as changes in the catchment
land use and surface properties or cross-section geometry. The prior for the param-20

eters of the error model (θERL) is more difficult to specify because they do not have
a direct physical interpretation. To express this lack of knowledge, we selected rather
wide distributions (see also Table 2). Correlation between parameters was only con-
sidered in the prior for θRC as their interaction is known from the Maximum likelihood
estimation (see Sect. 2.5.2). The other parameters were assumed to be independent,25
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which is common practice in uncertainty studies (e.g. Reichert and Schuwirth, 2012;
Sikorska et al., 2012).

3.5 Results

3.5.1 Results of the statistical inference

The RL model described in Sect. 2.4 was calibrated and validated using the leave-5

one-out cross-validation method (Sect. 2.6.) with all eight recorded rainfall-water level
events. All parameters ( θRR, θRC, θERL) were inferred simultaneously and the marginal
posterior parameter distribution was obtained from a calibration where all eight events
were used simultaneously. For the parameters of the Box-Cox transformation, we used
λ1 = 0.5 and λ2 = 0, which proved to be a good assumption for this catchment (Sikor-10

ska et al., 2012).
In general, the marginal posterior distributions of the model parameters (θRR, θRC)

show a similar shape as the prior but, as expected, have smaller variances (Fig. 2).
The two RR parameters (θRR) indicate that the average rainfall-runoff process in

Sluzew Creek is described by about 1.8 reservoirs (RR4) with a relatively short reten-15

tion time (RR3) of 4.9 h. Two other RR parameters (RR1 and RR2) suggest that, first,
during heavy rainfalls only a fraction of an impervious area, which is probably closely
located to the stream, contributes to the surface runoff (RR1). Second, during intensive
precipitation the retention of the basin is less important for surface runoff (RR2). This
is reasonable for a small and urbanized basin, where the response of the catchment to20

heavy rainfalls is expected to be rapid.
The posterior of the RC parameters (θRC) is very similar to the prior. This was more

or less expected because measuring catchment rainfall input and water level output is
not the ideal experimental context to learn about the RC parameters. This also em-
phasizes the importance of obtaining an informative prior distribution as described25

in Sect. 2.5.3. Additionally, a strong correlation between all RC parameters was ob-
served (see Fig. 3). Moreover, we observed a significant correlation between RR and
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RC parameters (Fig. 3). Intuitively, this can be explained by a mutual compensation of
both submodels.

Finally, for both of the lumped error model parameters (θERL) information was gained
from the data. However, the interpretation of these parameters is not straightforward
since they do not have an obvious physical meaning. This is further discussed below.5

Figure 4 presents a diagnostic analysis of model innovations in the continuous au-
toregressive error model for selected events. This error model does not assume that
the residuals are independent and identically distributed (i.i.d.), which is necessary for
the standard Gaussian error model. Instead, the innovations of the stochastic process
have to be i.i.d. The autocorrelation function of the innovations is shown in the top row10

in Fig. 4. While for some events a slight autocorrelation still remains (see also Supple-
ment), the statistical assumptions are much better fulfilled than for the assumption of
a standard Gaussian error model (Fig. 4, bottom row). The residuals were computed as
a difference between observed and simulated values corresponding to the best model
prediction. In addition, the innovations are less heteroscedastic compared to the resid-15

uals (Fig. 4, middle row). Details regarding the statistical assumptions are also further
discussed below.

3.5.2 Total predictive uncertainty and model performance

To approximate the total predictive uncertainty, a Monte Carlo simulation with 100 000
runs was performed, drawing repeatedly from the full posterior parameter distribution20

obtained from the leave-one-out cross-validation (Sect. 2.6). Therefore, the predictive
uncertainty bands for each event are the result from a calibration without this event;
eight independent MCMC chains were generated for every calibration set of seven
events and validated on the remaining one (see Sect. 2.8). The 2.5 % and 97.5 %
quantiles were computed and the corresponding 95 % predictive uncertainty bands for25

three events are presented in Fig. 5a (middle row – grey polygons); solid blue lines
correspond to the predictions using the mode of the posterior density.
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The total predictive uncertainty bands obtained, when accounting for both RR and
RC parameters uncertainty, are on average 15 % higher than peak water levels during
rainfall-runoff events. Maximum deviations are up to 50 % higher than the observations.

For all events, the uncertainty bands cover 70 % of the observed data, whereas 26 %
of data points lie above and 4 % below the upper and lower limits, respectively. The5

uncertainty bands properly cover most of the events, except events 2 and 8, for which
larger deviations were obtained (see Supplement). The deviations for event No. 2 can
be explained by changing external factors such as additional water discharges from
sewage systems or overland flows. In contrast, the deviations for event No. 8 nicely il-
lustrate the consequences of extrapolating the rating curve beyond its justifiable range10

(Supplement): the approximated uncertainty bands are clearly overestimated. Such
a high water level as predicted by the model would most likely not occur in reality be-
cause of overland flow outside the flood plains (compare to the Fig. 1). As this process
cannot be modelled accurately with the applied RL, data coverage is poor and the
prediction uncertainty bands are not reliable (see Sect. 4).15

Excluding these two events, 86 % of the data are covered.

3.5.3 Influence of the RC parameter

The contribution of the RC model parameter to the total predictive uncertainty is shown
in Fig. 5, and is assessed under two scenarios as described in Sect. 2.7 (Table 1).

The corresponding predictive uncertainties were found to be almost of the same rel-20

evance for both scenarios A and B (RR vs. RC). A difference in the contributions is less
than 1 % (mean) in the validation mode, with a slight dominance of the RC uncertainty
(scenario B). This can be visually seen on the bottom of Fig. 5a, where both RR and
RC uncertainties intervals lie close to each other and to the total predictive uncertainty
limits. This would suggest, first, that the uncertainty in RR and RC parameters leads25

almost to the same predictive uncertainties of water levels in the Sluzew Creek catch-
ment, at least at this monitored cross section. Second, for this particular case study
the uncertainty of RC and RR parameters around their mode could also be neglected
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since both contribute much less to the total predictive uncertainty than the uncertainty
of the runoff-water level model structure alone (bottom row of Fig. 5a, b). This, however,
is not transferrable to other case studies, and a previous estimation of the importance
of the parameter uncertainties is difficult. Therefore, the analysis which we suggest
should be repeated for the case study of interest. In addition, the model structure error5

contribution is not easy to interpret since the error model lumps all structural errors
into one process: in RC, RR and RL itself, and likewise for other uncertainties which
are not explicitly considered here, such as the input uncertainty. Further explanation is
provided in the Discussion (point ii).

4 Discussion10

In the study presented, we proposed an approach to assess the uncertainty of water
level predictions with consideration of the uncertainty of the rating curve. To better
interpret the results, we would like to discuss (i) the specific water level predictions
for Sluzew Creek, (ii) methodological aspects, joint uncertainty assessment and its
limitations, and (iii) implications for practical applications and future perspectives.15

Regarding the case study results, generally, the interpretation of estimated param-
eters is always tenuous as parameter values lose (some degree of) their physical
meaning during a calibration process if the model structure is not perfect (Wagener
and Gupta, 2005). The posterior distribution of the RR parameters suggests that the
Sluzew Creek catchment responds rapidly to heavy rainfalls and that only a part of the20

basin contributes to the streamflow observed in the stream. This corresponds to the
findings of a previous study from the same catchment that used a different data set
and a different model (Sikorska et al., 2012). As that study focused on streamflow pre-
dictions, whereas here we investigate water levels, the parameter estimates cannot be
directly compared. Specifically, the parameters compensate differently for the structural25

limitations of the models.
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In this case we found that the contribution to the total predictive uncertainty of the RC
and RR parameters is small, with a slight dominance of the RC submodel. However,
those findings are strongly case related and cannot be directly transferred to other
catchments. Therefore, for future studies we suggest performing first the uncertainty
analysis proposed by us to pinpoint individual contributions. Clearly, the largest con-5

tribution still remains the structural uncertainty of the RL model itself. The uncertainty
of the LR model stems, however, not only from the uncertainty about its parameters.
Additional uncertainty contributions are errors due to structural limitations of the LR
and measurement errors of the water level. These are included in the autocorrelated
error term, which lumps also all uncertainties of the RR model that are not explicitly10

considered, such as the input uncertainty in rainfall data. Therefore, these uncertain-
ties cannot be separated here and we only compare the uncertainty contribution from
the parameters of the two submodels (RC versus RR). Although we did not attempt to
separately assess all uncertainty contributions, it is conceptually straightforward to ex-
tend this framework with an explicit model for input uncertainty (e.g. rainfall multipliers)15

(Kavetski et al., 2006b). Practically, the computational effort could be limiting.
Additionally, the comparably large contribution of the model structure uncertainty of

simplified rainfall-runoff models is interesting. Such simplified models only have few
parameters. They are therefore convenient for flood predictions when few data are
available because then it is not possible to use structurally more complex models. As20

our case shows, simple models can predict flood events satisfactorily as long as the
rainfall-runoff in the catchment follows conventional rainfall-runoff processes. However,
all models are limited in predicting extreme flood events where unforeseen interactions
occur, e.g. external processes that are not included in the model structure. This also
explains why the statistical assumptions with respect to the innovations in the applied25

lumped error model are sometimes violated. Where this is critical, different error models
or transformations could have also been investigated (Del Giudice et al., 2013).

In our view, the simplified model structure also explains the dominating uncertainty
contribution of the lumped error model. On the one hand, the limited model structure
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causes large systematic errors in the predictions. On the other hand, the few model
parameters (here: seven) have a relatively well-defined prior. Together with the larger
number of observations (here: ca. 2000 data points), this results in a very narrow pos-
terior distribution. While parameter uncertainty gets smaller as more data are available,
the existing model structure deficits, as well as input errors, remain the same; hence5

the variance of the lumped error term remains large.
The approach presented is only useful if the water level is the quantity of interest.

While this is the case in many situations, namely for predicting flood hazards or in-
undation risk, other applications require streamflow predictions, e.g. sizing a culvert or
operating a reservoir. If the water level is modelled, streamflow is an internal state of the10

RL model for which no probabilistic statements can be made. Conceptually, an exten-
sion that enables the calculation of the predictive distribution of streamflow is possible
so that the streamflow is inferred for all points in time. A similar problem is solved with
rainfall multipliers when input uncertainty is considered explicitly and the “true” rainfall
must be inferred. Rainfall multipliers represent a single correction factor per rain event,15

which is estimated simultaneously with the model parameters. This is very useful to re-
duce the number of inferred parameters. However, in the case of inferring streamflow,
a similar useful simplification is not obvious because streamflow cannot meaningfully
be divided into events. This requires further research.

Regarding flood level predictions, the Bayesian framework seems very promising be-20

cause it enables the modeler to incorporate informal knowledge from easily accessible
information. In addition, the uncertainty of the LR model and a rating curve in partic-
ular may be significant for poorly gauged stream gauges. For practical applications, it
is important to update it frequently to reduce the uncertainty of the LR model. This is
especially important for dynamic basins, where cross-sections change seasonally or25

with changing land use. To avoid such problems in a practical setting, remote sens-
ing data from satellites could be incorporated to reduce the uncertainties of already
existing rating curves (Di Baldassarre and Uhlenbrook, 2012). Also popular nowadays
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are social networks (e.g. facebook1 or twitter), which may be used; e.g. flood-observer
groups might provide valuable information to calibrate models a posteriori.

Another important point concerns predictions beyond the valid extrapolation range of
a rating curve. This is always challenging and should be done based on a cross-section
analysis. Predicted uncertainties outside of a reasonable range cannot be treated as5

reliable. This could be improved by performing more streamflow-water level measure-
ments during flood flows, especially during flood peaks. Improving the observations is
an obvious way to improve flood predictions. Another strategy is to improve the predic-
tive capability of the model by reducing model structure deficits.

To effectively reduce structural deficits of the model the associated uncertainties of10

model predictions need to be explicitly decomposed. This requires going beyond the
lumped error model and assessing the influence of the individual uncertainty contri-
butions. Reichert and Schuwirth (2012) and Reichert and Mieleitner (2009) have sug-
gested possible procedures that seem promising.

The value of our work is that we provide a method to systematically incorporate15

the uncertainty of the calibration data. This is especially important since uncertainty
analysis or, more generally, flood predictions cannot be assumed reliable if they rely on
unreliable data. The proposed procedure can be combined with approaches to further
decompose the predictive uncertainty.

5 Conclusions20

In this study, we proposed an innovative approach to quantify the complete uncertainty
in water levels predictions by means of an integrated assessment of the rainfall-runoff
model and the corresponding water level-runoff model, which typically is a rating curve.
Specifically, we use a formal Bayesian framework to assess the uncertainty contribu-
tions of the parameters of the rainfall-runoff and water level-runoff models to the total25

1E.g. user group “Flood Group UK”, https://www.facebook.com/floodgroupuk?ref=ts&fref=ts
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predictive uncertainty. By modelling water levels directly, we avoid the unjustifiable as-
sumption that the calibration data are free of errors. Based on our main results we
conclude that:

– Our approach is formulated generally and not limited to the rainfall-runoff and
rating curve submodels presented.5

– In addition, it is not data demanding since it requires only already existing hydro-
metric data on the rating curve. Using informative prior distributions makes it also
applicable to poorly gauged basins.

– For structurally simple models, the fulfilment of statistical assumptions is, ar-
guably, not always perfect. However, the autocorrelated lumped error model fulfils10

the underlying statistical assumptions much better than the traditional i.i.d. error
model.

– As expected, our results demonstrate that predicted water levels are unrealistic
and usually overestimated when the rating curve is extrapolated outside the per-
missible range. This range is not necessarily equal to the measurement range,15

especially for irregular or complicated bathymetric profiles. Therefore, it is crucial
to continuously update the applied rating curve.

– In the case study presented, the uncertainty contribution from the rating curve pa-
rameters was as relevant as that from the rainfall-runoff model parameters. How-
ever, such uncertainty contributions are strongly case-related and greatly depend20

on the available monitoring data. Therefore they cannot be generalized. In our
view, to assess the uncertainty contribution from a rating curve requires repeating
the uncertainty analysis proposed in this study.

– The main limitation of the approach presented is that it is limited to water level
predictions. Future research should, on the one hand, concentrate on extending25

the approach to streamflow, which is often not measured directly. On the other
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hand, it is important to further improve the assessment of the individual uncer-
tainty contributions to obtain better flood predictions.

Supplementary material related to this article is available online at:
http://www.hydrol-earth-syst-sci-discuss.net/10/2955/2013/
hessd-10-2955-2013-supplement.pdf.5
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Table 1. Uncertainty analysis Scenarios. θRR – parameters of the RR submodel, θRC – param-
eters of the RC submodel, θERL – parameters of the RL lumped error model (ERL).

Scenario θRR θRC θERL

A x o x
B o x x

Note: x – uncertainty explicitly accounted for, o – uncertainty neglected
(parameters kept at the maximum of the posterior).
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Table 2. Prior distribution derived for the Sluzew Creek. θRR – parameters of the RR submodel,
θRC – parameters of the RC submodel, θERL – parameters of the RL model error term (ERL).

Model/parameter/name and meaning Distribution expected value (E) and
standard deviation (SD)

Rainfall-water level (RL) model (θRL)
Rainfall-runoff (RR) submodel (θRR)
RR1 area of a catchment [km2] Normal E = 28.3; SD= 2.8
RR2 max potential retention of a catchment [mm] Lognormal E = 55; SD= 33
RR3 retention time of a linear reservoir [h] Lognormal E = 2.0; SD= 1.0
RR4 number of linear reservoirs [–] Lognormal E = 3.2; SD= 1.0

Rating curve (RC) submodel (θRC)
RC1 coefficient, or streamflow scale [–] E = −7.5; SD= 1.1
RC2 location parameter, or cease to streamflow-water Multivariate E = 16.8; SD= 6.6

level, in units of the water level, e.g. [cm] normal
RC3 exponent, linked to the type and E = 0.6; SD= 0.1

shape of the hydraulic control [–]

Lumped error model (ERL) (θERL )
ERL1 asymptotic standard deviation of the errors [m3 s−1] Gamma E = 2; SD= 2
ERL2 characteristic correlation time of Gamma E = 300; SD= 200

the autoregressive process [min]
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Fig. 1. Monitoring cross section (left and middle) and prior information on the rating curve
(right); the reference point for both is a cease-to-streamflow reference level; dashed grey lines
depict observation range, upper grey line cuts off a justifiable extrapolation range from the
valid bathymetric profile (till flood plains); right figure: black dots illustrate observed water level-
streamflow relations, black solid line presents prior mean rating curve.
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Fig. 2. Prior (solid line) and posterior parameter distribution (grey area); RR parameters (θRR),
RC parameters (θRC) and ERL lumped error model parameters (θERL ).
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Fig. 3. Posterior parameters correlations; RR1–RR4 – RR parameters (θRR), RC1–RC3 – RC
parameters (θRC) and ERL1–ERL2 – ERL lumped error model parameters (θERL ).
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Fig. 4. Diagnostic plot of innovations and residuals for chosen events (No. 5, 6, 7); lumped error
model: autocorrelation function (ACF) of standardized innovations (top row) and sequences of
innovations (middle row); traditional error model: ACF of standardized residuals (bottom row).
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a)

b)

 1 

 2 

Figure 5 a & b. Predicted water levels in the Sluzew Creek using the posterior parameter 3 

distribution (events No. 5, 6, 7). 4 

 5 
Fig. 5a) Total predictive uncertainty. Middle row: observations (dotted black lines) and predicted 6 

water levels corresponding to the mode posterior values (solid blue lines). Grey areas present 7 

95% total prediction uncertainty bands, dashed grey horizontal line cuts an extrapolation range 8 

for the RC from Fig. 1. Bottom: influence of the RC parameters. Grey areas describe 95% total 9 

prediction uncertainty bands, red lines illustrate 95% limits for the predictive uncertainty bands 10 

whilst ignoring uncertainty in RR parameters (scenario B), green lines illustrate 95% limits for 11 

the predictive uncertainty bands whilst ignoring uncertainty in RC parameters (scenario A). 12 

 13 
Fig. 5b) Zoom in of the uncertainty bands in the range of the runoff peaks. Visibly similar 14 

contribution of the RR and RC uncertainty. 15 

Fig. 5. (a and b). Predicted water levels in the Sluzew Creek using the posterior parameter
distribution (events No. 5, 6, 7). (a) Total predictive uncertainty. Middle row: observations (dotted
black lines) and predicted water levels corresponding to the mode posterior values (solid blue
lines). Grey areas present 95 % total prediction uncertainty bands, dashed grey horizontal line
cuts an extrapolation range for the RC from Fig. 1. Bottom: influence of the RC parameters.
Grey areas describe 95 % total prediction uncertainty bands, red lines illustrate 95 % limits for
the predictive uncertainty bands whilst ignoring uncertainty in RR parameters (scenario B),
green lines illustrate 95 % limits for the predictive uncertainty bands whilst ignoring uncertainty
in RC parameters (scenario A). (b) Zoom in of the uncertainty bands in the range of the runoff
peaks. Visibly similar contribution of the RR and RC uncertainty.
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