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Abstract

When inferring models from hydrological data or calibrating hydrological models, we
might be interested in the information content of those data to quantify how much can
potentially be learned from them. In this work we take a perspective from (algorithmic)
information theory (AIT) to discuss some underlying issues regarding this question. In5

the information-theoretical framework, there is a strong link between information con-
tent and data compression. We exploit this by using data compression performance as
a time series analysis tool and highlight the analogy to information content, prediction,
and learning (understanding is compression). The analysis is performed on time series
of a set of catchments, searching for the mechanisms behind compressibility.10

We discuss both the deeper foundation from algorithmic information theory, some
practical results and the inherent difficulties in answering the question: “How much
information is contained in this data?”.

The conclusion is that the answer to this question can only be given once the fol-
lowing counter-questions have been answered: (1) Information about which unknown15

quantities? (2) What is your current state of knowledge/beliefs about those quantities?
Quantifying information content of hydrological data is closely linked to the question

of separating aleatoric and epistemic uncertainty and quantifying maximum possible
model performance, as addressed in current hydrological literature. The AIT perspec-
tive teaches us that it is impossible to answer this question objectively, without specify-20

ing prior beliefs. These beliefs are related to the maximum complexity one is willing to
accept as a law and what is considered as random.

1 Introduction

How much information is contained in hydrological time series? This question is not of-
ten explicitly asked, but is actually underlying many challenges in hydrological modeling25

and monitoring. Information content of time series is for example relevant for decisions
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regarding what to measure and where, to achieve optimal monitoring network designs
(Alfonso et al., 2010a,b; Mishra and Coulibaly, 2010; Li et al., 2012). Also in hydrolog-
ical model inference and calibration, the question can be asked, to decide how much
model complexity is warranted by the data (Jakeman and Hornberger, 1993; Vrugt
et al., 2002; Schoups et al., 2008; Laio et al., 2010; Beven et al., 2011).5

There are, however, some issues in quantifying information content of data. Although
the question seems straightforward, the answer is not. This is partly due to the fact
that the question is not completely specified. The answers found in data are relative
to the question that one asks the data. Moreover, the information content of those
answers depends on how much was already known before the answer was received.10

An objective assessment of information content is therefore only possible when prior
knowledge is explicitly specified.

In this paper, we take a perspective from (algorithmic) information theory, (A)IT, on
quantifying information content in hydrological data. This puts information content in
the context of data compression. The framework naturally shows how specification of15

the question and prior knowledge enter the problem and to what degree an objective
assessment is possible using tools from information theory. The illustrative link between
information content and data compression is elaborated in practical explorations of
information content, using common compression algorithms.

This paper must be seen as a first exploration of the compression framework to20

define information content in hydrological time series, with the objective of introducing
the analogies and showing how they work in practice. The results will also serve as a
benchmark in a follow-up study Weijs et al. (2013), where new compression algorithms
are developed that employ hydrological knowledge to improve compression.

2 Information content, patterns, and compression of data25

From the framework of information theory, originated by Shannon (1948), we know
that information content of a message, data point or observation, can be equated to
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suprisal, defined as − logP , where P is the probability assigned to the event before ob-
serving it. To not lengthen this paper too much, we refer the reader to Shannon (1948);
Cover and Thomas (2006) for more background on information theory. See also Weijs
et al. (2010a,b) for introduction and interpretations of information measures in the con-
text of hydrological prediction and model calibration. We also refer the reader to Singh5

and Rajagopal (1987); Singh (1997); Ruddell et al. (2013), for more references on ap-
plications of information theory in the geosciences. In the following, the interpretation
of information content as description length is elaborated.

2.1 Information theory: entropy and code length

Data compression seeks to represent the most likely events (most frequent characters10

in a file) with the shortest codes, yielding the shortest total code length. As is the case
with dividing high probabilities, also short codes are a limited resource that has to be
allocated as efficiently as possible. When required to be uniquely decodable, short
codes come at the cost of longer codes elsewhere. This follows from the fact that such
codes must be prefix free, i.e. no code can be the first part (prefix) of another one.15

This is formalized by the following theorem of McMillan (1956), who generalized the
inequality (Eq. 1) of Kraft (1949) to all uniquely decodable codes.∑
i

A−li ≤ 1 (1)

in which A is the alphabet size (2 in the binary case) and li is the length of the code
assigned to event i . In other words, one can see the analogy between prediction and20

data compression through the similarity between the scarcity of short codes and the
scarcity of large predictive probabilities. Just as there are only 4 probabilities of 1

4 avail-
able, there are only 4 prefix-free binary codes as short as − log2

1
4 = 2 (see Fig. 1, code

A). In contrast to probabilities, which can be chosen freely, the code lengths are limited
to integers. For example, code B in the table uses one code of length 1, one of length25
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2 and two of length 3, we can verify that it sharply satisfies Eq. (1), using A = 2, we find
1 ·2−1 +1 ·2−2 +2 ·2−3 = 1 ≤ 1

In Fig. 1, it is shown how the total code length can be reduced, assigning codes of
varying length depending on occurrence frequency. As shown by Shannon (1948), if
every value could be represented with one code, allowing for non-integer code lengths,5

the optimal code length for an event i is li = log
(
1/pi

)
. The minimum average code

length is the expectation of this code length over all events, H bits per sample, where
H can be recognized as the entropy of the distribution (Shannon, 1948; Cover and
Thomas, 2006), which is a lower bound for the average description length.

H (p) = Ep {l} =
n∑

i=1

pi log
1
pi

(2)10

However, because in practice the code lengths often have to be rounded to an integer
number of bits, some overhead will occur. The rounded coding would be optimal for a
probability distribution of events

qi =
1

2li
∀i , (3)

such as frequencies II in Fig. 1. In this equation, qi is the i th element of the probability15

mass function q for which the code would be optimal and li is the code length assigned
to event i . The overhead in the case where p 6= q is DKL(p||q), yielding a total average
code length of

H(p)+DKL(p||q) (4)

bits per sample. In general, if a wrong probability estimate is used, the number of20

bits per sample is increased by the Kullback-Leibler divergence from the true to the
estimated probability mass function. This is extra description length is analogous to
the reliability term in the decomposition of an information-theoretical score for forecast
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quality presented in Weijs et al. (2010b); see Appendix A for an elaboration of this
connection.

For probability distributions that do not coincide with integer ideal code lengths, the
algorithm known as Huffman coding (Huffman, 1952) was proven to be optimal for
value by value compression. It finds codes of an expected average length closest to5

the entropy-bound and is applied in popular compressed picture and music formats
like jpg, tiff, mp3 and wma. For a good explanation of the workings of this algorithm,
the reader is referred to Cover and Thomas (2006). In Fig. 1, code A is optimal for
probability distribution I and code B is optimal for the distribution II. Both these codes
achieve the entropy bound. Code B is also an optimal Huffman code for the distribution10

III (last column in Fig. 1). Although the expected code length is now more than the
entropy, it is impossible to find a shorter code. The overhead is equal to the Kullback-
Leibler divergence from the true distribution (III) to the distribution for which the code
would be optimal.

DKL(III||II) = DKL((0.4,0.05,0.35,0.2) || (0.5,0.25,0.125,0.125)) = 0.410615

If the requirement that the codes are value by value (one code for each observation)
is relaxed, blocks of values can be grouped together to approach an ideal probability
distribution. When the series are long enough, entropy coding methods like Shannon
and Huffman coding using blocks can get arbitrarily close to the entropy bound (Cover
and Thomas, 2006). This happens for example in arithmetic coding, where the entire20

time series is coded as one single number.

2.2 Dependency

If the values in a time series are not independent, however, the dependencies can
be used to achieve even better compression. This high compression results from the
fact that for dependent values, the joint entropy is lower than the sum of entropies of25

individual values. In other words, average uncertainty per value decreases, when all

2034

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/2029/2013/hessd-10-2029-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/2029/2013/hessd-10-2029-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 2029–2065, 2013

Data compression to
define information

content

S. V. Weijs et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

the other values in the series are known, because we can recognize patterns in the se-
ries, that therefore contain information about themselves. Hydrological time series often
show strong internal depen encies, leading to better compression and better prediction.
Consider, for example, the case where you are asked to assign probabilities (or code
lengths) to possible streamflow values on 12 May 1973. In one case, the information5

offered is the dark-colored climatological histogram (Fig. 2 on the right), in the second
case, the time series is available (the left of the same figure). Obviously, the e pected
compression and expected return for the bets are better in the second case, which
shows the value of exploiting dependencies in the data. The surprise (− logPtrue value)
upon hearing the true value is 3.72 bits in case the guessed distribution was assumed10

and 4.96 bits when using the climate as prior. These surprises are equivalent to the
divergence scores proposed in Weijs et al. (2010b).

Another example are the omitted characters that the careful reader may (not) have
found in the previous paragraph. There are 48 different characters used, but the entropy
of the text is 4.3 bits, far less than log (48)=5.6, because of for example the relatively15

high frequencies of the space (16 %) and the letter “e” (13 %). Although the entropy is
more than 4 bits, the actual uncertainty about the missing letters is far less for most
readers, because the structure in the text is similar to English language and that struc-
ture can be used to predict the missing characters. On the one hand this means that
English language is compressible and therefore fairly inefficient. On the other hand this20

redundancy leads to more robustness in the communication, because even with many
typographical errors, the meaning is still clear. If English were 100 % efficient, any error
would obfuscate the meaning.

In general, better prediction, i.e. less surprise, gives better results in compression.
In water resources management and hydrology we are generally concerned with pre-25

dicting one series of values from other series of values, like predicting streamflow (Q)
from precipitation (P ) and potential evaporation (Ep). In terms of data compression,
knowledge of P and Ep would help compressing Q, but would also be needed for de-
compression. When P , Ep and Q would be compressed together in one file, the gain
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compared to compressing the files individually is related to what a hydrological model
learns from the relation between these variables (Cilibrasi, 2007). Similarly, we can
try to compress hydrological time series to investigate how much information those
compressible series really contain for hydrological modeling.

2.3 Algorithmic information theory5

Algorithmic information theory (AIT) was founded as a field by the appearance of three
independent publications (Solomonoff, 1964; Chaitin, 1966; Kolmogorov, 1968). The
theory looks at data through the lens of algorithms that can produce those data. The
basic idea is that information content of an object, like a data set, is related to the short-
est way to describe it. Although description length generally depends on the language10

used, AIT uses the construct of a universal computer introduced by Turing (1937), the
Universal Turing Machine (UTM), to show that this dependence takes the form of an
additive constant, which becomes relatively less important when more data is available.
Chaitin (1975) offered some refinements in the definitions of programs and showed a
very complete analogy with Shannon’s information theory, including e.g. the relations15

between conditional entropy and conditional program lengths.
Using the thesis that any computable sequence can be computed by a UTM and

that program lengths are universal up to an additive constant (the length of the pro-
gram that tells one UTM how to simulate another), Kolmogorov (1968) gave very intu-
itive definitions of complexity and randomness; see also (Li and Vitanyi, 2008) for more20

background. Kolmogorov defined the complexity of a certain string (i.e. data set, series
of numbers) as the length of the minimum computer program that can produce that
output on a UTM and then halt. Complexity of data is thus related to how complicated
it is to describe. If there are clear patterns in the data, then they can be described by
a program that is shorter than the data itself. The majority of conceivable strings of25

data cannot be “compressed” in this way. Data that cannot be described in a shorter
way than literally stating those data is defined as random. This is analogous to the fact
that a “law” of nature cannot really be called a law if its statement is more elaborate

2036
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than the phenomenon that it explains. A problem with Kolmogorov complexity is that
it is incomputable, but can only be approached from above. This is related to the un-
solvability of the halting problem (Turing, 1937): it is always possible that there exists a
shorter program which is still running (possibly in an infinite loop) that might eventually
produce the output and then halt. A paradox that would arise if Kolmogorov complexity5

were computable is the following definition known as the Berry paradox: “The smallest
positive integer not definable in under eleven words”.

A shortcut approximation to measuring information content and complexity, is to use
a language that is sufficiently flexible to describe any sequence, while still exploiting
most of commonly found patterns. While this approach cannot discover all patterns,10

like a Turing complete description language can, it will offer an upper bound estimation,
without having the problems of incomputability. Compressed files are such a language,
that use a decompression algorithm to recreate the object in its original, less efficient
language. The compressed files can also be seen a programs for a computer, which is
simulated by the decompression algorithm on another computer. Since the language15

is not Turing complete, it is less powerful than the original computer. The constant
additional description length for some recursive patterns is replaced by one that grows
indefinitely with growing amounts of data. As an example, one can think of trying to
compress an ultra high resolution image of a fractal generated by a simple program.
Although the algorithmic complexity with respect to the Turing complete executable20

fractal program language is limited by the size of the fractal program executable and its
settings, the losslessly compressed output image will continue to grow with increasing
resolution.

3 Compression experiment set-up

In this experiment, a number of compression algorithms is applied to different data25

sets to obtain an indication of the amount of information they contain. Most compres-
sion algorithms use entropy-based coding methods such as introduced in the previous

2037

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/2029/2013/hessd-10-2029-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/2029/2013/hessd-10-2029-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 2029–2065, 2013

Data compression to
define information

content

S. V. Weijs et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

section, often enhanced by methods that try to discover dependencies and patterns in
the data, such as autocorrelation and periodicity.

The data compression perspective indicates that formulating a rainfall-runoff model
has an analogy with compressing rainfall-runoff data. A short description of the data
will contain a good model about it, whose predictive power outperforms the description5

length of the model. However, not all patterns found in the data should be attributed to
the rainfall-runoff process. For example, a series of rainfall values is highly compress-
ible due to the many zeros (a far from uniform distribution), the autocorrelation, and the
seasonality. These dependencies are in the rainfall alone and can tell us nothing about
the relation between rainfall and runoff. The amount of information that the rainfall con-10

tains for the hydrological model is thus less than the number of data points multiplied
by the number of bits to store rainfall at the desired precision. This amount is important
because it determines the model complexity that is warranted by the data (Schoups
et al., 2008). In fact, we are interested in the Kolmogorov complexity of the data, but
this is incomputable. A crude practical approximation of the complexity is the file size15

after compression by some commonly available compression algorithms. This provides
an upper bound for the information in the data.

If the data can be regenerated perfectly from the compressed (colloquially referred
to as zipped) files, the compression algorithm is said to be lossless. In contrast to this,
lossy compression introduces some small errors in the data. Lossy compression is20

mainly used for various media formats (pictures; video; audio), where these errors are
often beyond our perceptive capabilities. This is analogous to a model that generates
the observed values to within measurement precision, which could be a way to account
for uncertainties in observation (Beven and Westerberg, 2011; Westerberg et al., 2011;
Weijs and Van de Giesen, 2011). In this paper, we consider only lossless compression.25

Roughly speaking, the file size that remains after compression, gives an upper bound
for the amount of information in the time series. Actually, also the code-length of the
decompression algorithm should be counted towards this file size (cf. a self-extracting
archive). In the present exploratory example the inclusion of the algorithmic complexity

2038
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of the decompression algorithm is not so relevant since the algorithm is general pur-
pose and not biased towards hydrological data. This means that any specific pattern
still needs to be stored in the compressed file. The compression algorithms will be
mainly used to explore the difference in information content between different signals.

3.1 Quantization5

Due to the limited amount of data, quantization is necessary to make meaningful es-
timates of the distributions, which are needed to calculate the amount of information
and compression. This is analogous to the maximum number of bins permitted to draw
a representative histogram. As will be argued in the discussion, different quantizations
imply different questions for which the information content of the answers is analyzed.10

All series were first quantized to 8 bit precision, using a simple linear quantization
scheme (Eq. 5). Using this scheme, the series were split into 28 = 256 equal intervals
and converted into an 8 bit unsigned integer (an integer ranging from 0 to 255 that can
be stored in 8 binary digits).

xinteger =c0.5+255
x−minx

maxx−minx
(5)15

These can be converted back to real numbers using

xquantized = (
maxx−minx

255
)xinteger +minx (6)

Because of the limited precision achievable with 8 bits , xquantized 6= x. This leads to
rounding errors, which can be quantified as a signal to noise ratio (SNR). The SNR is
the ratio of the variance of the original signal to the variance of the rounding errors.20

SNR =
1
n

∑n
t=1 (xt − x̄)2

1
n

∑n
t=1

(
xt −xt,quantized

)2
(7)

Because the SNR can have a large range, it is usually measured in the form of a
logarithm, which is expressed in the unit decibel: SNRdB = 10log10(SNR).
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3.2 Compression algorithms

The algorithms that were used are a selection of commonly available compression
programs and formats. Below are very short descriptions of the main principles and
main features of each of the algorithms used and some references for more detailed
descriptions. The descriptions are sufficient to understand the most significant pattern5

in the results. It is beyond the scope of this paper to describe the algorithms in detail.

– ARJ: Uses LZ77 (see LZMA) with sliding window and Huffman coding.

– WAVPACK: Is a lossless compression algorithm for audio files.

– JPG: The Joint Photography Experts Group created the JPEG standard, which
includes a range of lossless and lossy compression techniques. Here the loss-10

less coding is used, which uses a Fourier-like type of transform (Discrete cosine
transform) followed by Huffman coding of the errors).

– HDF RLE: HDF (hierarchical data format) is a data format for scientific data of any
form, including pictures, time series and metadata. It can use several compression
algorithms, including run length encoding (RLE). RLE replaces sequences of re-15

occurring data with the value and the number of repetitions. It would therefore be
useful to compress pictures with large uniform surfaces and rainfall series with
long dry periods.

– PPMD: A variant of Prediction by Partial Matching, implemented in the 7Zip pro-
gram. It uses a statistical model for predicting each value from the preceding20

values using a variable sliding window. Subsequently the errors are coded using
Huffman Coding.

– LZMA: The Lempel-Ziv-Markov chain algorithm combines the Lempel-Ziv algo-
rithm, LZ77 (Ziv and Lempel, 1977), with a Markov-Chain model. LZ77 uses a
sliding window to look for reoccurring sequences, which are coded with references25
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to the previous location where the sequence occurred. The method is followed by
range coding. Range coding (Martin, 1979) is an entropy-coding method which is
mathematically equivalent to arithmetic coding (Rissanen and Langdon, 1979), it
has less overhead than Huffman coding.

– BZIP2: Uses the Burrows and Wheeler (1994) block sorting algorithm in combi-5

nation with Huffman-Coding.

– PNG: Portable Network Graphics (PNG) uses a filter based on prediction of one
pixel from the preceding pixels. Afterward, the prediction errors are compressed
by the algorithm “Deflate” which uses dictionary coding (matching repeating se-
quences) followed by Huffman coding.10

– TIFF: A container image format that can use several compression algorithms. In
this case PackBits compression was used, which is a form of run length encoding.

3.3 Experiment A: comparison on generated and hydrological time series

In the first experiment, the algorithms are tested on a real world hydrological data set
from Leaf River (MS, USA) consisting of rainfall, potential evaporation and streamflow.15

See e.g. Vrugt et al. (2003) for a description of this data set. As a reference, various
artificially generated series where used. The generated series consist of 50 000 values,
while the time series of the Leaf River data set, contains 14 610 values (40 yr of daily
values). The following series where used in this experiment. All are quantized directly
with the linear scheme using Eq. (5).20

3.4 Experiment B: Compression with a hydrological model

The second experiment is a first exploration of jointly compressing time series. In the
previous experiment single time series were compressed to obtain an indication of their
information content. Given the connection between modeling and data compression,
a hydrological model should in principle be able to compress hydrological data. This25
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can be useful to identify good models in information-theoretical terms, but can also be
useful for actual compression of hydrological data. Although a more detailed analysis is
left for future work, we perform a first test of estimating the performance of hydrological
models using data compression tools.

The hydrological model HYMOD was used to predict discharge from rainfall for the5

Leaf River data set; see e.g. Vrugt et al. (2009) for a description of model and data.
Subsequently, the modeled discharges were quantized using the same quantization
scheme as the observed discharges. An error signal was defined by subtracting the
modeled (Qmod) from the observed (Q) quantized discharge. This gives a signal that
can range from −255 to +255, but because the errors are sufficiently small, ranged from10

−55 to +128, which allows for 8 bit coding. Because the observed discharge signal (Q)
can be reconstructed from the precipitation time series (P ), the model, and the stored
error signal (Qerr), the model could enable compression of the data set consisting of P
and Q. In the experiment we test whether the error series is indeed more compressible
than the original time series of Q.15

3.5 Experiment C: Compression of hydrological time series from the MOPEX
data set

In a third experiment, we looked at the spatial distribution of compressibility for daily
streamflow and rainfall data in the 431 river basins across the continental USA, as con-
tained in the MOPEX data set. This should give some indication about the information20

content or complexity of the time series. For these experiments, the streamflow values
are log-transformed before quantization, to reflect the heteroscedastic uncertainty in
the measurements. Missing values, which were infrequent, were removed from the se-
ries. Although this can have some impact on the ability to exploit autocorrelation and
periodicity, the effect is deemed to be small and has a smaller influence than other25

strategies such as replacing the missing values by zero or a specific marker. Results
of this compression experiment are presented in Sect. 4.3.
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4 Results of the compression experiments

This section shows results from the compression analysis for single time series. Also
an example of compression of discharge, using a hydrological model in combination
with knowledge of rainfall, is shown.

4.1 Results A: generated data5

As expected, the file sizes after quantization are exactly equal to the number of val-
ues in the series, as each value is encoded by one byte (8 bits) and stored in binary
raw format. From the occurrence frequencies of the 256 unique values, the entropy of
their distribution was calculated. Normalized with the maximum entropy of 8 bits, the
fractions in row 3 of Table 2 give an indication of the entropy bound for the ratio of com-10

pression achievable by value by value entropy encoding schemes such as Huffman
coding, which do not use temporal dependencies.

The signal to noise ratios in row 4 give an indication of the amount of data corruption
that is caused by the quantization. As a reference, the uncompressed formats BMP
(Bitmap), WAV (Waveform audio file format), and HDF (Hierarchical Data Format) are15

included, indicating that the file size of those formats, relative to the raw data, does not
depend on what data are in them, but does depend on the amount of data, because
they have a fixed overhead that is relatively smaller for larger files.

The results for the various lossless compression algorithms are shown in rows 7–17.
The numbers are the percentage of the file size after compression, relative to the orig-20

inal file size (a lower percentage indicates better compression). The best compression
ratios per time series are highlighted. From the result it becomes clear that the con-
stant, linear and periodic signals can be compressed to a large extent. Most algorithms
achieve this high compression, although some have more overhead than others. The
uniform white noise is theoretically incompressible, and indeed none of the algorithms25

appears to know a clever way around this. In fact, the smallest file size is achieved by
the WAV format, which does not even attempt to compress the data and has a relatively
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small file header (meta information about the file format). The Gaussian white noise is
also completely random in time, but does not have a uniform distribution. Therefore
the theoretical limit for compression is the entropy bound of 86.3 %. The WAVPACK
algorithm gets closest to the theoretical limit, but also several file archiving algorithms
(ARJ, PPMD, LZMA BZIP2) approach that limit very closely. This is because they all5

use a form of entropy coding as a back-end (Huffman and Range coding). Note that
the compression of this non-uniform white noise signal is equivalent to the difference in
uncertainty or information gain due to knowledge of the occurrence frequencies of all
values (the climate), compared to a naive uniform probability estimate; cf. the first two
bars in Fig. 1 of Weijs et al. (2010a).10

The results for the hydrological series firstly show that the streamflow series is better
compressible than the precipitation series. This is remarkable, because the rainfall
series has the lower entropy. Furthermore it can be seen that for the rainfall series, the
entropy-bound is not achieved by any of the algorithms, presumably because of the
overhead caused by the occurrence of 0 rainfall more than 50 percent of the time, see15

Eqs. (3) and (4). Further structure like autocorrelation and seasonality can not be used
sufficiently to compensate for this overhead. In contrast to this, the streamflow series
can be compressed to well below the entropy bound (27.7 % vs. 42.1 %), because of
the strong autocorrelation in the data. These dependencies are best exploited by the
PPMD algorithm, which uses a local prediction model that apparently can predict the20

correlated values quite accurately. Many of the algorithms cross the entropy bound,
indicating that they use at least part of the temporal dependencies in the data.

4.2 Results B: Compression with a hydrological model

We analyzed the time series of Q and P for leaf river, along with the modeled Q (Qmod)
and its errors (Qerr). In Table 3, the entropies of the signals are shown. The second25

row shows the resulting file size as percentage of the original file size for the best
compression algorithm for each series (PPMD or LZMA).
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The table also shows the statistics for the series where the order of the values was
randomly permuted (Qperm and Qperm

err ). As expected this does not change the entropy,
because that depends only on the histograms of the series. In contrast, the compress-
ibility of the signals is significantly affected, indicating that the compression algorithms
made use of the temporal dependence for the non-permuted signals. The joint distribu-5

tion of the modeled and observed discharges was also used to calculate the conditional
entropy H(Q|Qmod). It must be noted, however, that this conditional entropy is probably
underestimated, as it is based on a joint distribution with 2552 probabilities estimated
from 14 610 value pairs. This is the cost of estimating dependency without limiting it
to a specific functional form. The estimation of mutual information needs more data10

than Pearson correlation, because the latter is limited to a linear setting and looks
at variance rather than uncertainty. In the description length, the underestimation of
H(Q|Qmod) is compensated by the fact that the dependency must be stored by the
entire joint distribution. If representative for the dependence in longer data sets, the
conditional entropy gives a theoretical limit of compressing Q with knowledge of P and15

the model, while not making use of temporal dependence.
A somewhat unexpected result is that the errors seem more difficult to compress

(31.5 %) than the observed discharge itself (27.7 %), even though the entropy is lower.
Apparently the reduced temporal dependence in the errors (lag-1 autocorrelation coef-
ficient ρ = 0.60), compared to that of the discharge (ρ = 0.89), offsets the gain in com-20

pression due to the lower entropy of the errors. Possibly, the temporal dependence in
the errors becomes to complex to be detected by the compression algorithms. Further
research is needed to determine the exact cause of this result, which should be consis-
tent with the theoretical idea that the information in P should reduce uncertainty in Q.
The Nash-Sutcliffe Efficiency (NSE) of the model over the mean is 0.82, while the NSE25

over the persistence forecast (Qmod(t) =Qt−1) is 0.18 (see Schaefli and Gupta, 2007),
indicating a reasonable model performance. Furthermore, the difference between the
conditional entropy and the entropy of the errors could indicate that an additive error
model is not the most efficient way of coding and consequently not the most efficient
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tool for probabilistic prediction. The use of for example heteroscedastic probabilistic
forecasting models (e.g. Pianosi and Soncini-Sessa, 2009) for compression is left for
future work.

4.3 Results C: MOPEX data set

For the time series of the quantized scaled log streamflow and scaled quantized rainfall5

of the MOPEX basins, from now on simply referred to as streamflow (Q) and rainfall
(P ), for brevity, the compressibility and entropy show clear spatial patterns. For most of
the streamflow time series, the entropy is close to 8 bits, indicating that the frequency
distribution of the preprocessed streamflow does not diverge much from a uniform
distribution. An exception are the basins in the central part of the USA, which show10

lower entropy time series due to high peaks and relatively long, low base flow periods.
Also for the rainfall, entropy values are lower in this region due to longer dry spells; see
Fig. 3.

Compression beyond the entropy bound can be achieved by using temporal patterns.
This is visible in Fig. 4, where the compression ratio of the best performing algorithm is15

visualized relative to the entropy of the signals. Different algorithms are specialized in
describing different kinds of patterns, so the map of best performing algorithms (Fig. 5)
can be used as an indication for which types of patterns are found in data. In Fig. 6,
some of two influences on compression rate are shown. Firstly, due to temporal depen-
dencies in the streamflow, the conditional entropy given the previous value H(Qt |Qt−1),20

known as the entropy rate H ′(Q), is much lower than the entropy itself. This could the-
oretically lead to a compression describing the signal with H ′(Q) bits per time step.
However, because of the relatively short length of the time series compared to the
complexity of the model that describes it (a two dimensional 256 bin histogram), this
compression is not reached in practice, because the model needs to be stored too.25

This is a natural way of accounting for model complexity in the context of estimating
information content of data.
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5 Discussion

The data compression results give an indication of the information content or complex-
ity of the data. Eventually, these may be linked to climate and basin characteristics
and become a tool for hydrological time series analysis and inference. Although infor-
mation theory may eventually provide a solid foundation for hydrological modeling, it5

is also important to first consider the limitations such approaches. In this paper, we
discuss some inherent issues in quantifying the information content, which makes the
results subjective and not straightforward to analyze.

5.1 How much information is contained in this data?

From the presented theoretical background, results, and analysis it can be concluded10

that although information theory can quantify information content, the outcome de-
pends on a number of subjective choices. These subjective choices include the quan-
tization, auxiliary data, and prior knowledge used.

The quantization can be linked to what question the requested information answers.
When quantizing streamflow into 256 equally sized classes, the question that is im-15

plicitly posed is: “in which of these equally spaced intervals does the streamflow fall?”.
When the logarithm of the streamflow is used instead, the intervals change, and there-
fore also the questions change. The question requests more absolute precision on the
lower flows than on the higher flows. The information contained in the answers given
by the data, i.e. the information content of the time series, depends on the question20

that is asked.
The information content of time series depends also what prior knowledge one has

about the answers to the question asked. If one knows the frequency distribution but
has no knowledge of surrounding values, the prior knowledge takes the form of a
probability distribution that matches the observed frequencies. In that case, the ex-25

pected information content of each observation is given by the entropy of the frequency
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distribution. The entropy in bits gives the limit of the minimum average space per ob-
servation needed to store a long i.i.d. time series of that distribution.

In many situations in practice, however, prior knowledge does not include knowl-
edge of the occurrence frequencies, or does include more knowledge than frequen-
cies alone, e.g. temporal dependencies. In the first case the information content of the5

data should also include the knowledge gained from observing the frequencies. Also
in compression, optimal coding table, which depends on the frequencies, should be
stored and adds to the file size. One could see the histogram as a simple form of a
model that is inferred from the data. The model generally forms part of the information
content.10

In the second case, temporal dependencies reduce the average information con-
tent per observation. Also when the form of the temporal dependencies are not know
a priori, but inferred from the data, they can decrease the information content, if the
gain in compression offsets the space needed to store the model describing the de-
pendencies. In the theoretical framework of algorithmic information theory, model and15

data are unified in one algorithm (one could see as a self-extracting archive) and the
length of the shortest algorithm that reproduces the data is the information content, or
Kolmogorov Complexity (Kolmogorov, 1968).

Flexible data compression algorithms, such as used in this paper, are able to give
an upper bound for the information content of hydrological data, because they are20

not specifically tuned towards hydrological data. All patterns inferred from the data
are stored in the compressed file and very little is considered as prior information.
Theoretically, prior information can be explicitly fed to new compression algorithms in
the form of auxiliary data files (e.g. rainfall to compress runoff) or function libraries (e.g.
hydrological models), which should reduce information content of the data due to the25

increase in prior knowledge.
Summarizing, we can state that information content of data depends on (1) what

question we ask the data, and (2) how much is already known about the answer before
seeing the data.
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5.2 Aleatoric and epistemic uncertainty

In current hydrological literature, attempts are sometimes made to separate epistemic
(due to incomplete knowledge of the process) from aleatoric (the “inherent” random-
ness in the system) uncertainty. The approach to answer this question is equivalent
to trying to separate pattern from scatter (signal from noise) in high dimensional data5

spaces, to see how much of the variability can potentially be explained by any model.
However, the inherent problem in answering this question is the subjectivity of what

we call pattern and what we call scatter. Although model complexity control methods
can give guidelines on how much pattern can be reasonably inferred from data, they
usually do not account for prior knowledge. This prior knowledge may affect to a large10

degree what is considered a pattern, for example by constraining the model class that
is used to search for patterns or by introducing knowledge of underlying physics. In
the algorithmic information theory sense, this can be equivalently expressed either as
prior knowledge favoring certain long (so otherwise unlikely) programs that describe
the data, or prior knowledge favoring a certain reference computer or language, which15

offers a shorter description for that specific pattern.
As a somewhat extreme, unlikely, but illustrative example, consider that we encounter

100 consecutive digits of π as a streamflow time series. Our prior hydrological knowl-
edge would indicate those values as random, and containing a large amount of informa-
tion (no internal dependence or predictability). With different prior knowledge, however,20

for example that the data is the output of a computer program authored by a student,
we would consider the data as having a pattern, and could use this to make predictions
or compress the data (by inferring one of the possible programs the enumerate digits
of π as a probable source of the data). There would be little surprise in the second half
of the data, given the first.25

2049

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/2029/2013/hessd-10-2029-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/2029/2013/hessd-10-2029-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 2029–2065, 2013

Data compression to
define information

content

S. V. Weijs et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

6 Conclusions

Determining information content of data is a similar process as building a model of the
data or compressing the data. These processes are subject to prior knowledge and
therefore this knowledge should be explicitly considered in determining information
content. Quantization of the data can be seen as a formulation of the question the5

data is asked to give information about. Upper bounds for information content for that
question can than be found using compression algorithms on the quantized data.

A hydrological model actually is such a compression tool. It makes use of the de-
pendencies between for example rainfall and streamflow. The patterns that are already
present in the rainfall reduce the information that the hydrological model can learn10

from: a long dry period could for example be summarized by one parameter for an
exponential recession curve in the streamflow. The information available for a rainfall
runoff model could theoretically be estimated by comparing the file size of compressed
rainfall plus the file size of compressed streamflow with the size of a file where rainfall
and streamflow are compressed together, exploiting their mutual dependencies. We15

could denote this as:

learnable info = |ZIP(P )|+ |ZIP(Q)| − |ZIP(P ,Q)| (8)

where |ZIP(X )| stands for the file size of a theoretically optimal compression of data
X , which includes the size of the decompression algorithm. This brings us back to
the ideas of algorithmic information theory, which uses program lengths that repro-20

duce data on computers (Turing machines). The shortening in description length when
merging input and output data, i.e. the compression progress, could be seen as the
amount of information learned by modeling. The hydrological model that is part of the
decompression algorithm embodies the knowledge gained from the data.

Further explorations of these ideas from algorithmic information theory are expected25

to put often-discussed issues in hydrological model inference in a wider perspective
with more general and robust foundations.

2050

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/2029/2013/hessd-10-2029-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/2029/2013/hessd-10-2029-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 2029–2065, 2013

Data compression to
define information

content

S. V. Weijs et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Appendix A

Correspondence of resolution – reliability – uncertainty decomposition to
compression and structure

In this appendix, we give a data-compression interpretation of Kullback-Leibler diver-
gence as a forecast skill score and its decomposition into uncertainty, reliability and res-5

olution, as proposed in Weijs et al. (2010b). As noted in Sect. 2.1, when observations
have distribution p, but an optimal fixed coding is chosen assuming the distribution is
q, the expected average code length per observation is given by

H(p)+DKL(p||q).

The code length is related to the remaining uncertainty, i.e. the missing information,10

i.e. the amount of information that remains to be specified to reproduce the data. In
terms of forecast evaluation and the decomposition presented in Weijs et al. (2010b),
using the same notation, this remaining uncertainty is the divergence score associated
with a forecast with zero resolution (forecasts do not change), and non-zero reliability
(forecast distribution f is not equal to climatological distribution ō)15

DS = H(ō)+DKL(ō||f) = UNC+REL.

The resolution term, given by the Kullback-Leibler divergence from the marginal dis-
tribution ō to the conditional distributions of observations ōk , given forecast fk ,

RES = DKL(ōk ||ō),

is zero since ōk = ō for an unconditioned, constant forecast (code for compression).20

When data with temporal dependencies is compressed, a lower average code length
per observation can be achieved, since we can use a dynamically changing coding for
next observations, depending on the previous. In terms of forecast quality, this means
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that the individual probability estimates now have non-zero resolution. This resolution,
which is equivalent to the mutual information between the forecast based on the past
time series and the value to code, will reduce the average code length per observation.
Since also the individual forecasts will not be completely reliable, the average code
length per observation will now have a contribution from each term in the decomposi-5

tion of the divergence score

DS = H(ō)+
K∑

k=1

nk

N

[
DKL(ō||fk)−DKL(ōk ||ō)

]
= UNC+REL−RES

where nk is the number of observations for which unique forecast no. k is given and N
is the total number of observations. When compressing data, however, the prediction
model that describes the temporal dependence needs to be stored as well. Therefore,10

the average total code length per data-point will become

DS = H(ō)+
K∑

k=1

nk

N

[
DKL(ō||fk)−DKL(ōk ||ō)

]
+L(model)/N

= UNC+REL−RES+COMPLEXITY/N

where L (model) is the length of the model algorithm. Although this model length is
language dependent, it is known from AIT that this dependence is just an additive15

constant, and can be interpreted as the prior knowledge encoded in the language. If
the language is not specifically geared towards a certain type of data, the total code
length will give a fairly objective estimate of the amount of new information in the data,
which cannot be explained from the data itself. The number of bits per sample needed
to store data can therefore be interpreted as a complexity-penalized version of the20

divergence score presented in Weijs et al. (2010a,b), applied to a predictions of the
data based on previous time steps. We can make the following observations. Firstly,
data can only be compressed if there is a pattern, i.e. something that can be described
be an algorithm where the resolution or gain in description efficiency or predictive power
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outweighs the loss due to complexity. Secondly, the data compression view naturally
leads to the notion that we have to penalize model complexity when evaluating the
predictive performance of models.
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Table 1. Signals used in experiment A.

Signal Description

constant contains only 1 value repeatedly
linear contains a slowly linearly increasing trend

uniform white is the output from the Matlab® function “rand”: uniform white noise

Gaussian white is the output from the Matlab® function “randn”, normally distributed white noise
sine 1 single sinusoidal wave with a wavelength spanning all 50 000 values
sine 100 100 sinusoidal waves with a wavelength spanning 1/100 of 50 000 values
Leaf P daily rainfall series from the catchment of Leaf river (1948–1988)
Leaf Q corresponding daily series of observed streamflow in Leaf river
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Table 2. The performance, as percentage of the original file size, of well known compression
algorithms on various time series. The best results per signal are highlighted.

Data set Constant Linear Uniform white Gaussian white Sine 1 Sin 100 Leaf Q Leaf P

file size 50 000 50 000 50 000 50 000 50 000 50 000 14 610 14 610
H

logN 0.0 99.9 99.9 86.3 96.0 92.7 42.1 31.0
SNR NaN 255.0 255.6 108.0 307.4 317.8 42.6 39.9

Uncompressed formats
BMP 102.2 102.2 102.2 102.2 102.2 102.2 407.4 407.4
WAV 100.1 100.1 100.1 100.1 100.1 100.1 100.3 100.3
HDF NONE 100.7 100.7 100.7 100.7 100.7 100.7 102.3 102.3

Lossless compression algorithms

JPG LS 12.6 12.8 110.6 94.7 12.9 33.3 33.7 49.9
HDF RLE 2.3 2.7 101.5 101.5 3.2 92.3 202.3 202.3
WAVPACK 0.2 1.9 103.0 87.5 2.9 25.6 38.0 66.2
ARJ 0.3 1.0 100.3 88.0 3.1 1.9 33.7 40.0
PPMD 0.3 2.1 102.4 89.7 3.6 1.4 27.7 36.4
LZMA 0.4 0.9 101.6 88.1 1.9 1.2 31.0 37.8
BZIP2 0.3 1.8 100.7 90.7 3.0 2.3 29.8 40.5
PNG 0.3 0.8 100.4 93.5 1.5 0.8 40.2 50.0
GIF 2.3 15.7 138.9 124.5 17.3 32.0 38.8 45.9
TIFF 2.0 2.4 101.2 101.2 2.9 91.2 201.5 201.5
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Table 3. Information-theoretical and variance statistics and compression results (remaining file
size %) for rainfall-runoff modeling.

statistic P Q Qmod Qerr Q|Qmod Qperm Qperm
err

entropy (% of 8 bits) 31.0 42.1 44.9 38.9 26.4 42.1 38.9
best compression (%) 36.4 27.7 25.8 31.5 N.A. 45.4 44.1
std. dev. (range=256) 11.7 11.6 10.4 4.95 N.A. 11.6 4.95
Autocorrelation ρ 0.15 0.89 0.95 0.60 N.A. <0.01 <0.01
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occurrence frequencies codes expected code lengths per value
event I II III A B A_I B_I A_II B_II A_III B_III
CC 0.25 0.5 0.4 00 0 0.5 0.25 1 0.5 0.8 0.4
YY 0.25 0.25 0.05 01 10 0.5 0.5 0.5 0.5 0.1 0.1
GG 0.25 0.125 0.35 10 110 0.5 0.75 0.25 0.375 0.7 1.05
RR 0.25 0.125 0.2 11 111 0.5 0.75 0.25 0.375 0.4 0.6

total H=2 H=1.75 H=1.74 2 2.25 2 1.75 2 2.15

0 1

10 11

110 111

0.1250.1250.250.5

YYCCCCRRCCGGYYCC

0100001000110100 CODE A: 16 bits, 2/color

10001110110100 CODE B: 14 bits, 1.75/color

Fig. 1. Assigning code lengths proportional to minus the log of their probabilities leads to optimal
compression. Code B is optimal for distribution II, but not for the other distributions. Distribution III
has no optimal code that achieves the entropy bound.

distribution II. Both these codes achieve the entropy bound. Code B is also an optimal Huffman
code for the distribution III (last column in figure 1). Although the expected code length is
now more than the entropy, it is impossible to find a shorter code. The overhead is equal to
the Kullback-Leibler divergence from the true distribution (III) to the distribution for which the
code would be optimal.5

DKL(III||II) =DKL((0.4,0.05,0.35,0.2)||(0.5,0.25,0.125,0.125)) = 0.4106

If the requirement that the codes are value by value (one code for each observation) is relaxed,
blocks of values can be grouped together to approach an ideal probability distribution. When
the series are long enough, entropy coding methods like Shannon and Huffman coding using
blocks can get arbitrarily close to the entropy bound (Cover and Thomas, 2006). This happens10

for example in arithmetic coding, where the entire time series is coded as one single number.

6

Fig. 1. Assigning code lengths proportional to minus the log of their probabilities leads to opti-
mal compression. Code B is optimal for distribution II, but not for the other distributions. Distri-
bution III has no optimal code that achieves the entropy bound.
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Fig. 2. The missing value in the flow time series can be guessed from the surrounding values
(a guess would for example be the grey histogram). This will usually lead to a better guess than
one purely based on the occurrence frequencies over the whole 40 yr data set (dark histogram)
alone. The missing value therefore contains less information than when assumed independent.
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Fig. 3. Spatial distribution of entropy for quantized streamflow and rainfall shows the drier cli-
mate in the central part of the USA.
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Fig. 4. Spatial distribution the compression size normalized by entropy for streamflow and rain-
fall, this gives an indication of the amount of temporal structure found in the different basins.
The streamflow is better compressible due the strong autocorrelation structure.

2063

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/2029/2013/hessd-10-2029-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/2029/2013/hessd-10-2029-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 2029–2065, 2013

Data compression to
define information

content

S. V. Weijs et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 

Best algorithm Q

WAVPACK
JPG

lossless

PPMD
LZMA
BZIP2
PNG 365

 
Best algorithm P

PPMD
LZMA

Fig. 5. Spatial distribution of the best performing algorithms for streamflow and rainfall. This
can give an indication what type of structure is found in the data. Especially for rainfall, the best
performing algorithm is linked to the number of dry days per year. See also Fig. 6.
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Fig. 6. Left: best compression of Q against entropy and against entropy rate. Temporal depen-
dencies cause better compression than the entropy, but model complexity prevents achieving
the entropy rate. Right: the best achieved compression of P depends strongly on the percent-
age of dry days, mostly through the entropy. Also the best performing algorithm changes with
the climate.
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