
We thank the AE and the referees for their interest and constructive comments on our paper that 

helped to improve its quality. The response to each referee and the comments of the AE is given in 

bold text below, with references to the updated manuscript version. A version of the updated 

manuscript text with tracked changes is attached at the end of this document, which shows how 

the text has been updated (but no tracked changes for how paragraphs have been moved in the 

discussion part, for clarity).  

Response to Referee 1: D.A. Hughes 
This paper represents the results of a very comprehensive study of data and modelling uncertainties 

in a relatively data scarse region and therefore makes a valuable contribution to hydrological 

modelling theory and (potentially) practice. In general terms the paper is also well written, but I 

found some of the explanations of the methods a bit confusing. However, I am not sure that they 

can be simplified and perhaps they would become clearer if the previous papers are consulted 

(something I admit that I did not do). I did, however, find that the discussion section seemed a bit 

long and somewhat repetitive. I would therefore encourage the authors to look at making the finala 

section more concise trying not to repeat too much of what is already in other parts of the text. 

Reply: We thank D.A. Hughes for his positive words about our paper and the constructive 

comments that helped to improve and clarify the paper.  We agree that the discussion section 

needs rewriting and have therefore shortened it and added subheadings to give it a better 

structure and clearer presentation (Section 6 in the revised paper). 

A final comment relates to the high degree of uncertainty in the simulations (and some of the 

observed data). I would like to have seen some comments about this in terms of the practical use of 

water-balance results. Mention is made of robust predictions under different circumstances and the 

possible need for more regionalised information. What does this really mean in terms of the use of 

modelling results for ’..effective management of these resources’ and can such uncertain results be 

of any value for water resources management? I realise this is not the main topic of the paper, but I 

do think that some concluding (possibly even speculative) remarks could be made about this issue. 

Reply: This is a very interesting point, especially when it comes to predictions in ungauged basins 

in a region where data inconsistencies can be expected. We accounted for many different types of 

uncertainties when making our predictions, and in basins where the data were found to be 

reliable this resulted in generally reliable simulations where the water balance was constrained 

according to the regionalised FDCs (where FDCs have a long history of use for different types of 

water management, e.g. Vogel and Fennessey, 1995). The width of the predicted uncertainty was 

therefore dependent on the uncertainty in the regionalised FDCs and was in the best cases almost 

equal to that from the local calibration and in the less accurate cases much wider.  

The uncertainty estimates from our method give much more information for water management 

than deterministic model simulations would have had. Having a prediction with high uncertainty is 

also much more valuable than having no information at all for an ungauged catchment, but when 

using that prediction for water-resources management the quality of the information that went 

into making that prediction needs to be taken into account. In using this method for a completely 



ungauged basin in this region it would thus be advisable to carefully scrutinise the quality of the 

precipitation input data to assess potential effects on the predictions. 

In the cases where the data were inconsistent, our analyses showed the need for additional 

information and improved data, which is important knowledge for water-resources management. 

Since our method would be used for predictions for ungauged catchments in a region with other 

nearby gauged catchments, much information about the dataset consistency would be found by 

making the types of analyses for the gauged catchments as we made here and by testing the 

method in cross-evaluation for the gauged catchments first to learn about the different types of 

uncertainties that are affecting the simulations. In this region it was found that for many basins 

the predictions should often not be expected to be accurate for each individual day because of 

input data errors, which should be kept in mind when the information is used for water 

management.   

We have added some remarks about this to section “6.4 Concluding remarks” Line 710–718 in the 

revised manuscript.  

Other minor comments: The reference to 1000-2500mm lower estimates of precipitation (end of 

section 4.1) is very important but not perhaps emphasised enough as a major source of uncertainty. 

Reply: We agree that this is an important problem for the two basins where it occurred, however 

this problem of largely overestimated precipitation in the CRN073 dataset only occurred for two 

Panamanian basins that were clear outliers on the Budyko curve, and was not found to be a 

general problem. For these two basins no behavioural simulations were found in the local 

calibration. Since these data inconsistencies were identifiable from the data screening we made, 

this highlights the value of making such analyses in this type of regional modelling. However, in 

completely ungauged basins the discharge-dependent data screening methods we used would not 

be able to identify such data problems, and in the paper we therefore stressed the need to 

develop data screening methods that do not rely on observed discharge data. We have added a 

short note to emphasize the precipitation uncertainty in the end of section 4.1, line 297–298. 

Line 22 of section 4.5: The sentence ’Simulations with correlation in deviations across successive EPs 

then obtain a lower weight..’ is not very clear to me and perhaps can be better explained. 

Reply: This means that a simulation with a systematically over- or underestimated FDC for (part 

of) the flow range will get a lower weight, but that such simulations are still acceptable. We found 

it important for allow for such (non-stationary) biases since the data analyses showed that they 

were frequent in the discharge and model input data. The rating-curve analysis of the Honduran 

stations showed several stations with under- or overestimated discharge and residuals that varied 

systematically with flow, and there were also temporally non-stationary rating curves. The 

screening for dataset inconsistencies and visual analyses of the data series also showed that 

several stations had likely non-stationary errors in the precipitation data. We have added “…, i.e. a 

systematically under- or overestimated FDC for (part of) the flow range can still be behavioural but 

get a lower weight.” to the end of this sentence, line 443–445. 

Minor errors: Last line of section 5.3 ’constraint’ should be ’constraints’ or ’provide an additional 

constraint’. Similarly line 4 at the top of the 2nd paragraph of scetion 6 (constraints). 



Reply. Thanks, we will change this. 
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Response to Referee 2: A. E. Sikorska  
This paper presents an approach to constrain prediction uncertainty in water-balance modelling for 

ungauged catchments by means of regionalized flow duration curves. Specifically, the authors 

investigated parametric uncertainty of a simple hydrological model, uncertainty in observational 

data and in the regionalization method. The analysis is based on the comprehensive dataset of 36 

basins in Central America with the area ranging from 132 to 8579 km2 and with long term discharge 

records from 1965-1994 years. 

Generally, the paper is well organized and constitutes a significant contribution to hydrological 

studies because across the world a significant portion of catchments remains ungauged. However, I 

have a few specific comments to the authors that, I believe, will help improving the manuscript.  

Reply: We thank A. E. Sikorska for her positive comments about the manuscript and the specific 

comments that helped to improve the manuscript. 

1) The approach is tested with a water-balance model, WASMOD. The parametric uncertainty of this 

model was estimated by sampling randomly parameter values from the defined ranges (Sect. 3). The 

choice of sampling ranges, however, is not well justified neither in this paper nor in the previous one 

(Westerberg et al., 2011). The selection of sampling ranges can play an important role in the 

estimation of prediction uncertainty. Furthermore, model parameters for all catchments are always 

sampled from the same ranges. Should you include any weighting factor for model parameter priors 

depending on some catchment characteristics such as a catchment area? 

Reply: We agree that the selection of the parameter ranges can play an important role. In the 

previous paper there was a well-defined peak in the response surface for all parameters, but for 

some of the parameters we agree that this choice of ranges was not necessarily the best for all 

catchments in this study, where we are also using a different time period and lower-quality 

regional datasets. We therefore re-ran the model for all catchments with wider intervals for the 

fast-flow parameter ([e
-11

 1]) and slightly wider bounds for the slow flow parameter ([e
-12

 1]) (the 

routing and the evaporation parameters were already set to their maximum intervals). We also 

increased the number of Monte Carlo runs to 150,000 simulations for each basin when using the 

wider bounds. This did not change any conclusions from the analyses or the main patterns in the 

result analyses (fig. 9, 11 and 12), but resulted in smaller changes to the uncertainty bounds for 

most catchments in the local (fig 10) and regional simulations (fig 13), with sometimes wider 

bounds and a few behavioural simulations were found in two basins with inconsistent data 

(Guatuso, and Guayabilas) that had none previously. In the revised version of the paper we have 

used the updated simulations with the wider parameter intervals. 

We agree with the reviewer that it would be interesting to have prior parameter ranges that 

depend on catchment characteristics; however this would require a regionalisation analysis that is 

outside the scope of our paper. We have clarified this in the revised manuscript, line 244–245. 

Climate characteristics such as aridity might be an important characteristic for such a 

regionalisation; however, an added complication that needs to be considered in such an analysis is 

that the setting of the parameter ranges would then also be affected by disinformation in the 

datasets. We have added some discussion about this on line 684–686. 



2) In the discussion (line 11 p. 15704) the authors state that the precipitation-data quality was 

probably the most limiting factor in uncertainty estimation. This is an important statement because 

most of catchments suffer from the lack of sufficient rainfall information. Recent studies have 

showed that the uncertainty in precipitation data strongly influences simulation results (e.g. 

McMillan et al., 2011). Although, the authors are aware of that, this needs some more emphasis and 

some recommendations in this respect could be given. 

Reply: We stated that precipitation-data quality was probably the most limiting factor based on 

the results from the data-screening analyses in which we identified many datasets with 

inconsistent data. In many of the catchments with low correlations between CPI and discharge 

there were obvious mismatches between peaks in precipitation and discharge (e.g. Fig. 10). There 

is a high spatial and temporal variability of precipitation in Central America, resulting from the 

interaction of many different precipitation-generating mechanisms with the high mountain range 

that stretches through the region (see section 2.1 and references therein). In addition, quality 

control of data at the local scale has been identified as important, with as much as 22% of the 

daily precipitation dataset in a previous study using 60 gauges for a catchment in Honduras being 

rejected because of poor quality (Westerberg et al., 2010). When making analyses for a long time 

period for a larger region such as here, one should also expect non-stationary errors in the data as 

a result of different number and types of gauges being used for different time periods, as well as 

fewer gauges being available for the regional scale compared to a detailed local dataset.  We 

found that our methods for analysing data information content through the screening procedures 

were important to use, and we recommend using such analyses also in other studies. We have 

added this recommendation to the revised manuscript, line 616. We have also restructured the 

discussion section (Section 6) so that the part about data screening (“6.1.3 Detection and impact 

of dataset inconsistencies”) follows immediately after the section about precipitation data 

uncertainty (“6.1.2 Precipitation data uncertainty”), thus giving more emphasis to this problem. 

3) Based on the results and Fig. 7, using information from more catchments in the regionalization 

method leads to the increase in prediction reliability and to the decrease in prediction precision. In 

this regards, a choice and a number of selected catchments and cross sections may be of the 

essential relevance. This is an important issue when translating the method into another study and 

should be discussed. 

Reply: In using the method for other basins we recommend performing the same cross-evaluation 

of the effect of the number of hydrologically similar catchments used in the FDC-regionalisation as 

shown in Fig. 7, to justify this choice. We have added a sentence about this in the discussion 

section in section 6.3, line 699–701 in the revised manuscript. While general guidelines on this 

question would be valuable, we do not think these can be derived from our study alone, and 

discuss the need of further studies on line 701–703. More similar studies are needed to relate the 

optimal number to station density and variability (incl. climate, geology, land use, etc…).  

4) Although, generally the paper is well written, I share the first Reviewer’s concern that the Sect. 6, 

i.e. Discussion and concluding remarks, is too long and slightly repetitive. This makes it difficult to 

follow and decreases the overall strength of the take home message. I would recommend to rewrite 

this section by splitting it into two separate subsections. I would also expect summarising 

recommendations for using the method and its usefulness for other studies. 



Reply: We agree that this section needs rewriting and have shortened and restructured it into 

several subsections accordingly. We have added a recommendation about the evaluation of the 

FDC-regionalisation (see reply to the previous comment) to the existing discussion about the need 

to try it in a region with better-quality data to be able to draw further conclusions. As stated in the 

previous reply we think further studies are needed before conclusive recommendations can be 

made. 

5) My last comment relates to the chosen method of uncertainty estimation, namely the Generalized 

Likelihood Uncertainty Estimation (GLUE). Although, the methodology of uncertainty estimation is 

not the focus of this paper, more promising and rigours methods would be more adequate such as 

Bayesian methods with a realistic likelihood function (e.g. Mantovan and Todini, 2006; Reichert and 

Mieleitner, 2009; Del Giudice et al., 2013; Evin et al., 2013). I would like the authors to elaborate on 

that especially when discussing the limitations of their study. 

Reply: We agree that the methodology of uncertainty estimation is not the main focus of this 

paper, but still an important issue. We found a high presence of non-stationary epistemic errors in 

the input and evaluation data for which there was little information about their absolute 

magnitudes or character (including rating-curve residuals that vary with flow range and non-

stationary rating curves but lack of site-specific information, and substantial non-stationary 

precipitation errors and inconsistencies in input-output data combinations). We do not believe 

that the assumptions behind formal Bayesian likelihood measures that rely on an explicit model of 

the structure of the errors would be suitable in the presence of these errors, as have been 

extensively discussed by some of the authors of this study previously (e.g. Beven et al., 2012; 

Beven and Westerberg, 2011; Beven et al., 2008). We have included a more explicit motivation of 

the uncertainty estimation method chosen in the end of section 6.1.1, line 586–591 and the end of 

Section 6.1.3, line 635–641 in the revised manuscript, and also referred to the previous debate 

about this issue there. 
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Reply to Anonymous Referee 3 
The manuscript by Westerberg et al. (2013) presents a method to estimate predictive uncertainty in 

conceptual hydrological modeling of ungauged river basins by using flow-duration curves as 

information source. The idea is to account for output data uncertainty when transferring parameters 

inferred in gauged watersheds to similar ungauged watersheds. The methodology for uncertainty 

assessment combines fuzzy regression analysis and informal inference methods. 

In my view the paper is well written and its topic is relevant for the HESS audience since it stresses 

the need to account for different uncertainty types in hydrological modeling. There are however 

some critical issues that need to be addressed before publication. 

Reply: We thank Referee #3 for the review and the positive comments about the manuscript.  

I. The scientific method used for uncertainty analysis is not the most appropriate one. Indeed, after 

having discussed all the flaws of the GLUE methodology (e.g., Mantovan et al. [2007], Stedinger et al. 

[2008], Clark et al. [2012]) it is astonishing that this “pseudo-Bayesian” approach is used without any 

explanation of its appropriateness and shortcomings. It seems necessary, at least to properly justify 

why this approach has been preferred given the availability of new promising statistical approaches 

for uncertainty analysis (e.g., Renard et al. [2010], Reichert and Schuwirth [2012]). More 

importantly, the authors should clearly discuss the limitations of the interpretation of the resulting 

uncertainty bounds. As Clark et al. [2012] pointed out, GLUE uncertainty estimates appear to lack 

quantitative significance and the use of “new triangular pseudo-likelihoods” do not seem to solve 

this problem nor other fundamental weaknesses of GLUE. If the uncertainty intervals are not even 

intended to encompass the relevant fractions of validation data what is the meaning of these 

predictions and how can we practically use them? 

Reply: The different views on what an appropriate likelihood function should be have been 

discussed in great detail before (see e.g. Clark et al., 2012; and Beven et al., 2012, and references 

therein), and we do not think this needs to be repeated here in detail. Whether the structure of 

the errors that affect the modelling can be described statistically in a likelihood function, or 

whether they have a more complex and non-stationary epistemic character that cannot be 

represented by a simple statistical description without overestimating the data information 

content is an important issue. In the present study, the high presence of non-stationary epistemic 

errors (about which there is little information about their magnitudes) in both the model input 

and evaluation data make the informal likelihoods we use particularly suitable, since there is no 

assumption about purely random errors, or biases of a certain stationary/simple structure. We 

agree that this motivation could be stated more explicitly in the paper and have included a 

discussion about this in the revised version in section 6.1.1 and 6.1.3 (see also response to A. E. 

Sikorska above).  

With regards to the interpretation of the GLUE uncertainty bounds, these have a clear 

interpretation with respect to uncertainties in the observed data used to set the limits of 

acceptability. In this paper the uncertainty bounds are calculated at each time step as the 2.5 and 

97.5 percentiles of the likelihood-weighted distribution of the simulated discharge of all 

behavioural parameter-value sets as stated in Section 4.5. The behavioural criteria was set based 

on the estimated uncertainty in the observed FDC, where every simulation that is inside the 



estimated uncertainty in the observed FDC at each evaluation point is considered behavioural and 

given a weight depending on how close to the best-estimate observed value it is. The uncertainty 

bounds therefore have a clear interpretation relative to the estimated uncertainty in the observed 

FDC. 

II. The citation of other studies dealing with uncertainty analysis in ungauged basins and concerning 

errors in calibration data, especially those applying formal statistical methods, is quite limited. In 

order to present a more balanced view I suggest to discuss at least the following papers:  

Honti et al. [2013]: uses a recent Bayesian approach to deal with several uncertainty types (included 

observation uncertainty which is disentangled from the other contributions) to reliably quantify the 

uncertainty of flow duration curves and discharge. 

Sikorska et al. [2012]: shows how to assess runoff predictive uncertainty in ungauged basins by using 

autroregressive error models. 

Renard et al. [2010]: tries to quantify different uncertainty components in a Bayesian framework by 

also separately accounting for uncertainties in the measured runoff. 

Reply:  We agree that these all are relevant papers, but find it difficult to include the whole range 

of relevant papers on uncertainty analyses. We cite the important paper by McMillan et al. (2012), 

which reviews different approaches for estimating and accounting for calibration-data (discharge) 

uncertainties, and we specifically mention two papers for rating-curve analyses for alluvial 

rivers/non-stationarity that is of particular relevance in our case. The focus of our paper is 

ungauged basins and specifically the use of signatures in model regionalisation, and we have cited 

important papers in this respect (including the formal Bayesian approaches of Bulygina et al, 2009 

and He et al., 2011). Two of the papers suggested by the reviewer are not about ungauged basins. 

The Sikorska et al. 2012 paper, about rainfall and parameter uncertainties for a poorly gauged 

urban basin, has been included at the end of the introduction section in the revised manuscript, 

line 132–133.   

Minor points: 

i. “Reliability” and “precision” should be also defined in relation to the probabilistic performance 

measures of “reliability” and “sharpness” (see e.g., Breinholt et al. [2012]). How do these concepts 

relate? 

Reply: The reliability and precision measures were previously used by Westerberg et al. (2011), 

Guerrero et al. (2013), and Coxon et al. (2013). They are similar to the measures used by Yadav et 

al. (2007) and Breinholt et al. but differ in that they incorporate the estimate of the uncertainty in 

the observed discharge data, where that estimate consists of an upper and lower bound that allow 

for non-stationary biases in-between the bounds (e.g. because of the rating-curve errors that in 

some cases varied strongly with flow range). We have included this explanation with reference to 

the Yadav et al. and Breinholt et al. papers as well as the references to the previous papers where 

the measures were first used at the end of section 4.4, line 426–430.  

ii. Define “behavioral simulations”: for researchers not familiar with the previous papers of the 

authors it can be hard to understand this concept without further explanation. 



Reply. The extended GLUE uncertainty estimation method using limits of acceptability as we used 

here was proposed by Beven (2006), and the method for using it with FDCs as in this paper is 

described by Westerberg et al. (2011). Instead of using a traditional lumped performance 

measure, models are considered behavioural or acceptable if they produce simulations inside the 

observed uncertainty in the evaluation data, in this case the observed FDC. In the paper we 

explicitly defined the behavioural simulations in section 4.5 “Behavioural simulations were 

required to be within the limits of acceptability defined from the discharge-data uncertainty at 

each of the 19 EPs”. In order to not increase the length of our already long paper with further 

explanations of the limits of acceptability method, we have included a reference to the original 

Beven (2006) paper in section 4.5, line 434, in addition to the Westerberg et al. (2011) reference 

already there, and refer the reader to these previous papers. We have also added a short 

definition of the behavioural simulations in the abstract, line 37. 

iii. The Discussion is currently a big block of text. It think it would help understanding it better if the 

authors would structure it into subsections. 

Reply. We agree and have restructured and shortened the discussion section in the revised 

manuscript (see also response to the first two reviewers). 

iv. Section 3 (Model) is not optimally structured: first, the model would fit better in the methods; 

second, the description of the model structure is mixed with the prior definition and the numerical 

implementation of the uncertainty analysis routine. I think these three concepts should be 

separately explained and better organized. 

Reply: It is true that Section 3 of the paper is presented concisely. However the details are 

available in the past papers cited and we feel that sufficient detail is given here in that the 

concentration is on the use of the model for the regionalisation methodology. We have added a 

reference to Table 1 in Westerberg et al. (2011) for the model equations to the text in Section 3, 

line 244. 
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to constrain prediction uncertainty in water-balance modelling of ungauged basins. 

 

We have received three positive reviews of the manuscript. The reviewers have provided very 

valuable comments that, if properly addressed, will help enhance the manuscript. They all agree 

that the paper’s contribution is substantial and useful, but also agree that some portions of the 

manuscript need to be improved. The authors, in the response letters have shown and they have 

carefully looked at these comments and have stated that the paper will be revised to account for 

the reviewers suggestions.  

 

In my own opinion the paper is well written and its content is novel and valuable. After looking at 

the reviewer’s comments and my own assessment of the work I consider that the paper will be 

suitable for publication if the authors adequately address the reviewers’ comments, particularly 

those that will help improve the clarity of the methodology. Some of the major points raised by the 

reviewers that need to be carefully addressed in the revised manuscript are: 

We thank the AE for the positive comments about our paper. 

 

1) Reviewer 1 has pointed out some lack of clarity in the methodology section and has made some 

suggestions for improvement. D.A. Hughes also suggests including a discussion on the use of 

“uncertain results” for water resources management that will be extremely useful for the 

readership of HESS.  

We have clarified several methodological issues in response to all the reviewers’ comments and 

revised and restructured the discussion part in section 6 as detailed above. We have also included 

discussion about the use of the uncertain results in section 6.4. 

 

2) Reviewer 2, has listed a number of specific points that will help clarify the methodological 

approach (including selection of parameters ranges, a better explanation on the effect of 

precipitation uncertainty on simulation results, and clear explanation on the transferability of the 

methodology to a different study area).  

We revised the parameter bounds and re-ran the model with the new wider bounds such that all 

the results in the updated manuscript version, and the related figures, are based on the updated 

simulations. This resulted in some minor changes to the results but did not change any conclusions 

about the method. We have also discussed the role of precipitation uncertainty and made some 



recommendations regarding the use of the method in other areas, however, this is a first study 

and in our opinion more studies are needed before more conclusive recommendations can be 
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3) Reviewers 2 and 3 have both pointed out the need to discuss the existence of alternative 

approaches for uncertainty estimation, and a justification for the selection of the methodology 

used in this study. It will indeed be beneficial to briefly discuss these alternative approaches, the 

rationale for the selection of this particular approach, and to include the appropriate references in 

the revised manuscript.  

 

In summary, though the revisions needed are only moderate, they should address not only the 

main reviewer’s concerns (listed above) but also their minor comments, as this certainly will help 

to improve the revised manuscript. 

We have included more discussion and justification about the selection of the uncertainty 

estimation methodology in the paper, with reference to relevant previous papers and the more 

extensive discussion in these previous papers.  

 

 



1 

 

 

Regional water-balance modelling using flow-duration 1 

curves with observational uncertainties  2 

 3 

I. K. Westerberg1,2,3, L. Gong2, K. J. Beven2,4, J. Seibert2,5, A. Semedo2,6, C.-Y. 4 

Xu7,2, S. Halldin2 5 

[1] {Department of Civil Engineering, University of Bristol, Queen's Building, University 6 

Walk, Clifton BS8 1TR, UK} 7 

[2] {Department of Earth Sciences, Uppsala University, Villavägen 16, 75236, Uppsala, 8 

Sweden} 9 

[3] {IVL Swedish Environmental Research Institute, P.O. Box 210 60, 10031, Stockholm, 10 

Sweden} 11 

[4] {Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK}  12 

[5] {Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, 13 

Switzerland} 14 

[6] {CINAV – Escola Naval, Base Naval de Lisboa, Alfeite, 2810-001 Almada, Portugal} 15 

[7] {Department of Geosciences, University of Oslo, Postboks 1047 Blindern, 0316, Oslo, 16 

Norway} 17 

Correspondence to: I. K. Westerberg (ida.westerberg@bristol.ac.uk) 18 

 19 

Abstract 20 

Robust and reliable water-resources mapping in ungauged basins requires estimation of the 21 

uncertainties in the hydrologic model, the regionalisation method, and the observational data. 22 

In this study we investigated the use of regionalised flow-duration curves (FDCs) for 23 

constraining model predictive uncertainty, while accounting for all these uncertainty sources. 24 

A water-balance model was applied to 36 basins in Central America using regionally and 25 

globally available precipitation, climate and discharge data that were screened for 26 

inconsistencies. A rating-curve analysis for 35 Honduran discharge stations was used to 27 

estimate discharge uncertainty for the region, and the consistency of the model forcing and 28 

evaluation data was analysed using two different screening methods. FDCs with uncertainty 29 

bounds were calculated for each basin, accounting for both discharge uncertainty and, in 30 

many cases, uncertainty stemming from the use of short time series, potentially not 31 

representative for the modelling period. These uncertain FDCs were then used to regionalise 32 

a FDC for each basin, treating it as ungauged in a cross-evaluation, and this regionalised FDC 33 

was used to constrain the uncertainty in the model predictions for the basin. 34 

There was a clear relationship between the performance of the local model calibration and the 35 

degree of dataset consistency – with many basins with inconsistent data lacking behavioural 36 

simulations (i.e., simulations within predefined limits around the observed FDC) and the 37 

basins with the highest dataset consistency also having the highest simulation reliability. For 38 

the basins where the regionalisation of the FDCs worked best, the uncertainty bounds for the 39 

regionalised simulations were only slightly wider than those for a local model calibration. 40 

The predicted uncertainty was greater for basins where the result of the FDC-regionalisation 41 

was more uncertain, but the regionalised simulations still had a high reliability compared to 42 
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the locally-calibrated simulations and often encompassed them. The regionalised FDCs were 43 

found to be useful on their own as a basic signature constraint; however, additional 44 

regionalised signatures could further constrain the uncertainty in the predictions and may 45 

increase the robustness to severe data inconsistencies, which are difficult to detect in for 46 

ungauged basins. 47 

 48 

1 Introduction 49 

Knowledge about the temporal and spatial variability of water resources is essential for 50 

effective management of these resources, for preventing water-related disasters, and for 51 

fostering cooperation and avoiding conflict over trans-boundary waters. Mapping of this 52 

variability requires hydrologic models in situations where: 1) discharge data are of 53 

insufficient quality, 2) predictions are required for time periods with no monitored discharge, 54 

or 3) predictions are required for basins without discharge monitoring stations. Model-55 

parameter values and their uncertainty ranges can be estimated by calibration to measured 56 

data in the first two cases whereas the last case requires a regionalisation procedure. 57 

Discharge data are non-existent, intermittent or non-available for many basins, which make 58 

Predictions in Ungauged Basins (PUB) an important prerequisite for comprehensive water-59 

resources mapping (Bloeschl et al., 2013).  However, estimating the response of an ungauged 60 

basin always involves some uncertainty, and one of the features of the PUB science plan was 61 

the development of methods to constrain that uncertainty (Hrachowitz et al., 2013; Sivapalan 62 

et al., 2003). In this study we addressed uncertainties in the observational data, the 63 

hydrological model parameterisation and the regionalisation method (based on regionalised 64 

flow-duration curves, FDCs).  65 

Conceptual water-balance models have traditionally been regionalised by transferring 66 

parameter values from gauged to ungauged basins using some measure of hydrologic 67 

similarity or a regression with model parameter values as dependent variables and physical 68 

characteristics of the basins as independent variables (Seibert, 1999; Jakeman et al., 1992; 69 

Parajka et al., 2005; Xu, 2003). Such procedures are often limited by their assumption of 70 

model-parameter independence and incomplete assessment of predictive uncertainty for 71 

gauged and ungauged basins (McIntyre et al., 2005; Bardossy, 2007; Buytaert and Beven, 72 

2009).  73 

Wagener and Montanari (2011) discuss a convergence of approaches for PUB in recent years 74 

where regionalisation is based on the expected functional behaviour of the ungauged 75 

watershed rather than the model and its parameters. Watershed behaviour has been quantified 76 

in the form of information or “signatures” derived from discharge or other types of data for 77 

model calibration in recent studies (Winsemius et al., 2009; Son and Sivapalan, 2007; Yu and 78 

Yang, 2000; Castiglioni et al., 2010; Westerberg et al., 2011b; Blazkova and Beven, 2009; 79 

Yadav et al., 2007). Many of these studies have been made within a set-theoretic approach for 80 

uncertainty estimation (e.g. Blazkova and Beven, 2009; Yadav et al., 2007; Winsemius et al., 81 

2009), but Bayesian statistical approaches have also been used (e.g. Bulygina et al., 2009). 82 

The types of information that have been used include recession curves (Winsemius et al., 83 

2009), slope of the FDC (Yilmaz et al., 2008; Yadav et al., 2007), base-flow index (Bulygina 84 

et al., 2009), spectral properties (Montanari and Toth, 2007), and flood discharge and snow-85 

water equivalent frequency quantiles (Blazkova and Beven, 2009). Calibration approaches 86 

focused on matching hydrological signatures thus allow regionalisation to be performed 87 

directly on a wide range of hydrologic information, which is then used to constrain model 88 

parameters at ungauged sites. Yadav et al. (2007) regionalise constraints on expected 89 
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watershed response behaviour in the UK and account for uncertainty in the regionalisation 90 

method. Kapangaziwiri et al. (2012) use regionalised signature constraints for runoff ratio 91 

(long-term ratio of runoff over precipitation) and slope of the FDC in combination with prior 92 

parameter estimation. Yu and Yang (2000) regionalise FDCs and calibrate their model 93 

against a performance measure based on specific exceedance percentages of the FDC using 94 

an optimisation algorithm.  95 

Uncertainties in observational data affect the information content of data and derived 96 

signatures and it is therefore important to estimate and account for these uncertainties also in 97 

rainfall-runoff model regionalisation (Hrachowitz et al., 2013). However, as noted in the 98 

recent review by McMillan et al. (2012) no studies have so far explicitly investigated the role 99 

of observational uncertainties in this context. Discharge-data uncertainty can often be 100 

estimated based on rating-curve analyses and has received increasing attention in recent 101 

years. Relative errors of around 10–20% for medium to high flows, with higher ranges for 102 

low flows (50–100%) and out-of-bank flows (40%) are typically reported (McMillan et al., 103 

2012). The main uncertainties relate to the approximation of the true stage-discharge relation 104 

by the rating curve. Discharge data are therefore especially uncertain in alluvial rivers with 105 

non-stationary stage-discharge relationships (Jalbert et al., 2011; Guerrero et al., 2012) and 106 

for flow conditions outside those used for constructing the rating curve. Model input data, 107 

especially precipitation, are also affected by sometimes substantial uncertainties that are more 108 

difficult to estimate and may have non-stationary characteristics, e.g. because of temporal 109 

changes in the number and quality of precipitation gauges (Westerberg et al., 2010; Brath et 110 

al., 2004). In some cases the observational uncertainties can be so large that the model 111 

forcing and evaluation data are physically inconsistent (Beven and Westerberg, 2011), e.g. 112 

because of inferred actual evaporation greater than potential evaporation (Kauffeldt et al., 113 

2013) or runoff ratios greater than one (Beven et al., 2011). Such data inconsistencies will be 114 

“disinformative” in calibration of a model built on such assumptions. Datasets can be 115 

screened for inconsistencies prior to modelling (Kauffeldt et al., 2013; Beven et al., 2011), 116 

however, identification of inconsistent data might prove difficult in cases where auxiliary 117 

information is not available or where disinformation is not easily identified. 118 

The aim of this study was to investigate if regionalised FDCs could be used to reliably 119 

constrain water-balance prediction uncertainty in ungauged basins, while estimating and 120 

analysing uncertainties in the observational data and regionalisation method as well as the 121 

model parameterisation. We used the FDC-calibration method of Westerberg et al. (2011b) 122 

together with regionalised FDCs, therefore also testing this method for a wider range of 123 

basins than in the previous study. A variety of approaches have been used for regionalisation 124 

of FDCs (reviewed by Bloeschl et al., 2013), including the fitting of a frequency distribution 125 

(Castellarin et al., 2004) or a parametric equation (Yu et al., 2002) to the FDCs where the 126 

parameters are regionalised through regression with basin characteristics as independent 127 

variables. Holmes et al. (2002), building on the work of Burn (1990a, b), use a region-of-128 

influence (ROI) approach to predict FDCs for the UK, with a dynamic definition of a ROI 129 

based on hydro-geologic similarity. While some studies explore uncertainty in the 130 

regionalised FDCs (e.g. Yu et al., 2002), and data uncertainties in snow-model 131 

regionalisation (He et al., 2011) and rainfall and parameter uncertainties in modelling a 132 

poorly gauged urban basin (Sikorska et al., 2012), none has, to our knowledge, accounted for 133 

discharge and input-output data uncertainties in FDC or rainfall-runoff model regionalisation. 134 

 135 
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2 Study area and data 136 

2.1 Study area 137 

Central America is a region with a highly variable climate in both space and time despite its 138 

small extent (around 520,000 km2). This has resulted in many water-related disasters; 139 

flooding with severe consequences such as inundations and destruction of important crops, 140 

promulgation of landslides, and loss of lives (Waylen and Laporte, 1999); and sustained 141 

droughts with severe consequences for hydro-power generation, water supply, irrigation and 142 

tourism (George et al., 1998). The characteristics of the complex regional climate have been 143 

well studied (e.g. Alfaro, 2002; Amador et al., 2006; Magaña et al., 1999; Enfield and Alfaro, 144 

1999), but there are relatively few published hydrological modelling studies (but see e.g. 145 

Birkel et al., 2012; Westerberg et al., 2011b; Hidalgo et al., 2013). One reason for the scarcity 146 

of peer-reviewed literature is the difficulty to access comprehensive and good-quality hydro-147 

meteorological data, and several studies point to the need for data quality control in this 148 

region (Aguilar et al., 2005; Westerberg et al., 2010; Flambard, 2003). The regional 149 

precipitation regime has a less marked seasonal variability on the Atlantic Coast compared to 150 

the Pacific Coast, where around 80% of the precipitation falls in the rainy season from May 151 

to October–November (Portig, 1976). There is also a rainfall minimum, the so-called 152 

midsummer drought or veranillo in July–August on the Pacific Coast, resulting in a bimodal 153 

regime with two peaks in June and September–October (Magaña et al., 1999). The 154 

spatiotemporal variability of precipitation is high, since precipitation is often convective, and 155 

associated with different mechanisms such as hurricanes, tropical storms, and easterly waves 156 

in the atmosphere (Peña and Douglas, 2002). Temperature variability is low, with a greater 157 

diurnal than annual rangeseasonal variation that is characteristic of the tropics. Climate 158 

variability on an inter-annual time scale is pronounced with large differences between wet 159 

and dry years; this variability is modulated by ENSO (El Niño/Southern Oscillation) and 160 

Atlantic sea-surface temperatures (Diaz et al., 2001; Enfield and Alfaro, 1999).  161 

2.2 Model forcing data 162 

The water-balance model we used was driven with daily precipitation and daily potential 163 

evaporation data and calibrated and evaluated using daily discharge. Comprehensive local 164 

climate and discharge datasets covering the whole of Central America are difficult to obtain 165 

as observation data are either non-existing or cannot be made available with a reasonable 166 

effort. We therefore used globally or regionally available gridded meteorological data in this 167 

study. In early attempts with the regional model, potential evaporation calculated from ERA-168 

Interim (Dee et al., 2011) climate variables at a 0.75˚ resolution and TRMM precipitation 169 

data (Huffman et al., 2007) with a spatial resolution of 0.25˚  were used for the period 1998–170 

2009. However, this resulted in inconsistently simulated hydrographs in a few test basins 171 

since the TRMM precipitation did not compare well to local precipitation data. We therefore 172 

used daily precipitation data from the CRN073 dataset (Magaña et al., 1999; Magaña et al., 173 

2003) at a spatial resolution of 0.5˚ that covers Central America, Mexico and the Caribbean 174 

region for the period 1958–2000. It is based on station data from the national weather 175 

services blended with satellite precipitation estimates for the oceans. The station data cover 176 

different time periods resulting in time-varying errors and some obvious in-homogeneities 177 

could be seen for many stations in the late 1990s, which may result from inclusion of 178 

malfunctioning automatic rain gauges. Since the temporal coverage of this dataset did not 179 

overlap sufficiently with the potential evaporation calculated from the ERA-Interim data, we 180 

used the WATCH Forcing Data (WFD; Weedon et al., 2010) for the period 1958–2000 at a 181 
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0.5˚ spatial resolution. The WFD provide bias-corrected variables based on the ERA-40 182 

reanalysis (Uppala et al., 2005) and we used specific humidity, atmospheric pressure, 2-metre 183 

air temperature, 10-metre wind speed, net shortwave radiation and net long-wave radiation to 184 

calculate potential evaporation using the Penman-Monteith FAO-56 equation (Allen et al., 185 

1998). Specific humidity was first converted to relative humidity using a mixing-ratio method 186 

and 10-metre wind speed was converted to 2-metre wind speed using a logarithmic 187 

relationship (Allen et al., 1998). Prior to the calculation of potential evaporation, the quality 188 

of the WFD data was evaluated usingby daily weather data (Global Surface Summary of the 189 

Day, or GSOD) from the National Climatic Data Center (NCDC, 2011). The comparison was 190 

made for 18 half-degree cells spread over the study area, each of which contained at least one 191 

GSOD station with at least five years of daily data. The evaluation showed that WFD air 192 

temperature and the WFD-derived relative humidity were reasonably correlated with GSOD 193 

data although with average biases of -1.7˚C and +6 % respectively. No significant correlation 194 

was found between WFD and GSOD wind-speed data, which is often the least sensitive 195 

variable for the estimation of potential evaporation on the daily scale. The WFD radiation 196 

components showed good agreement when compared with radiation components derived 197 

from sunshine hours recorded at the airport in Tegucigalpa, Honduras.  198 

2.3 Discharge data and basin delineation 199 

The discharge data were obtained from the Global Runoff Data Centre (GRDC, 2010), which 200 

includes data from 91 discharge stations from all Central-American countries except Belize. 201 

Daily data were only available for 77 stations of which none were located in Guatemala or El 202 

Salvador. In addition to these 77 stations we included two Honduran stations (Paso La Ceiba 203 

on the Choluteca River and La Chinda on the Ulúa River) for which daily discharge and its 204 

uncertainty had been calculated using a time-variable rating curve in a fuzzy regression based 205 

on estimated uncertainties in the stage and discharge measurements (Westerberg et al., 2011a 206 

describe the calculation for the Paso La Ceiba basin). The total period for which there were 207 

data for at least one station was 1952–2009, with most of the data available 1965–1994. We 208 

used official rating curves and stage-discharge measurements for another 35 stations in 209 

Honduras (see section 4.2) to estimate discharge-data uncertainty for all GRDC stations in 210 

this study. Paso La Ceiba and La Chinda were included in this dataset together with three of 211 

the GRDC stations; but discharge time series were not available for the remainder and they 212 

could therefore not be included in the rest of the study.  213 

The GRDC discharge data and the station locations were analysed to select stations with: 1) a 214 

sufficient number of years with data (≥5 years), 2) discharge that appeared to have sufficient 215 

quality from a visual inspection of the time series, 3) no detected influence from major dams 216 

in the basin during 1965–1994, and 4) a location that was not in the basin of another of the 217 

stations. Obvious outliers in the series (values orders of magnitudes too large) were removed. 218 

This procedure resulted in a set of 36 basins that could potentially be used for regionalisation. 219 

These basins (Fig. 1) were delineated from the HydroSHEDS elevation data (Lehner et al., 220 

2008), a gridded global hydrography dataset with the highest resolution (3'') publicly 221 

available at present. Upstream areas for HydroSHEDS pixels were derived by Gong et al. 222 

(2011). The basins were registered in the HydroSHEDS flow network overlaid with 223 

0.25˚x0.25˚ cells. Only the active parts of the boundary cells that were in the catchment, as 224 

delineated by the HydroSHEDS pixels, contributed discharge to the downstream gauging 225 

station. The GRDC station coordinates sometimes had a low precision and were adjusted to 226 

obtain basins with the right basin area using visual inspection of river locations from satellite 227 

images and/or coordinates of higher quality from local sources. We used a tolerance of 10% 228 
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difference between the area reported in the GRDC database and that obtained from the 229 

delineation together with a visual inspection of basin boundaries. Since a large part of Central 230 

America is mountainous, the greatest source of uncertainty in basin areas is likely the exact 231 

location of the stations and not the precision of the delineation algorithm. While all 232 

calculations were made on a depth per unit area basis, uncertainty in catchment area has a 233 

direct effect on the water balance calculation. Many discharge series had frequent gaps and 234 

the temporal availability of data at the stations varied substantially in the region, with most 235 

data available for Panama and the least for Costa Rica (Fig. 2).  236 

 237 

3 Regional water-balance model  238 

We tested a simple lumped version of the water-balance model WASMOD (Xu, 2002) that 239 

was previously used with good results in Honduras (Westerberg et al., 2011b), and we used 240 

the same model equations as in this earlier study. The model has four parameters (sampling 241 

ranges for uncertainty estimation given in parenthesis); for actual evaporation ([0, 1] -), 242 

routing of fast flow ([0, 1] day-1), fast flow ([e-117, 1e-4] mm-1) and slow flow ([e-129, 1] mm0.5 
243 

day-1), see model equations in Table 1 in Westerberg et al. (2011b). These parameter intervals 244 

where used for all catchments since no information on parameter regionalisation was 245 

available. The 0.25˚ spatial resolution used with the TRMM and ERA-Interim data in the 246 

early model version was retained for the CRN073 and WFD data at a 0.5˚ scale since the 247 

centre locations of the CRN073 and WFD cells differed by 0.25˚. The precipitation and 248 

evaporation data were interpolated to the higher resolution using nearest-neighbour 249 

interpolation. Monte Carlo simulations with 1500,000 model runs were performed for each 250 

basin using uniformly sampled parameter values and a four-year model warm-up period. 251 

 252 

4 Method 253 

This study was carried out in five steps (Fig. 3): 1) observational uncertainties were first 254 

analysed and estimated through: a) a screening for a) dataset inconsistencies, b) estimation of 255 

discharge uncertainty using a rating-curve analysis, and c) estimation of the temporal 256 

uncertainty in FDCs stemming from short time series; 2) regionalisation of FDCs; 3) local 257 

calibration of the water-balance model using all available data (for comparison to the 258 

regionalised results); 4) regional modelling by constraining the uncertainty in basins treated 259 

as ungauged with the regionalised FDCs; and 5) posterior performance analysis of the results. 260 

We used the period 1965–1994 because of a comparably large availability of discharge data, 261 

and since the CRN073 precipitation data did not show the same occurrence of in-262 

homogeneities as in the later period.  263 

4.1 Screening for data inconsistencies 264 

The consistency of the model input and evaluation data for each basin was evaluated for both 265 

long-term averages and the daily time-series scale. The long-term analysis used a Budyko 266 

curve (Budyko, 1974), which shows the relationship between the aridity index (long-term 267 

ratio of potential evaporation over precipitation) and the runoff ratio (long-term ratio of 268 

runoff over precipitation). The Budyko relation was plotted to identify stations with 269 

inconsistent data; either a runoff ratio greater than one or inferred actual evaporation greater 270 

than potential evaporation (grey areas in Fig 4). The second quality check was the calculation 271 

of the correlation between the Current Precipitation Index (CPI; Smakhtin and Masse, 2000) 272 
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and discharge for intermediate and high flows. The CPI is essentially the sum of the 273 

Antecedent Precipitation Index (API, Kohler and Linsley, 1951) and the precipitation on the 274 

current day and was calculated using a decay coefficient of K = 0.85 (the lowest value in the 275 

range quoted by Smakhtin and Masse) so that for day t the index is,  276 

ttt RKII  1          (1) 277 

where Rt was precipitation at day t. All basins with a correlation between CPI and discharge 278 

lower than 0.3 were identified in red on the Budyko curve (Fig 4). It could be seen that these 279 

basins were mostly located in the inconsistent, grey areas in Fig. 4 (except for one station that 280 

had a correlation greater than 0.3 despite an unrealistic runoff ratio, which in this case might 281 

result from an uncertain basin area). The long- and short-term analyses thus gave similar 282 

results, which increased our confidence in the screening methods. 283 

There were four basins with unrealistic runoff ratios (>>1) and these were excluded leaving a 284 

final 32 basins for the regionalisation. The four excluded basins were all small basins in the 285 

mountainous parts of Costa Rica (maximum elevations between 1800–3000 m.a.s.l.) and the 286 

precipitation data at a scale of 0.5˚ were likely not sufficiently representative for these basins. 287 

There were three basins with runoff ratios close to one as well as low correlations between 288 

discharge and CPI, which indicated that the data may be inconsistent, but these were kept for 289 

further study since such runoff-ratio values may be a result of discharge-data uncertainty. 290 

Two additional basins (Laja Blanca and Boca de Cupe) had combinations of aridity-index 291 

and runoff-ratio values that were far from the theoretical line but were not excluded (Fig. 4 292 

and Table 1 in Appendix A). Both basins were located in the easternmost part of Panama and 293 

had seemingly too high mean annual precipitation values, which might be a result of poor 294 

coverage of local precipitation stations in the CRN073 dataset in that area. Mean annual 295 

precipitation 1971–2002 presented by the Panamanian hydroelectric company show around 296 

1000–2500 mm year-1 lower values (ETESA, 2007), which indicates a major source of 297 

uncertainty.  298 

4.2 Estimation of discharge uncertainty 299 

Stage-discharge measurements for the 35 discharge stations in Honduras (basin areas 110–300 

21400 km2, see also Section 2.3) were used to estimate the uncertainty in the discharge data 301 

as an upper and lower uncertainty bound. These 35 stations had rating curves that had been 302 

classified as having an acceptable or good quality in a previous Honduran water-resources 303 

project and the rating-curve equations reported in that project (Flambard, 2003) were used 304 

here. Rating-curve data from other countries were not available and it was assumed that the 305 

errors of the reported discharge data were similar to those in Honduras, i.e., that the 306 

Honduran stations were representative for measurement practices and conditions in the 307 

region. The discharge uncertainty could therefore be underestimated in cases where discharge 308 

data from the other countries include stations with poorer rating curves. Site-dependent 309 

uncertainties, e.g. related to a poor choice of measurement location, could not be quantified. 310 

For many stations there was considerable temporal variability in the rating measurements. 311 

For these stations a rating curve for a period with many measurements covering a large part 312 

of the flow range was selected. The residuals along each rating curve were then calculated as 313 

a percentage of the rating-curve-calculated discharge corresponding to the same stage 314 

measurement. To facilitate comparison between the residuals at different stations for different 315 

flow ranges, the discharge data were normalised by the mean discharge for each basin, using 316 

mean discharges reported in the Honduran national water-balance study (Balairón Pérez et 317 
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al., 2004) as we had no discharge time-series data. The normalised discharge was grouped in 318 

frequency intervals limited by the percentiles 1, 5, 10,... , 95, 100; the 1 percentile was used 319 

instead of zero to exclude the very lowest flows that resulted in large relative residuals 320 

because of division by values close to zero. The 2.5 and 97.5 percentile values for the 321 

residuals belonging to each group of normalised discharges were calculated and used together 322 

with the median normalised discharge in each group to calculate the rating-curve uncertainty 323 

as a function of the normalised discharge. Exponential and power-type law functions were 324 

fitted to the positive and negative residual percentiles respectively, and these functions were 325 

then used to estimate discharge uncertainty for all the GRDC stations in the regionalisation.  326 

When mean daily discharge is calculated, it is important to realise that the actual observations 327 

might have been collected with different temporal resolutions. If stages are not registered 328 

continuously this can result in a commensurability error in daily discharge data especially if 329 

measurements are taken in-between flow peaks. In Honduras, three measurements were taken 330 

during the day and in some cases more around flow peaks (Westerberg et al., 2011a; 331 

Flambard, 2003). The size of this error depends on the size and response time of the basin, 332 

with larger values for small basins and those that have a quick response. We used a value of 333 

17%, previously estimated using 15-minute-resolution stage data for the 1766 km2 Paso La 334 

Ceiba basin in Honduras which responds quickly to rainfall and is comparably small 335 

(Westerberg et al., 2011a). The estimate can therefore be considered conservative for most of 336 

the stations in the regionalisation. In Costa Rica, stage was recorded continuously using 337 

limnigraphs; this error source was therefore excluded for these stations. For the other 338 

countries we had no information on the stage-recording method and the Honduran practice 339 

was assumed. An estimated error in the actual stage reading of 5% was also added to the 340 

uncertainty bounds, as previously used in the fuzzy rating-curve method by (Westerberg et 341 

al., 2011a). The different uncertainties were assumed to be additive when calculating the 342 

daily discharge uncertainty. This is a simplification that may have resulted in overestimated 343 

uncertainty bounds. 344 

4.3 Calculation of FDCs and temporal uncertainty from short time series 345 

The discharge uncertainty estimates were used in the calculation and regionalisation of FDCs 346 

for all basins. The FDC, traditionally calculated for a period of record, describes the time 347 

duration that a certain flow is equalled or exceeded, and is a compact signature of runoff 348 

variability that has often been regionalised to ungauged basins (Bloeschl et al., 2013). Our 349 

regionalisation was based on data for the period 1965–1994 and in all the following analyses 350 

only years with at least 80% complete data (either calendar year or hydrological year 351 

depending on reported format) were used to avoid biases in the FDCs. First, evaluation points 352 

(EPs) were defined as specific exceedance percentages on the FDCs (using the same method 353 

as Westerberg et al., 2011b). The choice of EPs emphasises different aspects of the 354 

hydrograph; some previous studies have only used low-flow EPs for FDC regionalisation 355 

(e.g. 30–99% exceedance by Castellarin et al., 2004), while others have used EPs covering 356 

almost the entire flow range from 0.1 to 99% exceedance (Mohamoud, 2008). We did not 357 

include the very lowest or highest flows since these would likely be associated with the 358 

largest uncertainty, but used a volume-weighting method for calculating EPs (Westerberg et 359 

al., 2011b), which resulted in simulations with a good match to the whole flow range in this 360 

previous study. This means that EPs for each basin (local EPs) were determined so they were 361 

evenly spaced according to the area under the FDC (that equals the volume of water 362 

contributed by flows in a certain magnitude range) with increments of 5%. This resulted in 19 363 

EPs when excluding the maximum and minimum flows. The same EPs had to be used for all 364 
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basins in the regionalisation and we chose these as the median EP values of all the different 365 

sites for each of the 19 EPs (regional EPs) The calibration using the at-site data for each 366 

basin was assessed using both the local and regional EPs to evaluate the effect of this 367 

difference. Uncertain FDCs consisting of the best-estimate specific discharge with 368 

uncertainty limits were calculated using the observed discharge data and their estimated 369 

uncertainty bounds. This calculation of the uncertainty in the FDC implied an assumption that 370 

the uncertainty may consist of non-stationary bias rather than a random error (see also 371 

Westerberg et al., 2011b). 372 

Varying temporal data availability (stations that do not have data covering the whole 30-year 373 

period used for the regionalisation, Fig. 2) results in added uncertainty to the calculated FDCs 374 

because the FDC based on the available data might differ from that for the entire period. We 375 

estimated this temporal uncertainty in the upper and lower uncertainty bounds as a function 376 

of the number of years with data using the nine stations that had long-term data (at least 80% 377 

complete daily data in total in 1965–1994). Seven of these were located in Panama, one 378 

station in Honduras and one in Nicaragua. In terms of the variability of the FDCs, these 379 

stations covered most of the observed range of the normalised FDC discharge values. There 380 

were between 5–29 years of data at all the stations in the modelling period 1965–1994 and 381 

the uncertainty was estimated using all possible consecutive 5, 6, ..., 29-year periods and 382 

1000 randomly generated series of non-consecutive years. For the latter the order of the years 383 

was not maintained and individual years could not be selected more than once per realisation 384 

when the 5–29-year series were generated. The uncertainty was calculated from the 385 

realisations as the 2.5 and 97.5 percentiles of the percentage uncertainty in the specific 386 

discharge values at the upper/lower uncertainty bounds for the FDC EPs. The largest 387 

uncertainty from the two sampling schemes (random and consecutive) for each number of 388 

years with data was used. This temporal uncertainty was finally added to the FDC uncertainty 389 

bounds as a function of the number of years of discharge data at each station in 1965–1994.  390 

4.4 Regionalisation of FDCs with uncertainty 391 

These uncertain FDCs were regionalised using a weighted linear combination of the N most 392 

similar basins. We defined similarity based on a number of climate and basin characteristics 393 

which all had been found to be related to the FDC discharge values in a correlation analysis 394 

(Table 1). These characteristics were standardised by subtracting the mean and dividing by 395 

the standard deviation for all basins. The similarity was then calculated using the similarity 396 

measure defined by Burn (1990a, b) as the Euclidean distance in the space spanned by the 397 

standardised characteristics (Eq. 2): 398 

    M

m mtmiit XXd
1

2
        (2) 399 

dit is the Euclidean distance between the target basin t, and basin i in the data pool; Xmi, is the 400 

standardised characteristic m for basin i. While geographic distance was not included 401 

explicitly, differences in the characteristic QLONG essentially agree with geographic 402 

distance because of the spatial distribution of the basins. The weights for each basin in the 403 

regionalisation were, similar to Holmes et al. (2002), calculated based on the relative inverse 404 

distances (Eq. 3): 405 
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wit was the weight of basin i in prediction of target basin t and N was the number of basins in 407 

the data pool. For calculating the predicted FDCs using these weights the uncertain discharge 408 

at each EP was defined as a fuzzy number with a triangular membership function defined by 409 

the lower, crisp (best-estimate) and upper uncertainty limits. The uncertainty in the 410 

regionalisation was accounted for through a weighted aggregation of the fuzzy discharge at 411 

each EP using the N most similar basins. The general weighted mean operator for fuzzy 412 

numbers by of Dubois and Prade (1980) was used to aggregate these membership functions to 413 

a new membership function; the individual membership functions were rescaled so that the 414 

area under the curves equalled the weights wit and then summed over the range of the support 415 

(Fig. 5). The 2.5, 50 and 97.5 percentiles of the cumulative distribution of the aggregated 416 

membership function were finally used as lower, crisp and upper uncertainty bounds for the 417 

regionalised FDC. 418 

The FDC regionalisation was evaluated in a jack-knife cross-evaluation by excluding one 419 

basin at a time because the low number of stations did not allow for separate calibration and 420 

validation sets. The correspondence between the predicted and observed FDC-discharge 421 

uncertainty bounds at the EPs was evaluated by two measures. The reliability of the predicted 422 

uncertainty bounds was calculated as the overlapping range between the observed and 423 

simulated uncertainty bounds as percentage of the observed range. The precision of the 424 

predicted uncertainty bounds was calculated as the overlapping range as percentage of the 425 

simulated range. These measures were previously used by Westerberg et al. (2011b) and 426 

Guerrero et al. (2013). They are similar to the ones used by Yadav et al. (2007) and Breinholt 427 

et al. (2012), but differ in that they incorporate an estimate of the uncertainty in the observed 428 

discharge data, where that estimate consists of an upper and lower bound that allows for non-429 

stationary biases in-between the bounds. 430 

4.5 Local and regional water-balance modelling 431 

The simulated uncertainty from the Monte Carlo runs was first constrained (in a local 432 

calibration) using limits of acceptability in the extended Generalised Likelihood Uncertainty 433 

Estimation (GLUE) method (Beven, 2006) for the locally calculated FDCs (Westerberg et al., 434 

2011b). This was done both for the local EPs and the regional (median) EPs used in the 435 

regionalisation, using the discharge data for each station in 1965–1994 (Section 4.3). 436 

Behavioural simulations were required to be within the limits of acceptability defined from 437 

the discharge-data uncertainty at each of the 19 EPs. Then the simulations were constrained 438 

with the regionalised FDCs. In both cases an informal likelihood was calculated in the same 439 

way as Westerberg et al. (2011b), using the sum of a triangular weighting at each EP of the 440 

simulated value relative to the observed data and its limits of acceptability. Simulations with 441 

correlation in deviations across successive EPs then obtain a lower weight but can still be 442 

behavioural if they are inside all limits of acceptability, i.e. a systematically under- or 443 

overestimated FDC for (part of) the flow range can still be behavioural but get a lower 444 

weight. The simulated uncertainty bounds were calculated at each time step as the 2.5 and 445 

97.5 percentiles of the likelihood-weighted distribution of the simulated discharge of all 446 

behavioural parameter-value sets.  447 
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4.6 Posterior performance analysis 448 

The resulting simulated uncertainty bounds were analysed, as with the FDC regionalisation, 449 

by calculating two different model diagnostics that assess the similarity between the 450 

uncertainty bounds for the simulated and observed discharge. Reliability was in this case 451 

defined as the percentage of time that the simulated and observed uncertain intervals 452 

overlapped, and precision was in the same way as for the FDC regionalisation the 453 

overlapping range expressed as a percentage of the simulated range, but here calculated as the 454 

average value for the number of days with observations. All the model diagnostics were 455 

calculated for low, intermediate and high flows separately. Low flows were defined as flows 456 

smaller than the median flow, high flows as flows that were exceeded 1% of the time, and 457 

intermediate flows were all flows in between these limits.  458 

 459 

5 Results 460 

5.1 Estimation of discharge uncertainty 461 

The analysis of discharge uncertainty for the 35 Honduran stations showed that five stations 462 

had most medium to high-flow residuals in the range ±10% of the discharge calculated from 463 

the official curves. The remainder had larger deviations and the 2.5 and 97.5 percentiles of 464 

the distributions were around ±25%, with larger percentage uncertainties for low flows (Fig. 465 

6). Underestimation was larger than overestimation and there were sometimes poor rating-466 

curve fits to the lowest measurements. For some stations the average residual values varied 467 

with flow as a result of poorly fitted rating curves. The exponential and power-type law 468 

functions fitted to the positive and negative residual percentiles respectively fitted well to the 469 

data with adjusted R2-values of 0.80 and 0.98 (Fig. 6). Uncertainty values for normalised 470 

discharges smaller/larger than the smallest/largest point used in the fitting were set to the 471 

smallest/largest value when these functions were used to calculate the discharge uncertainties 472 

for the GRDC stations. The final calculated uncertainty in discharge after the stage and 473 

temporal commensurability error had been added varied between -266% and +64% of the 474 

crisp discharge for the low-flow range and between -52% and +45% for the high-flow range, 475 

where negative (positive) values denote underestimation (overestimation) as in Fig. 6. The 476 

uncertainty ranges for the lowest flows were larger than the previously calculated discharge-477 

uncertainty limits at Paso La Ceiba (Westerberg et al., 2011a) and La Chinda as an effect of 478 

larger uncertainty in the fitting of some official rating curves. The medium to high flow range 479 

was almost identical to that for Paso La Ceiba but around 5% larger in this calculation than 480 

that for La Chinda where the non-stationarity in the stage-discharge relationship was less 481 

pronounced compared to at Paso La Ceiba. 482 

5.2 Calculation and regionalisation of FDCs with uncertainty 483 

The added uncertainty to the FDC discharge as a result of time series shorter than the 30-year 484 

modelling period varied in the range of 3–45% (4–33%) for the upper (lower) uncertainty 485 

bound (for time series with 5–29 years of data). This temporal uncertainty was added to the 486 

uncertainty bounds for the FDC discharge values for the stations with incomplete time series 487 

data before the regionalisation. The FDCs showed great variability in the region; normalised 488 

discharge (by mean discharge) varied in the range 3.8–27 (0.05–0.59) for the lowest (highest) 489 

regional EP at an exceedance percentage of 0.52% (75%). The number of surrounding basins 490 

to be included in the FDC regionalisation was chosen as eight as a trade-off between increase 491 



12 

 

 

in reliability and decrease in precision (Fig. 7). In 12 of the 32 basins the regionalised FDCs 492 

encompassed the observed FDCs (reliability = 100% for all EPs). At some of these basins 493 

(e.g. no. 5, 12, 18, 22, and 24, Fig. 7) there were also high precision values. There were six 494 

stations where the minimum reliability was less than 50% (Fig. 7). Observations from these 495 

stations plotted in the upper and lower extremes of the Budyko curve and included the most 496 

extreme FDCs in the region in terms of shape and magnitude of specific discharge, two of 497 

these stations had been identified as having likely disinformative data. The poorer 498 

performance for the most extreme FDCs was not surprising given that the linear weighted 499 

combination method used for regionalisation makes it difficult to predict the most extreme 500 

FDC shapes. There was a clear relation between runoff ratio and precision (not shown), with 501 

higher precision in humid basins (except for Guatuso, no. 1, which had an inconsistent runoff 502 

ratio of 1.05 and a greatly underestimated regionalised FDC at all EPs). Examples of 503 

regionalised FDCs for four stations, including one of the best (San Francisco, no. 24) and one 504 

of the worst (Tamarindo, no. 16), are given in Fig. 8. 505 

5.3 Water-balance modelling using local calibration 506 

Local calibration of the model parameters to the observed FDCs resulted in behavioural 507 

simulations in 264 of the 32 basins using the regional EPs, of which basin no. 17 had no 508 

behavioural simulations when using the local EPs (Fig. 9). The basins with no behavioural 509 

simulations included four three basins in northern Costa Rica (no. 12–4) that had runoff ratios 510 

of different magnitudes but approximately the same mean annual precipitation (Table 1 in 511 

Appendix A), as well as the two Panamanian stations (no. 27 and 28) that deviated 512 

substantially from the Budyko curve (Fig. 4). The differences in the reliability and precision 513 

between the simulations calibrated using local and regional EPs were small (Fig. 9). There 514 

were 13 basins for the regional EP calibration with reliability ≥greater than 50% for low, 515 

intermediate and high flows. Unrepresentative precipitation data likely had an important 516 

contribution to the poorer performance in the other basins since a visual inspection showed 517 

obvious differences between basins with lower and higher high-flow reliability (Fig. 10). To 518 

further test this hypothesis, the correlation between the observed discharge for intermediate 519 

and high flows and CPI was plotted against the high-flow reliability for the local calibration 520 

with regional EPs (Fig. 11), and it could be seen that the basins with poor performance also 521 

had a poor agreement between CPI and observed discharge. For some basins (Fig. 10, 522 

bottom) there appeared to be a frequent timing difference of one day for the flow peaks, 523 

which may be related to commensurability uncertainty between precipitation and discharge 524 

stemming from precipitation measurements taken in the morning but discharge representing 525 

daily averages (Westerberg et al., 2011b). This may have had an impact on the values of the 526 

reliability and precision measures (it would lead to lower values, especially for high flows), 527 

but would have had little impact on the FDC-calibration.  528 

5.4 Regional water-balance modelling 529 

The reliability of the regionalised simulations was comparable to that of the local calibration, 530 

with generally higher values for intermediate and high flows and sometimes lower values for 531 

low flows for the regionalisation with some exceptions for intermediate (Guatuso, basin no 1, 532 

see below) and high flows (Fig. 12a–c). The precision values were often lower, in particular 533 

for low and intermediate flows; this was in general related to the wider uncertainty bounds 534 

for the regionalised simulations (as a consequence of the greater uncertainty in the 535 

regionalised FDCs). 536 
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The predicted uncertainty bounds for the regionalised simulations always overlapped with the 537 

locally-calibrated simulation bounds (except for Guatuso, basin no. 1, which had an 538 

inconsistent runoff ratio of 1.05 and a regionalised FDC that was greatly underestimated), 539 

and also encompassed them for a large part of the time for most basins (Fig. 12d, 100% 540 

overlap as percentage of the locally-calibrated bounds means that they are encompassed). The 541 

overlap in percentage of the regional bounds (with a low value indicating relatively wide 542 

regional bounds) showed a similar pattern to the precision of the FDC regionalisation. There 543 

was also a clear relation for the aridity index with relatively wider regionalised bounds in 544 

more arid basins (Fig. 12e), which appears to be a result of relatively greater uncertainty for 545 

regionalised FDCs in arid basins in combination with narrow locally-calibrated bounds as a 546 

result of few behavioural simulations in the most arid basins. Similar results with greater 547 

uncertainty in regionalisation in arid basins were also found by Bloeschl et al. (2013). 548 

There was almost no difference between the locally and regionally simulated hydrographs 549 

where the regionalisation of the FDCs worked best (e.g. Camaron, basin no. 22, Fig. 12 and 550 

Fig. 13). Where the regionalised FDCs had wider uncertainty bounds, the predicted 551 

simulation uncertainty was greater than that from the local calibration (e.g. Balsa, no 6 and 552 

Agua Caliente, no. 12, Fig. 13). In such cases additional regionalised information, e.g. 553 

recession behaviour (Winsemius et al., 2009), might provide additional constraints. For 554 

basins where the regionalisation worked less well, such as at Guanas (no. 14, that, except for 555 

Guatuso, had the poorest regionalisation results of the stations with behavioural local 556 

simulations) there was, apart from wide uncertainty bounds, also a systematic shift to the 557 

uncertainty bound for the less well regionalised part of the flow range (here high flows) but 558 

still a high degree of overlap with the locally-calibrated uncertainty bounds (Fig. 12 and Fig. 559 

13). There were six basins with behavioural simulations when the wider regionalised FDCs 560 

were used to constrain the simulations but not when using the local data (e.g. Guardia, no. 2). 561 

In all these cases the data seemed inconsistent when inspecting the time series of discharge 562 

and precipitation.  563 

 564 

6 Discussion and concluding remarks   565 

This study has explored a method for predictions in ungauged basins based on FDCs that 566 

accounts for uncertainty in the observed data, the FDC-regionalisation method and the model 567 

parameterisation. This method is novel in for the first time explicitly incorporating 568 

observational uncertainties in rainfall-runoff model regionalisation; uncertainty in discharge 569 

from rating-curve analyses, uncertainties stemming from the use of short discharge time 570 

series, and analyses of uncertainties stemming from disinformative data. It also addresses the 571 

need for reliable predictions in ungauged basins in developing regions, where data limitations 572 

are often important, as highlighted by Hrachowitz et al. (2013).  573 

6.1 Estimation and impact of observational uncertainties 574 

6.1.1 Discharge data uncertainty 575 

Discharge-data uncertainty can often be an important source of error (McMillan et al., 2010), 576 

which to our knowledge has not previously been accounted for in regionalisation, and only a 577 

few previous studies have considered uncertainties in the regionalisation method (Yadav et 578 

al., 2007; Seibert, 1999; Kapangaziwiri et al., 2012; McIntyre et al., 2005). We estimated the 579 

uncertainty in the GRDC discharge data using 35 rating stations in Honduras, with the 580 

assumption that measurement practices and rating-curve derivation were similar in the rest of 581 
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the region. The different uncertainties in the discharge-uncertainty estimation were assumed 582 

to be additive which may have resulted in overestimated uncertainties. It was, however, likely 583 

a conservative estimate that reflected the lack of information about site-specific conditions. 584 

The estimated discharge uncertainty was similar but somewhat higher to that reported in the 585 

review by McMillan et al. (2012), with the largest uncertainties for low flows for many 586 

stations as a result of poor rating-curve fits in combination with higher natural variability and 587 

relative measurement uncertainties for low flows (Pelletier, 1988). Patterns could be seen for 588 

some of the Honduran discharge stations in the variation of the residuals as a function of 589 

normalised flow as a result of poor rating-curve fits. An assumption of errors with a simple 590 

structure within the bounds was therefore not appropriate when the estimated uncertainty 591 

bounds were used for the GRDC discharge station data in model evaluation, but the limits-of-592 

acceptability approach we used allowed for non-stationary biases within the observed 593 

uncertainty bounds.  594 

6.1.2 Precipitation data uncertainty 595 

Overall, precipitation -data quality was probably the most limiting factor. The WFD variables 596 

used to calculate potential evaporation differed somewhat to local station data, but 597 

precipitation -data quality is more important than evaporation -data quality in many cases 598 

(Paturel et al., 1995). Because of lack of information about the magnitude of the precipitation 599 

errors, we only treated this uncertainty source implicitly through data-screening analyses and 600 

visual inspections of the time series. The CRN073 precipitation data were the best available 601 

gridded data for the Central-American region. However, because of the high spatial 602 

variability of precipitation (Alfaro, 2002; Magaña et al., 1999), the resolution of the CRN073 603 

data was not sufficient for many basins – in particular those located in mountainous regions 604 

where runoff ratios greater than one were found likely because of underestimated 605 

precipitation. In such circumstances no hydrological model that assumes mass balance can be 606 

expected to give good predictions (Beven et al., 2011). There were also noticeable time-607 

variable errors in the precipitation dataset as a result of changes in station density and/or 608 

measurement equipment.  609 

6.1.3 Detection and impact of dataset inconsistencies 610 

The two methods that were used to screen the dataset for inconsistencies between the runoff 611 

and climate data, and they gave mostly similar results. The disinformative outliers on the 612 

Budyko curve resulted from runoff coefficients ratios much greater than one (Section 6.1.2in 613 

small mountainous basins and therefore likely because of underestimated precipitation) and 614 

from some basins with overestimated precipitation compared to higher-quality local 615 

information. Most basins with low discharge-CPI correlation were outliers on the Budyko 616 

curve, with often obvious mismatches between the precipitation and discharge data time 617 

series, and there was a strong relation between the discharge-CPI correlation and high-flow 618 

reliability in the local calibration. This suggests that this method was useful for identifying 619 

inconsistent data in this region, and we recommend the use of data-screening methods in 620 

future regional studies. It should be remembered, however, that there may be shorter 621 

informative periods even if long-term averages are inconsistent, and matching peaks in 622 

precipitation and discharge should not be expected under all circumstances. Event-based 623 

runoff ratios may be useful to identify data with inconsistent events in basins with low 624 

baseflow but require sub-daily data in most basins (Beven et al., 2011).  625 

Identification of disinformative data prior to modelling may not always be possible, and 626 

another method for dealing with such data inconsistencies is therefore to use model- 627 

evaluation criteria that are robust to moderate disinformation (Beven and Westerberg, 2011). 628 
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Calibration focused on hydrological signatures, such as FDCs, could be expected to be more 629 

robust to moderate disinformation, such as the presence of a few events with inconsistent 630 

inputs and outputs (Westerberg et al., 2011b). Our study combined these two methods for 631 

addressing disinformative the significant data uncertainties in studies of this type, and both 632 

were necessary considering that all disinformation could not be identified in the data 633 

screening and that the calibration method in some cases resulted in behavioural simulations 634 

even with highly disinformative input data. The latter cases can be detected in posterior 635 

performance analyses and data screening in gauged catchments, but calls for discharge-data 636 

independent data screening methods and/or the use of multiple signature constraints in 637 

ungauged catchments. Further research is needed to investigate the effects of disinformation 638 

on signature calibration and how best to estimate the effect of observational uncertainties on 639 

the values of different types of signatures. Similarly to Kauffeldt et al. (2013) we found many 640 

disinformative data in the large-scale datasets we used and our analyses highlighted the 641 

importance of addressing such inconsistencies prior to and during modelling, especially 642 

considering the generally poor availability of information about the original data used to 643 

construct the datasets and their errors. 644 

The choice of an appropriate likelihood in the face of the errors that affect hydrological 645 

inference has been discussed in great detail (Beven et al., 2012; Clark et al., 2012). In this 646 

study we found a high presence of non-stationary errors in the model input and evaluation 647 

data with little information about the magnitudes. This made the informal likelihood function 648 

we used a suitable choice since it allowed implicitly for some of these errors without 649 

requiring an error model to statistically represent the error characteristics.  650 

6.2 The use of FDCs for regional water-balance modelling  651 

The regionalised simulations were generally reliable compared to local simulations in the 652 

basins where behavioural simulations were found in local calibration. In the basins where the 653 

regionalisation of the FDCs worked best there was little difference between the regionalised 654 

and local simulations. Where it worked less well the predicted uncertainty was sometimes 655 

much wider than the local uncertainty bounds and the most extreme FDC shapes were less 656 

well predicted, leading to some systematic shifts to the uncertainty bounds compared to the 657 

local calibrations in those cases. Greater uncertainty in the regionalised compared to the local 658 

FDCs reduced their information content for constraining model predictive uncertainty in 659 

ungauged basins. This was especially important in the presence of disinformative input data, 660 

where simulations within the regionalised FDC uncertainty bounds were found in some 661 

basins but not within the locally -estimated FDC bounds that were narrower.  662 

In local model calibration, posterior- performance analyses are useful to check whether the 663 

chosen signatures (e.g. the FDC) provide sufficient constraints for the particular modelling 664 

application (type of model structure, basin, climate, etc.) or whether additional information is 665 

needed to constrain the simulations (Westerberg et al., 2011b). However, in regionalisation 666 

such analyses cannot be made for the ungauged catchments and it would be advisable to 667 

always apply several different regionalised signatures (Yadav et al., 2007; Castiglioni et al., 668 

2010) to ensure greater robustness of the predictions – especially in the presence of 669 

completely disinformative input data. When using this regionalisation method itIt would, 670 

however, still be is important to perform data screening and posterior performance analyses 671 

in the nearby gauged basins to learn about the different errors sources that affect the 672 

simulations there, as well as the different types of constraints that are needed to constrain the 673 

simulations since similar behaviour, uncertainties and conditions might be expected in nearby 674 
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ungauged basins. There is therefore a need toThe use of other signatures requires further 675 

investigation ofe how observational uncertainties affect the uncertainty in different types of 676 

signatures and their regionalisation, as well as to develop discharge-data-independent 677 

screening tools for model-input data for ungauged basins.  678 

The method for FDC calibration developed by Westerberg et al. (2011b) was here tested for a 679 

wider range of basins and resulted in a high reliability in the local calibration in basins where 680 

the data screening indicated that the data had good quality. An assessment of the performance 681 

for different parts of the hydrograph (base flow, troughs, peaks, rising and falling limbs) 682 

aspects as in the previous study and of different ways of choosing the EPs on the FDCs, as in 683 

the previous study, was not made here but would be useful to assess the performance of the 684 

FDC calibration for the wider range of hydrological conditions in this study. It could be seen 685 

that in arid basins the discharge was generally more constrained in recession periods 686 

compared to in humid basins (likely as a result of the more non-linear FDC shape), indicating 687 

that recession information (e.g. Winsemius et al., 2009; McMillan et al., 2013) might be 688 

useful to further constrain the uncertainty bounds in the latter case. Further conclusions on 689 

the strengths and weaknesses of the FDC calibration for this wider range of basins could also 690 

be drawn through the use of different model structures, e.g. different conceptualisations of 691 

groundwater storage and runoff generation in groundwater-dominated basins. The 692 

parsimonious model structure used here might be overly simple in many cases even if it 693 

showed good results previously at Paso La Ceiba (Westerberg et al., 2011b). Compared to 694 

those results, the total average reliability was much lower here (876%, compared to 95% 695 

previously), with the main difference between the simulations being the precipitation data. 696 

The CRN073 precipitation used here had a correlation of only 0.77 with the locally-697 

interpolated precipitation in that study. It might also be possible to estimate the prior 698 

parameter ranges based on catchment and climate characteristics, however such an analysis 699 

was outside the scope of this paper and would also be affected by disinformation in the 700 

regionalisation data. 701 

6.3 Regionalisation of FDCs with uncertainty 702 

The FDC-regionalisation method was based on a fuzzy aggregation of the FDCs from the 703 

hydrologically most similar basins, which accounted for uncertainty in the data as well as the 704 

regionalisation relation. It resulted in generally reliable results except for the most extreme 705 

FDC shapes.  This was because of the weighted combination of the FDCs in combination 706 

with relatively few gauged stations for a quite heterogeneous region. We found it important 707 

to include climate as well as basin characteristics in the definition of hydrologic similarity 708 

since rainfall is a dominating factor in shaping the hydrological regime in Central America 709 

(George et al., 1998; Waylen and Laporte, 1999). The representativeness of the climate data 710 

likely affected the calculation of hydrologic similarity and therefore the FDC regionalisation. 711 

The different lengths of the discharge series resulted in a temporal uncertainty that we 712 

estimated as a function of the number of years with data. The FDC-regionalisation approach 713 

we used was similar to that of Holmes et al. (2002) who used a much larger set of basins. The 714 

effect of the chosen number of hydrologically similar catchments was evaluated in a cross-715 

evaluation, and we recommend performing this type of analysis to inform the choice. Like 716 

them, we also found better results by using a normalisation with mean discharge instead of 717 

basin area. This left the residual problem of estimating mean discharge for the ungauged 718 

basins which was problematic and led to the use of area instead. A better method for 719 

predicting mean discharge could likely improve the regionalisation resultsFurther conclusions 720 

about the advantages and disadvantages of the regionalisation method could be drawn by t. 721 
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Testing itthis FDC-regionalisation method in other regions with better-quality precipitation 722 

data and long-term discharge series would enable further conclusions about its advantages 723 

and disadvantages.  724 

6.4 Concluding remarks 725 

The FDC contains important information about hydrological behaviour that is needed for 726 

most water-balance investigations in ungauged basins, and it is therefore of interest on its 727 

own as well as a basic regionalised model constraint in many cases. Further research will be 728 

required to reveal what additional regionalised information is needed to ensure robust 729 

predictions under different circumstances and how uncertainties in such additional 730 

regionalised information can be reliably estimated. This study provides a strong 731 

demonstration of the need to assess the quality of the data used to inform the estimation of 732 

ungauged basin responses in a regionalisation study. The potential for non-stationary 733 

epistemic errors and hydrological inconsistencies means that the regionalisation might be 734 

subject to significant uncertainties that are difficult to estimate by standard statistical 735 

methods. This implies that deterministic predictions might be misleading, and that explicit 736 

recognition of uncertainty should be used in decision making. Where the estimates of 737 

uncertainty are particularly high, further data collection might be valuable in making 738 

decisions for water-resources management.   739 

 740 

Appendix A: Discharge stations and basin characteristics 741 

Table 1. Discharge stations and basin characteristics, indices calculated for 1965–1994 except 742 

for RR and EPOT/P that were calculated for the period of discharge record (i.e. the same as in 743 

the Budyko plot, Fig. 4) 744 

No River@Station Lat.  
(˚) 

Long.  
(˚) 

Area  
(km2

) 

RElev1  
(m) 

EPOT/
P2  
(-) 

RR3  
(-) 

MAP4 
(mm) 

RL55  
(days

) 

NYr
6 

1 Rio Frio@Guatuso 10.67 -84.82 287 1787 0.47 1.05 2869 129 7.0 
2 Tempisque@Guardia 10.55 -85.58 972 1877 0.72 0.26 2213 186 5.0 
3 Tenorio@Rancho Rey 10.47 -85.16 236 1742 0.46 0.38 2869 129 11.0 
4 Rio Canas@Libano 10.43 -85.02 132 1346 0.49 0.29 2869 129 7.0 
5 Rio La Barranca 

@Guapinol 
10.03 -84.58 197 1920 0.58 0.55 2452 208 5.0 

6 Grande de Tarcoles 
@Balsa 

9.93 -84.38 1660 2688 0.53 0.50 2438 215 9.0 

7 Grande de Candelaria@El 
Rey 

9.67 -84.30 667 2393 0.55 0.55 2490 209 7.0 

8 Rio Terraba@Palmar 8.97 -83.47 4825 3798 0.41 0.67 2952 197 11.0 
9 Estrella@Pandora 9.73 -82.95 634 2190 0.48 0.77 2653 205 7.0 

10 Sixaola@Bratsi 9.55 -82.88 2131 3759 0.47 0.97 2562 210 7.0 
11 Humuya@Guacamaya 14.74 -87.64 2621 2081 0.75 0.27 1525 251 13.0 
12 Agua Caliente  

@Agua Caliente 
14.67 -87.32 1578 1865 0.72 0.34 1493 265 13.0 

13 Guayape@Guayabilas 14.59 -86.29 2229 1757 0.60 0.21 1770 244 15.0 
14 Coco@Guanas 13.50 -85.95 5527 1739 0.98 0.17 1304 291 17.7 
15 Rio Villa Nueva @Puente 12.93 -86.83 1044 1568 1.04 0.26 1458 283 13.0 

mailto:River@Station
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16 El Tamarindo 
@Tamarindo 

12.25 -86.71 217 310 1.29 0.17 1410 273 25.7 

17 Brito@Miramar 11.38 -85.95 235 385 0.98 0.21 1645 244 21.7 
18 Grande de Matagalpa 

@Paiwas 
12.78 -85.12 6498 1514 0.71 0.35 1782 238 10.0 

19 Mico  
@Muelle de los Bueyes 

12.07 -84.53 1673 938 0.51 0.37 2587 197 13.0 

20 Chiriqui Viejo  
@Paso Canoa 

8.53 -82.83 805 3350 0.34 0.72 3394 164 30.0 

21 Chiriqui@Interamericana 8.42 -82.35 1331 3267 0.32 0.89 3850 155 28.0 
22 Tabasara@Camaron 8.07 -81.63 1172 2206 0.37 0.72 3346 210 29.7 
23 San Pablo 

@Interamericana 
8.20 -81.25 756 1820 0.36 0.65 3213 211 27.4 

24 Santa Maria@San 
Francisco 

8.22 -80.97 1379 1812 0.41 0.62 2911 202 29.7 

25 La Villa@Atalayita  7.87 -80.53 1019 917 0.64 0.46 1929 247 30.0 
26 Rio Grande  

@Rio Grande 
8.43 -80.50 505 1654 0.52 0.46 2471 197 29.7 

27 Chucunaque  
@Laja Blanca 

8.40 -77.83 2963 1031 0.32 0.26 4088 62 10.7 

28 Tuira@Boca de Cupe 8.05 -77.57 2409 1803 0.17 0.21 5378 24 20.4 
29 Chagres@Chico 9.26 -79.51 409 904 0.46 0.76 3167 186 9.0 
30 Changuinola  

@Valle del Risco 
9.28 -82.53 1692 3276 0.39 0.96 3124 189 23.0 

31 Rio Ulua@Chinda 15.12 -88.20 8579 2757 0.73 0.47 1511 256 29.0 
32 Rio Choluteca  

@Paso La Ceiba 
14.29 -87.06 1805 1664 0.88 0.17 1268 287 13.7 

33 Rio Toro@Veracruz 10.5 -84.22 196 2611 0.42 1.29 3016 131 7.0 
34 Sarapiqui@Puerto Viejo 10.46 -84.00 825 2833 0.38 1.36 3261 141 11.0 
35 Naranjo@Londres 9.46 -84.07 224 2932 0.50 1.61 2578 210 7.0 
36 Pejibaye@Oriente 9.82 -83.68 231 2051 0.51 1.77 2371 222 7.0 

1 RElev is the elevation range in metres 745 
2 EPOT/P is the aridity index, where EPOT is potential evaporation and P is precipitation, here 746 

calculated for the period with discharge data at each station 747 
3 RR is the runoff ratio, total runoff divided by total precipitation calculated for the period 748 

with discharge data at each station 749 
4 MAP is the mean annual precipitation 750 
5 RL5 is the average number of days per year with precipitation below 5 mm 

751 
6 NYr is the number of years with 80% complete data in a year or hydrological year in 1965–752 

1994 753 
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Table 1 Basin and climate characteristics. Climate indices calculated for 1965–1994 981 

Characteristic 
type 

Characteristic 
name 

Unit Description 

Climate PSTD mm Standard deviation of daily precipitation. 
Climate RL5 days Number of days per year with P < 5 mm. Used 

to characterise the length of the region’s highly 
variable dry season. 

Climate P/EPOT [-] Ratio of average annual precipitation and 
average annual potential evaporation, a 
wetness index previously used for 
regionalisation by Yadav et al (2007). 

Topography DPSBAR m/km Index of watershed steepness from the UK 
Flood Estimation Handbook, the average of 
the steepest drainage path slope for each cell in 
the basin (Bayliss, 1999) 

Topography RELEV m Elevation range, calculated as maximum 
minus minimum elevation 

Location QLONG decimal 
degrees 

Longitude of discharge station 

 982 

 983 

  984 
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Fig. 1 The Central-American region, elevation distribution and the location of the studied 985 

basins and the Honduran rating stations. 986 

 987 

Fig. 2 Temporal availability of data for each discharge station, countries in parenthesis (CR = 988 

Costa Rica, HN = Honduras, NI = Nicaragua, and PA = Panama) 989 

 990 

Fig. 3 Schematic description of the method used in this study 991 

 992 

Fig. 4 Budyko curve showing the relationship between the aridity index and the runoff ratio 993 

for periods with discharge data at each station in 1965–1994 (Fig. 2). Areas outside the 994 

theoretical limits of the Budyko curve (indicating inconsistent data) are marked in grey. 995 

Basins with a correlation between CPI (Eq. 1) and discharge for intermediate and high flows 996 

of less than 0.3, also indicating data inconsistencies, are plotted in red.  997 

 998 

Fig. 5 Regionalisation of uncertain FDCs using the general weighted mean operator for fuzzy 999 

numbers by Dubois and Prade (1980) for each EP. The individual membership functions for 1000 

the fuzzy FDC discharge for each of the N surrounding stations were rescaled so that the area 1001 

under the curves equalled the weights and then summed over the range of the support to a 1002 

new membership function for the regionalised FDC (top). The 2.5, 50 and 97.5 percentiles of 1003 

the cumulative distribution of the aggregated membership function were then used as lower, 1004 

crisp and upper uncertainty bounds for the regionalised FDC (red circles). 1005 

 1006 

Fig. 6 Rating-curve residuals for 35 Honduran stations (one colour per station) and 2.5 and 1007 

97.5 percentiles of the residuals in each group (the groups were differentiated by frequencies 1008 

of 1, 5, 10... 95, 100%) plotted against the median normalised (by mean discharge) discharge 1009 

in each group. Functions were fitted to the 2.5 and 97.5 percentiles against the median 1010 

normalised discharge in each group respectively to calculate rating-curve uncertainty as a 1011 

function of the normalised discharge. The residuals were calculated as rating-curve discharge 1012 

minus observed discharge as a percentage of the rating-curve discharge and the plot excludes 1013 

a few smaller and larger residuals to improve the visibility for the main flow range. 1014 

 1015 

Fig. 7. Reliability and precision of the FDC regionalisation, with different numbers of 1016 

hydrologically similar basins included in the regionalisation (top) and the minimum and 1017 

maximum values for each station for the chosen number of basins (N=8, bottom). 1018 

 1019 

Fig. 8 Examples of regionalised and observed uncertain FDCs. Both discharge and EP 1020 

exceedance percentage values are shown in log space. The thin/dashed lines represent the 1021 

best-estimate discharge data and the thick lines the upper and lower uncertainty bounds. 1022 

 1023 

Fig. 9 Number of behavioural simulations using local calibration to FDCs with local and 1024 

regional EPs, and using regionalised FDCs (top), reliability (middle) and precision (bottom) 1025 

measures for low, intermediate and high flows, for local and regional EPs respectively in 1026 

local calibration.  1027 

 1028 

Fig. 10 Precipitation, observed and simulated discharge (mm day-1) at Bratsi, station no. 10 1029 

(top), one of the stations that had a poor correlation between observed discharge and CPI 1030 
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(0.12), and at Paiwas, station no. 18 (bottom) that had a high correlation between observed 1031 

discharge and CPI (0.60). The simulated discharge was calibrated using FDCs calculated 1032 

from local observed discharge and using the regional EPs. 1033 

 1034 

Fig. 11 High-flow reliability for the local calibration with regional EPs plotted against the 1035 

correlation coefficient between the Current Precipitation Index (CPI, Eq. 1) and observed 1036 

discharge for intermediate and high flows. Basins without behavioural simulations were 1037 

assigned a reliability of zero. 1038 

 1039 

Fig. 12 Comparison of observed and simulated uncertainty bounds for simulations 1040 

constrained with local and regionalised FDCs for a) low, b) intermediate and c) high flows 1041 

for the 24 basins that had behavioural local simulations; d) comparison of regionally 1042 

constrained and locally-calibrated uncertainty bounds, the overlapping range between these 1043 

bounds is expressed as a percentage of the width of the locally-calibrated and the regionalised 1044 

bounds respectively and the 10th percentile and median values of the distribution for each 1045 

time series are shown; e) width of the regionalised bounds as a percentage of the width of the 1046 

overlapping area between the regionalised and the locally-calibrated uncertainty bounds, then 1047 

taken as the average value for the whole time series, plotted against the aridity index. 1048 

 1049 

Fig. 13 Precipitation (dark blue), comparison of simulated uncertainty bounds from 1050 

regionalisation (red) and local calibration (black) with observed discharge (light blue) at 1051 

Camaron (no. 22 with the best FDC-regionalisation), Guanas (no. 14 withthat, except for 1052 

Guatuso, had the poorest FDC-regionalisation when there were behavioural local 1053 

simulations), Balsa (no. 6 with high FDC-regionalisation uncertainty), Agua Caliente (no. 12 1054 

with a good FDC-regionalisation but poorer data consistency and local calibration), and 1055 

Guardia (no. 2 with inconsistent data and no local behavioural simulations). The regionalised 1056 

(red) and observed uncertain (blue) FDCs are shown in log-log space (right in each plot) 1057 

together with the correlation between discharge and CPI for intermediate and high flows. The 1058 

observed FDCs are plotted as used in the local calibration, i.e. without added temporal 1059 

uncertainty. 1060 

 1061 


