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Abstract

It is well-known in the hydrometeorology literature that developing real-time daily
streamflow forecasts in a given season significantly depend on the skill of daily pre-
cipitation forecasts over the watershed. Similarly, it is widely known that streamflow is
the most important predictor in estimating nutrient loadings and the associated con-5

centration. The intent of this study is to bridge these two findings so that daily nutrient
loadings and the associated concentration could be predicted using daily precipitation
forecasts and previously observed streamflow as surrogates of antecedent land sur-
face conditions. By selecting 18 relatively undeveloped basins in the Southeast US
(SEUS), we evaluate the skill in predicting observed total nitrogen (TN) loadings in10

the Water Quality Network (WQN) by first developing the daily streamflow forecasts
using the retrospective weather forecasts based on K -nearest neighbor (K -NN) re-
sampling approach and then forcing the forecasted streamflow with a nutrient load es-
timation (LOADEST) model to obtain daily TN forecasts. Skill in developing forecasts of
streamflow, TN loadings and the associated concentration were computed using rank15

correlation and RMSE, by comparing the respective forecast values with the WQN
observations for the selected 18 Hydro-Climatic Data Network (HCDN) stations. The
forecasted daily streamflow and TN loadings and their concentration have statistically
significant skill in predicting the respective daily observations in the WQN database at
all the 18 stations over the SEUS. Only two stations showed statistically insignificant20

relationship in predicting the observed nitrogen concentration. We also found that the
skill in predicting the observed TN loadings increase with increase in drainage area
which indicates that the large-scale precipitation reforecasts correlate better with pre-
cipitation and streamflow over large watersheds. To overcome the limited samplings
of TN in the WQN data, we extended the analyses by developing retrospective daily25

streamflow forecasts over the period 1979–2012 using reforecasts based on the K -NN
resampling approach. Based on the coefficient of determination (R2

Q-daily) of the daily

streamflow forecasts, we computed the potential skill (R2
TN-daily) in developing daily nu-
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trient forecasts based on the R2 of the LOADEST model for each station. The analyses
showed that the forecasting skills of TN loadings are relatively better in winter and
spring months while skills are inferior during summer months. Despite these limita-
tions, there is potential in utilizing the daily streamflow forecasts derived from real-time
weather forecasts for developing daily nutrient forecasts, which could be employed for5

various adaptive nutrient management strategies for ensuring better water quality.

1 Introduction

Anthropogenic interventions of biogeochemical cycles have resulted in increased nutri-
ent loadings in streams over the past few decades (Galloway et al., 1995; Caraco and
Cole, 1999). Continuous concerns about water quality degradation have resulted in the10

development of active water quality management programs such as total maximum
daily load allocation (TMDL) as well as establishment of policy instruments related to
water quality trading. Of particularly interest is the total nitrogen (TN) loadings whose
contribution from the land surface to the North Atlantic Ocean, has increased from 5 to
20 folds in comparison to the pre-industrial/natural level (Howarth et al., 1996). Nitrate15

levels have tripled in major rivers over the northeastern US since 1900’s while nitrate
concentration doubled in the Mississippi River basin since 1965 (Turner and Rabalais,
1991; Howarth et al., 1996; Vitousek et al., 1997; Goolsby and Battaglin, 2001).

Excess nitrogen results in overproduction of phytoplanktons, which in turn causes
anoxic conditions and eutrophication in lakes and coastal regions (Vitousek et al.,20

1997; Pinckney et al., 1999). Such eutrophication, due to natural and anthropogenic
nitrogen sources, is an important water quality degradation issue, which ranges from
small streams (Duff et al., 2008) to large water bodies such as Gulf of Mexico (e.g.
Bricker et al., 1999; Alexander et al., 2000; Rabalais et al., 2002; Alexander and Smith,
2006). There have been several efforts to reduce nitrogen loadings to streams but such25

programs are often too costly. For example, North Carolina Department of Energy and
Natural Resources (DENR) have spent several billion dollars in nutrient management
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of Falls Lake in the Neuse River to control total nitrogen loadings under permissible
range (North Carolina DENR). But, availability of data on total nitrogen is limited with
concentration is typically measured on a non-continuous basis. Studies have tried to
overcome these limitations by using the long available records of streamflow, since both
instream nutrient concentration and loadings primarily depend on streamflow variability5

(Borsuk et al., 2004; Paerl et al., 2006; Lin et al., 2007) and antecedent flow conditions
(Vecchia, 2003; Alexander and Smith, 2006). Various nutrient simulation models have
been developed to estimate loadings using semi-distributed hydrologic models (e.g.,
WASP, HSPF, SWAT, GWLF) or statistical models (e.g., LOADEST). Both these types
of models are typically implemented under a simulation mode by using observed mete-10

orological forcings to estimate nitrogen loadings. Similarly, considerable progress has
been made in developing daily streamflow forecasts using both statistical models that
consider both parametric (Rajagopalan and Lall, 1999; Anderson et al., 2002; Salas
and Lee, 2010) and semi-distributed models (e.g., Clark and Hay, 2004; Mcenery et al.,
2005; Georgakakos et al., 2010). Developing daily streamflow forecasts over a large re-15

gion using semi-distributed models require intensive spatial data (e.g. topography, land
cover, soils) and computational resources, hence, we employed the K -Nearest Neigh-
bor (K -NN) semi-parametric approach to develop daily streamflow forecasts contingent
on updated climate forecasts. Furthermore, K -NN approach can also capture nonlin-
ear relationships that are typically observed in daily streamflow data (Salas and Lee,20

2010) and it has been widely used in hydrologic studies (Rajagopalan and Lall, 1999;
Prairie et al., 2006; Sharif and Burn, 2006). Although daily streamflow forecasts could
be developed with reasonable skill, there is a gap in linking those forecasts to develop
daily nutrient loading forecasts. Given that skillful forecasts of daily nutrient loadings
could be utilized in improving in-stream water quality, we intend to investigate the po-25

tential in forecasting daily nutrient loadings conditional on daily precipitation forecasts
and previously observed streamflow as surrogates of antecedent moisture conditions
for 18 watersheds that are minimally affected by anthropogenic interventions over the
Southeast US.
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The manuscript is organized as follows: Sect. 2 details the data sources for daily
streamflow, observed daily total nitrogen samplings and retrospective daily precipitation
forecasts that were utilized in the study. Following that, we describe the methodology
behind the development of daily streamflow and nutrient loadings forecasts. Section 4
provides the results on the skill in predicting the observed nutrient loadings over the5

selected 18 watersheds. Finally, in Sect. 5, we summarize the salient findings and
conclusions arising from the study.

2 Data description

This section outlines the streamflow, Water Quality Network (WQN), retrospective
weather forecasts associated with the development of total nitrogen forecasts over the10

Southeast US.

2.1 HCDN streamflow database

Given the intent of the study is to associate daily nutrient loadings with daily precipi-
tation forecasts, we focus our analysis on 18 undeveloped basins over the Southeast
United States (SEUS) from the Hydro-Climatic Data Network (HCDN) database (Slack15

et al., 1993). Figure 1 shows the location of 18 HCDN stations and Table 1 provides
the list of the 18 stations considered in this study along with their drainage areas. Daily
streamflow records in the HCDN basins is purported to be relatively free of anthro-
pogenic influences such as upstream storage and groundwater pumping and the accu-
racy ratings of these records are at least “good” according to United States Geological20

Survey (USGS) standards. Since the streamflow data (Q) in the HCDN database is
available only up to 1988, we extended records up to 2009 based on the USGS histor-
ical daily streamflow database.
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2.2 Weather forecasts database

We employed retrospective weather forecasts from the National Oceanic and Atmo-
spheric Administration (NOAA) to forecast daily streamflow at multiple sites in the
SEUS (Hamill et al., 2004, 2006). NOAA’s Earth System Research Laboratory/Physical
Science Division (ESRL/PSD) reforecast project provides daily precipitation forecasts5

from the Global Forecast System (GFS) model, which was formerly called the Medium-
Range Forecast Model (MRF). Daily precipitation reforecasts from the GFS model con-
sists of 15 ensemble members, up to 15 days in advance, starting from 1979 to till date.
In this study, we considered the ensemble mean of daily precipitation forecasts to fore-
cast daily streamflow and daily total nitrogen loadings for the selected watersheds.10

2.3 Water Quality monitoring Network (WQN) database

USGS provides national and regional descriptions of stream water quality conditions
in Water Quality monitoring Network (WQN) across the nation (Alexander et al., 1998).
The WQN database comprises of water quality data from USGS monitoring networks
from both large watersheds (National Stream Quality Accounting Network, NASQAN)15

and minimally developed watersheds (Hydrologic Benchmark Network, HBN). We used
the observed daily concentrations of Total Nitrogen (TN) for the 18 stations in the SEUS
from the WQN database. By selecting watersheds from the HCDN database, we basi-
cally ensure that both the streamflow and water quality data are minimally affected by
anthropogenic influences. Despite the long observational period of nitrogen loadings20

(12–23 yr), total nitrogen concentration was measured 5 to 6 times per year (Table 1).
For additional details about the WQN database, see Alexander et al. (1998). We next
provide details on the methodologies behind the development of streamflow and total
nitrogen loadings forecasts for the selected watersheds.
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3 Streamflow and Total Nitrogen Forecasting Models

The overall schematic diagram of the daily streamflow and nutrients forecasting
methodology is shown in Fig. 2.

3.1 Daily Streamflow Forecasts

To develop daily streamflow forecasts, we first identified the grid points of large scale5

1 day ahead forecasted precipitation (referred as FP, hereafter) that exhibit significant
correlation with daily streamflow from the HCDN database (Table 2). The correlation
was considered statistically significant when it was greater than 1.96/

√
(n−3), where

“n” denotes the number of days over 1979 to 2009 period. This helps us to identify the
neighboring grid points that modulate the streamflow of a particular watershed.10

Given that the selected large scale FP grids are inter-correlated with each other,
Principal Component Analysis (PCA) was applied to select first few principal compo-
nents which explained over 90 % variability in the precipitation data. PCA, also known
as empirical orthogonal function (EOF) analysis, transforms the correlated variables
to orthogonal uncorrelated principal components (See details in Oh and Sankarasub-15

ramanian, 2013). The number of principal components varies from 2 to 5 among dif-
ferent sites (Table 2). These principal components (PCs) of 1 day ahead FP as well
as daily streamflow over the previous three days, prior to the forecasting date, were
selected as the predictor for the semi-parametric statistical model. For example, to
forecast streamflow on a particular day WQN data was observed, say 14 March in20

a given year, predictors were the 1 day ahead FP issued on 13 March and the 1 day
average daily streamflow from 11 March to 13 March in that year. Thus, the number of
predictors varies from 3 to 6 (i.e., the number of selected PCs shown in Table 2 and
one predictor for the 1 day average streamflow). The streamflow over the previous three
days could be considered as a surrogate for antecedent soil moisture conditions. Then,25

the nearest neighbor resampling method was employed to predict daily streamflow for
that particular day in which WQN was observed.
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3.2 K -Nearest Neighbor (K -NN) resampling approach

After obtaining the predictors, PCs of the FP grids and 1 day average streamflow,
we utilized the K -Nearest Neighbor (K -NN) resampling method proposed by Lall and
Sharma (1996). Similar application of K -NN resampling approach was employed for
developing monthly streamflow forecasts conditional on climatic predictors (Souza5

et al., 2003; Devineni et al., 2008). The K -NN approach resamples daily (or monthly
data) from historical data to generate values that were observed in the past. Typically,
the K nearest neighbors are identified between predicted time series and the histor-
ical series based on the Euclidean distance. Then a weighing function (e.g. Lall and
Sharma, 1996) is generally assigned such that more weights are given to the nearest10

neighbors while less weights are given the farthest neighbors to estimate the predicted
time series. Finally, multiple ensembles are generated to estimate the conditional mean
of the time series.

In this study, we used the Mahalanobis distance, since the selected predictors – PCs
of the principal components and the streamflow over the past observations- could be15

correlated. Therefore, for forecasting the streamflow for a given day observed in the
WQN data, all the neighbors were chosen based on the historical time series of 1 day
ahead FP and previous 1 day average streamflow for that day over the period 1979 to
2009, leaving out the daily predictors and predictands over the entire forecasting year
(i.e., 365 days). This implies that in order to forecast streamflow for a given day, 3020

historical years are available (excluding the forecast year) for identifying similar condi-
tions. Since this is a small sample size for identifying neighbors, we also considered
daily streamflow over the three previous days, resulting in a total 120 neighbors, to
develop streamflow forecasts for a given day. Mahalanobis distance for all these 120
neighbors were estimated using Eq. (1) (Mahalanobis, 1936):25

Di ,j =
√

(X i −Xj )TS−1(X i −Xj ) (1)
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where X i and Xj = (X1,X2, . . . ,X120) are the multivariate vectors containing predictor
variables at the conditioning time step i and j denote the rest of the time periods that
are considered for identifying the neighbors with T representing the transpose opera-
tion and S−1 denoting the inverse of the predictor (Xj ) covariance matrix. The matrix,
X� = [x1� x2�] denotes the multivariate vector with x1� and x2� denoting the 1 day5

averaged streamflow before the forecasted day and the PCs of 1 day ahead FP. The
first 50 nearest neighbors and their corresponding daily streamflow values were se-
lected based on Mahalanobis distance, Di ,j , to develop ensemble of daily streamflow
forecasts. These daily streamflow values from the 50 neighbors were used to draw
500 ensembles that represent the conditional distribution with the density/weight rep-10

resented by each member, j , by the kernel in Eq. (2):

wj =
1/j

K∑
k=1

1/k

, i = 1,2, · · · ,K (2)

where K = 50 (the number of neighbors), wi represents the probability with which
neighbor is resampled in constituting the 500-member ensemble. Finally, the fore-15

casted streamflow for each day is calculated as the conditional mean of these 500
realizations obtained from the 50 neighbors. The ensemble mean of daily streamflow
forecasts are specifically obtained for the days on which WQN data is available, so
that the ensemble mean of daily streamflow forecasts could be used for developing
forecasts of total nitrogen loadings, whose details are described in the next section.20

3.3 Daily nitrogen loadings and concentration forecasts development

Daily nitrogen loadings forecasts are developed by forcing the daily streamflow fore-
casts with the Load Estimation (LOADEST) program. LOADEST is a statistical model
that estimates daily loadings based on the observed daily streamflow and the centered
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time (dtime) of the year of the observation (Runkel et al., 2004).

ln(Lj ) = a0+a1ln(Qj )+a2lnQ2
j +a3sin(2πdtime)+a4cos(2πdtime)+ ε̂j . . . (3)

where Lj denotes the observed daily loadings from the WQN database with “j ′” de-
noting the day of observation, Qj is the observed daily flow and dtime is the centered5

time which is a function of the observation’s number of days (from 1 January) in the
calendar year, a0–a4 denote the model coefficients and ε̂j is the estimated residual for
the model. The expression dtime is centered to avoid multi-collinearity and dtime also
represents the seasonality in loadings pattern. For a detailed expression on dtime, see
Cohn et al. (1992).10

The LOADEST model allows the user to select the best-fitting regression model
from eleven predefined regression models using the Akaike Information Criterion (AIC)
(Akaike, 1981). Five regression models that include a linear time trend are not appro-
priate, since we are employing observed streamflow to estimate simulated loadings for
HCDN watersheds. Therefore, the simulated nutrient loadings based on the remaining15

regression models (i.e., model forms: 1, 2, 4 and 6 as defined in Runkel et al., 2004) in
the LOADEST program do not have any time trend. Equation (3) represents the model
form 6. Model form 1 (2) considers only the first two (three) terms in the right hand side
(RHS) of Eq. (3), whereas model form 3 considers all the terms except the third term in
the RHS of Eq. (3). For further details on model forms, see Runkel et al. (2004). Table 320

shows the “goodness of fit” statistics (coefficient of determination (R2) and AIC) in pre-
dicting the observed daily loadings in the WQN database (Table 1) and the coefficients
of the best fitting regression model for total nitrogen for the selected 18 stations.

From Table 3, we infer that R2 ranges from 0.83–0.97 indicating good fit of the ob-
served daily loadings over 18 stations. Using these parameters, we next estimate the25

forecasts of daily loadings using the ensemble mean of daily streamflow forecasts de-
veloped using the retrospective weather forecasts. Strictly speaking, these parameters
should have been obtained by leaving out the observed WQN loadings on the day
of the forecasting. Since we have more than 50 observations at each site (Table 1),
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the regression coefficients and model forms did not change substantially. Hence, we
used the parameters of the regression coefficients given in Table 3 to estimate the
forecasted total nitrogen loadings. These forecasted loadings are divided by the fore-
casted streamflow to estimate the forecasts of total nitrogen concentrations for the
18 selected watersheds. The forecasted daily streamflow and total nitrogen loadings5

and concentration are respectively compared with the observed streamflow and the
observed WQN daily loadings based on Spearman rank correlation and Root Mean
Square Error (RMSE) in predicting the observed information.

4 Results and analysis

In this section, we present skill in predicting variability (rank correlation) and accuracy10

(RMSE) of observed streamflow and WQN loadings using the forecasted daily stream-
flow obtained using the K -NN approach.

4.1 Skill in forecasting daily streamflow

We first summarize the performance of the daily streamflow forecasts for only those
days when TN loadings are measured (Fig. 4a). Based on that, we infer that all the sta-15

tions show statistically significant correlations with 8 sites showing correlations greater
than 0.8 (Fig. 3a). Similarly, RMSE (in cfs per unit area) is lesser than 1 for all states
except stations #11, 17 and 18 (Fig. 3b). These errors primarily occur due to the in-
ability of the model to predict high values, which resulted in very high residuals. For
instance, RMSE for station #17 drops from 3.56 to 0.55 by excluding only one extreme20

observation recorded on 2/10/1981 (not shown here). The RMSE for station #11 (#18)
are adjusted to 0.73 (0.29) by dropping one (two) high flow value(s). Although this
conditional bias is not observed at all the stations, we infer that the daily streamflow
forecast model has poor skill in predicting high flow values. We defer this issue for fur-
ther discussion at the end of this section. Given this evaluation in predicting observed25
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streamflow on days with WQN data, we next evaluate the performance of daily nitrogen
loadings and concentration forecasts for the 18 stations.

4.2 Skill in forecasting total nitrogen loadings and concentration

Using the ensemble mean of the daily forecasted streamflows as a predictor in the
LOADEST model, we estimate the forecasted TN loadings for those days in which5

measurements are available in the WQN database. Figure 4a (and b) shows rank cor-
relation (RMSE) between forecasted daily loadings and observed loadings for the 18
stations. Daily loadings of TN forecasts exhibit statistically significant relationship be-
tween observation and forecasts at all the stations with correlation coefficients being
greater than 0.8 in nine stations. We also infer the correlation is higher in coastal re-10

gions as opposed to the inland watersheds. Similar to the skill of daily streamflow
forecasts, loadings forecasts produce high RMSE in some stations despite their ability
to predict the observed variability. This failure in forecasting TN loadings is primarily
due to the inability in estimating high flow events as discussed in Sect. 4.1.

Further extending our analysis, we estimated TN concentration from the LOAD-15

EST model utilizing the forecasted streamflow and loadings and then compared the
forecasted TN concentration with the observed concentrations available in the WQN
database (Fig. 5). Though the forecasted concentration is smaller compared to corre-
lation reported for streamflow and loadings, the correlation is statistically significant at
all stations except stations #6 and #18. Given that concentration is the ratio of loadings20

to the streamflow, the error in predicting both loadings and streamflow result in reduced
skill. We are not reporting the RMSE since the trend is similar to Figs. 4 and 5.

4.3 Factors affecting the skill in forecasting TN loadings

In order to understand what factors control the skill in forecasting the TN loadings uti-
lizing the weather forecasts, we plotted the rank correlation against basin area (Fig. 6).25

Rank correlation in forecasting streamflow (Fig. 6a) and TN loadings (Fig. 6b) are
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statistically significant for all the stations and the skill increases as the drainage area
increases. This is primarily due to the fact that retrospective weather forecasts being
available over large spatial scales, the developed streamflow and TN loadings forecasts
modulate better with the observed streamflow and WQN loadings.

To gain further understanding on how the developed model estimate the observed5

streamflow and nutrients, we present the performance of daily streamflow and TN fore-
casts for the sites that have the best and worst skill under each case (Fig. 7). For
quantifying the performance of streamflow, we considered the continuous daily stream-
flow records available from USGS instead of comparing the performance on the days
with WQN data. From streamflow forecasts for the site with best skill (Fig. 7a), we un-10

derstand that overall performance is good, but the K -NN resampling approach based
daily streamflow forecasts consistently underestimate high flow events. This underesti-
mation/error in streamflow forecasts partially arises from the errors in the precipitation
forecasts also. We discuss this issue in detail in the next section. From Fig. 7b, the
site performs poorly in forecasting flows above 8000 cfs. It is important to note that for15

the same site we observed significant correlation in predicting both the streamflow and
the loadings on those days with WQN data being present. Thus, evaluating the per-
formance of K -NN resampling model over the entire time series of observed records
provide a more confirmatory evaluation of the model. The primary reason the K -NN
resampling model performs poorly at site 3 (Rocky River near Norwood, NC) is due to20

the limited correlation between the observed precipitation and the forecasted precipita-
tion during the summer months (figure not shown). Thus, the error resulting from K -NN
resampling arises from both errors in the precipitation forecasts and in estimating the
initial conditions as well as from the model itself. Even if one uses physically-based dis-
tributed models (e.g., Sacramento model), the skill of streamflow forecasts is heavily25

dependent on the skill of precipitation forecasts as well as the season of forecasting.
Figure 7c shows the performance of the TN loadings forecasts obtained using the

streamflow forecasts with the LOADEST model. Even here, the same issue is high-
lighted with the limited ability of the forecasts in predicting the nutrients on days with
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high flows resulting in underestimated TN loadings. But, the model estimates the vari-
ability of the observed nutrients very well. Figure 7d shows the performance of TN
loadings for a station with the worst skill. The skill of the streamflow forecasts result-
ing from the K -NN resampling approach in predicting the observed daily streamflow
recorded at USGS stations is marginal with an average daily correlation of 0.6. Given5

that the R2 of the LOADEST model is 0.912 for the selected station (Table 3), the poor
performance primarily results from the inability of the streamflow forecasts which partly
arises from the resampling model as well as from the skill of the precipitation forecasts.
Thus, to develop nutrient forecasts, it is important that the skill of daily precipitation and
streamflow forecasts should be good and also the load estimation model should have10

very high skill in predicting the observed nutrients. Given that these basins are virgin,
it could be argued the predominant source of nutrient loadings arise from the nonpoint
sources whose primary transport is the streamflow. Thus, for developing a broader un-
derstanding of what could be achieved in forecasting daily nutrients in virgin basins, one
could look at the skill in predicting daily streamflow forecasts using the retrospective15

weather forecasts for the selected 18 stations. We summarize this information under
the discussion in the next section by summarizing the skill of daily streamflow forecasts
under each month for the selected 18 stations.

4.4 Discussion

The intent of this study is to develop daily forecasts of total nitrogen (TN) loadings20

and its concentration in 18 HCDN watersheds that are minimally impacted by anthro-
pogenic influences over the southeastern US. Given that these watersheds experience
virgin flow, our hypothesis is that most of the nutrient transport at daily time scales
could be explained based on observed streamflow. For this purpose, we related the
observed daily streamflow and loadings using the LOADEST model (Table 3), which25

showed significant skill in predicting the daily variability in TN loadings purely based on
observed streamflow. Given that the predominant driver of streamflow in watersheds
under rainfall-runoff regime is precipitation, we utilized the retrospective 1 day ahead
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precipitation forecasts from the reforecasts database of Hamill et al. (2004) and daily
streamflow over previous three days (as a surrogate for soil moisture storage) for de-
veloping daily streamflow forecasts on the days with recorded WQN observations. The
forecasted ensemble average of the streamflow obtained using the K -NN resampling
model was used within the LOADEST model to estimate the forecasted daily TN load-5

ings and the concentrations. We observed the correlation between observed TN load-
ings and the forecasted TN loadings being significant in almost all the stations. But,
the forecasted concentration showed reduced skill, since it accounted for the errors
in both loadings and streamflow. Though one could improve the streamflow forecasts
developed using the K -NN resampling approach by considering physically distributed10

hydrologic models and by explicitly considering additional input variables (e.g., temper-
ature forecasts, humidity), we certainly captured the first-order information on the daily
streamflow variability by utilizing the retrospective precipitation forecasts and employed
that for assessing the potential in developing nutrient forecasts. Another advantage with
the streamflow forecasts using K -NN approach is in specifying the conditional distribu-15

tion of flows. Thus, one could use the conditional distribution of streamflows with the
LOADEST model to develop the conditional distribution of loadings, which could be
used to estimate the probability of violating the concentration at the daily time scale.

It is important to note that all the skill reported in Figs. 3–6 consider the ability to pre-
dicting exactly for those days with WQN observations. The primary difficulty in assess-20

ing the potential for developing nutrient forecasts at daily time scale is the discontinu-
ous nutrient samplings recorded in the WQN database. Oh and Sankarasubramanian
(2012) addressed this issue by computing the coefficient of determination (R2) of the
winter TN loadings forecasts as a product of the R2 in forecasting the seasonal stream-
flow and the R2 of the LOADEST model for the winter season. Similarly, we express25

the skill of TN forecasts (Eq. 4) at daily time scale as a product of the R2 of streamflow
(Q) forecasts developed from the K -NN approach for each day in the calendar year
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and the R2 of the LOADEST model reported in Table 3.

R2
TN-daily = R2

(LOADEST)
·R2

Q-daily
. . . (4)

R2
Q-daily is computed between the observed daily streamflow over the period 1979–

2010 and the computed ensemble mean of the streamflow forecast from the K -NN5

resampling approach. Since the skill of daily streamflow forecasts differ substantially
depending on the season, we plot the R2

TN-daily as a box-plot for each month (Fig. 8).

Basically, Fig. 8 pools the daily correlation,R2
TN-daily, for a given month across the 18

stations. For instance, in January, we expect 31*18 daily correlations and the box-plot
simply summarizes the skill in predicting daily TN for that month over the Southeast10

US. About 75 % of the R2
TN-daily at daily level are statistically significant level over the

period January to May and also from November and December (Fig. 8). Daily TN fore-
casts show relatively better skills in predicting observed TN variability during winter and
spring. On the other hand, the skill of R2

TN-daily is poor during the summer and fall sea-
sons. It has been well-known that retrospective precipitation forecasts have lower skill15

during the warm-season (Hamill et al., 2004). One of the possible reasons of relatively
poor skill during summer and fall is that weather phenomena during these seasons de-
pend greatly on local scale processes while large-scale models do not have the ability
to capture it (Hamill et al., 2006). Thus, the poor skill of R2

TN-daily primarily arises from
the skill in forecasting precipitation during the summer and fall seasons. Additionally,20

the role of temperature during the summer season is also much higher with enhanced
evapotranspiration. However, considering temperature as additional predictor did not
result in substantial increase in the R2

Q-daily for the summer season. Perhaps, if one
considers a physically-based hydrologic model, the skill in predicting daily streamflow
could improve during the summer season. We plan to investigate this as a future work25

in assessing the potential for developing nutrient forecasts with streamflow forecasts
being derived from a physically-based distributed hydrologic model. Thus, the poten-
tial skill (R2

TN-daily) in predicting daily nutrients is statistically significant for the winter
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and spring season in almost all the stations. One could utilize this to develop adap-
tive nutrient management strategies for controlling the point sources (e.g., waste water
treatment plants) so that the downstream TN concentration does not exceed the de-
sired/EPA standard.

5 Summary and conclusions5

We developed a semi-parametric statistical model, which utilizes 1 day ahead precipi-
tation forecasts from the reforecasts from the NOAA GFS climate model (Hamill et al.,
2004) and daily streamflow over the previous three days as predictors, to develop
daily streamflow forecasts, which in turn was used to implement a load estimation
model, LOADEST, for estimating daily nutrients. For each day, conditioned on previ-10

ous day’s streamflow and 1 day ahead forecasted precipitation, 50 nearest neighbors
over a three-day window were selected based on the Mahalanobis distance and then
observed daily streamflow corresponding to those 50 neighbors were resampled to
constitute 500 ensemble members to develop a daily streamflow forecast. It is im-
portant to note that to develop a forecast for a given day in a year, the entire year’s15

predictors and predictand were left out for identifying the 50 nearest neighbors. Finally,
the conditional mean of these daily streamflow ensemble was forced in the LOAD-
EST model to obtain daily forecasts of TN loadings and concentration for days with
recorded WQN observations. Skill in developing forecasts of streamflow, TN loadings
and the associated concentration were computed using rank correlation and RMSE, by20

comparing the respective forecast values with the WQN observations for the selected
18 HCDN stations. The forecasted daily streamflow and TN loadings and their concen-
tration exhibit statistically significant skill in predicting the respective daily observations
in the WQN database at all the 18 stations over the SEUS. The study also found that
the skill in predicting the observed TN loadings is higher for large watersheds indicat-25

ing the large-scale precipitation forecasts from the reforecast database better corre-
late with precipitation and streamflow over large watersheds. To overcome the limited

15641

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/15625/2013/hessd-10-15625-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/15625/2013/hessd-10-15625-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 15625–15657, 2013

Role of weather
forecasts in

forecasting nutrient
loadings

J. Oh et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

samplings of TN in the WQN data, we extended the analyses by developing retrospec-
tive daily streamflow forecasts over the period 1979–2012 using reforecasts based on
the K -NN resampling approach. Based on the coefficient of determination (R2

Q-daily) of

the daily streamflow forecasts, we computed the potential skill (R2
TN-daily) in developing

daily nutrient forecasts based on the R2 of the LOADEST model for each station. The5

analyses showed that the forecasting skills of TN loadings are relatively better in win-
ter and spring months while skills are inferior during summer months. These findings
are consistent with other studies (Devineni and Sankarasubramanian, 2010; Sinha and
Sankarasubramanan, 2013) which show that large-scale precipitation forecasts derive
their skill from ENSO climatic modes in the SEUS. One possible reason for this poor10

skill in summer is due to the dominance of local-scale processes during the summer
season. Other possible reasons could be due to the limitations in the methodology.
We resampled neighbors to develop daily streamflow ensemble, which of course will
not have members beyond the maximum observation over the selected 50 neighbors.
Further, air temperature can play a dominant role during the summer and fall seasons,15

resulting in enhanced evapotranspiration and reduced baseflow from the watershed.
Despite these limitations, there is potential in utilizing the daily streamflow forecasts
for developing daily nutrient forecasts, which could be employed for various adaptive
nutrient management strategies for ensuring better water quality.
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Table 1. Baseline information for the 18 selected stations. Values in the parentheses show the
total number of daily total nitrogen loadings and concentration available for each station.

Station Station Station Drainage Number of Years
Index Number Name Area (km2) (# of daily Obs.)

1 2047000 Nottoway river near Sebrell, VA 3732.17 17 (95)
2 2083500 Tar river at Tarboro, NC. 5653.94 22 (152)
3 2126000 Rocky river near Norwood, NC 3553.46 14 (65)
4 2176500 Coosawhatchie river near Hampton, SC 525.77 13 (100)
5 2202500 Ogeechee river near Eden, GA 6863.47 20 (141)
6 2212600 Falling creek near Juliette, GA 187.00 14 (56)
7 2228000 Satilla river at Atkinson, GA 7226.07 20 (123)
8 2231000 St. Marys river near Macclenny, FL 1812.99 14 (108)
9 2321500 Santa Fe river at Worthington springs, FL 1489.24 21 (82)
10 2324000 Steinhatchee river near Cross city, FL 906.50 19 (92)
11 2327100 Sopchoppy river near Sopchoppy, FL 264.18 22 (125)
12 2329000 Ochlockonee river near Havana, FL 2952.59 22 (133)
13 2358000 Apalachicola river at Chattahoochee, FL 44 547.79 23 (152)
14 2366500 Choctawhatchee river near Bruce, FL 11 354.51 21 (119)
15 2368000 Yellow river at Milligan, FL 1616.15 21 (123)
16 2375500 Escambia river near Century, FL 9885.98 22 (145)
17 2479155 Cypress creek near Janice, MS 136.23 16 (54)
18 2489500 Pearl river near Bogalusa, LA 17 023.99 12 (57)
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Table 2. Station ID, number of selected PCs, and cumulative Eigen values for large scale pre-
cipitation grids from the NOAA’s GFS model, which provide 1 day ahead precipitation forecasts
(Grid numbers are shown in Fig. 1).

Station Selected Grids # of Cumulative Eigen
ID (total # of selected grids) Selected PCs value of selected PCs

1 5, 7, 12, 19–21 (6) 4 0.962
2 5, 7, 12 (3) 2 0.905
3 4–5, 11–13, 18–20 (8) 4 0.948
4 11–13, 18–20, 27 (7) 3 0.909
5 17–18, 24–27 (6) 3 0.922
6 9–12, 16–19, 23–26 (12) 4 0.903
7 24–26, 31–33 (6) 3 0.918
8 17–19, 24–26, 31–33 (9) 4 0.918
9 17–19, 24–26, 31–33 (9) 4 0.918
10 16–19, 23–26, 30–33 (12) 5 0.921
11 16–18, 23–25, 30–32 (9) 4 0.930
12 16, 30–32 (4) 3 0.975
13 23–25, 30–32 (6) 3 0.934
14 18, 22–25, 30–32 (8) 4 0.938
15 18, 22, 24 (3) 2 0.912
16 22, 29–31 (4) 3 0.977
17 15–17, 22–24, 29–31 (9) 4 0.929
18 17, 22–24, 30–31 (6) 3 0.932
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Table 3. Performance of LOADEST model in predicting the observed TN loadings from the
WQN database. Models with linear time components (Model No: 3, 5, 7–9) are not considered.

Station R2 AIC Model No Coefficients of selected LOADEST model
Index (Daily) (Daily) a0 a1 a2 a3 a4

1 0.948 0.892 4 6.768 1.114 −0.283 −0.069
2 0.966 −0.131 4 8.122 0.980 0.108 −0.018
3 0.966 0.496 4 8.863 1.066 −0.195 0.090
4 0.956 0.905 6 4.446 1.013 0.026 0.238 −0.036
5 0.916 0.837 4 7.721 1.069 −0.084 −0.317
6 0.853 2.094 1 2.647 1.095
7 0.968 0.518 6 7.521 1.005 −0.025 −0.083 0.103
8 0.963 0.250 6 6.428 1.088 −0.075 −0.027 0.187
9 0.986 −0.219 6 5.690 1.086 −0.037 −0.078 0.059
10 0.979 0.279 6 5.549 1.241 −0.069 −0.096 0.071
11 0.979 0.516 6 4.351 1.139 −0.043 0.187 0.007
12 0.923 0.585 1 7.341 0.846
13 0.902 0.193 4 10.563 0.981 0.074 0.165
14 0.835 0.423 4 9.077 0.931 −0.145 −0.042
15 0.834 1.085 6 7.238 1.123 −0.131 −0.004 0.176
16 0.873 0.758 4 8.868 1.039 0.147 0.032
17 0.912 1.233 4 4.555 1.188 0.206 0.328
18 0.899 0.853 1 10.193 1.047
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Figure 1. Locations of 18 water quality monitoring stations and grids of forecasted precipitation 17 

from NOAA’s reforecast model. 18 
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Fig. 1. Locations of 18 water quality monitoring stations and grids of forecasted precipitation
from NOAA’s reforecast model.
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Figure 2: Schematic diagram illustrating the overall approach to forecast daily streamflow and 23 

total nitrogen loadings conditioned on the predictors (gray boxes), daily weather forecasts and 24 

daily average streamflow values for previous 3 days, based on Kernel-Nearest Neighbor (K-NN) 25 

resampling approach. 26 
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Fig. 2. Schematic diagram illustrating the overall approach to forecast daily streamflow and total
nitrogen loadings conditioned on the predictors (gray boxes), daily weather forecasts and daily
average streamflow values for previous 3 days, based on Kernel-Nearest Neighbor (K -NN)
resampling approach.

15651

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/15625/2013/hessd-10-15625-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/15625/2013/hessd-10-15625-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 15625–15657, 2013

Role of weather
forecasts in

forecasting nutrient
loadings

J. Oh et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

31 

 32 

Figure 3: a) Rank correlation and b) RMSE (cfs per unit area) between observed daily 33 

streamflow and forecasted daily streamflow for those days with TN loadings being available in 34 

the WQN database.    35 

(a) 
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Fig. 3. (a) Rank correlation and (b) RMSE (cfs per unit area) between observed daily stream-
flow and forecasted daily streamflow for those days with TN loadings being available in the
WQN database.

15652

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/15625/2013/hessd-10-15625-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/15625/2013/hessd-10-15625-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 15625–15657, 2013

Role of weather
forecasts in

forecasting nutrient
loadings

J. Oh et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

36 

 37 

Figure 4: a) Rank correlation and b) RMSE between observed TN loadings and forecasted TN 38 

loadings for those days with TN loadings being available in the WQN database.   39 
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Fig. 4. (a) Rank correlation and (b) RMSE between observed TN loadings and forecasted TN
loadings for those days with TN loadings being available in the WQN database.
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 40 

Figure 5: Correlation between observed TN concentration and forecasted TN concentration for 41 

those days with TN loadings being available in the WQN database.    42 
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Fig. 5. Correlation between observed TN concentration and forecasted TN concentration for
those days with TN loadings being available in the WQN database.
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Fig. 6. Variability in Skill on predicting observed (a) streamflow and (b) TN loadings as a func-
tion of drainage area.
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Fig. 7. Comparison of observations and forecasts of streamflow (a and b) and TN loadings
(c and d) for the stations with best (Streamflow: Ogeechee river near Eden, GA, TN: Tar river
at Tarboro, NC) and worst forecasting skill (Streamflow: Rocky river near Norwood, NC, TN:
Cypress creek near Janice, MS).
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Figure 8: Box plot showing rank correlations between observed daily streamflow and forecasted 73 

streamflow aggregated over each month from 1979 to 2009 period. Each plot includes 558 74 

correlations (18 stations × 31years). The solid line represents the statistically significant (95%) 75 

R2 corresponding to the null hypothesis that R2 being equal to zero. 76 

 77 
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Fig. 8. Box plot showing rank correlations between observed daily streamflow and forecasted
streamflow aggregated over each month from 1979 to 2009 period. Each plot includes 558
correlations (18 stations×31 yr). The solid line represents the statistically significant (95 %) R2

corresponding to the null hypothesis that R2 being equal to zero.
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