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Abstract 22 

It is well-known in the hydrometeorology literature that developing real-time daily 23 

streamflow forecasts in a given season significantly depend on the skill of daily precipitation 24 

forecasts over the watershed. Similarly, it is widely known that streamflow is the most important 25 

predictor in estimating nutrient loadings and the associated concentration. The intent of this study 26 

is to bridge these two findings so that daily nutrient loadings and the associated concentration 27 

could be predicted using daily precipitation forecasts and previously observed streamflow as 28 

surrogates of antecedent land surface conditions. By selecting 18 relatively undeveloped basins in 29 

the Southeast US (SEUS), we evaluate the skill in predicting observed total nitrogen (TN) loadings 30 

in the Water Quality Network (WQN) by first developing the daily streamflow forecasts using the 31 

retrospective weather forecasts based on K-nearest neighbor (K-NN) resampling approach and 32 

then forcing the forecasted streamflow with a nutrient load estimation (LOADEST) model to 33 

obtain daily TN forecasts. Skill in developing forecasts of streamflow, TN loadings and the 34 

associated concentration were computed using rank correlation and RMSE, by comparing the 35 

respective forecast values with the WQN observations for the selected 18 Hydro-Climatic Data 36 

Network (HCDN) stations. The forecasted daily streamflow and TN loadings and their 37 

concentration have statistically significant skill in predicting the respective daily observations in 38 

the WQN database at all the 18 stations over the SEUS. Only two stations showed statistically 39 

insignificant relationship in predicting the observed nitrogen concentration. We also found that the 40 

skill in predicting the observed TN loadings increase with increase in drainage area which indicates 41 

that the large-scale precipitation reforecasts correlate better with precipitation and streamflow over 42 

large watersheds. To overcome the limited samplings of TN in the WQN data, we extended the 43 

analyses by developing retrospective daily streamflow forecasts over the period 1979-2012 using 44 
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reforecasts based on the K-NN resampling approach. Based on the coefficient of determination 45 

(
2

Q dailyR  ) of the daily streamflow forecasts, we computed the potential skill (
2

TN dailyR  ) in developing 46 

daily nutrient forecasts based on the R2 of the LOADEST model for each station. The analyses 47 

showed that the forecasting skills of TN loadings are relatively better in winter and spring months 48 

while skills are inferior during summer months. Despite these limitations, there is potential in 49 

utilizing the daily streamflow forecasts derived from real-time weather forecasts for developing 50 

daily nutrient forecasts, which could be employed for various adaptive nutrient management 51 

strategies for ensuring better water quality.  52 
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1. Introduction 53 

Anthropogenic interventions of biogeochemical cycles have resulted in increased nutrient 54 

loadings in streams over the past few decades (Galloway et al., 1995; Caraco and Cole, 1999). 55 

Continuous concerns about water quality degradation have resulted in the development of active 56 

water quality management programs such as total maximum daily load allocation (TMDL) as well 57 

as establishment of policy instruments related to water quality trading. Of particularly interest is 58 

the total nitrogen (TN) loadings whose contribution from the land surface to the North Atlantic 59 

Ocean, has increased from 5 to 20 folds in comparison to the pre-industrial/natural level (Howarth 60 

et al., 1996). Nitrate levels have tripled in major rivers over the northeastern US since 1900’s while 61 

nitrate concentration doubled in the Mississippi River basin since 1965 (Turner and Rabalais, 1991; 62 

Howarth et al., 1996; Vitousek et al., 1997; Goolsby and Battaglin, 2001).  63 

Excess nitrogen results in overproduction of phytoplanktons, which in turn causes anoxic 64 

conditions and eutrophication in lakes and coastal regions (Vitousek et al., 1997; Pinckney et al., 65 

1999). Such eutrophication, due to natural and anthropogenic nitrogen sources, is an important 66 

water quality degradation issue, which ranges from small streams (Duff et al., 2008) to large water 67 

bodies such as Gulf of Mexico (e.g. Bricker et al., 1999; Alexander et al., 2000; Rabalais et al., 68 

2002; Alexander and Smith, 2006). There have been several efforts to reduce nitrogen loadings to 69 

streams but such programs are often too costly. For example, North Carolina Department of 70 

Energy and Natural Resources (DENR) have spent several billion dollars in nutrient management 71 

of Falls Lake in the Neuse River to control total nitrogen loadings under permissible range (North 72 

Carolina DENR). But, availability of data on total nitrogen is limited with concentration being 73 

measured on a non-continuous basis. Studies have tried to overcome these limitations by using the 74 

long available records of streamflow, since both instream nutrient concentration and loadings 75 
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primarily depend on streamflow variability (Borsuk et al., 2004, Paerl et al., 2006, Lin et al., 2007) 76 

and antecedent flow conditions (Vecchia, 2003, Alexander and Smith, 2006). Various nutrient 77 

simulation models have been developed to estimate loadings using semi-distributed hydrologic 78 

models (e.g., WASP, HSPF, SWAT, GWLF) or statistical models (e.g., LOADEST). Both these 79 

types of models are typically implemented under a simulation mode by using observed 80 

meteorological forcings to estimate nitrogen loadings. Similarly, considerable progress has been 81 

made in developing daily streamflow forecasts using statistical models, e.g.  parametric models 82 

(Rajagopalan and Lall 1999; Anderson et al., 2002; Salas and Lee, 2010),  and semi-distributed 83 

watershed models (e.g., Clark and Hay, 2004; Mcenery et al., 2005, Georgakakos et al., 2010). 84 

Developing daily streamflow forecasts over a large region using semi-distributed models require 85 

intensive spatial data (e.g. topography, land cover, soils) and computational resources, hence, we 86 

employed a semi-parametric approach in this study. In particular, we employed the K Nearest 87 

Neighbor (K-NN) semi-parametric scheme to develop daily streamflow forecasts contingent on 88 

updated climate forecasts since it can  capture nonlinear relationships that are typically observed 89 

in daily streamflow data (Salas and Lee, 2010). The K-NN scheme has been widely used in 90 

hydrologic studies (Rajagopalan and Lall 1999; Prairie et al. 2006; Sharif and Burn 2006). 91 

Although daily streamflow forecasts could be developed with reasonable skill, there is a gap in 92 

linking those forecasts to develop daily nutrient loading forecasts. Furthermore, several studies 93 

have utilized antecedent streamflows as surrogates of initial catchment conditions (e.g. Chiew and 94 

McMohan, 2002; Piechota et al., 2001; Wang et al., 2009) including 3-day average streamflow 95 

conditions (Majumdar and Kumar, 1990; Srinivas and Srinivasan, 2000; Cigizoglu, 2003). In our 96 

analysis, the maximum auto-correlation between observed streamflow and the previous-day 97 

streamflow occurred with a lag of 3 days for the selected sites (figure not shown). Given that 98 
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skillful forecasts of daily nutrient loadings could be utilized in improving in-stream water quality, 99 

we intend to investigate the potential in forecasting daily nutrient loadings conditional on daily 100 

precipitation forecasts and previously observed streamflow as surrogates of antecedent moisture 101 

conditions for 18 watersheds that are minimally affected by anthropogenic interventions over the 102 

Southeast US (SEUS).  103 

The manuscript is organized as follows: Section 2 details the data sources for daily 104 

streamflow, observed daily total nitrogen samplings and retrospective daily precipitation forecasts 105 

that were utilized in the study. Following that, we describe the methodology behind the 106 

development of daily streamflow and nutrient loadings forecasts. Section 4 provides the results on 107 

the skill in predicting the observed nutrient loadings over the selected 18 watersheds. Finally, in 108 

Section 5, we summarize the salient findings and conclusions arising from the study. 109 

 110 

2. Data Description 111 

 This section outlines the streamflow, Water Quality Network (WQN), retrospective 112 

weather forecasts associated with the development of total nitrogen forecasts over the SEUS. 113 

2.1 HCDN Streamflow Database  114 

Given the intent of the study is to associate daily nutrient loadings with daily precipitation 115 

forecasts, we focus our analysis on 18 undeveloped basins over the SEUS from the Hydro-Climatic 116 

Data Network (HCDN) database (Slack et al., 1993). Figure 1 shows the location of 18 HCDN 117 

stations and Table 1 provides the list of the 18 stations considered in this study along with their 118 

drainage areas. Daily streamflow records in the HCDN basins is purported to be relatively free of 119 

anthropogenic influences such as upstream storage and groundwater pumping and the accuracy 120 

ratings of these records are at least ‘good’ according to United States Geological Survey (USGS) 121 
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standards. Since the streamflow data (Q) in the HCDN database is available only up to 1988, we 122 

extended records up to 2009 based on the USGS historical daily streamflow database.  123 

2.2 Weather Forecasts Database 124 

We employed retrospective weather forecasts from the National Oceanic and Atmospheric 125 

Administration (NOAA) to forecast daily streamflow at multiple sites in the SEUS (Hamill et al, 126 

2004; Hamill et al., 2006). NOAA’s Earth System Research Laboratory/Physical Science Division 127 

(ESRL/PSD) reforecast project provides daily precipitation forecasts from the Global Forecast 128 

System (GFS) model, which was formerly called the Medium-Range Forecast Model (MRF). The 129 

GFS forecasts model has 28 sigma (pressure) levels and a T62 spatial resolution (~200 km grid 130 

size), which represents physical processes to estimate atmospheric forcings such as winds, 131 

temperature, precipitation, geopotential heights at different pressure levels (Hamill et al., 2006). 132 

15 ensemble forecasts are obtained by initializing different atmospheric states of the GFS model 133 

every day. The control run is initialized by the National Center for Environmental Prediction 134 

(NCEP)-National Center for Atmospheric Research (NCAR) reanalysis data (Kalnay et al., 1996) 135 

while the other 14 ensemble members use a set of seven bred pairs of initial conditions (Toth and 136 

Kalnay, 1997), which are re-centered each day on the reanalysis initial condition. In this study, we 137 

make use of daily precipitation reforecasts from the GFS model consists of 15 ensemble members, 138 

up to 15 days in advance, starting from 1979 to till date. We considered the ensemble mean of 139 

daily precipitation forecasts to forecast daily streamflow and daily total nitrogen loadings for the 140 

selected watersheds. 141 

2.3 Water Quality Monitoring Network (WQN) Database 142 

USGS provides national and regional descriptions of stream water quality conditions in 143 

Water Quality monitoring Network (WQN) across the nation (Alexander et al., 1998). The WQN 144 
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database comprises of water quality data from the USGS monitoring networks for large watersheds 145 

(National Stream Quality Accounting Network, NASQAN) as well as watersheds that are 146 

minimally developed (Hydrologic Benchmark Network, HBN). We used the observed daily 147 

concentrations of Total Nitrogen (TN) for the 18 stations in the SEUS from the WQN database. 148 

By selecting watersheds from the HCDN database, we basically ensure that both the streamflow 149 

is minimally affected by anthropogenic influences. Bu, water quality data is influenced by the land 150 

use type.  Based on the USGS National Land Use Classification Data (NLCD) data of 2001, we 151 

calculated the percentage area under agriculture and urban (Table 1) land use.  From Table 1, we 152 

can see the distribution with seven, six and five watersheds having 20%-30%, 10%-20% and 0%-153 

10% of area under agriculture respectively. On the other hand, the urban land use is less than 10% 154 

with the exception being station #3(23%).  TN loadings for these stations are available over a 155 

period of 12-23 years with samplings being available on average 5 to 6 times per year (Table 1). 156 

For additional details about the WQN database, see Alexander et al. (1998). We next provide 157 

details on the methodologies behind the development of streamflow and total nitrogen loadings 158 

forecasts for the selected watersheds. 159 

3. Streamflow and Total Nitrogen Forecasting Models 160 

The overall schematic diagram of the daily streamflow and nutrients forecasting methodology 161 

is shown in Figure 2. Daily streamflow forecasts using weather forecasts have been pursued by 162 

many studies (Day, 1985; Wang et al., 2011; Yang et al., 2014), but efforts to use those streamflow 163 

forecasts to develop nutrient forecasts are very limited. 164 

3.1 Daily Streamflow Forecasts 165 

To develop daily streamflow forecasts, we first identified the grid points of large scale 1-day 166 

ahead forecasted precipitation (referred as FP, hereafter) that exhibit significant correlation with 167 
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daily streamflow from the HCDN database (Table 2). The correlation was considered statistically 168 

significant when it was greater than 1.96/sqrt(n-3), where ‘n’ denotes the number of days over 169 

1979 to 2009 period. This helps us to identify the neighboring grid points that modulate the 170 

streamflow of a particular watershed. 171 

Given that the selected large scale FP grids are inter-correlated with each other, Principal 172 

Component Analysis (PCA) was applied to select first few principal components which explained 173 

over 90% variability in the precipitation data. PCA, also known as empirical orthogonal function 174 

(EOF) analysis, transforms the correlated variables to orthogonal uncorrelated principal 175 

components (See details in Oh and Sankarasubramanian, 2013). The number of principal 176 

components varies from 2 to 5 among different sites (Table 2). These principal components (PCs) 177 

of 1-day ahead FP as well as daily streamflow over the previous three days, prior to the forecasting 178 

date, were selected as the predictor for the semi-parametric statistical model. For example, to 179 

forecast streamflow on a particular day WQN data was observed, say March 14 in a given year, 180 

predictors were the 1-day ahead FP issued on Mar 13 and the 1-day average daily streamflow from 181 

March 11 to March 13 in that year. Thus, the number of predictors varies from 3 to 6 (i.e., the 182 

number of selected PCs shown in Table 2 and one predictor for the 1-day average streamflow). 183 

The streamflow over the previous three days could be considered as a surrogate for antecedent soil 184 

moisture conditions. Then, the nearest neighbor resampling method was employed to predict daily 185 

streamflow for that particular day in which WQN was observed. 186 

K – Nearest Neighbor (K-NN) resampling approach 187 

After obtaining the predictors, PCs of the FP grids and 1-day average streamflow, we utilized 188 

the K - Nearest Neighbor (K-NN) resampling method proposed by Lall and Sharma (1996).  189 

Similar application of K-NN resampling approach was employed for developing monthly 190 
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streamflow forecasts conditional on climatic predictors (Souza et al., 2003; Devineni et al., 2008). 191 

The K-NN approach resamples daily (or monthly data) from historical data to generate values that 192 

were observed in the past. Typically, the K nearest neighbors are identified between predicted time 193 

series and the historical series based on the Euclidean distance. Then a weighing function (e.g. Lall 194 

and Sharma, 1996) is generally assigned such that more weights are given to the nearest neighbors 195 

while less weights are given the farthest neighbors to estimate the predicted time series. Finally, 196 

multiple ensembles are generated to estimate the conditional mean of the time series. 197 

In the K-NN scheme, we used the Mahalanobis distance instead of the Euclidean distance, 198 

since the selected predictors – PCs of the principal components and the streamflow over the past 199 

observations- could be correlated. Therefore, for forecasting the streamflow for a given day 200 

observed in the WQN data, all the neighbors were chosen based on the historical time series of 1-201 

day ahead FP and previous 1-day average streamflow for that day over the period 1979 to 2009, 202 

leaving out the daily predictors and predictands over the entire forecasting year (i.e., 365 days). 203 

This implies that in order to forecast streamflow for a given day, 30 historical years are available 204 

(excluding the forecast year) for identifying similar conditions. Since this is a small sample size 205 

for identifying neighbors, we also considered daily streamflow over the three previous days, 206 

resulting in a total 120 neighbors, to develop streamflow forecasts for a given day. Mahalanobis 207 

distance for all these 120 neighbors were estimated using equation (1) (Mahalanobis, 1936): 208 

1

, ( ) ( )T

i j i j i jD X X S X X                                                                          (1) 209 

where 1 2 120 and ( , , , )i jX X X X X  are the multivariate vectors containing predictor variables at 210 

the conditioning time step i and j denote the rest of the time periods that are considered for 211 

identifying the neighbors with T representing the transpose operation and 1S   denoting the 212 
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inverse of the predictor (Xj) covariance matrix. The matrix,  1 2X x x  denotes the multivariate 213 

vector with 1x  and 2x  denoting the 1-day averaged streamflow before the forecasted day and the 214 

PCs of 1-day ahead FP. The first 50 nearest neighbors and their corresponding daily streamflow 215 

values were selected based on Mahalanobis distance, Di,j, to develop ensemble of daily streamflow 216 

forecasts. These daily streamflow values from the 50 neighbors were used to draw 500 ensembles 217 

that represent the conditional distribution with the density/weight represented by each member, j, 218 

by the kernel in equation (2): 219 

1

1/

1/
j K

k

j
w

k





 ,  1,2, ,i K                                                                           (2) 220 

where 50K   (the number of neighbors), iw  represents the probability with which neighbor is 221 

resampled in constituting the 500-member ensemble. Finally, the forecasted streamflow for each 222 

day is calculated as the conditional mean of these 500 realizations obtained from the 50 neighbors. 223 

The ensemble mean of daily streamflow forecasts are specifically obtained for the days on which 224 

WQN data is available, so that the ensemble mean of daily streamflow forecasts could be used for 225 

developing forecasts of total nitrogen loadings, whose details are described in the next section.  226 

3.2 Daily Nitrogen Loadings and Concentration Forecasts Development 227 

Daily nitrogen loadings forecasts are developed by forcing the daily streamflow forecasts 228 

with the Load Estimation (LOADEST) program. The LOADEST model can be employed with the 229 

observed or predicted daily streamflow time series at any given site. Streamflow forecast 230 

developed using large-scale precipitation forecasts and previous 3-day average streamflow using 231 

the non-parametric model is forced with the LOADEST model to develop nutrient forecasts. 232 
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LOADEST is a statistical model that estimates daily loadings based on the observed daily 233 

streamflow and the centered time (dtime) of the year of the observation (Runkel et al., 2004). 234 

2 ˆln( ) 0 1 ln ( ) 2 ln 3 sin(2 ) 4 cos(2 )j j j jL a a Q a Q a dtime a dtime         …(3) 235 

where Lj denotes the observed daily loadings from the WQN database with ‘j’ denoting the day of 236 

observation, Qj is the observed daily flow and dtime is the centered time which is a function of the 237 

observation’s number of days (from January 1) in the calendar year, a0-a4 denote the model 238 

coefficients and ˆ
j  is the estimated residual for the model. The expression dtime is centered to 239 

avoid multi-collinearity and dtime also represents the seasonality in loadings pattern. For a detailed 240 

expression on dtime, see Cohn et al. (1992).   241 

The LOADEST model allows the user to select the best-fitting regression model from eleven 242 

predefined regression models using the Akaike Information Criterion (AIC) (Akaike, 1981). Five 243 

regression models that include a linear time trend are not appropriate, since we are employing 244 

observed streamflow to estimate simulated loadings for HCDN watersheds. Therefore, the 245 

simulated nutrient loadings based on the remaining regression models (i.e., model forms: 1, 2, 4 246 

and 6 as defined in Runkel et al., 2004) in the LOADEST program do not have any time trend. 247 

Equation (3) represents the model form 6. Model form 1 (2) considers only the first two (three) 248 

terms in the right hand side (RHS) of equation (3), whereas model form 3 considers all the terms 249 

except the third term in the RHS of equation (3). For further details on model forms, see Runkel 250 

et al. (2004). Table 3 shows the “goodness of fit” statistics (coefficient of determination (R2) and 251 

AIC) in predicting the observed daily loadings in the WQN database (Table 1) and the coefficients 252 

of the best fitting regression model for total nitrogen for the selected18 stations.  253 

From Table 3, we infer that R2 ranges from 0.83-0.97 indicating good fit of the observed daily 254 

loadings over 18 stations. Using these parameters, we next estimate the forecasts of daily loadings 255 
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using the ensemble mean of daily streamflow forecasts developed using the retrospective weather 256 

forecasts. Strictly speaking, these parameters should have been obtained by leaving out the 257 

observed WQN loadings on the day of the forecasting. Since we have more than 50 observations 258 

at each site (Table 1), the regression coefficients and model forms did not change substantially. 259 

Hence, we used the parameters of the regression coefficients given in Table 3 to estimate the 260 

forecasted total nitrogen loadings. These forecasted loadings are divided by the forecasted 261 

streamflow to estimate the forecasts of total nitrogen concentrations for the 18 selected watersheds. 262 

The forecasted daily streamflow and total nitrogen loadings and concentration are respectively 263 

compared with the observed streamflow and the observed WQN daily loadings based on Spearman 264 

rank correlation and Root Mean Square Error (RMSE) in predicting the observed information.  265 

 266 

4. Results and Analysis 267 

In this section, we present skill in predicting variability (rank correlation) and accuracy 268 

(RMSE) of observed streamflow and WQN loadings using the forecasted daily streamflow 269 

obtained using the K-NN approach.   270 

4.1 Skill in Forecasting Daily Streamflow  271 

We first summarize the performance of the daily streamflow forecasts for only those days 272 

when TN loadings are measured (Figure 4a). Based on that, we infer that all the stations show 273 

statistically significant correlations with 8 sites showing correlations greater than 0.8 (Figure 3a). 274 

Similarly, RMSE (in cfs per unit area) is lesser than 1 for all states except stations #11, 17 and 18 275 

(Figure 3b). These errors primarily occur due to the inability of the model to predict high values 276 

as indicated by very high residuals. For instance, RMSE for station #17 drops from 3.56 to 0.55 277 

by excluding only one extreme observation recorded on 2/10/1981 (not shown here). The RMSE 278 
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for station #11 (#18) are adjusted to 0.73 (0.29) by dropping one (two) high flow value(s). 279 

Although this conditional bias is not observed at all the stations, we infer that the daily streamflow 280 

forecast model has poor skill in predicting high flow values. We defer this issue for further 281 

discussion at the end of this section. Given this evaluation in predicting observed streamflow on 282 

days with WQN data, we next evaluate the performance of daily nitrogen loadings and 283 

concentration forecasts for the 18 stations. 284 

4.2 Skill in Forecasting Total Nitrogen Loadings and Concentration 285 

Using the ensemble mean of the daily forecasted streamflows as a predictor in the LOADEST 286 

model, we estimate the forecasted TN loadings for those days in which measurements are available 287 

in the WQN database. Figure 4a (4b) shows rank correlation (RMSE) between forecasted daily 288 

loadings and observed loadings for the 18 stations. Daily loadings of TN forecasts exhibit 289 

statistically significant relationship between observation and forecasts at all the stations with 290 

correlation coefficients being greater than 0.8 in nine stations. We also infer the correlation is 291 

higher in coastal regions as opposed to the inland watersheds. Similar to the skill of daily 292 

streamflow forecasts, loadings forecasts produce high RMSE in some stations despite their ability 293 

to predict the observed variability. This failure in forecasting TN loadings is primarily due to the 294 

inability in estimating high flow events as discussed in Section 4.1.   295 

Further extending our analysis, we estimated TN concentration from the LOADEST model 296 

utilizing the forecasted streamflow and loadings and then compared the forecasted TN 297 

concentration with the observed concentrations available in the WQN database (Figure 5). Though 298 

the forecasted concentration is smaller compared to correlation reported for streamflow and 299 

loadings, the correlation is statistically significant at all stations except stations #6 and #18. Given 300 

that concentration is the ratio of loadings to the streamflow, the error in predicting both loadings 301 
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and streamflow result in reduced skill. We are not reporting the RMSE since the trend is similar 302 

to Figures 4 and 5.  303 

4.3 Factors affecting the skill in forecasting TN loadings 304 

In order to understand what factors control the skill in forecasting the TN loadings utilizing 305 

the weather forecasts, we plotted the rank correlation against basin area (Figure 6). Rank 306 

correlation in forecasting streamflow (Figure 6a) and TN loadings (Figure 6b) are statistically 307 

significant for all the stations and the skill increases as the drainage area increases, which is 308 

consistent with previous findings (Bloeschl and Sivapalan, 2013). This is primarily due to the fact 309 

that retrospective weather forecasts being available over large spatial scales, the developed 310 

streamflow and TN loadings forecasts modulate better with the observed streamflow and WQN 311 

loadings.   312 

To gain further understanding on how the developed model estimate the observed streamflow 313 

and nutrients, we present the performance of daily streamflow and TN forecasts for the sites that 314 

have the best and worst skill under each case (Figure 7). For quantifying the performance of 315 

streamflow, we considered the continuous daily streamflow records available from USGS instead 316 

of comparing the performance on the days with WQN data. From streamflow forecasts for the site 317 

with best skill (Figure 7a), we understand that overall performance is good, but the K-NN 318 

resampling approach based daily streamflow forecasts consistently underestimate high flow events. 319 

This underestimation/error in streamflow forecasts partially arises from the errors in the 320 

precipitation forecasts also. We discuss this issue in detail in the next section. From Figure 7b, the 321 

site performs poorly in forecasting flows above 8000 cfs. It is important to note that for the same 322 

site we observed significant correlation in predicting both the streamflow and the loadings on those 323 

days with WQN data being present. Thus, evaluating the performance of K-NN resampling model 324 
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over the entire time series of observed records provide a more confirmatory evaluation of the 325 

model. The primary reason the K-NN resampling model performs poorly at site 3 (Rocky River 326 

near Norwood, NC) is due to the limited correlation between the observed precipitation and the 327 

forecasted precipitation during the summer months (figure not shown). Thus, the error resulting 328 

from K-NN resampling arises from both errors in the precipitation forecasts and in estimating the 329 

initial conditions as well as from the model itself. Even if one uses physically-based distributed 330 

models (e.g., Sacramento model), the skill of streamflow forecasts is heavily dependent on the 331 

skill of precipitation forecasts as well as the season of forecasting. 332 

Figure 7c shows the performance of the TN loadings forecasts obtained using the streamflow 333 

forecasts with the LOADEST model. Even here, the same issue is highlighted with the limited 334 

ability of the forecasts in predicting the nutrients on days with high flows resulting in 335 

underestimated TN loadings. But, the model estimates the variability of the observed nutrients 336 

very well. Figure 7d shows the performance of TN loadings for a station with the worst skill. The 337 

skill of the streamflow forecasts resulting from the K-NN resampling approach in predicting the 338 

observed daily streamflow recorded at USGS stations is marginal with an average daily correlation 339 

of 0.6. Given that the R2 of the LOADEST model is 0.912 for the selected station (Table 3), the 340 

poor performance primarily results from the inability of the streamflow forecasts which partly 341 

arises from the resampling model as well as from the skill of the precipitation forecasts. Thus, to 342 

develop nutrient forecasts, it is important that the skill of daily precipitation and streamflow 343 

forecasts should be good and also the load estimation model should have very high skill in 344 

predicting the observed nutrients. Given that these basins are virgin, it could be argued the 345 

predominant source of nutrient loadings arise from the nonpoint sources whose primary transport 346 

is the streamflow. Thus, for developing a broader understanding of what could be achieved in 347 
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forecasting daily nutrients in virgin basins, one could look at the skill in predicting daily 348 

streamflow forecasts using the retrospective weather forecasts for the selected 18 stations. We 349 

summarize this information under the discussion in the next section by summarizing the skill of 350 

daily streamflow forecasts under each month for the selected 18 stations. 351 

4.4 Discussion 352 

The intent of this study is to develop daily forecasts of total nitrogen (TN) loadings and its 353 

concentration in 18 HCDN watersheds that are minimally impacted by anthropogenic influences 354 

over the southeastern US. Given that these watersheds experience virgin flow, our hypothesis is 355 

that most of the nutrient transport at daily time scales could be explained based on observed 356 

streamflow. For this purpose, we related the observed daily streamflow and loadings using the 357 

LOADEST model (Table 3), which showed significant skill in predicting the daily variability in 358 

TN loadings purely based on observed streamflow. Given that the predominant driver of 359 

streamflow in watersheds under rainfall-runoff regime is precipitation, we utilized the 360 

retrospective 1-day ahead precipitation forecasts from the reforecasts database of Hamill et al., 361 

(2004) and daily streamflow over previous three days (as a surrogate for soil moisture storage) for 362 

developing daily streamflow forecasts on the days with recorded WQN observations. The 363 

forecasted ensemble average of the streamflow obtained using the K-NN resampling model was 364 

used within the LOADEST model to estimate the forecasted daily TN loadings and the 365 

concentrations. We observed the correlation between observed TN loadings and the forecasted TN 366 

loadings being significant in almost all the stations. But, the forecasted concentration showed 367 

reduced skill, since it accounted for the errors in both loadings and streamflow. Though one could 368 

improve the streamflow forecasts developed using the K-NN resampling approach by considering 369 

physically distributed hydrologic models and by explicitly considering additional input variables 370 
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(e.g., temperature forecasts, humidity), we certainly captured the first-order information on the 371 

daily streamflow variability by utilizing the retrospective precipitation forecasts and employed that 372 

for assessing the potential in developing nutrient forecasts.  Another advantage with the 373 

streamflow forecasts using K-NN approach is in specifying the conditional distribution of flows. 374 

Thus, one could use the conditional distribution of streamflows with the LOADEST model to 375 

develop the conditional distribution of loadings, which could be used to estimate the probability 376 

of violating the concentration at the daily time scale. 377 

It is important to note that all the skill reported in Figures 3-6 consider the ability to predicting 378 

those days when the WQN observations are available. The primary difficulty in assessing the 379 

potential for developing nutrient forecasts at daily time scale is the discontinuous nutrient 380 

samplings recorded in the WQN database. Oh and Sankarasubramanian (2012) addressed this issue 381 

by computing the coefficient of determination (R2) of the winter TN loadings forecasts as a product 382 

of the R2 in forecasting the seasonal streamflow and the R2 of the LOADEST model for the winter 383 

season. Similarly, we express the skill of TN forecasts (equation 4) at daily time scale as a product 384 

of the R2 of streamflow (Q) forecasts developed from the K-NN approach for each day in the 385 

calendar year and the R2 of the LOADEST model reported in Table 3.   386 

2 2 2

( ) *TN daily LOADEST Q dailyR R R      …(4) 387 

2

Q dailyR   is computed between the observed daily streamflow over the period 1979-2010 and 388 

the computed ensemble mean of the streamflow forecast from the K-NN resampling approach. 389 

Since the skill of daily streamflow forecasts differ substantially depending on the season, we plot 390 

the 
2

TN dailyR   as a box-plot for each month (Figure 8). Basically, Figure 8 pools the daily correlation,391 

2

TN dailyR  , for a given month across the 18 stations. For instance, in January, we expect 31*18 daily 392 
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correlations and the box-plot simply summarizes the skill in predicting daily TN for that month 393 

over the Southeast US. About 75% of the 
2

TN dailyR   at daily level are statistically significant level 394 

over the period January to May and also from November and December (Figure 8). Daily TN 395 

forecasts show relatively better skills in predicting observed TN variability during winter and 396 

spring. On the other hand, the skill of 
2

TN dailyR   is poor during the summer and fall seasons. It has 397 

been well-known that retrospective precipitation forecasts have lower skill during the warm-season 398 

(Hamill et al., 2004). One of the possible reasons of relatively poor skill during summer and fall 399 

is that weather phenomena during these seasons depend greatly on local scale processes while 400 

large-scale models do not have the ability to capture it (Hamill et al., 2006). Thus, the poor skill 401 

of 
2

TN dailyR   primarily arises from the skill in forecasting precipitation during the summer and fall 402 

seasons. Additionally, the role of temperature during the summer season is also much higher with 403 

enhanced evapotranspiration. However, considering temperature as additional predictor did not 404 

result in substantial increase in the 
2

Q dailyR   for the summer season. Perhaps, if one considers a 405 

physically-based hydrologic model, the skill in predicting daily streamflow could improve during 406 

the summer season. We plan to investigate this as a future work in assessing the potential for 407 

developing nutrient forecasts with streamflow forecasts being derived from a physically-based 408 

distributed hydrologic model. Thus, the potential skill (
2

TN dailyR  ) in predicting daily nutrients is 409 

statistically significant for the winter and spring season in almost all the stations. One could utilize 410 

this to develop adaptive nutrient management strategies for controlling the point sources (e.g., 411 

waste water treatment plants) so that the downstream TN concentration does not exceed the 412 

desired/ EPA standards. 413 
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Given that consideration of both forecasted precipitation and 3-day average streamflow prior 414 

to the forecasting day exhibit significant skill in predicting the observed TN loadings from the 415 

WQN database, we investigated the role of each predictor in contributing to the overall skill 416 

reported in Figures 3-5. This analyses will also provide information on the role of basin storage, 417 

3-day average streamflow, in contributing to the forecast skill. For this purpose, we developed the 418 

streamflow forecasts using only one predictor and then used that streamflow forecast to estimate 419 

the TN loadings. Figure 9 quantifies the role of each predictor, 3-day average streamflow prior to 420 

forecasting day (Q) and 1-day ahead precipitation forecasts (FP), in contributing to the skill, 421 

correlation and RMSE, in forecasting TN loadings for all the 18 sites. It is important to note that 422 

the correlation and RMSE were obtained by forecasting for the actual day for which the samples 423 

are available in a given site in the WQN database. Figure 9 clearly indicates that the combination 424 

of both 3-day average streamflow and 1-day ahead precipitation forecasts as predictors result in 425 

improved correlation and reduced RMSE in estimating daily TN loadings at all the sites. 426 

Comparing the skill obtained using only one predictor, 3-day average streamflow or forecasted 427 

precipitation, we infer that for most of the watersheds, the skill obtained using 3-day average 428 

streamflow (prior to the forecasting day) alone as a predictor provides better skill in comparison 429 

to the skill obtained using forecasted precipitation alone as a predictor with the exception being 430 

stations 6, 8 and 18.  On an average, in most of the basins, 3-day average streamflow prior to the 431 

forecasts alone can explain around 25% (average correlation across all the sites is 0.52) of the 432 

variability in the observed nutrients. Several studies have shown that antecedent moisture/flow 433 

conditions also play a critical role in influencing the nutrient loadings from the watershed (Vecchia 434 

2003, Alexander and Smith 2006). This analyses further confirms the critical role of basin storage, 435 

both streamflow and nutrients, in influencing the forecast skill. On the other hand, forecasted 436 
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precipitation alone, can explain on average 20% (average correlation across all the sites is 0.45) of 437 

the variability in the observed TN loadings in the WQN database.  Thus, including both of them 438 

as a predictors in the proposed modeling framework results in overall improvement.  439 

We also investigated how the type of land use influence the skill in forecasting TN loadings. 440 

Figure 10 shows the scatter plot between the forecast skill, correlation coefficient between the 441 

observed TN loadings and the forecasted TN loadings, and the percentage area under agriculture 442 

for each watershed.  This indicates basins with higher percentage of agricultural land exhibits 443 

higher skill in forecasting the TN loadings. Basin with increased agricultural activity could 444 

potentially experience increased fertilization application, which could increase the streamflow-445 

induced transport. This indicates the role of basin nutrient storage in influencing the forecast skill. 446 

Similar analyses on urban land use did not reveal any relationship with the skill. Thus, analyses 447 

from Figures 9 and 10 show that both antecedent moisture conditions and in-basin nutrient storage 448 

influence the forecast skill for the selected 18 stations over the SEUS.  449 

 450 

5. Summary and Conclusions 451 

We developed a semi-parametric statistical model, which utilizes 1-day ahead precipitation 452 

forecasts from the reforecasts from the NOAA GFS climate model (Hamill et al., 2004) and daily 453 

streamflow over the previous three days as predictors, to develop daily streamflow forecasts, which 454 

in turn was used to implement a load estimation model, LOADEST, for estimating daily nutrients. 455 

For each day, conditioned on previous day’s streamflow and 1-day ahead forecasted precipitation, 456 

50 nearest neighbors over a three-day window were selected based on the Mahalanobis distance 457 

and then observed daily streamflow corresponding to those 50 neighbors were resampled to 458 

constitute 500 ensemble members to develop a daily streamflow forecast. It is important to note 459 
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that to develop a forecast for a given day in a year, the entire year’s predictors and predictand were 460 

left out for identifying the 50 nearest neighbors. Finally, the conditional mean of these daily 461 

streamflow ensemble was forced in the LOADEST model to obtain daily forecasts of TN loadings 462 

and concentration for days with recorded WQN observations. Skill in developing forecasts of 463 

streamflow, TN loadings and the associated concentration were computed using rank correlation 464 

and RMSE, by comparing the respective forecast values with the WQN observations for the 465 

selected 18 HCDN stations. The forecasted daily streamflow and TN loadings and their 466 

concentration exhibit statistically significant skill in predicting the respective daily observations 467 

in the WQN database at all the 18 stations over the SEUS.  468 

The study also found that the skill in predicting the observed TN loadings is higher for large 469 

watersheds indicating the large-scale precipitation forecasts from the reforecast database better 470 

correlate with precipitation and streamflow over large watersheds. Analyses also showed that 471 

compared to the forecast precipitation, the 3-day average streamflow prior to the forecasting period 472 

played a dominant role in contributing to the skill of the forecast. We also observed the skill in 473 

forecasting TN loadings is higher for basins having higher percentage of the area under agriculture. 474 

These findings confirm that basin storage, both streamflow and nutrients, play a critical role in 475 

influencing the skill of the forecast. Further, to overcome the limited samplings of TN in the WQN 476 

data, we extended the analyses by developing retrospective daily streamflow forecasts over the 477 

period 1979-2012 using reforecasts based on the K-NN resampling approach. Based on the 478 

coefficient of determination (
2

Q dailyR  ) of the daily streamflow forecasts, we computed the potential 479 

skill (
2

TN dailyR  ) in developing daily nutrient forecasts based on the R2 of the LOADEST model for 480 

each station. The analyses showed that the forecasting skills of TN loadings are relatively better 481 

in winter and spring months while skills are inferior during summer months. These findings are 482 
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consistent with other studies (Devineni and Sankarasubramanian, 2010; Sinha and 483 

Sankarasubramanan, 2013) which show that large-scale precipitation forecasts derive their skill 484 

from ENSO climatic modes in the SEUS. One possible reason for this poor skill in summer is due 485 

to the dominance of local-scale processes during the summer season. Other possible reasons could 486 

be due to the limitations in the methodology. We resampled neighbors to develop daily streamflow 487 

ensemble, which of course will not have members beyond the maximum observation over the 488 

selected 50 neighbors. Further, air temperature can play a dominant role during the summer and 489 

fall seasons, resulting in enhanced evapotranspiration and reduced baseflow from the watershed. 490 

Despite these limitations, there is potential in utilizing the daily streamflow forecasts for 491 

developing daily nutrient forecasts, which could be employed for various adaptive nutrient 492 

management strategies for ensuring better water quality. 493 

Though the watersheds considered under this study have experienced moderate agricultural 494 

activity, extending the above modeling framework for basins experiencing significant urbanization 495 

will require additional information.  For instance, as the basin gets urbanized, it is natural to expect 496 

the point TN loadings from waste water treatment (WWT) plants to influence the downstream 497 

loadings and concentration.  Under such situation, it would be useful to consider the discharges 498 

from the WWT plants as predictors in developing the model. One could also use the TN forecast 499 

to control point loadings so that the downstream TN concentration is within the prescribed standard. 500 

For basins experiencing significant non-point pollution from agriculture, one could use 501 

information from remote sensing satellites that quantify the chlorophyll concentration could be 502 

also be considered as nutrient storage in the river reach and water bodies (Jones et al., 2005). Thus, 503 

adequate monitoring of changes in basin land use and nutrient conditions could provide additional 504 
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information in developing a TN forecasting model for watersheds experiencing significant human 505 

interference. 506 
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Table 1: Baseline information for the 18 selected stations. Percentage land use area under urban 651 

and agriculture are calculated based on the 2001 USGS NLCD data. Values in the parentheses in 652 

the last column show the total number of daily total nitrogen loadings and concentration 653 

samplings available for each station.  654 

Station 

Index 

Station 

Number 

Station Name 

Drainage 

Area 

(km2) 

% Area 

under 

Agriculture  

% Area 

under 

Urban 

Number of Years 

(# of daily Obs.) 

1 2047000 Nottoway river near Sebrell, VA 3732.17 16.9 5.0 17 (95) 

2 2083500 Tar river at Tarboro, NC. 5653.94 28.9 8.0 22 (152) 

3 2126000 Rocky river near Norwood, NC 3553.46 28.7 22.8 14 (65) 

4 2176500 Coosawhatchie river near Hampton, SC 525.77 23.9 6.8 13 (100) 

5 2202500 Ogeechee river near Eden, GA 6863.47 23.5 5.0 20 (141) 

6 2212600 Falling creek near Juliette, GA 187.00 0.6 2.4 14 (56) 

7 2228000 Satilla river at Atkinson, GA 7226.07 20.4 7.6 20 (123) 

8 2231000 St. Marys river near Macclenny, FL 1812.99 3.8 5.9 14 (108) 

9 2321500 Santa Fe river at Worthington springs, FL 1489.24 12.3 6.4 21 (82) 

10 2324000 Steinhatchee river near Cross city, FL 906.50 0.8 4.8 19 (92) 

11 2327100 Sopchoppy river near Sopchoppy, FL 264.18 0.0 1.0 22 (125) 

12 2329000 Ochlockonee river near Havana, FL 2952.59 28.6 6.9 22 (133) 

13 2358000 Apalachicola river at Chattahoochee, FL 44547.79 22.5 9.8 23 (152) 

14 2366500 Choctawhatchee river near Bruce, FL 11354.51 19.6 5.6 21 (119) 

15 2368000 Yellow river at Milligan, FL 1616.15 17.6 6.5 21 (123) 

16 2375500 Escambia river near Century, FL 9885.98 12.5 4.8 22 (145) 

17 2479155 Cypress creek near Janice, MS 136.23 0 0.9 16 (54) 

18 2489500 Pearl river near Bogalusa, LA 17023.99 15.2 6.8 12 (57) 

 655 
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Table 2: Station ID, number of selected PCs, and cumulative Eigen values for large scale 656 

precipitation grids from the NOAA’s GFS model, which provide 1-day ahead precipitation 657 

forecasts (Grid numbers are shown in Figure 1) 658 

Station 

ID 

Selected Grids (total # of selected grids) 

# of  

Selected PCs 

Cumulative Eigen value  

of selected PCs 

1      5, 7, 12, 19-21 (6) 4 0.962 

2      5, 7, 12 (3) 2 0.905 

3      4-5, 11-13, 18-20 (8) 4 0.948 

4      11-13, 18-20, 27 (7) 3 0.909 

5      17-18, 24-27 (6) 3 0.922 

6      9-12, 16-19, 23-26 (12) 4 0.903 

7      24-26, 31-33 (6) 3 0.918 

8      17-19, 24-26, 31-33 (9) 4 0.918 

9      17-19, 24-26, 31-33 (9) 4 0.918 

10      16-19, 23-26, 30-33 (12) 5 0.921 

11      16-18, 23-25, 30-32 (9) 4 0.930 

12      16, 30-32 (4) 3 0.975 

13      23-25, 30-32 (6) 3 0.934 

14      18, 22-25, 30-32 (8) 4 0.938 

15      18, 22, 24 (3) 2 0.912 

16      22, 29-31 (4) 3 0.977 

17      15-17, 22-24, 29-31 (9) 4 0.929 

18      17, 22-24, 30-31 (6) 3 0.932 

 659 

  660 
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Table 3: Performance of LOADEST model in predicting the observed TN loadings from the 661 

WQN database. Models with linear time components (Model No: 3,5, 7-9) are not considered.  662 

Station 

Index 

R2 

(Daily) 

AIC 

(Daily) 

Model 

No 

Coefficients of  

selected LOADEST model 

a0 a1 a2 a3 a4 

1 0.948 0.892 4 6.768 1.114 -0.283 -0.069  

2 0.966 -0.131 4 8.122 0.980 0.108 -0.018  

3 0.966 0.496 4 8.863 1.066 -0.195 0.090  

4 0.956 0.905 6 4.446 1.013 0.026 0.238 -0.036 

5 0.916 0.837 4 7.721 1.069 -0.084 -0.317  

6 0.853 2.094 1 2.647 1.095    

7 0.968 0.518 6 7.521 1.005 -0.025 -0.083 0.103 

8 0.963 0.250 6 6.428 1.088 -0.075 -0.027 0.187 

9 0.986 -0.219 6 5.690 1.086 -0.037 -0.078 0.059 

10 0.979 0.279 6 5.549 1.241 -0.069 -0.096 0.071 

11 0.979 0.516 6 4.351 1.139 -0.043 0.187 0.007 

12 0.923 0.585 1 7.341 0.846    

13 0.902 0.193 4 10.563 0.981 0.074 0.165  

14 0.835 0.423 4 9.077 0.931 -0.145 -0.042  

15 0.834 1.085 6 7.238 1.123 -0.131 -0.004 0.176 

16 0.873 0.758 4 8.868 1.039 0.147 0.032  

17 0.912 1.233 4 4.555 1.188 0.206 0.328  

18 0.899 0.853 1 10.193 1.047    

 663 
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 665 

Figure 1. Locations of 18 water quality monitoring stations and grids of forecasted precipitation 666 

from NOAA’s reforecast model. 667 

 668 

 669 

  670 
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 671 

Figure 2: Schematic diagram illustrating the overall approach to forecast daily streamflow and 672 

total nitrogen loadings conditioned on the predictors (gray boxes), daily weather forecasts and 673 

daily average streamflow values for previous 3 days, based on Kernel-Nearest Neighbor (K-NN) 674 

resampling approach. 675 

 676 

 677 

 678 
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680 

 681 

Figure 3: a) Rank correlation and b) RMSE (cfs per unit area) between observed daily 682 

streamflow and forecasted daily streamflow for those days with TN loadings being available in 683 

the WQN database.    684 

(a) 

(b) 
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685 

 686 

Figure 4: a) Rank correlation and b) RMSE between observed TN loadings and forecasted TN 687 

loadings for those days with TN loadings being available in the WQN database.   688 

(a) 

(b) 
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 689 

Figure 5: Correlation between observed TN concentration and forecasted TN concentration for 690 

those days with TN loadings being available in the WQN database.    691 
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 702 

 703 

 704 

 705 

 706 

 707 

Figure 6:  Role of basin scale, drainage area, in forecasting observed (a) streamflow and (b) TN 708 

loadings provided in the WQN database for the 18 stations. 709 

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

100 1000 10000 100000

C
o

rr
e

la
ti

o
n

Basin Area (km2)

Loadings

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

100 1000 10000 100000

C
o

rr
e
la

ti
o

n

Basin Area (km2)

Streamflow

(a) 

(b) 



40 
 

 Figure 7: Comparison of observations and forecasts of streamflow (a and b) and TN loadings (c 710 

and d) for the stations with best (Streamflow: Ogeechee river near Eden, GA, TN: Tar river at 711 

Tarboro, NC) and worst forecasting skill (Streamflow: Rocky river near Norwood, NC, TN: 712 

Cypress creek near Janice, MS).  713 
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  714 

 715 

 716 

 717 

 718 

 719 

 720 

Figure 8: Box plot showing rank correlations between observed daily streamflow and forecasted 721 

streamflow aggregated over each month from 1979 to 2009 period. Each plot includes 558 722 

correlations (18 stations × 31years). The solid line represents the statistically significant (95%) 723 

R2 corresponding to the null hypothesis that R2 being equal to zero. 724 
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 734 
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 744 

 745 

 746 

 747 

 748 

 749 

 750 

 751 

 752 

 753 

 754 

 755 

Figure 9: The role of different predictors, 3-day average daily streamflow prior to forecasting 756 

day (Q) and 1-day ahead precipitation forecasts (FP), in forecasting the observed TN loadings is 757 

expressed as (a) correlation coefficient and (b) RMSE between the observed TN and the 758 

forecasted TN loadings for the 18 selected sites. 759 
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 760 

Figure 10: Role of the type of land use, percentage area under agriculture, in influencing the 761 

forecast skill which is expressed as the correlation coefficient between the observed TN loadings 762 

and the forecasted TN loadings for the 18 selected watersheds.   763 

R² = 0.6209

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0 5 10 15 20 25 30

C
o

rr
e
la

ti
o

n

% Area under Agriculture


