
We thank the reviewers and editor for their valuable comments. Below we detail how 
we responded to the requests made by the editor and the comments made by the 
referees. We refer to line numbers in the attached document with changed text 
highlighted for all textual changes.  

In addition to the requested changes, we were able make two improvements in the 
analysis: 

- Instead of interpreting the influence of storage changes associated with new 
impoundments post hoc in the discussion, we have included them in the prior 
estimates where possible. We identified data that allowed us to do so (l. 180-186, 
Table 1).  

- Because of the misattributed mass decline near some glaciers identified in the 
previous version of the m/s, we increased the error estimate for monthly glacier 
mass changes from 100 mm to 300 mm (l. 200).  

Consequently we reran the entire analysis which produced different numbers but did 
not change our conclusions. We revised the manuscript accordingly, including all 
tables and figures. 

 

EDITOR INITIAL DECISION 

Both reviewers find your paper interesting and valuable and provided valuable 
comments and remarks. However, they also note that the paper is full of 
assumptions that have an (unknown) influence on the results, which make it 
impossible for readers to judge the conclusions/results. And like one of the 
reviewers I appreciated the effort you took in bringing all this data together for this 
analysis, but to increase scientific quality of the paper I really think you need to 
acknowledge, and where it is possible analyse and describe the effect of these 
choices in the results and discussion section but also in the conclusions/abstract 
section in a better way. 

We have now included considerable discussion of the influence that our assumptions 
have on the analysis results (l. 531-533, l. 558-581) 

Another important point noted by the reviewers is that the used method is not 
always easy to follow, again I understand that you cannot repeat the whole 
literature but please try to improve where possible. As an example it is difficult to 
understand what the introduced observation model in eq 5 really is (not explained). 

We made various additions to the description of the method, including those 
suggested by the referees and providing references to Figure 1, which visualises the 
method. For the given example, we have retermed the observation model the 
convolution operator and provide an appropriate reference (l. 246-250) as well as a 
few additional words. We detail these changes further below in our response. 

Regarding the use of the word 'reconciling' as non native speaker I tend to agree 
with the reviewer and given that fact that it might lead to some confusion I suggest 
to change it. Maybe a 'A global water cycle reanalysis (2003-2012): 



combining/merging satellite gravimetry and altimetry observations with a 
hydrological model ensemble' could be an option but I leave it to the authors to 
decide. 

We have used the word ‘merging’ as suggested. 

Of course I expect the authors to handle all other mayor and minor comments & 
suggestions given by the reviewers 

We have done so and detail our responses below. 

 

REFEREE #1 

We thank the referee for the valuable comments. The response to the five main 
comments is generally as was provided online in the discussion phase, but without 
now redundant comments removed and with details on the changes made (letters 
between brackets are sometimes added for cross-referencing).  

1) First, I would recommend changing the title to remove the word reconciling. To 
me, reconciling implies the resolution of a long-standing difference between two or 
more camps of thought. This isn’t what’s done here, and reconciling is used more in 
the context of incorporating/combining/assimilating the two quantities (models & 
data). 

We changed this to ‘merging’. 

2) I had a difficult time understanding the methodology used. The choice of variable 
annotation and terminology made it difficult to follow in places (e.g., a Gaussian 
smoother was termed an observational model; see detailed comments below). 
Many key aspects of the methodology were left up to the reader to explore in the 
literature (triple collocation, groundwater estimates, surface water use estimates, 
generation of nearly all satellite data sets and their uncertainties, generation of the 
hydrological models). To the readers, these critical items are like black boxes, that 
the reader would have to spend considerable extra time to understand. I realize 
that the authors can’t replicate all of the work previously done, but I think more can 
be done to explain or visualize the data sets involved, and their general 
characteristics. 

We value the specific suggestions the referee provides to improving the 
methodology description and took them into account in revising the m/s where 
feasible. We appreciate that the methodology used is fairly elaborate, and full 
replication of the experiment would probably require reading much of the cited 
literature. The complexity is further increased because a model ensemble and 
multiple observations were used, but that is how we were able to provide better 
constraints on the assimilation. Unfortunately complex methodologies are inevitable 
in this research discipline (consider for example how one would describe the 
functioning of a weather model assimilation scheme in a m/s without relying on 
published material on the underlying techniques, models and observations). We did 
our best to describe all aspects with the detail needed and cited data and literature 



references, as well as providing a visual diagram illustrating the methodology. 
Visualising the data sets themselves was not possible due to the large number of 
data sources and their 3-dimensional (space and time) nature. We also added some 
clarifying details where suggested by the referees and editor (see responses to the 
various comments). We do agree that it is important to explain the method as best as 
possible, and would appreciate concrete suggestions as to how we might further 
improve this aspect. 

3) More specific to the methodology, I have concerns about the underlying premise 
behind the ensemble approach. (a) Four variants of GLDAS were included, which 
all have similar underlying physics, in addition to an independent W3RA model. (b) 
The GLDAS variants do not model deep soil or groundwater, so these values were 
patched in using groundwater depletion/recharge estimates from Wada et al 
(2012), which used the PCRGLOBWB model. Adding the groundwater to the 
GLDAS models seems inconsistent, and guaranteed to generate model errors, 
since the physics of the two models are not linked in any way. (c) Plus, this means 
there is only one real variant of the groundwater estimates. (d) Why wasn’t 
PCRGLOBWB used as a model variant? (e) And my idea of a traditional ensemble 
approach is to vary the parameters within a single model, given the uncertainty of 
the parameters involved. What the authors do looks more like a (weighted) 
averaging of disparate model sets. (f) What justification is there that this will 
generate a more accurate overall model? Why is just taking the average of a group 
of separate publicly available models at each time step the best approach? Same 
for the GRACE data sets? Where is it justified that averaging the results of a 
handful of GRACE solutions is optimal? (g) In both cases, the results of the entire 
ensemble can be diminished by the inclusion of one or more bad models or data 
sets. If I have misinterpreted the methodology, then I would ask the authors to 
provide more explanation and/or derivations of the technique in the text. 

(a) We do not necessarily agree that the four GLDAS models all have similar physics 
but that may be a matter of interpretation. The forcing is the same, so in that respect 
we of course agree. It would have been preferable if the different models had used 
different but similarly good forcing, of precipitation in particular. 

(b) Combining the Wada et al (2012) groundwater depletion estimates with the 
GLDAS models would be conceptually inconsistent if extractions from an unconfined 
aquifer were also incorrectly assumed to discharge as streamflow (i.e. the water 
would be counted twice). It would be easy to correct for this if we knew whether 
extraction was from a discharging shallow aquifer or not, but we lacked this 
information. Fortunately, in practice, the error associated with this is likely to be small 
where (i) groundwater extraction is negligible compared to discharge, as is typical for 
humid regions, or (ii) groundwater discharge is negligible compared to extraction, 
which is typical for dry regions.  

(c) Correct, although with uncertainty estimates. We agree with the referee that 
ideally more global land surface models would better represent groundwater 
dynamics and that ideally additional, independent estimates of global groundwater 
depletion would be available, and hopefully this will happen in future.  

(d) PCR-GLOBWB was not used because estimates for the full assimilation period 
were not available.  



(e) That is probably a matter of one’s reference frame. To avoid misinterpretation we 
have included the terms “multi-model ensemble” in the title.  

(f) In fact we did not take a simple average. A simple ensemble average is justified if 
the errors in the individual estimates are dominated by noise of similar magnitude. In 
this case we could not be sure that the error magnitude was indeed similar and 
hence took a different approach, characterising the error in each of the ensemble 
members (for models as well as GRACE products) using the triple collocation 
approach, and incorporating those errors in the assimilation scheme. Incidentally a 
paper was just published (Sakumura et al., 2014) that provides further evidence that 
the different GRACE retrievals used here indeed do have independent noise, 
providing additional (post hoc) justification for our approach. We have included this 
reference and made various other changes to more clearly justify our approach (l. 
298-301, l. 305-308, l. 313-317) 

(g) Correct. However we used the member-specific error estimates. Therefore, 
wherever a member is particularly ‘bad’ (i.e. has a comparatively large error) it 
exerted correspondingly less influence on the assimilation result due to the 
weighting. 

4) (a) The number of assumptions and adjustments that went into the analysis were 
numerous, and didn’t really provide much confidence that the conclusions were 
reliable. One example is the triple collocation. Four important assumptions were 
listed, of which I thought only one was really satisfied. (b) Another is that Storage in 
water bodies without altimetry data was assumed negligible, although the altimetry 
only covered 62 lakes globally. (c) Seemingly arbitrary adjustments were made that 
I felt impacted the interpretation of the results. Examples include the additional 5 
mm error added to correct for potential covariance in errors between the GRACE 
products..., (d) as well as the -83 Gt/yr adjustment made to make the GRACE 
glacier mass estimates more in line with the Jacob et al results. Combine this with 
the extra +87 Gt/yr adjustment from new reservoir impoundments (that was first 
introduced in Sec 4.4, just before the conclusions), and it felt like the numbers used 
for the total water cycle estimates in Table 3 were not directly supported by the 
work presented in the paper, and in reality can have large volume/mass swings that 
meet or exceed the 0.39 mm/yr SLR discrepancy discussed in the conclusions. 

(a) Characterising errors is inherently difficult and uncertain, but the strength of a 
formal data assimilation approach is in fact that it explicitly demands error estimates 
and so exposes all assumptions, producing assimilation results with quantified 
uncertainty and recognised issues. We intended to document, motivate and discuss 
each assumption we needed to make with some care. For example we do discuss 
which of the triple collocation assumptions are more or less likely to affect the 
analysis. Where improvements on the methods were currently not yet possible an 
opportunity for future research is indicated. To better explain our choices, we added 
additional details in the methods (l. 298-329) as well as including much more 
discussion on the influence of these uncertainties (l. 531-533 and l. 558-581). 

(b) Agreed. This was an inevitable caveat given limits on the observations available 
(except for the case of new dams, see (d) below). The main influence of this 
uncertainty is that some care is needed in interpreting ‘sub-surface’ storage changes 



as it can include unaccounted surface water storage changes. In the discussion we 
address this point (l. 674-677).  

(c) The 5 mm was not exactly arbitrary; we explain our choice in the text. We wanted 
to make a conservative assumption. To address the influence of this assumption we 
did repeat the analysis with a correction of 10 mm, noting that this is very likely to be 
an overestimate given the upper limit imposed by the total covariance between 
models and GRACE in temporally stable (e.g. hyper-arid) regions (cf. Fig 2a and b). 
We also note that the influence of the added error on the calculated gain matrix was 
actually modest. We have added more detailed discussion of this aspect in l. 531-
533 and l. 573-577 

(d) The referee is correct that these numbers were not derived directly from the data 
assimilation, which is why they were raised in the interpretation and discussion. 
However in the revised manuscript we were able to improve on the new 
impoundments aspect, as explained in the beginning of this response. This was not 
possible for the glacier adjustments, and we identify this as an important area of 
future research (l.508-512). 

5) My last major concern involved the validation of the results. As I understand it, 
the results of the validation efforts were as follows: (a) vs regional storage trends: 
increased variability seen (could also be noise), along with amplified trends (again, 
could also be errors), and some dramatic trend changes (mainly in arctic, where 
models known to be poor). (b) vs river discharge: done, but comparisons 
inconclusive – only a handful of major rivers evaluated (c) vs SWE: done, but 
comparisons inconclusive (d) vs glacier mass balance: results similar to other 
solutions – not surprising, since the Tellus solutions are generated by the same co-
authors (Wahr, etc.) behind the Gardner et al and Jacob et al works used for 
comparison. (e) vs groundwater: validation was not done. (f) Given this, it can be 
argued that the comparisons to the independent observations don’t contribute 
much to the validation of the results. 

(a) The interpretation of regional storage trends was to confirm that the assimilation 
scheme behaved as intended, and the patterns are of interest in their own right. 
However it should not be considered part of the validation.  

(b) We would argue that 450 river basins in addition to 445 river altimetry sites is 
more than a handful. The results were not inconclusive: there were clear 
improvements in a few regions and clear degradation in a few others. An 
improvement across the board would have been great but was not to be expected – 
however it is encouraging that there were some strong agreements for large rivers 
with a strong bearing on the GRACE signal, such as the Amazon system (l. 623-
624). This is what one would hope to see given the nature of the DA scheme. 

(c) We would answer similarly to (b) above, that the results were in fact not 
inconclusive and that improvements everywhere were not expected. Importantly 
again agreement improved in several regions where there are large snowpack 
variations, which is conform expectations (l. 625-626).  

(d) For several glaciers independent observations were used, and therefore in the 
text of Section 3.8 in and Table 5 (using superscripts) we do separate out glaciers for 



which literature estimates are also GRACE-derived and therefore not independent (l. 
517-520).  

(e) Correct, unfortunately there are no suitable groundwater observations that would 
allow validation, but in any case that would be conceptually different from sub-
surface (ground + soil water) storage. A priority would be to validate or improve the 
groundwater storage change estimates from Wada et al but this is not currently 
possible. 

(f) Overall we don’t agree that the validation was inconclusive or did not contribute 
much. However there is always a limit to the availability of observations and we 
contend that we have produced evidence that our reanalysis results are closer to the 
truth than the prior estimates, which after all were mutually inconsistent and also not 
consistent with the GRACE observations. Of course had more observations been 
available we could and would have used these in either assimilation or in evaluation 
as well. 

Specific comments 

P15477L19: term offline used here, but defined later 

We removed this (l. 56). 

P15480L08: As I suggest above, I interpret this as meaning that the groundwater 
store is modeled for all five models using the PCRGLOBWB model (with depletion 
rates from IGRAC)? 

Correct. Rephrased (l. 123-125) 

P15481L06: The streamflow editing criteria seemed odd – why not choose those 
records with values over the study timeframe (2002-2010)? 

Unfortunately, there very little streamflow data is available during the analysis period 
so that was not an option. We excluded locations where streamflow records were 
available for less than 10 years since 1980 because it might not produce a 
representative long-term average. We also excluded sites that consistently had data 
for less than 6 months of the year (generally winter frozen rivers) as it would likely 
produce a biased long term estimate (l. 152-153). 

P15482L27: According to the Tellus website, the processing and filtering of the land 
and ocean products were different, e.g., the ocean products have 500km 
smoothing applied. Please comment. 

Agreed, this was poorly phrased. We have corrected this (l. 206-208) 

P15482L28: not clear how assimilating the retrievals means you should not correct 
for leakage effects 

This is because our DA scheme includes an inversion of the convolution operator to 
redistribute the increments in smoothened TWS to the appropriate stores and cells. 
We have attempted to explain this more clearly (l. 208-211). 



P15483L3: should specify GIA model used; wording suggests the correction was 
not the same as that applied to the GRGS solutions 

Added the word ‘same’ (l. 213) 

P15483L08: Do you mean long-term trend? The earthquake co-seismic response is 
essentially a step function, with post-seismic changes being non-linear, but 
occurring over many years. "Seasonal" signal to me implies semi-annual periodic 
signals. 

No, we assumed a step function as suggested. We tried to explain this better (l. 217-
220).  

P15483L26: why isn’t the definition of w_l shown here, instead of later in Eqn 8? 

Agreed, we changed this around (l. 234-235) 

P15484Eqn3: would recommend using a different super/subscript to distinguish this 
definition of s_tˆb from that of Eqn 2 

Whether Eq. (3) or (4) was used depended on the water store considered and 
therefore it would be difficult (and arguably unnecessary) to use different symbols, as 
the variable ultimately does denote the same thing. Hence we left this unchanged (l. 
236-243). 

P15484L19: I find this terminology strange. An observation model in my mind 
represents a functional model that relates the observational data to the system 
dynamics and parameters. Here, it is used to describe a Gaussian smoother, which 
is a generic convolution operator that has no dependence on the observations or 
system dynamics.  

We have changed this term to “convolution operator” (l. 246-247)  

P15484L23: the Gaussian filter used for most GRACE solutions in the literature 
(and I assume that for those on the Tellus site) is based on that described by Jekeli 
et al (1981), which has a slightly different "bell-curve" shape than a traditional 
Gaussian curve, since it is optimized for geodetic applications. It’s not clear that 
you are smoothing your total storage estimates with the same filter kernel – this 
could change the comparison values, and hence your interpretation of the results. 

Yes we used the Jekeli filter. We have made this explicit (l. 246-247, l. 249-250) 

P15485L09: read literally, L can only equal 5. L should also be in lower case to 
match that in the equation. Same for M. 

Agreed, changed this (l. 255-257) 

P15485L14: Do the uncertainties vary significantly for the various GRACE 
solutions? Please comment. 

They are similar. We have now included discussion of this (l. 389-390, Table 2, l. 
562-565). 



P15485L17: The term "disaggregate" can have different meanings, so I would 
recom- mend clarifying throughout the paper that you are spatially disaggregating 
the solutions 

We have changed this to “spatially redistribute” throughout. 

P15486L25: How do you transform model-derived storage into TWS as derived 
from GRACE? It is either derived from models, or derived from GRACE. Please 
reword. 

OK, reworded (l. 282-284) 

P15487L06: To both the ocean and land products? As mentioned earlier, the ocean 
products already have 500km applied according to the Tellus website. 

Correct. However passing a 300km smoother over data that is already smoothed 
with a 500km filter produces almost no change. 

P15487L08: According to the GRGS website: "It is reminded to the users of the 
GRGS products that NO SMOOTHING OR FILTERING is necessary when using 
them, since they have already been stabilized during their generation process." The 
extra smoothing seems to violate this. 

We interpret this guidance on the web site as relating to the requirement for 
smoothening on the Tellus products due to the striping, because this is less an issue 
for the GRGS product. However direct comparison between the GRGS and Tellus 
data does require that equivalent smoothing be applied. The GRGS producers 
probably did not anticipate this particular use of the data. 

P15487L11: Is this correct? There are five land models, three Tellus solutions, and 
one GRGS solution. Where do the 15 GRGS solutions come from? 

This is because GRGS is one member in the triple collocation, whereas there are 3 
choices of other GRACE data and 5 choices of models for the other two members, 
which totals 3x5=15 combinations. We clarified this in the text (l. 292) 

P15487L14: I can easily see the data sets violating assumptions 1-2 (maybe 3 as 
well). You would have no way of knowing whether the data sets are biased to each 
other, but you have no reason to assume they are not. We know GRACE errors 
vary in time, depending on time frame (< June 2003 vs > June 2003) or proximity to 
near-resonance orbits. Whether the error is time-correlated is debatable. 

We have added additional text to address these issues (l. 298-301, l. 305) 

P15487L25: Not clear what this has to do with the discussion on the triple 
collocation assumptions. Please clarify. 

It is important for the appropriate interpretation and correction of the derived 
estimates. We have clarified this (l. 306-308) 

P15488L01: The LAGEOS data they use only contributes to the C20 coefficient, 
nothing else (as stated on the GRGS website). While the retrieval methods is 



slightly different than the other centers, they still use the same background models 
(ocean tide, solid earth) and their static reference field incorporates the EIGEN 
(GFZ) mean field. Not sure what they do regarding aliasing, but I assume GRGS 
uses the same dealiasing product as the other centers. This all suggests to me that 
the correlation might be stronger than suspected. Why can’t the GRGS fields 
simply be lumped into the analysis with the other GRACE solutions? 

Because three estimates are required in triple collocation. We have rephrased the 
text to make this clearer (l. 311-317) 

P15491L24: Is this due to the extra smoothing applied, as well as the fact that the 
GRGS solutions themselves extend only to deg/ord 50? This extra 
smoothing/reduced resolution would diminish trends and variations. 

No, that cannot explain it as these are global means and therefore not affected by 
smoothing. We have clarified this to prevent misinterpretation (l. 422) 

P15496L03: I was also expecting this latitudinal dependency. The fact you did not 
see this makes me wonder whether some of the variability seen in the regional 
storage trends isn’t partially due to this. 

We do not believe variability in regional trends can be attributed to this for reasons 
explained in l.575-577. As to the absence of a latitudinal dependency, we can only 
speculate on the underlying reasons. They could include (a) the formal error 
estimates are based on erroneous assumptions (which could include 
underestimating the uncertainty from the GIA estimates) or (b) some of the model 
error (in the mass change in the Arctic Ocean and Antarctic ice sheet) is 
misattributed to the GRACE data. However we could not test any of this so left it 
open. 

 

REFEREE #2 

An interesting study is presented that provides the first (as far as I know) global 
scale reanalysis of the water cycle. The authors have put effort in using as much 
data sources as they could. The authors are not reluctant to use a data source for 
which error structures are not fully statistically derived. Instead they rely on ‘expert 
judgment’ of the time series and use their own hydrological common sense to get a 
feeling for the uncertainty of a number of time series. This makes the amount of 
data sources used larger, and therefore the reanalysis more robust. The treatment 
of the data sources prior to assimilation looks good. The authors try to make 
modeled data equivalent to GRACE observations by using similar treatments (e.g. 
Gaussian smoother).  

We thank the referee for the valuable comments. The response to the main 
comments is generally as was provided online in the discussion phase, but without 
redundant text and with details on the changes made (letters between brackets are 
sometimes added for cross-referencing). In addition, we address the specific 
comments made as annotations in the manuscript. 



1) A lot of assumptions about data errors (systematic, random, as well as error 
structure in space and time) are made. As mentioned, I think this is good, since 
they would remain unused if the authors would not have considered them, but how 
do these assumptions on errors impact your results? In fact the conclusions drawn 
from this paper are difficult to judge, as they could easily change significantly if 
other assumptions on errors would have been made. (a) To name a few: all models 
are forced by the same forcing (combination of Princeton forcing and TRMM). This 
makes the outputs more correlated and therefore could result in underestimation of 
errors. (b) Second, GRACE models are also dependent on the same data. Are the 
errors of GRACE data also underestimated because of this? (c) Hence, the 
sensitivity of the results to the chosen error sizes as well as the chosen error 
structure (non-correlated in space and time, which is doubtful to my mind) should at 
least be properly discussed. E.g. is the conclusion that 0.39 mm yr-1 of ocean 
mass increase is missing from the water balance not an effect of uncertainty in the 
errors and therefore in the assimilation gains? Or even an effect of the length of the 
time series (only 10 years)? 

We thank the reviewer for stressing the important point that using observations as 
constraints demands some assumptions about their structure.  

(a) Only the W3RA model used the mentioned forcing, however it is true that the 4 
GLDAS model outputs all are based on the same forcing and so may well have had 
partially correlated errors. This did not affect the error estimates, as only one model 
was used each time in triple collocation error estimation. However the assimilation 
itself also has assumes uncorrelated errors in the ensemble members, and that has 
likely been violated but to an unknown extent. We have expanded the discussion of 
this (l. 558-581) 

(b) Yes, the GRACE products are partly derived from the same primary observations 
and hence there may have been correlated errors between the GRGS and Tellus 
products, which we corrected for by inflating the calculated errors (l. 321-323). We 
also refer to a paper just published (Sakumura, et al., 2014) that demonstrates that 
the different GRACE retrievals have errors that are substantially independent, which 
provides additional confidence in the triple collocation approach used (l. 310-317). 
We have expanded the discussion on error specification (l. 531-533 and l. 558-581). 

(c) In the absence of better information it is typically not possible to judge what 
influence the error structure assumptions introduced. However we could establish 
that the gain matrix is actually not affected that much if a (unrealistically) higher error 
inflation is applied (now discussed in l. 531-533) whereas the effect on long term 
trends is in fact minimal (l. 573-577). The ‘missing’ 0.39 mm y-1 is not due to our 
error assumptions but in fact inherited directly from the GRACE products (l. 595-
597). We also note that we did not discover but simply confirmed the well-
documented sea level closure problem. We did however find some evidence that the 
explanation recently proposed by Chen et al. (2013) may not fully resolve it (l. 612-
615). Ocean mass changes were not the focus of our study, however. 

2) In more detail, triple collocation requires that errors do not vary over time and 
errors are not correlated in time (p. 15487, l. 14-17). For GRACE errors, this could 
be true, but for the hydrological models this could be very wrong, especially in 
areas where storage change is strongly dependent on rainy seasons. In these 



seasons, the hydrological models will produce much larger errors in the rainy 
season than outside. Again, if not considered the effect of this assumption is an 
important point for discussion. 

Agreed, and we now include this point explicitly (l.305). Note however that only the 
(temporally stable) gain matrix is affected by this; when spatially distributing the TWS 
analysis update to the different water stores, the errors are derived from the 
ensemble (Eq. (11)) and therefore these are in fact temporally dynamic. 

3) There’s no mentioning of spatial correlation in errors. Is this considered by the 
triple collocation technique? If not, again implications on results need to be 
discussed. 

We are not entirely sure what errors the reviewer refers to. Triple collocation acts on 
single grid cell, but as Fig 2b shows there is much spatial correlation in the derived 
error estimates. This correlation is combined with the spatial correlation in the 
(coarse) GRACE signal and imparted in the analysis update step. That in turn will 
have been propagated in the spatial redistribution step, and combined with the 
spatial correlation in the priors. Hence these spatial correlations are preserved. 

4) Section 2.5, p. 15489, l. 19-22. A linear relationship between river levels and 
discharge is assumed. It is not clear to me why this was necessary. In somewhat 
broader rivers you may expect that the relationship (i.e. a rating curve) reads as Q 
= a(h - h0)b. And therefore, logQ = log a + b log(h - h0). So a linear relationship 
between logQ and water levels may be assumed and h0 tuned to make the 
relationship linear. Why was this reasoning not used? 

In fact we did indeed assume a (potentially) non-linear relationship and that is why 
we calculated Spearman’s rank correlation coefficient rather than Pearson’s r (l. 362-
363) 

5) In section 3, many observations in the results are made that remain unexplained. 
Please consider hypothesizing what the observations may imply. 

Where we could identify a probable explanation we suggested it in Section 4, but 
overall we are hesitant to over-interpret the results where corroborating evidence is 
not available.  

 Specific comments in the annotated manuscript 

Sentence not clear: do you mean "was compensated for by ..."? 

Yes, we changed this (l. 29) 

Check reference. Dorigo (2010) HESS. Reference is mentioned later, but should be 
given here as well. 

We provided the original reference to Stoffelen (1998) 

References to atmospheric signal removing are lacking. 



We looked for an appropriate reference but this aspect in fact appears to be 
described rather scantily in publications documented the GRACE data products. We 
provide one of a few references that at least mention pressure fields from ECMWF 
reanalysis are used (Wahr et al., 2006; l. 71). 

2 different forcing datasets were used for 2 different periods (2003-2008, 2009-
2012). How do you ensure that the outcoming dataset is homogeneous? 

This is addressed in l. 113-144, we have added a few words to make this clearer. 

Why was the Princeton data not used for all models? This would make the model 
outputs more comparable. In addition, bias-correction on Princeton data implies 
that the Princeton data is more close to the 'truth'. Can this be corroborated? 

GLDAS model runs for the period and models involved based on Princeton forcing 
data are not currently available (but appears planned according to information on the 
GLDAS web site). The Princeton data essentially downscale gauge observation 
based data and therefore may be expected to be closer to ‘ground truth’, which was 
confirmed in an inter-comparison by Peña-Arancibia et al. (2013) cited in the m/s. 

What are the sources for this 0.5 degree data? References are missing. 

We have clarified this in the text (l. 123-125). 

Which global hydrological model? PCR-GLOBWB? There is no reference! 

We have clarified this in the text (l. 123-125). 

Which scheme? Again no references at all! 

The scheme is actually described subsequently (l. 140-150). 

Is this then corrected for by the DA scheme, using the additional observations? 
Please explain. 

It will have been if it is the main source of uncertainty in total mass changes in the 
region. We added a comment (l. 167-168). 

Mean of each month individually? Or was a climatology made? This needs some 
clarification. If a climatology was used, then trends over the 10-year period cannot 
be observed. If a time series was used, then what was done to fill in the last 2 
years, that are not covered by the River and Lake altimetry dataset?  

Yes, for each month individually - we made this more explicit (l. 173-174). The lake 
level data are actually derived from the Crop Explorer web site, which provides data 
for the entire period. 

Okavango delta is in Botswana, not in Zimbabwe! It contains huge volumes of 
water, part of which (close to the surface) is highly variable over the season. Can 
you simply assume this is negligible?  



Apologies, we corrected this (l. 178). We agree that we can probably not assume 
that this is negligible, which indeed is why we raise it at this point in the text. We 
come back to this in the discussion (l. 669-676). 

This is not an uncertainty estimate, but a measure for spatial variability (?) 

Correct, but given both are affected by the number of samples we assumed it 
provides a reasonable estimate of relative quantitative errors as well. A more robust 
estimate of sea level uncertainty directly derived from the observations would be 
desirable, although that would not address the potentially important uncertainty in the 
conversion of water level to mass change. The influence of these uncertainties on 
long-term terrestrial mass trends and patterns is negligible however. 

May need one sentence to explain what 'leakage' is for the reader that is not aware 
of GRACE retrievals. 

We have added an explanation (l. 208-211) 

Explain why the smoother was needed. Was it applied to both St^b and GRACE 
TWS estimates?  

We have rephrased this (l. 246-247). 

Is the GRACE-like TWS the modelled (weighted averaged) TWS, smoothed with 
gaussian kernel? 

Correct, with the above change this is hopefully clearer now. 

two times the same symbol, please choose a different symbol for the updated yt^a. 
The equation is not clear to me. Shouldn't it be yt^a = yt^b + dyt (i.e. updated 
GRACE-like TWS = background TWS + increment)? 

Apologies, this typesetting mistake has been fixed (l. 252-253). 

Consider presenting this text along with the equations applied. This would make it 
more readible. 

We have chosen to keep the derivation of error estimates separate as we fear it 
might cause the reader to conflate the error specification and the DA scheme itself, 
whereas they are essentially two separate things. 

does this technique include spatial correlation in the error structure? Needs to be 
discussed if not. 

It preserves any spatial correlation; see response to main comment 3. 

storage change errors are also correlated in time for TWS model estimates. During 
dry periods, errors are much smaller than in wet periods. This will be the case in 
particular in regions with distinct rainy seasons. 

See response to main comment 2  



you mean "not equivalent"? 

Correct, we added this for clarity (l. 332) 

A linear relationship is not expected. In larger rivers, then relationship is more or 
less known, you may expect that the relationship reads as Q=a*(h-h0)^b, where b 
in a larger river is about 1.7, assuming the width of the channel is >> the water 
depth. 

Agreed, and we did not assume a linear relationship – see response to main 
comment 4. 

80 mm/month? 

Technically not. It relates to the difference in mean storage during month t and t+1, 
respectively, and so has units of mm (i.e., it is a difference, not a rate of change) 

This means that errors from GRACE are much smaller than errors in the model 
estimates. Can this be corroborated by the individual error estimates? 

Actually it does not necessarily mean that. We have added discussion of this and 
related aspects (l. 569-577). 

Threre's a lot of observations, but no explanations for these results. Suggestion for 
the Congo and Amazon change in trend may be due to not including of riuver 
routing in these rivers in the models. Routing delays water storage in downstream 
regions by 2 to 3 months in these rivers. 

Routing was in fact included – see response to main comment 5. 

again I miss some ideas that could explain the points with strong improvements, as 
well as the points with reduction of correlation. 

Unfortunately this is very difficult to assess in the absence of independent data – see 
response to main comment 5. 

...but reduced elsewhere... 

Correct, in those areas errors in the prior estimates were typically smaller. 

In Zambezi and Okavango, large interannual storage variability is experienced in 
deep Kalahari sand layers. So 10-years is a little bit short probably. 

This is an interesting suggestion and may well be a factor. Additional research and 
possibly data collection would be required to investigate it. We agree that 10 years is 
short to make any strong statements on the persistence of trends and mentioned this 
in the text (l. 810-813). 

Increase the size of all symbols. 

We have increased the size of all symbols in Figure 1. 



x-axis is not clear. Is it the transect East to West 

Yes, we have not added this in the figure caption (l. 934) 
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Abstract 15 

We present a global water cycle reanalysis that reconciles water balance estimates derived 16 

from the GRACE satellite mission, satellite water level altimetry and off-line estimates from 17 

several hydrological models. Error estimates for the sequential data assimilation scheme were 18 

derived from available uncertainty information and the triple collocation technique. Errors in 19 

four GRACE storage products were estimated to be 11–12 mm over land areas, while errors 20 

in monthly storage changes derived from five global hydrological models were estimated to 21 

be 17–28 mm. Prior and posterior estimates were evaluated against independent observations 22 

of river water level and discharge, snow water storage and glacier mass loss. Data 23 

assimilation improved or maintained agreement overall, although results varied regionally. 24 

Uncertainties were greatest in regions where glacier mass loss and sub-surface storage 25 

decline are both plausible but poorly constrained. We calculated a global water budget for 26 

2003–2012. The main changes were a net loss of polar ice (-342 Gt y
-1

) and mountain 27 

glaciers (-230 Gt y
-1

), with an additional decrease in seasonal snow pack (-18 Gt y
-1

). Storage 28 

increased due to new impoundments (+16 Gt y
-1

), but this was compensated by decreases in 29 



other surface water bodies (-10 Gt y
-1

). If the effect of groundwater depletion (-92 Gt y
-1

) is 30 

excluded, sub-surface water storage increased by +110 Gt y
-1

 due particularly to increased 31 

wetness in northern temperate regions and in the seasonally wet tropics of South America and 32 

southern Africa. 33 

 34 

1. Introduction 35 

More accurate global water balance estimates are needed, to better understand interactions 36 

between the global climate system and water cycle (Sheffield et al., 2012), the causes of 37 

observed sea level rise (Boening et al., 2012; Fasullo et al., 2013; Cazenave et al., 2009; 38 

Leuliette and Miller, 2009), human impacts on water resources (Wada et al., 2010; 2013), and 39 

to improve hydrological models (van Dijk et al., 2011) and initialise water resources forecasts 40 

(Van Dijk et al., 2013). The current generation of global hydrological models have large 41 

uncertainties arising from a combination of data deficiencies (e.g., precipitation in sparsely 42 

gauged regions; poorly known soil, aquifer and vegetation properties) and overly simplistic 43 

descriptions of important water cycle processes (e.g. groundwater dynamics, human water 44 

resources extraction and use, wetland hydrology and glacier dynamics). Data assimilation 45 

(DA) is used routinely to overcome data and model limitations in atmospheric reconstructions 46 

or ‘reanalysis’. In hydrological applications, DA has been largely limited to flood forecasting, 47 

but new applications are being developed (Liu et al., 2012a), including promising 48 

developments towards large-scale water balance reanalyses, alternatively referred to as 49 

monitoring, assessment or estimation (van Dijk and Renzullo, 2011).  50 

Here, we undertake a global water cycle reanalysis for the period 2003–2012. Specifically, 51 

we attempt to reconcile global water balance model estimates from different sources with an 52 

ensemble of total water storage (TWS) estimates derived from the Gravity Recovery And 53 

Climate Experiment (GRACE) satellite mission (Tapley et al., 2004). Various alternative 54 

approaches can be conceptualised to achieve this integration and the most appropriate among 55 

these is not obvious. Our approach was to use water balance estimates generated by five 56 

global hydrological models along with several ancillary data sources to generate an ensemble 57 

of prior estimates of monthly water storage changes. Errors in the different model estimates 58 

and GRACE products were estimated spatially through triple collocation (Stoffelen, 1998). 59 

Subsequently, a DA scheme was designed to sequentially reconcile the model ensemble and 60 

GRACE observations. The reanalysis results were evaluated with independent global 61 



streamflow records, remote sensing of river water level and snow water equivalent (SWE), 62 

and independent glacier mass balance estimates. 63 

 64 

2. Methods and Data Sources 65 

2.1. Overall approach 66 

We conceptualise TWS (S, in mm) as the sum of five different water stores (s in mm), i.e., 67 

water stored in snow and ice (ssnow); below the surface in soil and groundwater (ssub), and in 68 

rivers (sriv); lakes (slake), and seas and oceans (ssea). We ignore atmospheric water storage 69 

changes, which are removed from the signal during the GRACE TWS retrieval process (e.g., 70 

Wahr et al., 2006), and vegetation mass changes, which are assumed negligible. The GRACE 71 

TWS estimates are denoted by y and have the same units as S but are distinct in their much 72 

smoother spatial character.  73 

To date, DA schemes developed for large-scale water cycle analysis typically use Kalman 74 

filter approaches (Liu et al., 2012a). This requires calculation of co-variance matrices and, 75 

presumably because of complexity and computational burden, has only been applied for 76 

single models and limited regions (e.g., Zaitchik et al., 2008). We aimed to develop a DA 77 

scheme that made it possible to use water balance estimates derived ‘off line’ (i.e., in the 78 

absence of DA) so we could use an ensemble of already available model outputs. In the DA 79 

terminology of Bouttier and Courtier (1999), our scheme could be described as sequential and 80 

near-continuous with a spatially variable but temporally stable gain factor. The characteristics 81 

of the DA problem to be addressed in this application were as follows: 82 

(1) Alternative GRACE TWS estimates (y
o
) were available from different processing centres 83 

and error estimates were required for each;  84 

(2) Alternative estimates for some of the stores, s, were available from different hydrological 85 

models with higher definition than y
o
;  86 

(3) Error estimates were required for each store and data source;  87 

(4) A method was required to spatially transform between s and y as part of the assimilation. 88 

  89 



2.2. Data sources 90 

The data used include those needed to derive prior estimates for each of the water cycle 91 

stores, the GRACE retrievals to be assimilated and independent observations to evaluate the 92 

quality of the reanalysis. All are listed in Table 1 and described below. 93 

Monthly water balance components from four global land surface model estimates at 1° 94 

resolution were obtained from NASA’s Global Data Assimilation System (GLDAS) (Rodell 95 

et al., 2004). The four models include CLM, Mosaic, NOAH and VIC which, for the 2003–96 

2012, were forced with “a combination of NOAA/GDAS atmospheric analysis fields, 97 

spatially and temporally disaggregated NOAA Climate Prediction Center Merged Analysis of 98 

Precipitation (CMAP) fields, and observation-based radiation fields derived using the method 99 

of the Air Force Weather Agency's AGRicultural METeorological modelling system” (Rui, 100 

2011). The models are described in Rodell et al. (2004). From the model outputs we used (i) 101 

snow water equivalent (SWE) depth, (ii) total soil moisture storage over a soil depth that 102 

varies between models, and (iii) generated streamflow, calculated as the sum of surface 103 

runoff and sub-surface drainage. In addition to GLDAS, we used global water balance 104 

estimates generated by the W3RA model (Van Dijk et al., 2013) in the configuration used in 105 

the Asia-Pacific Water Monitor (http://eos.csiro.au/apwm/). For 2003–2008, the model was 106 

forced with the ‘Princeton’ merged precipitation, down-welling short-wave radiation, 107 

minimum and maximum daily temperature and air pressure data produced by Sheffield et al. 108 

(2006). From 2009 onwards, the model primarily uses ‘ERA-Interim’ weather forecast model 109 

reanalysis data from the European Centre for Medium-Range Weather Forecasts. For low 110 

latitudes, these are combined with near-real time TRMM multi-sensor precipitation analysis 111 

data (TMPA 3B42 RT) (Huffman et al., 2007) to improve estimates of convective rainfall 112 

(Peña-Arancibia et al., 2013). Both were bias-corrected with reference to the Princeton data 113 

to ensure homogeneity. W3RA model estimates were conceptually similar to those from 114 

GLDAS, except that the model includes deep soil and groundwater stores and sub-grid 115 

surface and groundwater routing. 116 

The five hydrological models do not provide estimates of groundwater depletion and storage 117 

in rivers, lakes and impoundments and these were therefore derived separately. Groundwater 118 

depletion estimates were derived for 1960–2010 by Wada et al. (2012). The time series were 119 

calculated as the net difference between estimated groundwater extraction and recharge. 120 

National groundwater extraction data compiled by the International Groundwater Resources 121 

Assessment Centre (IGRAC) were disaggregated using estimates of water use intensity and 122 



surface water availability at 0.5° resolution from a hydrological model (PCR-GLOBWB; see 123 

Wada et al., 2012, for details). The model also estimated recharge including return flow from 124 

irrigation. Uncertainty information of groundwater depletion was generated by 10,000 Monte 125 

Carlo simulations, with 100 realizations of extraction and recharge respectively (Wada et al., 126 

2010). This method tends to overestimate reported depletion in non-arid regions, where 127 

groundwater pumping can enhance recharge from surface water. Wada et al. (2012) used a 128 

universal multiplicative correction to account for this. Here, the correction was calculated per 129 

climate region rather than world-wide, reflecting the dependency of uncertainty on recharge 130 

estimates and their errors. Data for 2011–2012 were not available; these were estimated using 131 

monthly average depletion and uncertainty values for the preceding 2003–2010 period. Given 132 

the regular pattern of depletion in the preceding years this by itself is unlikely to have 133 

affected the analysis noticeably. 134 

River water storage was estimated by propagating runoff fields from each of the five models 135 

through a global routing scheme. In a previous study, we compared these runoff fields with 136 

streamflow records from 6,192 small (<10,000 km
2
) catchments worldwide and found that 137 

observed runoff was 1.28 to 1.77 times greater than predicted by the different models (Van 138 

Dijk et al., 2013). The respective values were used to uniformly bias-correct the runoff fields. 139 

Next, we used a global 0.5º resolution flow direction grid (Oki et al., 1999; Oki and Sud, 140 

1998) to parameterise a cell-to-cell river routing scheme. We used a linear reservoir 141 

kinematic wave approximation (Vörösmarty and Moore III, 1991), similar to that used in 142 

several large-scale hydrology models (see recent review by Gong et al., 2011). The monthly 143 

1º runoff fields from each of the five models were oversampled to 0.5º and daily time step 144 

before routing, and the river water storage estimates (in mm) were aggregated back to 145 

monthly 1º grid cell averages before use in assimilation. The routing function was an inverse 146 

linear function of the distance between network nodes and a transfer (or routing) coefficient. 147 

For each model, a globally uniform optimal transfer coefficient was found by testing values 148 

of 0.3 to 0.9 day
-1

 in 0.1 day
-1

 increments and finding the value that produced best overall 149 

agreement with seasonal flow patterns observed in 586 large rivers world-wide. These 586 150 

were a subset of 925 ocean-reaching rivers for which streamflow records were compiled by 151 

Dai et al. (2009) from various sources; we excluded locations where streamflow records were 152 

available for less than 10 years since 1980 or less than 6 months of the year.  153 

The resulting river flow estimates do not account for the impact of river water use (i.e., the 154 

evaporation of water extracted from rivers, mainly for irrigation). We addressed this using 155 



global monthly surface water use estimates that were derived in a way similar to that used for 156 

groundwater depletion estimates (details in Wada et al., 2013). For each grid cell, mean water 157 

use rates for 2002–2010 were subtracted from mean runoff estimates for the same period, and 158 

the remaining runoff was routed downstream. The resulting mean net river flow estimates 159 

were divided by the original estimates to derive a scaling factor, which was subsequently 160 

applied at each time step. Lack of additional global information on river hydrology meant 161 

that three simplifications needed to be made: (i) our approach implies that for a particular 162 

grid cell, monthly river water use is assumed proportional to river flow for that month; (ii) the 163 

influence of lakes, wetlands and water storages on downstream flows (e.g., through dam 164 

operation) is not accounted for, even though their actual storage changes are (see further on); 165 

(iii) our approach does not account for losses associated with permanent or ephemeral 166 

wetlands, channel leakage and net evaporation from the river channel. To some extent, the 167 

DA process may correct mass errors resulting from these assumptions. 168 

Variations in lake water storage were not modelled, but water level data for 62 lakes world-169 

wide were obtained from the Crop Explorer web site (Table 1) and include most of the 170 

world’s largest lakes and reservoirs, including the Caspian Sea. The water level data for these 171 

lakes were derived from satellite altimetry and converted to mm water storage. Measurements 172 

were typically available every 10 days. The mean and standard deviation for each individual 173 

month were used as best estimate and estimation error, respectively. Storage in water bodies 174 

without altimetry data was necessarily assumed negligible. This includes many small lakes 175 

and dams, but also some larger lakes affected by snow and ice cover (e.g., the Great Bear and 176 

Great Slave Lakes in Canada) and ephemeral, distributed or otherwise complex water bodies 177 

(e.g., the Okavango delta in Botswana and Lake Eyre in Australia, each of which contains 178 

>10 km
3
 of water when full). 179 

A list of dams was collated by Lehner et al. (2011) and was updated with large dams 180 

constructed in more recent years with the ICOLD data base (Table 1). For the period 1998–181 

2012, a total 198 georeferenced dams with a combined storage capacity of 418 km
3
 were 182 

identified. For the Three Gorges Dam (39 km
3
), reservoir water level time series from 183 

http://www.ctg.com.cn/inc/sqsk.php were converted to storage volume following Wang et al. 184 

(2011). For the remaining dams, we assumed a gradual increase to storage capacity over the 185 

first five years after construction with a relative estimation error of 20%. 186 

Delayed time, up-to-date global merged mean sea level anomalies were obtained from the 187 

Aviso web site (Table 1). The monthly data were reprojected from the native 1/3° Mercator 188 



grid to regular 1° grids. An estimate of uncertainty was derived by calculating the spatial 189 

standard deviation in sea level values within a 4° by 4° region around each grid cell during 190 

re-projection. When sea level data were missing, because of sea ice, we assumed sea level did 191 

not change and assigned an uncertainty of 5 mm. Following the recent global sea level budget 192 

study by Chen et al. (2013), we assumed that 75% of the observed sea level change was due 193 

to mass increase, and we multiplied altimetry sea level anomalies with this factor.  194 

We did not have spatial global time series of glacier mass changes. The five hydrological 195 

models have an oversimplified representation of ice dynamics, and therefore large 196 

uncertainties and errors can be expected for glaciated regions. To account for this, we used 197 

the ‘GGHYDRO’ global glacier extent mapping by Cogley (2003) to calculate the percentage 198 

glacier area for each grid cell, and assumed a proportional error in monthly glacier mass 199 

change estimates corresponding to 300 mm per unit glacier area. This value was chosen 200 

somewhat arbitrarily and ensures that a substantial fraction of the analysis increment is 201 

assigned to glaciers.  202 

Three alternative GRACE TWS retrieval products were downloaded from the Tellus web 203 

site. The three products (coded CSR, JPL and GFZ; release 05) each had 1° (nominal) and 204 

monthly resolution. The land and ocean mass retrievals (Chambers and Bonin, 2012) were 205 

combined. The land retrievals had been ‘de-striped’ and smoothed with a 200 km half-width 206 

spherical Gaussian filter (Swenson et al., 2008; Swenson and Wahr, 2006), whereas the ocean 207 

retrievals had been smoothened with a 500 km filter (Chambers and Bonin, 2012). The DA 208 

method we employed is designed to deal with the signal ‘leakage’ caused by the smoothing 209 

process and therefore we did not use the scaling factors provided by the algorithm 210 

developers. In addition, gravity fields produced by CNES/GRGS (Bruinsma et al., 2010) at 1° 211 

resolution for 10 day periods were used. The three Tellus data sources had been corrected for 212 

Glacial Isostatic Adjustment (GIA); we corrected the GRGS data using the same GIA 213 

estimates of Geruo et al. (2013). Initial DA experiments produced unexpectedly strong mass 214 

trends around the Gulf of Thailand. Inspection demonstrated that all products, to different 215 

degrees, contained a mass redistribution signal associated with the December 2004 Sumatera-216 

Andaman earthquake. To account for this, we first calculated a time series of seasonally-217 

adjusted monthly anomalies (i.e., the average seasonal cycle was removed) for the region 218 

[5°N–15°, 80–110°E]. Next, we adjusted values after December 2004 by the difference in the 219 

mean adjusted anomalies for the year before and after the earthquake, respectively.  220 

 221 



2.3. Data assimilation scheme 222 

For each update cycle, the DA scheme proceeds through the steps illustrated in Figure 1 and 223 

described below. 224 

1) Deriving the prior estimate for each store. The way to calculate the prior (or background) 225 

estimate of storage   
  varied between stores. A systematic and accumulating bias (or ‘drift’) 226 

was considered plausible for the deep soil and groundwater components of model-derived 227 

sub-surface storage due to slow groundwater dynamics (including extraction) and ice storage 228 

in permanent glaciers and ice sheets, which may be progressively melting or accumulating. In 229 

these cases, the model-estimated change in storage was assumed more reliable than the actual 230 

storage itself, and estimates from the five models were used to calculate storage change,    
 

 231 

for store i (i=1,…, N) as: 232 

   
 ( )  ∑    

 ( )

 

   

 

(1) 

where   
  is the estimate of storage change from model l (l=1,…, L) between time t–1 and t, 233 

and wl the relative weight of model l in the ensemble, computed as: 234 
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where     
  is the error for model l based on triple collocation (see Section 2.4). Subsequently, 235 

  
 was calculated as: 236 

  
 ( )      
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where     
   is the posterior (or analysis) estimate from the previous time step. This approach 237 

was not suitable for model-estimated seasonal snowpack and river storage, where the 238 

ephemeral nature of the storage means that long-term drift is not an issue and Eq. (2) could in 239 

fact lead to unrealistic negative storage values. For these cases,   
  was computed as: 240 
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(4) 

where   
  is the storage estimate from model l. The glacier extent map was used to identify 241 

whether Eq. (3) or (4) should be used for ssnow. Similarly, no drift was expected in the ocean 242 

and lake storage data, and these were used directly as estimates of   
 . 243 



2) Deriving the prior estimate of GRACE-like TWS (y
b
). This estimate was derived by 244 

summing all stores   
 

 as: 245 

  
  ∑  
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(5) 

and subsequently applying a convolution operator Γ to transform   
  to a ‘GRACE-like’ TWS 246 

y
b
. The operator Γ was a Gaussian smoother (cf. Jekeli, 1981) written here as: 247 

  
 (  )  ∑ (     )

  

  
 (     ) 

(6) 

where j1 and j2 in principle should encompass all existing grid cell coordinates. In practice, Γ 248 

was applied as a moving Gaussian kernel with a size of 6°×6° and a half-width of 300 km 249 

(see further on). 250 

3) Updating the GRACE-like TWS. The updated GRACE-like TWS,   
 , was calculated from 251 

the prior (Eq. (6)) and GRACE observations   
 for time t as (cf. Figure 1 a-d): 252 

  
    

        
   (  

    
 ) (7) 

where     is the analysis increment and k a temporally static gain factor derived by 253 

combining the error variances of modelled and observed y as follows: 254 
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where      and      are the weights applied to each of the five GRACE-like TWS estimates 255 

and four GRACE data sources, respectively, calculated from their respective error variances 256 

    
  and     

  analogous to Eq. (2).257 

4) Spatially disaggregating the analysis increment to the different stores. The observation 258 

model was inverted and combined with the store error estimates in order to spatially 259 

redistribute the analysis increment    , as follows (cf. Figure 1e-g):  260 

   (    )  ∑ (     )   (  )

  

 
(9) 

where the redistribution operator Ω can be written as (cf. Figure 1g): 261 
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To implement this, spatial error estimates are required for each store. For lakes and seas, the 262 

errors were estimated from the observations (see Section 2.2). For the model-based estimates, 263 

the error was calculated for each time step and store as:  264 

  
 ( )  ∑   [  

 ( )     
 ( )] 

 
 

(11) 

The resulting error estimates are spatially and temporally dynamic and respond to the 265 

magnitude of the differences between the different model estimates. For ssub and ssnow we 266 

combined the error estimates derived by Eq. (11) with the estimated errors in groundwater 267 

depletion and glacier mass change, respectively (see Section 2.2), calculating total error as 268 

the quadratic sum of the composite errors.  269 

5) Updating the stores. In the final step, the state of each store is updated: 270 

  
 ( )    

 ( )     ( ) (12) 

Subsequently, the procedure is repeated for the next time step. 271 

 272 

2.4. Error estimation 273 

Spatial error fields are required for all data sets to calculate the gain factor k and where 274 

necessary these were estimated using the triple collocation technique (Stoffelen, 1998). This 275 

technique infers errors in three independent time series by analysing the covariance structure. 276 

The approach has been applied widely to estimate errors in, among others, satellite-derived 277 

surface soil moisture (Dorigo et al., 2010; Scipal et al., 2009), evapotranspiration (Miralles et 278 

al., 2011) and vegetation leaf area (Fang et al., 2012). A useful description of the technique, 279 

the assumptions underlying it and an extension of the theory to any number of time series 280 

greater than three was provided by Zwieback et al. (2012). Application requires three (or 281 

more) estimates of the same quantity. This was achieved by convolving the model-derived 282 

storage estimates into large-scale, smoothed TWS estimates equivalent to those derived from 283 

GRACE measurements using Eqs. (5) and (6). Inspection of the original Tellus data made 284 

clear that the 200 km filter that was already applied as part of the land retrieval had only 285 

removed part of the spurious aliasing in the data sets, and propagated these artefacts into the 286 

error estimates and reanalysis. Therefore a smoother, 300 km filter was applied to the Tellus 287 

TWS data sets. Because conceptual consistency is required for triple collocation, the same 288 

filter was applied to the GRGS and model-derived TWS estimates. Several alternative Tellus 289 

and model time series were available, and therefore the triple collocation technique could be 290 



used to produce alternative error estimates from multiple triplet combinations (i.e., five for 291 

Tellus TWS, three for model TWS, and 5×3=15 for GRGS TWS). The agreement between 292 

these alternative estimates was calculates as a measure of uncertainty in estimated errors. 293 

Important assumptions of the collocation technique are that: (1) each data set is free of bias 294 

relative to each other, (2) errors do not vary over time, (3) there is no temporal 295 

autocorrelation in the errors, and (4) there is no correlation between the errors in the 296 

respective time series (Zwieback et al., 2012). Each of these assumptions is difficult to 297 

ascertain, but some interpretative points can be made. Errors in the GRACE products vary 298 

somewhat from month to month depending on data availability, and overall decreased after 299 

June 2003. Therefore assumption (2) is a simplification. Assumption (3) is also unlikely to 300 

hold fully: there will almost certainly be systematic errors and biases that cause temporal 301 

correlation in the errors in the modelled TWS (e.g., due to poorly represented processes 302 

causing secular trends such as groundwater extraction or glacier melt). We avoided this 303 

assumption by applying the triple collocation to monthly storage changes rather than actual 304 

storage, although temporal correlation in storage change errors remains a possibility. 305 

However, temporal correlation in the GRACE errors is unlikely. Therefore, the error in 306 

individual mass estimates was calculated following conventional error propagation theory, by 307 

dividing the estimated error in mass changes by √2.  308 

Assumption (4) will not be fully met where estimates are partially based on the same 309 

principle or measurement. In this study, arguably the most uncertain assumption is that the 310 

GRGS and Tellus errors are to a large extent uncorrelated. The basis for this assumption is 311 

that most of the error is likely to derive from the TWS retrieval method rather than the 312 

primary measurements (Sakumura et al., 2014). The GRGS time series was selected as the 313 

third triple collocation member because the four Tellus products are retrieved by methods 314 

that are comparatively more similar than the GRGS method, which uses ancillary 315 

observations from the Laser Geodynamics Satellites (Tregoning et al., 2012). 316 

Correspondingly, global average correlation among the Tellus TWS time series was stronger 317 

(0.61–0.73) than between any of the Tellus and GRGS time series (0.49–0.58). Nonetheless, 318 

there may well have been a residual covariance between errors in the GRGS and Tellus 319 

products. In triple collocation, this would cause some part of the differences to be wrongly 320 

attributed to the prior estimates rather than the observation products. Therefore, we 321 

conservatively inflated the calculated value by including an additional error of 5 mm through 322 

quadratic summation before calculating the gain factor (Eq. 8).  323 



Uncertainty in the derived error estimates also arises from sample size, i.e. the number of 324 

collocated observations (N=111). Previous studies have suggested that 100 samples are 325 

sufficient to produce a reasonable estimate (Dorigo et al., 2010), although Zwieback et al. 326 

(2012) calculate that the relative uncertainty in the estimated errors for N=111 can be 327 

expected to be in the order of 20%. Such a modest uncertainty in derived errors will not have 328 

a strong impact on the reanalysis results.  329 

 330 

2.5. Evaluation against observations 331 

Evaluation of the reanalysis results for sub-surface storage was a challenge: ground 332 

observations are not widely available at global scale, are often conceptually not equivalent to  333 

the reanalysis terms, require tenuous scaling assumptions for comparison at 1° grid cell 334 

resolution, and many existing data sets contain few or no records during 2003–2012. For 335 

example, comparison with in situ soil moisture measurements or groundwater bore data is 336 

beset by such problems (Tregoning et al., 2012). Similarly, an initial comparison with near-337 

surface (<5 cm depth) soil moisture estimates from passive and active microwave remote 338 

sensing (Liu et al., 2012b; Liu et al., 2011) showed that the conceptual difference between the 339 

two quantities was too great for a meaningful comparison.  340 

We were able to evaluate the reanalysis for storage in rivers, seasonal snow pack and 341 

glaciers, however. Firstly, a total of 1,264 water level time series for several large rivers 342 

worldwide were obtained from the Laboratoire d'Etudes en Geodésie et Océanographie 343 

Spatiales (LEGOS) HYDROWEB web site (Table 1). The river levels were retrieved from 344 

ENVISAT and JASON-2 satellite altimetry (Crétaux et al., 2011) and included uncertainty 345 

information for each data period. From each time series, we removed data points with an 346 

estimated error of more than 25% of the temporal standard deviation (SD). Another 165 347 

altimetry time series were obtained from the European Space Agency (ESA) River&Lake 348 

web site (Berry, 2009). These were selected to increase measurement period and sample size 349 

for the available locations, as well as extending coverage to additional rivers. The ESA time 350 

series did not include error estimates; instead data plots were judged visually to assess the 351 

likelihood of measurement noise; seemingly affected time series and outlier data points 352 

(>3SD) were excluded. The total 1,429 time series were merged for individual 1º grid cells. 353 

In each case, the longest time series was chosen as reference. Overlapping time periods were 354 

used to remove (typically small) systematic biases in water surface elevation between time 355 



series; where there was no overlap the time series were normalised by the median water level. 356 

The ESA data were used where or when HYDROWEB data were not available, and merged 357 

time series with fewer than 24 data points in total were excluded. The resulting data set 358 

contained time series for 442 grid cells with an average 61 (maximum 115) data points during 359 

2003–2012. The relationship between river water level and river discharge (i.e., the discharge 360 

rating curve) is usually non-linear but unknown, and therefore a direct comparison could not 361 

be made. Instead, we calculated Spearman’s rank correlation coefficient (ρ) between 362 

estimated discharge and observed water level. 363 

Secondly, we used the already mentioned discharge data for 586 ocean-reaching rivers world-364 

wide (Dai et al., 2009). From these, we selected 430 basins for which the reported drainage 365 

area was within 20% of the area derived from the 0.5º routing network. The ratio between 366 

reported and model-derived drainage area was used to adjust the reanalysis estimates and 367 

these were compared with recorded mean streamflow. The recorded mean annual discharge 368 

values are not for 2003-2012, but we assume that the differences are not systematic and, 369 

therefore, that any large change in agreement may still be a useful indicator of reanalysis 370 

quality. 371 

Third, snow storage estimates were evaluated with the European Space Agency GlobSnow 372 

product (Luojus et al., 2010). This data set contains monthly 0.25° resolution estimates of 373 

snow water equivalent (SWE, in mm) for low relief regions with seasonal snow cover north 374 

of 55°N during 2003–2011. The SWE estimates are derived through a combination of 375 

AMSR-E passive microwave remote sensing and weather station data (Pulliainen, 2006; 376 

Takala et al., 2009). The GlobSnow data were aggregated to 1° resolution. The root mean 377 

square error (RMSE) and the coefficient of correlation (r
2
) were calculated as measures of 378 

agreement. 379 

Finally, we compared the estimated trends in storage in different glacier regions to trends for 380 

mountain glaciers compiled by Gardner et al. (2013) for 2003–2010 and for Greenland and 381 

Antarctica by Jacob et al. (2012) for 2003–2009. In some cases, these mass balance estimates 382 

were based on independent glaciological or ICESAT satellite observations and these were the 383 

focus of comparison. Other estimates were partially or wholly based on GRACE data, which 384 

makes comparison less insightful. 385 

 386 

3. Results 387 



3.1. Error estimation 388 

The mean errors derived by the triple collocation technique were of similar magnitude for the 389 

GRACE and model estimates (Table 2; note that the numbers listed are for storage change 390 

rather than storage per se and are not adjusted for GRACE error covariance; cf. Section 2.4). 391 

The relatively low values for the coefficient of variation suggest that the error estimates are 392 

reasonably robust. 393 

The spatial error in merged GRACE and model storage change estimates were calculated 394 

analogous to Eq. (8). The resulting GRACE error surface was relatively homogeneous with 395 

an estimated error of around 5–20 mm for most regions, but increasing to 20–40 mm over 396 

parts of the Amazon and the Arctic (Figure 2a). The combined model error surface suggest 397 

that errors are smaller than those in the GRACE data for arid regions (<10 mm) but higher 398 

elsewhere, increasing beyond 80 mm in the Amazon region (Figure 2b). The mean errors 399 

over non-glaciated land areas were similar, at 18.1 mm for the combined model and 13.5 mm 400 

for the combined GRACE data. Assuming no temporal correlation and allowing for error 401 

covariance among GRACE products reduces the latter to 10.8 mm (i.e., √      ⁄    ). 402 

 403 

3.2.  Analysis increments 404 

Inspection of the analysis increments and the overall difference between prior and posterior 405 

estimates provides insights into the functioning of the assimilation scheme (Figure 3). The 406 

spatial pattern in root mean squared (RMS) TWS increments (√   ̅̅ ̅̅ ̅ ) emphasises the 407 

important role of the world’s largest rivers in explaining mismatches between expected and 408 

observed mass changes, particularly in tropical humid regions (Figure 3a). Large increments 409 

also occurred over Greenland (mainly due to updated ice storage changes) and the seasonally-410 

wet regions of Brazil, Angola and south Asia (sub-surface storage). When considering the 411 

RMS between prior and posterior estimates of actual TWS as opposed to monthly changes 412 

(Figure 3b) a similar pattern emerges, but with more emphasis on the smaller but 413 

accumulating difference in estimated storage over Greenland, Alaska and part of Antarctica 414 

(due to updated ice mass changes) and northwest India (groundwater depletion).  415 

 416 

 417 

3.3.  Mass balance and trends 418 



The trend and monthly fluctuations (expressed in standard deviation, SD) in global mean total 419 

water mass provides a test of internal consistency. Among the original GRACE TWS data, 420 

the GRG data showed the smallest temporal SD (0.04 mm) and linear trend (0.007 ± 0.001 421 

SD mm y
-1

) in global water mass. The three Tellus retrievals showed larger temporal SD 422 

(4.7–6.4 mm) and trends (-0.37 ± 0.21 to -0.23 ± 0.20 mm y
-1

). The merged GRACE TWS 423 

data had intermediate SD (3.97 mm) and trend (-0.32 mm y
-1

). Assimilation reduced SD (to 424 

3.1 mm) and removed the residual trend (-0.01±0.10 mm y
-1

). The discrepancies in global 425 

water mass trends in the merged GRACE data and in the analysis were mostly located over 426 

the oceans, and therefore the achieved mass balance closure can be attributed to the influence 427 

of the prior sea mass change estimates (Figure 4).  428 

 429 

3.4. Regional storage trends 430 

The spatial pattern in linear trends in the merged GRACE TWS (y0) and the synthetic 431 

reanalysis signal (yb) agree well (Figure 4bc), suggesting that the assimilation scheme is able 432 

to reconcile the prior estimates of storage changes and observed storage as intended. 433 

Seasonally adjusted anomalies were calculated for the prior and posterior estimates of the 434 

different water cycle components by subtracting the mean seasonal pattern. The 2003–2012 435 

linear trends in these adjusted anomalies (Figure 5) show that the analysis has (i) increased 436 

spatial variability in sub-surface water storage trends, with amplified increasing and 437 

decreasing trends (Figure 5ab); (ii) drastically changes trends in snow and ice storage and 438 

typically made them more negative (Figure 5cd); (iii) reversed river water storage trends in 439 

the lower Amazon and Congo Rivers (Figure 5ef). The reanalysis shows a complex pattern of 440 

strongly decreasing and increasing sub-surface water storage trends in northwest India 441 

(Figure 5b). This may be an artefact from incorrectly specified errors in the groundwater 442 

depletion estimates (see Section 4.2). Less visible is that the analysis often reduced negative 443 

storage trends in other regions with groundwater depletion, that is, decreased the magnitude 444 

of estimated depletion. Because all sub-surface storage terms were combined, a revised 445 

estimate of groundwater depletion cannot calculated directly, but it can be estimated: for all 446 

grid cells with significant prior groundwater depletion estimates (>0.5 mm y
-1

, representing 447 

99% of total global groundwater depletion) the 2003–2012 trend in sub-surface storage 448 

change was estimated a priori at -168 ± 3 (SD) km
3
 y

-1
 of which 157 km

3
 (94%) due to 449 

groundwater depletion and the remaining -11 km
3
 due to climate variability. Analysis 450 



reduced the total trend for these grid cells to -103 ± 3 km
3
 per year, from which a revised 451 

groundwater extraction estimate of ca. 92 km
3
 can be derived. 452 

From the seasonally adjusted anomalies, time series and trends of global storage in different 453 

water cycle components were calculated. We calculated snow and ice mass change separately 454 

for regions with seasonal snow cover, high (>55º) latitude glaciers, and remaining glaciers 455 

(Figure 6). The mean 2003–2012 trends are listed in Table 3; for the posterior estimates also 456 

as equivalent sea level rise (SLR, by dividing by the fraction of Earth’s surface occupied by 457 

oceans, i.e., 0.7116) and volume (km
3
 y

-1
, equivalent to Gt y

-1
). Some of the effects of the 458 

assimilation were to (i) remove the decreasing trend in prior global terrestrial sub-surface 459 

water storage estimates (Figure 6a), (ii) change the poor prior estimates of polar ice cap mass 460 

considerably (Figure 6fg), (iii) reduce the estimated rate of ocean mass increase from 1.84 ± 461 

0.06 (SD) mm to 1.45±0.05 mm (Table 3), and (iv) achieve mass balance closure between net 462 

terrestrial and ocean storage changes (cf. Section 3.3).  463 

 464 

3.5.  Evaluation against river level remote sensing 465 

The rank correlation (ρ) between river water level and estimated discharge for the 445 grid 466 

cells with altimetry time series are shown in Figure 7. Overall there was no significant change 467 

in agreement between the prior (ρ = 0.63 ± 0.27 SD) and posterior (ρ = 0.63 ± 0.26) 468 

estimates, with an average change of +0.01 ± 0.12. However, ρ did improve for more 469 

locations than it deteriorated (286 vs. 159). There are some spatial patterns in the influence of 470 

assimilation (Figure 7c): strong improvements in the northern Amazon and Orinoco basins 471 

and most African rivers, except for some stations along the Congo and middle Nile Rivers, 472 

and reduced agreement for rivers in China (where prior estimates agreed well) and most 473 

stations in the Paraná and Uruguay basins (where they did not). In most remaining rivers, 474 

agreement did not change much; in some cases because it was already very good (e.g., the 475 

Ganges-Brahmaputra and remainder of the Amazon basin). Altimetry and estimated 476 

discharge time series are shown in Figure 8 for grid cells with the most data points in three 477 

large river systems. In these cases, there is reasonably clear improvement in agreement. 478 

 479 

3.6. Evaluation against historic river discharge observations 480 

The prior estimate of discharge (i.e., the error-weighted average of the four bias-corrected 481 

models) provided estimates that were already considerably better than any of the individual 482 

members (Table 4, Figure 9). Assimilation led to small improvements in RMSE, from 47 to 483 



44 km
3
 y

-1
, and a very slight increase in the median absolute percentage difference, from 40 484 

to 41%. Combined recorded discharge from the 430 selected basins was 20,909 km
3
 y

-1
, 485 

representing 90% of estimated total discharge to the world’s oceans according to Dai et al. 486 

(2009). Assimilation improved the agreement with this number from -11% to -4%, of which 487 

about half (5%) is due to a closer estimate of Amazon River discharge. However, modelled 488 

and observed discharge values relate to different time periods and so it is not clear whether 489 

this should be considered evidence for improvement or merely reflects multi-annual 490 

variability. 491 

 492 

3.7.  Evaluation against snow water equivalent remote sensing 493 

The spatial RMSE and correlation between the prior and posterior snow water equivalent 494 

(SWE) estimates and the GlobSnow retrievals are shown in Figure 10. Although RMSE 495 

deteriorated in a majority (57%) of grid cells, correlation remained unchanged at R
2
=0.79 and 496 

average RMSE improved slightly from 23.2 to 22.3 mm. Assimilation appeared most 497 

successful for grid cells with large prior RMSE in northern Canada (Figure 10a-c).  498 

  499 

3.8.  Evaluation against glacier mass balance estimates 500 

Glacier mass changes reported in literature (Gardner et al., 2013; Jacob et al., 2012) are listed 501 

in Table 5 and compared to regional mass trends associated with glaciers and other 502 

components of the terrestrial water derived from the analysis. In the polar regions (e.g., 503 

Antarctica, Greenland, Iceland, Svalbard, and the Russian Arctic) a large part of the gravity 504 

signal is necessarily from glacier mass change. Published trends for most of these regions 505 

also heavily rely on GRACE data and hence our estimates are generally in good agreement. 506 

Remaining differences can be attributed to the products, product versions and post-processing 507 

methods used, without providing insight into the accuracy of our analysis estimates. In the 508 

other regions, the glaciated areas are smaller and surrounded by ice-free terrain, which 509 

strongly increases the potential for incorrect distribution of analysis increments, as evidenced 510 

by the high trend ratios (>47%, last column Table 5). As a consequence, glacier mass trends 511 

are not well constrained by GRACE data alone and alternative observations are required. The 512 

agreement with independently derived trend estimates varies. For the Canadian Arctic 513 

Archipelago, Alaska and adjoining North America, the assimilation scheme assigns only 55% 514 

(68 Gt y
-1

) of the total regional negative mass trend (-124 Gt y
-1

) to glacier mass changes, 515 

with most of the remainder (40% or 50 Gt y
-1

) assigned to sub-surface water storage changes. 516 



Excluding regions for which independent storage change estimates are not available 517 

(Greenland, Antarctica and Patagonia), our estimate of total glacier storage change in the 518 

world’s glaciers (-114 km
3
 y

-1
) was 101 km

3
 y

-1
 less than the estimate of Gardner et al. 519 

(2013) (-215 km
3
 y

-1
). 520 

 521 

4. Discussion 522 

4.1. Estimated errors  523 

The triple collocation method produced estimates of errors in month-to-month changes in 524 

GRACE TWS estimates of 12.8–14.3 mm over non-glaciated land areas. From these, 525 

GRACE TWS errors of 10.4–12.0 mm can be estimated (cf. Section 3.1). By comparison, 526 

reported uncertainty estimates based on formal error propagation are larger, usually in the 527 

order of 20–25 mm (e.g., Landerer and Swenson, 2012; Tregoning et al., 2012; Wahr et al., 528 

2006). One plausible explanation is that the 5 mm we assumed to correct for potential 529 

covariance in errors between the GRACE products is too low, another that the formal 530 

uncertainty estimates are too conservative. Inflating the GRACE error estimates by 10 mm 531 

instead of 5 mm reduced the gain by 18% on average. The resulting uncertainty in the 532 

analysis is modest (see next section).  Formal error analyses predict that the retrieval errors 533 

decrease towards the poles due to the closer spacing of satellite overpasses (Wahr et al., 534 

2006), but surprisingly we did not find such a latitudinal pattern.  535 

The mean errors in monthly changes in prior TWS for the different models were 16.5–27.9 536 

mm. We do not have independent estimates of errors in modelled large-scale TWS with 537 

which to compare, but the estimates would seem plausible and perhaps less than we 538 

anticipated. From a theoretical perspective, violation of the assumptions underpinning triple 539 

collocation is likely to have produced overestimates of model error, if anything. The 540 

calculated error in the prior estimates over oceans and very stable regions such as Mongolia 541 

and the Sahara are around 5 mm (Figure 2). This provides some further evidence to suggest 542 

that the 5 mm GRACE error inflation we applied may have been reasonable. The largest 543 

errors in the merged model estimates (>40 mm) were found for humid tropical regions and 544 

high latitudes. The former may be attributed to the combination of large storage variations 545 

and often uncertain rainfall estimates. Precipitation measurements are also fewer at high 546 

latitudes, and here the poor prediction of snow and ice dynamics and melt water river 547 

hydrology are also important factors.  548 



 549 

4.2. Assimilation scheme performance 550 

The spatial pattern in analysis increments emphasises the importance of water stores other 551 

than the soil in explaining discrepancies between model and GRACE TWS estimates (Figure 552 

3). Adjustments to storage changes in large rivers, groundwater depletion, mass changes in 553 

high latitude ice caps and glaciers (e.g., Greenland, Alaska and Antarctica) and lake water 554 

levels (e.g., the Caspian Sea and the North-American Great Lakes) were all considerable 555 

within their region, absorbing monthly analysis increments or long-term trend discrepancies 556 

or both.  557 

Uncertainty in error estimates for the different data sources affects the analysis in different 558 

ways. Incorrect estimation of GRACE and model-derived TWS errors by the triple 559 

collocation method primarily affects (i) the weighting of the ensemble members and (ii) the 560 

gain matrix. Appropriate weighting only requires that the relative magnitude of errors among 561 

ensemble members is estimated correctly (cf. Eq. (2)). The average errors for the different 562 

GRACE TWS estimates were all within 14% of the ensemble average (Table 2) and did not 563 

have strong spatial patterns, and therefore the analysis would likely have been very similar if 564 

equal weighting had been applied (cf. Sakumura et al., 2014). Estimated model errors showed 565 

greater differences (up to 52% greater than the ensemble mean, Table 2) as well as regional 566 

patterns. However, the relative rankings and their spatial pattern were robust to the choice of 567 

GRACE TWS members in triple collocation, as evidenced by a low coefficient of variation 568 

(Table 2). This suggests that the errors were correctly specified in a relative sense. For the 569 

gain matrix, the relative magnitude of errors in GRACE versus model TWS ensemble means 570 

needed to be estimated correctly (cf. Eq. (8)). The estimated GRACE TWS ensemble errors 571 

are reasonably homogeneous in space (Figure 1a) which increases our confidence in their 572 

validity. The uncertainty due to the correction for assumed correlation between the GRGS 573 

and Tellus TWS (see previous section) is further mitigated by the design of the DA scheme: 574 

the gain factor determines how rapidly the analysis converges towards the GRACE 575 

observations and therefore is important for month-to-month variations, but long-term trends 576 

in TWS will still approach those in the GRACE observations (cf. Figure 4b and c).   577 

The main sources of uncertainty in long-term trends in the individual water balance terms are 578 

(i) the removal of non-hydrological mass trends in the GRACE TWS time series and (ii) 579 

accurate specification of relative errors in the individual water balance terms, which is needed 580 

for correct redistribution of the integrated TWS analysis increments. For example, the 581 



analysis results illustrate the insufficiently constrained problem of separating gravity signals 582 

due to mass changes in mountain glaciers from nearby sub-surface water storage changes. 583 

This was particularly evident around the Gulf of Alaska and northwest India, where decreases 584 

can be expected not only in glacier mass but also in sub-surface storage due to, respectively, a 585 

regional drying trend and high groundwater extraction rates (Figure 5a). We suspect that 586 

unexpectedly strong increasing storage trends in parts of northwest India are because the 587 

prior groundwater depletion estimates were too high and the assigned errors too low, causing 588 

the analysis update to distribute increments incorrectly. We could have addressed this by 589 

inflating the local groundwater depletion estimation errors, but more research is needed to 590 

understand the underlying causes. Plausible causes are that groundwater extraction is 591 

overestimated, or that extraction is compensated by induced groundwater recharge (e.g., from 592 

connected rivers) (see Wada et al., 2010 for further discussion). 593 

Mass balance closure was not enforced and hence provides a useful diagnostic of reanalysis 594 

quality. The GRGS product achieved approximate global mass balance closure at all time 595 

scales, but the three Tellus products showed a seasonal cycle and long-term negative trend in 596 

global water mass. Accounting for atmospheric water vapour mass changes (from ERA-597 

Interim reanalysis and the NVAP-M satellite product, data not shown) could not explain the 598 

trends and in fact increased the seasonal cycle in global water mass. Data assimilation 599 

reduced the seasonal cycle and entirely removed the trend in total water mass, thanks to the 600 

prior estimates of sea mass increase. For comparison, we calculated average ocean mass 601 

increases by an alternative, more conventional method, which involved avoiding areas likely 602 

to be affected by nearby land water storage changes. Excluding a 1000 km buffer zone 603 

produced a 2003–2012 mass trend of +0.58 to +0.72 mm y
-1

 for the three Tellus retrievals, 604 

+1.12 mm y
-1

 for the GRGS retrieval , and +0.75 mm y
-1

 for the merged GRACE data. Data 605 

assimilation produced a stronger trend of +1.22 mm y
-1

 due to the influence of the prior 606 

estimate of +1.67 mm y
-1

. Our prior estimate followed Chen et al. (2013), who used an 607 

iterative modelling approach to attribute 75% of altimetry-observed SLR to mass increase. 608 

Chen et al. (2013) argue that the conventional method produces underestimates of ocean mass 609 

increase. Indeed, the trends we calculated for the ‘buffered’ ocean regions are lower than for 610 

the entire oceans (+1.22 vs. +1.45 mm y
-1

 for the reanalysis, and +1.67 vs. +1.84 mm y
-1

 for 611 

the prior estimates; Table 3). However the reduction in sea mass change of 0.39 mm y
-1

 from 612 

prior to analysis is likely to reopen the problem of reconciling mass and temperature 613 



observations with the altimetry derived mean sea level rise of +2.45 ± 0.08 mm y
-1

 (cf. Chen 614 

et al., 2013). 615 

 616 

4.3. Evaluation against observations 617 

The reanalysis generally did not have much impact on the agreement with river and snow 618 

storage observations, with small improvements for some locations and small degradations for 619 

others. While a robust increase in the agreement would have been desirable, the fact that 620 

agreement was not degraded overall was encouraging. The data assimilation procedure 621 

applied has the important benefit of bringing the estimates into agreement with GRACE 622 

observations. Moreover, performance improvements with respect to river discharge and level 623 

data did occur in the Amazon, where they make an important contribution to TWS changes. 624 

Similarly, snow water equivalent estimates were improved in the North-American Arctic, 625 

where errors in the prior estimates were largest. This demonstrates that GRACE data can 626 

indeed be successfully used to constrain water balance estimates, although further 627 

development may be needed to avoid some of the undesired performance degradation for 628 

water balance components that do not contribute much to the TWS signal. 629 

The models used for our prior estimates provided poorly constrained estimates of ice mass 630 

balance changes, and our reanalysis ice mass loss estimates should not be assumed more 631 

accurate than estimates based on more direct methods (Table 5). Our analysis is unique when 632 

compared to previous estimates based on GRACE, in that data assimilation allowed some of 633 

the observed mass changes to be attributed to other water balance components within the 634 

same region, depending on relative uncertainties in the prior estimates. Comparison against 635 

independent estimates of glacier mass balance changes also demonstrated the challenge of 636 

correct attribution, however. Glacier mass balance estimates were in good agreement for 637 

several regions, but estimates for North American glaciers in particular were questionable: 638 

their combined mass loss (-68 Gt y
-1

) was much lower than the estimates derived by 639 

independent means (-124 Gt y
-1

; Table 5). This can be explained by incorrect specification of 640 

errors. Two caveats are made: (i) the GIA signal is relatively large for these three regions 641 

(+50 Gt y
-1

) and hence GIA estimation errors may have had an impact; and (ii) a significant 642 

change in sub-surface water storage is plausible in principle; for example, higher summer 643 

temperatures could be expected to enhance permafrost melting and runoff, as well as enhance 644 

evaporation. More accurate spatiotemporal observation and modelling of glacier dynamics 645 

would appear to be necessary to resolve this issue. 646 



 647 

4.4. Contributions to sea level rise 648 

The reanalysis estimate of net terrestrial water storage change of -495 Gt y
-1

 (Table 3) 649 

appears a plausible estimate of ocean mass change, equivalent to ca. +1.4 mm y
-1

 sea level 650 

rise. Our results confirmed that mass loss from the polar ice caps is the greatest contributor to 651 

net terrestrial water loss, with Antarctica and Greenland together contributing -342 Gt y
-1

. 652 

The next largest contribution was from the remaining glaciers. We combine the reanalysis 653 

estimate of -129 Gt y
-1

 with another -101 Gt y
-1

 estimated to be misattributed (cf. Section 3.8) 654 

and obtain a revised estimate of -230 Gt y
-1

. A small but significant contribution of -18 Gt y
-1

 655 

(Table 3) was estimated to originate from reductions in seasonal snow cover (particularly in 656 

Quebec and Siberia; Figure 5cd). Inter-annual changes in river water storage were not 657 

significant. Small contributions of -10 Gt y
-1

 and +16 Gt y
-1

 were attributed to storage 658 

changes in existing lakes and large new dams, respectively, and compensated each other. The 659 

largest change in an individual water body was in the Caspian Sea (-27 Gt y
-1

, cf. Figure 5) 660 

which experiences strong multi-annual water storage variations depending on Volga River 661 

inflows.   662 

Finally, the analysis suggested at statistically insignificant change of +9 Gt y
-1

 in sub-surface 663 

storage globally. Adding back the suspected misattribution of 101 Gt y
-1

 associated with 664 

glaciers produces a revised estimate of +110 Gt y
-1

 (cf. Figure 6a). Combining this with the -665 

92 Gt y
-1 

attributed to groundwater depletion suggests that storage over the remaining land 666 

areas increased by 202 Gt y
-1

. Calculating sub-surface storage trends by latitude band 667 

suggests that most of the terrestrial water ‘sink’ can be found north of 40°N and between 0–668 

30°S and is opposite to the prior estimates (Figure 11). The main tropical regions 669 

experiencing increases are in the Okavango and upper Zambezi basins in southern Africa and 670 

the Amazon and Orinoco basins in northern South America (Figure 5b). Storage increases for 671 

these regions are also evident from the original GRACE data (Figure 4a) and cannot be 672 

attributed to storage changes in rivers or large lakes. The affected regions contain low relief, 673 

poorly drained areas with (seasonally) high rainfall. In such environments, the storage 674 

changes could occur in the soil, groundwater, wetlands, or a combination of these. Further 675 

attribution is impossible without additional constraining observations (Tregoning et al., 2012; 676 

van Dijk et al., 2011). The ten-year analysis period is short and this cautions against over-677 

interpreting this apparent ‘tropical water sink’. However it is of interest to note that a gradual 678 

strengthening of global monsoon rainfall extent and intensity has been observed, and is 679 



predicted to continue (Hsu et al., 2012). In any event, the difference between prior and 680 

posterior trends in Figure 11 illustrates that the current generation hydrological models, even 681 

as an ensemble, should not be assumed a reliable surrogate observation of long-term sub-682 

surface groundwater storage changes. GRACE observations proved valuable in improving 683 

these estimates. 684 

 685 

5. Conclusions 686 

We presented a global water cycle reanalysis that reconciles four total water storage retrieval 687 

products derived from GRACE observations with water balance estimates derived from an 688 

ensemble of five global hydrological models, water level measurements from satellite 689 

altimetry, and ancillary data. We summarise our main findings as follows:  690 

1. The data assimilation scheme generally behaves as desired, but in hydrologically complex 691 

regions the analysis can be affected by poorly constrained prior estimates and error 692 

specification. The greatest uncertainties occur in regions where glacier mass loss and sub-693 

surface storage declines (may) both occur but are poorly known (e.g., northern India and 694 

North-American glaciers). 695 

2. The error in original GRACE TWS data was estimated to be around 11–12 mm over non-696 

glaciated land areas. Errors in the prior estimates of TWS changes are estimated to be 17–697 

28 mm for the five models.  698 

3. Water storage changes in other water cycle components (seasonal snow, ice, lakes and 699 

rivers) are often at least as important and uncertain as changes as sub-surface water 700 

storage in reconciling the various information sources. 701 

4. The analysis results were compared to independent river water level measurements by 702 

satellite altimetry, river discharge records, remotely sensed snow water storage, and 703 

independent estimates of glacier mass loss. In all cases the agreement improved or 704 

remained stable compared to the prior estimates, although results varied regionally. Better 705 

estimates and error specification of groundwater depletion and mountain glacier mass loss 706 

are required.  707 

5. Data assimilation achieved mass balance closure over the 2003–2012 period and 708 

suggested an ocean mass increase of ca. 1.45 mm y
-1

. This reopens some question about 709 

the reasons for an apparently unexplained 0.39 mm y
-1 

(16%) of 2.45 mm y
-1

 satellite 710 

observed sea level rise for the analysis period (Chen et al., 2013). 711 



6. For the period 2003–2012, we estimate glaciers and polar ice caps to have lost around 572 712 

Gt y
-1

, with an additional small contribution from seasonal snow (-18 Gt y
-1

). The net 713 

change in surface water storage in large lakes and rivers was insignificant, with 714 

compensating effects from new reservoir impoundments (+16 Gt y
-1

), lowering water 715 

level in the Caspian Sea (-27 Gt y
-1

) and increases in the other lakes combined (+16 Gt y
-

716 

1
). The net change in subsurface storage was significant when considering a likely 717 

misattribution of glacier mass loss, and may be as high as +202 Gt y
-1

 when excluding 718 

groundwater depletion (-92 Gt y
-1

). Increases were mainly in northern temperate regions 719 

and in the seasonally wet tropics of South America and southern Africa (+87 Gt y
-1

). 720 

Continued observation will help determine if these trends are due to transient climate 721 

variability or likely to persist. 722 
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 900 

  901 



Table 1. Description and sources of data used in this analysis. Acronyms are explained in the 902 

text. 903 

Description Source Data access 

Prior estimates   

model estimates (CLM, 

MOS, NOAH, VIC) 

GLDAS ftp://hydro1.sci.gsfc.nasa.gov/data/s4pa/GLDAS_V1/ (data accessed 17 

April 2013). 

Model estimates 

(W3RA) 

 available from author Van Dijk 

groundwater depletion  available from author Wada 

river flow direction TRIP http://hydro.iis.u-tokyo.ac.jp/~taikan/TRIPDATA/Data/trip05.asc 

(downloaded 10 May 2013) 

discharge from small 

catchments 

 available from author Van Dijk 

discharge from large 

basins 

 http://www.cgd.ucar.edu/cas/catalog/surface/dai-runoff/index.html  

surface water extraction  available from author Wada 

lake water level Crop Explorer http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/ (downloaded 

9 May 2013) 

new dam impoundments GranD http://atlas.gwsp.org/ (accessed 14 May 2014) 

new dam impoundments ICOLD http://www.icold-cigb.org/ (accessed 14 May 2014) 

sea level AVISO http://www.aviso.oceanobs.com/en/data/products/sea-surface-height-

products/global/ (downloaded 7 November 2013) 

glacier extent GGHYDRO http://people.trentu.ca/~gcogley/glaciology/ (downloaded 12 June 2013) 

Assimilated data  

TWS: CSR, GFZ, JPL Tellus ftp://podaac-ftp.jpl.nasa.gov/allData/tellus/L3/land_mass/RL05/netcdf/ 

(downloaded 16 April 2013) 

TWS: GRGS CNES http://grgs.obs-mip.fr/grace/variable-models-grace-lageos/grace-solutions-

release-02 (downloaded 16 April 2013) 

glacial isostatic 

adjustment 

Tellus ftp://podaac-ftp.jpl.nasa.gov/allData/tellus/L3/land_mass/RL05/netcdf/ 

(downloaded 16 April 2013) 

Evaluation data   

water level in large 

rivers 

LEGOS 

HYDROWEB 

http://www.legos.obs-mip.fr/en/soa/hydrologie/hydroweb/ (downloaded 13 

October 2013) 

idem ESA 

River&Lake 

http://tethys.eaprs.cse.dmu.ac.uk/RiverLake/shared/main (downloaded 25 

October 2012) 

snow depth GLOBSNOW http://www.globsnow.info/swe/archive_v1.3/ (downloaded 9 October 2013)  

904 



Table 2. Spatial mean values (non-glaciated land areas only) of the error in monthly mass 905 

change estimates for different GRACE and model sources as derived through triple 906 

collocation. Also listed is the number of triple collocation estimates derived (N) and the 907 

spatial mean of the coefficient of variation (C.V.) in these N estimates.  908 

   Mean error Mean C.V. N 

   mm %  

GRACE    

 GRG 14.3 15 15 

 CSR 12.8 15 5 

 GFZ 15.5 11 5 

 JPL 15.2 12 5 

 Merged 13.5 – – 

Models    

 CLM 26.7 6 3 

 MOS 21.9 7 3 

 NOAH 16.6 9 3 

 VIC 27.7 6 3 

  W3RA 17.9 7 3 

 Merged 18.1 – – 
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Table 3. Calculated linear trends in global mean seasonally-adjusted anomalies associated 911 

with different water cycle components for 2003–2012. The posterior trend estimates are also 912 

expressed in equivalent sea level rise (SLR) and volume. Second number is standard 913 

deviation. 914 

Store 

 

Prior 

global mean 

mm y
-1

 

Posterior 

global mean 

mm y
-1

 

 

SLR 

mm y
-1

 

 

Volume 

km
3
 y

-1
 

Sub-surface -0.572 ± 0.029 0.017 ± 0.023 0.024 ± 0.032 9 ± 12 

Rivers 0.012 ± 0.009 0.003 ± 0.01 0.004 ± 0.014 1 ± 5 

Lakes -0.012 ± 0.005 -0.021 ± 0.005 -0.029 ± 0.006 -11 ± 2 

New dams 0.043 ± 0.001 0.032 ± 0.002 0.045 ± 0.003 16 ± 1 

Seasonal snow -0.022 ± 0.007 -0.035 ± 0.007 -0.049 ± 0.01 -18 ± 4 

Arctic glaciers (>55°N) 0.265 ± 0.004 -0.604 ± 0.009 -0.849 ± 0.013 -308 ± 5 

Antarctic glaciers (>55°S) - -0.301 ± 0.007 -0.423 ± 0.01 -154 ± 4 

Remaining glaciers -0.029 ± 0.004 -0.061 ± 0.003 -0.086 ± 0.004 -31 ± 2 

Total terrestrial - -0.97 ± 0.035 -1.364 ± 0.049 -495 ± 18 

Oceans 1.309 ± 0.044 1.029 ± 0.039 1.446 ± 0.054 525 ± 20 

 915 

  916 



 917 

Table 4. Evaluation of alternative estimates of mean basin discharge using observations 918 

collated by Dai et al. (2009). Listed is the agreement for the ensemble models (without bias 919 

correction), the merged prior estimate and the posterior estimates resulting from reanalysis.  920 

 
CLM MOS NOAH VIC W3RA prior  posterior 

Combined discharge 

(km
3
 y

-1
) 

21,874 9,003 11,474 13,666 16,518 18,663 20,149 

Diff. total (%) 5 -57 -45 -35 -21 -11 -4 

RMSE (km
3
 y

-1
) 

114 184 126 147 63 47 44 

Median |%| diff. 
60 63 57 48 61 40 41 

 921 
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 923 

Table 5. Published trends in glacier water storage (Gardner et al., 2013; Jacob et al., 2012) 924 

compared to estimates from reanalysis. Uncertainties are given at the 95% (2 standard 925 

deviation) interval, superscripts refer to estimates derived from GRACE (g) or independent 926 

methods (i). Also listed are regional trends attributed to other parts of the hydrological cycle, 927 

and the ratio of the relative magnitude of that residual trends over estimated glacier mass 928 

change. 929 

Region Reported This study 

 
trend 

 
glacier trend other components ratio 

 
(Gt y

-1
) 

 
(Gt y

-1
) (Gt y

-1
) (%) 

Greenland ice sheet + PGICs -222 ± 9 
g 

-203  ±  10 -5  ±  1 3 

Canadian Arctic Archipelago -60 ± 6 
i,g 

-48  ±  3 -19  ±  2 39 

Alaska -50 ± 17 
i,g 

-23  ±  6 -23  ±  6 101 

Northwest America excl. Alaska -14 ± 3 
i 

3  ±  3 -8  ±  9 275 

Iceland -10 ± 2 
i,g 

-6  ±  1 -0.6  ±  0.2 10 

Svalbard -5 ± 2 
i,g 

-2  ±  1 0.1  ±  0.1 3 

Scandinavia -2 ± 0 
i 

0.4  ±  1.0 5  ±  2 >500 

Russian Arctic -11 ± 4 
i,g 

-4  ±  1 2  ±  2 47 

High Mountain Asia -26 ± 12 
i,g 

-29  ±  4 -15  ±  11 51 

South America excl. Patagonia -4 ± 1 
i 

-2  ±  1 -21  ±  33 >500 

Patagonia -29 ± 10 
g 

-15  ±  1 1  ±  2 4 

Antarctica ice sheet + PGICs -165 ± 72 
g 

-139  ±  8 0 0 

Rest of world -4 ± 0 
 

-3  ±  1 82  ±  107 >500 

Total -549 ± 57 
 

-471  ±  25 
  

  930 



 931 

Figure 1. Illustration of the data assimilation approach followed using data along a transect 932 

through the USA for August 2003. Shown are: a) monthly satellite-derived TWS,   
 

, and the 933 

equivalent prior estimate,   
 ; b) location of the East-West transect on a map of the gain 934 

matrix, k; c) profile of k along the transect (cf. Figure 2c); d) calculation of the TWS analysis 935 

increment,     , from k and innovation, (  
    

 ); e) the prior error in the change of each of 936 

the stores,   ( ); f) the prior and posterior estimate of change in each store,    
 ( ) and 937 

   
 ( )     ( ), resp.; and g) visual illustration of the disaggregation of the TWS analysis 938 

increments to the different stores. All units are in mm unless indicated otherwise; see text for 939 

full explanation of symbols; stores shown include the sub-surface (green), rivers (blue) and 940 

sea (dark red; remaining stores not shown for clarity).  941 
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 943 

Figure 2. Triple collocation estimated error in storage change from the merged (a) GRACE 944 

and (b) prior estimates, and (c) resulting gain matrix.  945 
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 947 

Figure 3. The impact of GRACE data assimilation on total water storage expressed as (a) the 948 

root mean square (RMS) analysis increment and (b) the RMS difference between prior and 949 

posterior storage time series. 950 
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 952 

Figure 4. Trends in GRACE total water storage as derived from (a) prior storage estimates; 953 

(b) merged satellite retrievals; and (c) posterior estimates. 954 
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 956 

Figure 5. Trends in seasonal anomalies of prior (left column) and posterior (right column) 957 

estimates of (a-b) sub-surface, (c-d) snow and (e-f) surface water (i.e., lake and river) water 958 

storage.  959 
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 961 

 962 

Figure 6. Time series of the prior (grey lines) and posterior (black lines) estimates of global 963 

average seasonally-adjusted storage anomalies in different water cycle components. Dashed 964 

lines show linear trends for 2003–2012 as listed in Table 3. 965 
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 967 

Figure 7. Effect of assimilation agreement with satellite altimetry river water levels: 968 

Spearman’s rank correlation coefficient (ρ) for (a) prior and (b) posterior estimates and (c) 969 

difference between the two. 970 
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 972 

 973 

Figure 8. Effect of assimilation agreement with satellite altimetry river water levels for grid 974 

cells including the a) Amazon River (~2.5°S, 65.5°W; ρ changed from 0.71 for prior to 0.80 975 

for posterior estimates); b) Congo River (~2.5°N, 21.5°E; ρ from 0.28 to 0.47) and 976 

Mississippi River (35.5°, 90.5°W; ρ from 0.37 to 0.56). 977 
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 979 

  980 

Figure 9. Comparison of mean basin discharge resulting from the analysis (Qa) and values 981 

based on observations (Dai et al., 2009) (darker areas indicate overlapping data points). 982 
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 984 

Figure 10. Effect of assimilation on agreement with GlobSnow snow water equivalent (SWE) 985 

estimates, showing (a-c) root mean square error (RMSE) and (d-f) the coefficient of 986 

correlation (R
2
). From left to right, agreement for (a,d) prior and (b, e) posterior estimates as 987 

well as (c, f) the change in agreement. 988 
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 990 

Figure 11. Linear 2003–2012 trends in sub-surface water storage by 10° latitude band, 991 

showing prior (blue) and posterior (red) estimates.  992 
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