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Abstract 15 

We present a global water cycle reanalysis that merges water balance estimates derived from 16 

the GRACE satellite mission, satellite water level altimetry and off-line estimates from 17 

several hydrological models. Error estimates for the sequential data assimilation scheme were 18 

derived from available uncertainty information and the triple collocation technique. Errors in 19 

four GRACE storage products were estimated to be 11–12 mm over land areas, while errors 20 

in monthly storage changes derived from five global hydrological models were estimated to 21 

be 17–28 mm. Prior and posterior estimates were evaluated against independent observations 22 

of river water level and discharge, snow water storage and glacier mass loss. Data 23 

assimilation improved or maintained agreement overall, although results varied regionally. 24 

Uncertainties were greatest in regions where glacier mass loss and sub-surface storage 25 

decline are both plausible but poorly constrained. We calculated a global water budget for 26 

2003–2012. The main changes were a net loss of polar ice caps (-342 Gt y-1) and mountain 27 

glaciers (-230 Gt y-1), with an additional decrease in seasonal snow pack (-18 Gt y-1). Storage 28 

increased due to new impoundments (+16 Gt y-1), but this was compensated by decreases in 29 



other surface water bodies (-10 Gt y-1). If the effect of groundwater depletion (-92 Gt y-1) is 30 

considered separately, sub-surface water storage increased by +202 Gt y-1 due particularly to 31 

increased wetness in northern temperate regions and in the seasonally wet tropics of South 32 

America and southern Africa. 33 

 34 

1. Introduction 35 

More accurate global water balance estimates are needed, to better understand interactions 36 

between the global climate system and water cycle (Sheffield et al., 2012), the causes of 37 

observed sea level rise (Boening et al., 2012; Fasullo et al., 2013; Cazenave et al., 2009; 38 

Leuliette and Miller, 2009), human impacts on water resources (Wada et al., 2010; 2013), and 39 

to improve hydrological models (van Dijk et al., 2011) and initialise water resources forecasts 40 

(Van Dijk et al., 2013). The current generation of global hydrological models have large 41 

uncertainties arising from a combination of data deficiencies (e.g., precipitation in sparsely 42 

gauged regions; poorly known soil, aquifer and vegetation properties) and overly simplistic 43 

descriptions of important water cycle processes (e.g. groundwater dynamics, human water 44 

resources extraction and use, wetland hydrology and glacier dynamics). Data assimilation is 45 

used routinely to overcome data and model limitations in atmospheric reconstructions or 46 

‘reanalysis’. In hydrological applications, there has been an (over-) emphasis on parameter 47 

calibration (Van Dijk, 2011) with data assimilation approaches largely limited to flood 48 

forecasting. New applications are being developed, however (Liu et al., 2012a), including 49 

promising developments towards large-scale water balance reanalyses, alternatively referred 50 

to as monitoring, assessment or estimation (van Dijk and Renzullo, 2011).  51 

Here, we undertake a global water cycle reanalysis for the period 2003–2012. Specifically, 52 

we attempt to merge global water balance estimates from different model sources with an 53 

ensemble of total water storage (TWS) estimates derived from the Gravity Recovery And 54 

Climate Experiment (GRACE) satellite mission (Tapley et al., 2004). Various alternative 55 

approaches can be conceptualised to achieve this integration and the most appropriate among 56 

these is not obvious. Our approach was to use water balance estimates generated by five 57 

global hydrological models along with several ancillary data sources to generate an ensemble 58 

of prior estimates of monthly water storage changes. Errors in the different model estimates 59 

and GRACE products were estimated spatially through triple collocation (Stoffelen, 1998). 60 

Subsequently, a data assimilation scheme was designed to sequentially merge the model 61 

ensemble and GRACE observations. The reanalysis results were evaluated with independent 62 



global streamflow records, remote sensing of river water level and snow water equivalent 63 

(SWE), and independent glacier mass balance estimates. 64 

 65 

2. Methods and Data Sources 66 

2.1. Overall approach 67 

We conceptualise TWS (S, in mm) as the sum of five different water stores (s in mm), i.e., 68 

water stored in snow and ice (ssnow); below the surface in soil and groundwater (ssub), and in 69 

rivers (sriv); lakes (slake), and seas and oceans (ssea). We ignore atmospheric water storage 70 

changes, which are removed from the signal during the GRACE TWS retrieval process (e.g., 71 

Wahr et al., 2006), and vegetation mass changes, which are assumed negligible. The GRACE 72 

TWS estimates are denoted by y and have the same units as S but are distinct in their much 73 

smoother spatial character.  74 

To date, data assimilation schemes developed for large-scale water cycle analysis typically 75 

use Kalman filter approaches (Liu et al., 2012a). This requires calculation of covariance 76 

matrices and, presumably because of complexity and computational burden, has only been 77 

applied for single models and limited regions (e.g., Zaitchik et al., 2008). We aimed to 78 

develop a data assimilation scheme that made it possible to use water balance estimates 79 

derived ‘off line’ (i.e., in the absence of data assimilation) so we could use an ensemble of 80 

already available model outputs. In the data assimilation terminology of Bouttier and Courtier 81 

(1999), our scheme could be described as sequential and near-continuous with a spatially 82 

variable but temporally stable gain factor. The characteristics of the data assimilation 83 

problem to be addressed in this application were as follows: 84 

(1) Alternative GRACE TWS estimates (yo) were available from different processing centres 85 

and error estimates were required for each;  86 

(2) Alternative estimates for some of the stores, s, were available from different hydrological 87 

models, with higher definition than yo;  88 

(3) Error estimates were required for each store and data source;  89 

(4) A method was required to spatially transform between s and y as part of the assimilation. 90 

  91 



2.2. Data sources 92 

The data used include those needed to derive prior estimates for each of the water cycle 93 

stores, the GRACE retrievals to be assimilated and independent observations to evaluate the 94 

quality of the reanalysis. All are listed in Table 1 and described below. 95 

Monthly water balance components from four global land surface model estimates at 1° 96 

resolution were obtained from NASA’s Global Data Assimilation System (GLDAS) (Rodell 97 

et al., 2004). The four models include CLM, Mosaic, NOAH and VIC which, for the 2003–98 

2012, were forced with “a combination of NOAA/GDAS atmospheric analysis fields, 99 

spatially and temporally disaggregated NOAA Climate Prediction Center Merged Analysis of 100 

Precipitation (CMAP) fields, and observation-based radiation fields derived using the method 101 

of the Air Force Weather Agency's AGRicultural METeorological modelling system” (Rui, 102 

2011). The models are described in Rodell et al. (2004). From the model outputs we used (i) 103 

snow water equivalent (SWE) depth, (ii) total soil moisture storage over a soil depth that 104 

varies between models, and (iii) generated streamflow, calculated as the sum of surface 105 

runoff and sub-surface drainage. In addition to GLDAS, we used global water balance 106 

estimates generated by the W3RA model (Van Dijk et al., 2013) in the configuration used in 107 

the Asia-Pacific Water Monitor (http://www.wenfo.org/apwm/). For 2003–2008, the model 108 

was forced with the ‘Princeton’ merged precipitation, down-welling short-wave radiation, 109 

minimum and maximum daily temperature and air pressure data produced by Sheffield et al. 110 

(2006). From 2009 onwards, the model primarily uses ‘ERA-Interim’ weather forecast model 111 

reanalysis data from the European Centre for Medium-Range Weather Forecasts. For low 112 

latitudes, these are combined with near-real time TRMM multi-sensor precipitation analysis 113 

data (TMPA 3B42 RT) (Huffman et al., 2007) to improve estimates of convective rainfall 114 

(Peña-Arancibia et al., 2013). Both were bias-corrected with reference to the Princeton data 115 

to ensure homogeneity. W3RA model estimates were conceptually similar to those from 116 

GLDAS, except that the model includes deep soil and groundwater stores and sub-grid 117 

surface and groundwater routing. 118 

The five hydrological models do not provide estimates of groundwater depletion and storage 119 

in rivers, lakes and impoundments and these were therefore derived separately. Groundwater 120 

depletion estimates were derived for 1960–2010 by Wada et al. (2012). The time series were 121 

calculated as the net difference between estimated groundwater extraction and recharge. 122 

National groundwater extraction data compiled by the International Groundwater Resources 123 

Assessment Centre (IGRAC) were disaggregated using estimates of water use intensity and 124 



surface water availability at 0.5° resolution from a hydrological model (PCR-GLOBWB; see 125 

Wada et al., 2012, for details). The model also estimated recharge including return flow from 126 

irrigation. Groundwater depletion uncertainty estimates were generated through 10,000 127 

Monte Carlo simulations, with 100 realizations of both extraction and recharge (Wada et al., 128 

2010). This method tends to overestimate reported depletion in non-arid regions, where 129 

groundwater pumping can enhance recharge from surface water. Wada et al. (2012) used a 130 

universal multiplicative correction of 0.75 to account for this. Here, the correction was 131 

calculated per climate region rather than world-wide, reflecting the dependency of 132 

uncertainty on recharge estimates and their errors, and resulting in values of 0.6 to 0.9. 133 

Depletion estimates for 2011–2012 were not available; these were estimated using monthly 134 

average depletion and uncertainty values for the preceding 2003–2010 period. Given the 135 

regular pattern of depletion in the preceding years this by itself is unlikely to have affected 136 

the analysis noticeably. 137 

River water storage was estimated by propagating runoff fields from each of the five models 138 

through a global routing scheme. In a previous study, we compared these runoff fields with 139 

streamflow records from 6,192 small (<10,000 km2) catchments worldwide and found that 140 

observed runoff was 1.28 to 1.77 times greater than predicted by the different models (Van 141 

Dijk et al., 2013). These respective values were used to uniformly bias-correct the runoff 142 

fields. Next, we used a global 0.5º resolution flow direction grid (Oki et al., 1999; Oki and 143 

Sud, 1998) to parameterise a cell-to-cell river routing scheme. We used a linear reservoir 144 

kinematic wave approximation (Vörösmarty and Moore III, 1991), similar to that used in 145 

several large-scale hydrology models (see recent review by Gong et al., 2011). The monthly 146 

1º runoff fields from each of the five models were oversampled to 0.5º and daily time step 147 

before routing, and the river water storage estimates (in mm) were aggregated back to 148 

monthly 1º grid cell averages before use in assimilation. The routing function was an inverse 149 

linear function of the distance between network nodes and a transfer (or routing) coefficient. 150 

For each model, a globally uniform optimal transfer coefficient was found by testing values 151 

of 0.3 to 0.9 day-1 in 0.1 day-1 increments and finding the value that produced best overall 152 

agreement with seasonal flow patterns observed in 586 large rivers world-wide. These 586 153 

were a subset of 925 ocean-reaching rivers for which streamflow records were compiled by 154 

Dai et al. (2009) from various sources. We excluded locations where streamflow records 155 

were available for less than 10 years since 1980 or less than 6 months of the year.  156 



The resulting river flow estimates do not account for the impact of river water use (i.e., the 157 

evaporation of water extracted from rivers, mainly for irrigation). We addressed this using 158 

global monthly surface water use estimates that were derived in a way similar to that used for 159 

groundwater depletion estimates (full details in Wada et al., 2013). For each grid cell, mean 160 

water use rates for 2002–2010 were subtracted from mean runoff estimates for the same 161 

period, and the remaining runoff was routed downstream. The resulting mean net river flow 162 

estimates were divided by the original estimates to derive a scaling factor, which was 163 

subsequently applied at each time step. Lack of additional global information on river 164 

hydrology meant that three simplifications needed to be made: (i) our approach implies that 165 

for a particular grid cell, monthly river water use is assumed proportional to river flow for 166 

that month; (ii) the influence of lakes, wetlands and water storages on downstream flows 167 

(e.g., through dam operation) is not accounted for, even though their actual storage changes 168 

are (see further on); (iii) our approach does not account for losses associated with permanent 169 

or ephemeral wetlands, channel leakage and net evaporation from the river channel. At least 170 

in theory, data assimilation may correct mass errors resulting from these assumptions. 171 

Variations in lake water storage were not modelled, but water level data for 62 lakes world-172 

wide were obtained from the Crop Explorer web site (Table 1) and include most of the 173 

world’s largest lakes and reservoirs, including the Caspian Sea. The water level data for these 174 

lakes were derived from satellite altimetry and converted to mm water storage. Measurements 175 

were typically available every 10 days. The mean and standard deviation of measurements in 176 

each month were used as respectively best estimate and estimation error for that month. 177 

Storage in water bodies without altimetry data was necessarily assumed negligible. This 178 

includes many small lakes and dams, but also some larger lakes affected by snow and ice 179 

cover (e.g., the Great Bear and Great Slave Lakes in Canada) and ephemeral, distributed or 180 

otherwise complex water bodies (e.g., the Okavango delta in Botswana and Lake Eyre in 181 

Australia, each of which contains >10 km3 of water when full). 182 

New river impoundments lead to permanent water storage increases. A list of dams was 183 

collated by Lehner et al. (2011) and was updated with large dams constructed in more recent 184 

years with the ICOLD data base (Table 1). For the period 1998–2012, a total 198 185 

georeferenced dams with a combined storage capacity of 418 km3 were identified. For the 186 

Three Gorges Dam (39 km3), reservoir water level time series 187 

(http://www.ctg.com.cn/inc/sqsk.php) were converted to storage volume following Wang et 188 

al. (2011). For the remaining dams, we assumed a gradual increase to storage capacity over 189 



the first five years after construction and assumed a relative estimation error of 20%. The 190 

combined annual storage increase amounted to 21 km3 y-1 on average. 191 

Global merged mean sea level anomalies were obtained from the Aviso web site (Table 1). 192 

The monthly data were reprojected from the native 1/3° Mercator grid to regular 1° grids. An 193 

estimate of uncertainty was derived by calculating the spatial standard deviation in sea level 194 

values within a 4° by 4° region around each grid cell during re-projection. When sea level 195 

data were missing because of sea ice, we assumed sea level did not change and assigned an 196 

uncertainty of 5 mm. Following the recent global sea level budget study by Chen et al. 197 

(2013), we assumed that 75% of the observed sea level change was due to mass increase, and 198 

we multiplied altimetry sea level anomalies with this factor.  199 

We did not have spatial global time series of glacier mass changes. The five hydrological 200 

models have poor representation of ice dynamics, and therefore large uncertainties and errors 201 

can be expected for glaciated regions. To account for this, we used the ‘GGHYDRO’ global 202 

glacier extent mapping by Cogley (2003) to calculate the percentage glacier area for each grid 203 

cell, and assumed a proportional error in monthly glacier mass change estimates 204 

corresponding to 300 mm per unit glacier area. This value was chosen somewhat arbitrarily 205 

but ensure that a substantial fraction of the regional analysis increment is assigned to glaciers.  206 

Three alternative GRACE TWS retrieval products were downloaded from the Tellus web 207 

site. The three products (coded CSR, JPL and GFZ; release 05) each had a nominal 1° and 208 

monthly resolution. The land and ocean mass retrievals (Chambers and Bonin, 2012) were 209 

combined. The land retrievals had been ‘de-striped’ and smoothed with a 200 km half-width 210 

spherical Gaussian filter (Swenson et al., 2008; Swenson and Wahr, 2006), whereas the ocean 211 

retrievals had been smoothened with a 500 km filter (Chambers and Bonin, 2012). The data 212 

assimilation method we employed is designed to deal with the signal ‘leakage’ caused by the 213 

smoothing process and therefore we did not use the scaling factors provided by the algorithm 214 

developers. In addition, gravity fields produced by CNES/GRGS (Bruinsma et al., 2010) at 1° 215 

resolution for 10 day periods were used. The three Tellus data sources had been corrected for 216 

Glacial Isostatic Adjustment (GIA); we corrected the GRGS data using the same GIA 217 

estimates of Geruo et al. (2013). Initial data assimilation experiments produced unexpectedly 218 

strong mass trends around the Gulf of Thailand. Inspection demonstrated that all products, to 219 

different degrees, contained a mass redistribution signal associated with the December 2004 220 

Sumatera-Andaman earthquake. To account for this, we first calculated a time series of 221 

seasonally-adjusted monthly anomalies (i.e., the average seasonal cycle was removed) for the 222 



region [5°N–15°, 80–110°E]. Next, we adjusted values after December 2004 by the 223 

difference in the mean adjusted anomalies for the year before and after the earthquake, 224 

respectively.  225 

 226 

2.3. Data assimilation scheme 227 

For each update cycle, the data assimilation scheme proceeds through the steps illustrated in 228 

Figure 1 and described below. 229 

1) Deriving the prior estimate for each store. The way to calculate the prior (or background) 230 

estimate of storage 𝑠𝑡
𝑏 varied between stores. A systematic and accumulating bias (or ‘drift’) 231 

was considered plausible for the deep soil and groundwater components of model-derived 232 

sub-surface storage due to slow groundwater dynamics (including extraction) and ice storage 233 

in permanent glaciers and ice sheets, which may be progressively melting or accumulating. In 234 

these cases, the model-estimated change in storage was assumed more reliable than the 235 

model-estimated storage itself, and estimates from the five models were used to calculate 236 

storage change, Δ𝑠𝑡
𝑏

 for store i (i=1,…, N) as: 237 

Δ𝑠𝑡
𝑏(𝑖) = ∑ 𝑤𝑙𝑥𝑡

𝑙(𝑖)

𝐿

𝑙=1

 

(1) 

where 𝑥𝑡
𝑙 is the estimate of storage change from model l (l=1,…, L) between time t–1 and t, 238 

and wl the relative weight of model l in the ensemble, computed as: 239 

𝑤𝑙 =
𝜎𝑙

−2

∑ 𝜎𝑙
−2

𝑙

 
(2) 

where 𝜎𝑙 is the estimated local error for model l based on triple collocation (see Section 2.4). 240 

Subsequently, 𝑠𝑡
𝑏was calculated as: 241 

𝑠𝑡
𝑏(𝑖) = 𝑠𝑡−1

𝑎∗ (𝑖) + Δ𝑠𝑡
𝑏(𝑖) (3) 

where 𝑠𝑡−1
𝑎∗  is the posterior (or analysis) estimate from the previous time step. This approach 242 

was not suitable for model-estimated seasonal snowpack and river storage, where the 243 

ephemeral nature of the storage means that long-term drift is not an issue and Eq. (2) could in 244 

fact lead to unrealistic negative storage values. For these cases, 𝑠𝑡
𝑏 was computed as: 245 



𝑠𝑡
𝑏(𝑖) = ∑ 𝑤𝑙𝑠𝑡

𝑙(𝑖)

𝐿

𝑙=1

 

(4) 

where 𝑠𝑡
𝑙  is the storage estimate from model l. The glacier extent map was used to identify 246 

whether Eq. (3) or (4) should be used for ssnow. Similarly, no drift was expected in the ocean 247 

and lake storage data, and these were used directly as estimates of 𝑠𝑡
𝑏. 248 

2) Deriving the prior estimate of GRACE-like TWS (yb). This estimate was derived by 249 

summing all stores 𝑠𝑡
𝑏

 as: 250 

𝑆𝑡
𝑏 = ∑ 𝑠𝑡

𝑏(𝑖)

𝑁

𝑖=1

 

(5) 

and subsequently applying a convolution operator Γ to transform 𝑆𝑡
𝑏 to a ‘GRACE-like’ TWS 251 

yb. The operator Γ was a Gaussian smoother (cf. Jekeli, 1981) written here as: 252 

𝑦𝑡
𝑏(𝑗1) = ∑ Γ(𝑗1, 𝑗2)

𝑗1

𝑆𝑡
𝑏(𝑗1, 𝑗2) 

(6) 

where j1 and j2 in principle should encompass all existing grid cell coordinates. In practice, Γ 253 

was applied as a moving Gaussian kernel with a size of 6°×6° and a half-width of 300 km 254 

(see further on). 255 

3) Updating the GRACE-like TWS. The updated GRACE-like TWS, 𝑦𝑡
𝑎, was calculated from 256 

the prior (Eq. (6)) and GRACE observations 𝑦𝑡
𝑜for time t as (cf. Figure 1 a-d): 257 

𝑦𝑡
𝑎 = 𝑦𝑡

𝑏 + 𝛿𝑦𝑡 = 𝑦𝑡
𝑏 + 𝑘(𝑦𝑡

𝑜 − 𝑦𝑡
𝑏) (7) 

where 𝛿𝑦𝑡 is the analysis increment and k a temporally static gain factor derived by 258 

combining the error variances of modelled and observed y as follows: 259 

𝑘 =
∑ 𝑤𝑦,𝑙𝜎𝑦,𝑙

2
𝑙

∑ 𝑤𝑦,𝑙𝜎𝑦,𝑙
2

𝑙 + ∑ 𝑤𝑦,𝑚𝜎𝑦,𝑚
2

𝑚

 
(8) 

where 𝑤𝑦,𝑙 and 𝑤𝑦,𝑚 are the weights applied to each of the five GRACE-like TWS estimates 260 

and four GRACE data sources, respectively, calculated from their respective error variances 261 

𝜎𝑦,𝑙
2  and 𝜎𝑦,𝑚

2  analogous to Eq. (2). 262 

4) Spatially disaggregating the analysis increment to the different stores. The observation 263 

model was inverted and combined with the store error estimates in order to spatially 264 

redistribute the analysis increment 𝛿𝑦𝑡, as follows (cf. Figure 1e-g):  265 



𝛿𝑠𝑡(𝑖, 𝑗1) = ∑ Ω(𝑗1, 𝑗2)𝛿𝑦𝑡(𝑗2)

𝑗2

 
(9) 

where the redistribution operator Ω can be written as (cf. Figure 1g): 266 

Ω(𝑗1, 𝑗2) =
Γ(𝑗1, 𝑗2)𝜎−2(𝑖, 𝑗2)

∑ ∑ Γ(𝑗1, 𝑗2)𝜎−2(𝑖, 𝑗2)𝑗1𝑖
 

(10) 

To implement this, spatial error estimates are required for each store. For lakes and seas, the 267 

errors were estimated from the observations (see Section 2.2). For the model-based estimates, 268 

the error was calculated for each time step and store as:  269 

σ𝑡
2(𝑖) = ∑ 𝑤𝑙[𝑥𝑡

𝑙(𝑖) − Δ𝑠𝑡
𝑏(𝑖)]2

𝑙
 

(11) 

The resulting error estimates are spatially and temporally dynamic and respond to the 270 

magnitude of the differences between the different model estimates. For ssub and ssnow we 271 

combined the error estimates derived by Eq. (11) with the estimated errors in groundwater 272 

depletion and glacier mass change, respectively (see Section 2.2), calculating total error as 273 

the quadratic sum of the composite errors.  274 

5) Updating the stores. In the final step, the state of each store is updated: 275 

𝑠𝑡
𝑎(𝑖) = 𝑠𝑡

𝑏(𝑖) + 𝛿𝑠𝑡(𝑖) (12) 

Subsequently, the procedure is repeated for the next time step. 276 

 277 

2.4. Error estimation 278 

Spatial error fields are required for all data sets to calculate the gain factor k. Where 279 

necessary these were estimated using the triple collocation technique (Stoffelen, 1998). This 280 

technique infers errors in three independent time series by analysing the covariance structure. 281 

The approach has been applied widely to estimate errors in, among others, satellite-derived 282 

surface soil moisture (Dorigo et al., 2010; Scipal et al., 2009), evapotranspiration (Miralles et 283 

al., 2011) and vegetation leaf area (Fang et al., 2012). A useful description of the technique, 284 

the assumptions underlying it and an extension of the theory to more than three time series is 285 

provided by Zwieback et al. (2012). Application requires three (or more) estimates of the 286 

same quantity. This was achieved by convolving the model-derived storage estimates into 287 

large-scale, smoothed TWS estimates equivalent to those derived from GRACE 288 

measurements using Eqs. (5) and (6). Inspection of the original Tellus data made clear that 289 



the 200 km filter that was already applied as part of the land retrieval had only removed part 290 

of the spurious aliasing in the data sets, and propagated these artefacts into the error estimates 291 

and reanalysis. Therefore a smoother, 300 km filter was applied to the Tellus TWS data sets. 292 

Because conceptual consistency is required for triple collocation, the same filter was applied 293 

to the GRGS and model-derived TWS estimates. Several alternative Tellus and model time 294 

series were available, and therefore the triple collocation technique could be used to produce 295 

alternative error estimates from multiple triplet combinations (i.e., five for Tellus TWS, three 296 

for model TWS, and 5×3=15 for GRGS TWS). The agreement between these alternative 297 

estimates was calculated as a measure of uncertainty in the estimated errors. 298 

Important assumptions of the collocation technique are that: (1) each data set is free of bias 299 

relative to each other, (2) errors do not vary over time, (3) there is no temporal 300 

autocorrelation in the errors, and (4) there is no correlation between the errors in the 301 

respective time series (Zwieback et al., 2012). Each of these assumptions is difficult to 302 

ascertain, but some interpretative points can be made. Errors in the GRACE products vary 303 

somewhat from month to month depending on data availability, and overall decreased after 304 

June 2003. Therefore assumption (2) is a simplification.  305 

Assumption (3) is also unlikely to hold fully for the TWS estimates themselves: there will 306 

almost certainly be systematic errors and biases that cause temporal correlation in the errors 307 

in the modelled TWS (e.g., due to poorly represented processes causing secular trends such 308 

as groundwater extraction or glacier melt). We were able to avoid this assumption by 309 

applying the triple collocation to monthly storage changes rather than the actual value of 310 

storage, although temporal correlation in storage change errors remains a possibility. 311 

Temporal correlation in the GRACE errors is unlikely, however. Therefore, the error in 312 

individual monthly mass estimates was calculated following conventional error propagation 313 

theory by dividing the estimated error in mass changes by √2.  314 

Assumption (4) will not be fully met where estimates are partially based on the same 315 

principle or measurement. In this study, arguably the most uncertain assumption is that the 316 

GRGS and Tellus errors are to a large extent uncorrelated. The basis for this assumption is 317 

that most of the error is likely to derive from the TWS retrieval method rather than the 318 

primary measurements (Sakumura et al., 2014). The GRGS time series was selected as the 319 

third triple collocation member because the four Tellus products are retrieved by methods 320 

that are comparatively more similar than the GRGS method, which uses ancillary 321 

observations from the Laser Geodynamics Satellites (Tregoning et al., 2012). 322 



Correspondingly, global average correlation among the Tellus TWS time series was stronger 323 

(0.61–0.73) than between GRGS and any of the Tellus time series (0.49–0.58). Nonetheless, 324 

there may well have been a residual covariance between errors in the GRGS and Tellus 325 

products. In triple collocation and subsequent data assimilation, this would cause some part 326 

of the differences to be wrongly attributed to the prior estimates rather than the observation 327 

products. Therefore, we conservatively inflated the calculated value by including an 328 

additional error of 5 mm through quadratic summation before calculating the gain factor (Eq. 329 

8).  330 

Uncertainty in the derived error estimates also arises from sample size, i.e. the number of 331 

collocated observations (N=111). Previous studies have suggested that 100 samples are 332 

sufficient to produce a reasonable estimate (Dorigo et al., 2010), although Zwieback et al. 333 

(2012) calculate that the relative uncertainty in the estimated errors for N=111 can be 334 

expected to be in the order of 20%. An uncertainty of this magnitude will not have a strong 335 

impact on the reanalysis results.  336 

 337 

2.5. Evaluation against observations 338 

Evaluation of the reanalysis results for sub-surface storage was a challenge: ground 339 

observations are not widely available at global scale, are not conceptually equivalent to  the 340 

reanalysis terms, require tenuous scaling assumptions for comparison at 1° grid cell 341 

resolution, and many existing data sets contain few or no records during 2003–2012. For 342 

example, comparison with in situ soil moisture measurements or groundwater bore data is 343 

beset by such problems (Tregoning et al., 2012). Similarly, an initial comparison with near-344 

surface (<5 cm depth) soil moisture estimates from passive and active microwave remote 345 

sensing (Liu et al., 2012b; Liu et al., 2011) showed that the conceptual difference between the 346 

two quantities was too great for any meaningful comparison.  347 

We were able to evaluate the reanalysis for storage in rivers, seasonal snow pack and 348 

glaciers, however. Firstly, a total of 1,264 water level time series for several large rivers 349 

worldwide were obtained from the Laboratoire d'Etudes en Geodésie et Océanographie 350 

Spatiales (LEGOS) HYDROWEB web site (Table 1). The river levels were retrieved from 351 

ENVISAT and JASON-2 satellite altimetry (Crétaux et al., 2011) and included uncertainty 352 

information for each data period. From each time series, we removed data points with an 353 

estimated error of more than 25% of the temporal standard deviation (SD). Another 165 354 



altimetry time series were obtained from the European Space Agency (ESA) River&Lake 355 

web site (Berry, 2009). These were selected to increase measurement period and sample size 356 

for the available locations, as well as extending coverage to additional rivers. The ESA time 357 

series did not include error estimates; instead data plots were judged visually to assess the 358 

likelihood of measurement noise; seemingly affected time series and outlier data points 359 

(>3SD) were excluded. The total 1,429 time series were merged for individual 1º grid cells. 360 

In each case, the longest time series was chosen as reference. Overlapping time periods were 361 

used to remove (typically small) systematic biases in water surface elevation between time 362 

series; where there was no overlap the time series were normalised by the median water level. 363 

The ESA data were used where or when HYDROWEB data were not available, and merged 364 

time series with fewer than 24 data points in total were excluded. The resulting data set 365 

contained time series for 442 grid cells with an average 61 (maximum 115) data points during 366 

2003–2012. The relationship between river water level and river discharge (i.e., the discharge 367 

rating curve) was unknown, and therefore a direct comparison could not be made. The 368 

relationship is typically non-linear, and therefore we calculated Spearman’s rank correlation 369 

coefficient (ρ) between estimated discharge and observed water level. 370 

Secondly, we used the already mentioned discharge data for 586 ocean-reaching rivers world-371 

wide (Dai et al., 2009). From these, we selected 430 basins for which the reported drainage 372 

area was within 20% of the area derived from the 0.5º routing network. The ratio between 373 

reported and model-derived drainage area was used to adjust the reanalysis estimates and 374 

these were compared with recorded mean streamflow. The recorded mean annual discharge 375 

values are not for 2003-2012, but we assume that the differences are not systematic and, 376 

therefore, that any large change in agreement may still be a useful indicator of reanalysis 377 

quality. 378 

Third, snow storage estimates were evaluated with the ESA GlobSnow product (Luojus et al., 379 

2010). This data set contains monthly 0.25° resolution estimates of snow water equivalent 380 

(SWE, in mm) for low relief regions with seasonal snow cover north of 55°N during 2003–381 

2011. The SWE estimates are derived through a combination of AMSR-E passive microwave 382 

remote sensing and weather station data (Pulliainen, 2006; Takala et al., 2009). The 383 

GlobSnow data were aggregated to 1° resolution. The root mean square error (RMSE) and 384 

the coefficient of correlation (r2) were calculated as measures of agreement. 385 

Finally, we compared the estimated trends in storage in different glacier regions to trends for 386 

mountain glaciers compiled by Gardner et al. (2013) for 2003–2010 and for Greenland and 387 



Antarctica by Jacob et al. (2012) for 2003–2009. In several cases these mass balance 388 

estimates were based on independent glaciological or ICESAT satellite observations and 389 

these were the focus of comparison. Other estimates were partially or wholly based on 390 

GRACE data, making comparison less insightful. 391 

 392 

3. Results 393 

3.1. Error estimation 394 

The mean errors derived by the triple collocation technique were of similar magnitude for the 395 

GRACE and model estimates (Table 2; note that the numbers listed are for storage change 396 

rather than storage per se and were not yet adjusted for GRACE error covariance; cf. Section 397 

2.4). The relatively low values for the coefficient of variation suggest that the error estimates 398 

are reasonably robust. 399 

The spatial error in merged GRACE and model storage change estimates were calculated 400 

analogous to Eq. (8). The resulting GRACE error surface was relatively homogeneous with 401 

an estimated error of around 5–20 mm for most regions, but increasing to 20–40 mm over 402 

parts of the Amazon and the Arctic (Figure 2a). The combined model error surface suggest 403 

that errors are smaller than those in the GRACE data for arid regions (<10 mm) but higher 404 

elsewhere, increasing beyond 80 mm in the Amazon region (Figure 2b). The mean errors 405 

over non-glaciated land areas were similar, at 18.1 mm for the combined model and 13.5 mm 406 

for the combined GRACE data. Assuming no temporal correlation and allowing for error 407 

covariance among GRACE products reduces the latter to 10.8 mm (i.e., √13.52 2⁄ + 52). 408 

 409 

3.2.  Analysis increments 410 

Inspection of the analysis increments and the overall difference between prior and posterior 411 

estimates provides insights into the functioning of the assimilation scheme (Figure 3). The 412 

spatial pattern in root mean squared (RMS) TWS increments (√𝛿𝑆2̅̅ ̅̅ ̅ ) emphasises the 413 

important role of the world’s largest rivers in explaining mismatches between expected and 414 

observed mass changes, particularly in tropical humid regions (Figure 3a). Large increments 415 

also occurred over Greenland (mainly due to updated ice storage changes) and the seasonally-416 

wet regions of Brazil, Angola and south Asia (sub-surface storage). When considering the 417 

RMS between prior and posterior estimates of actual TWS as opposed to monthly changes 418 



(Figure 3b) a similar pattern emerges, but with more emphasis on the smaller but 419 

accumulating difference in estimated storage over Greenland, Alaska and part of Antarctica 420 

(due to updated ice mass changes) and northwest India (groundwater depletion).  421 

 422 

 423 

3.3.  Mass balance and trends 424 

At global scale, the trend and monthly fluctuations (expressed in standard deviation, SD) in 425 

mean total water mass should be close to zero, allowing for small changes in atmospheric 426 

water content. This provides a test of internal consistency. Among the original GRACE TWS 427 

data, the GRGS data showed the smallest temporal SD (0.04 mm) and linear trend (0.007 ± 428 

0.001 SD mm y-1) in global water mass. The three Tellus retrievals showed larger temporal 429 

SD (4.7–6.4 mm) and trends (-0.37 ± 0.21 to -0.23 ± 0.20 mm y-1). The merged GRACE 430 

TWS data had intermediate SD (3.97 mm) and trend (-0.32 mm y-1). Assimilation reduced 431 

SD (to 3.1 mm) and removed the residual trend (-0.01±0.10 mm y-1). The discrepancies in 432 

global water mass trends in the merged GRACE data and in the analysis were mostly located 433 

over the oceans, and therefore the achieved mass balance closure can be attributed to the 434 

influence of the prior sea mass change estimates, specifically, the conversion between sea 435 

level and mass change (Figure 4).  436 

 437 

3.4. Regional storage trends 438 

The spatial pattern in linear trends in the merged GRACE TWS (y0) and the reanalysis signal 439 

(yb) agree well (Figure 4bc), suggesting that the assimilation scheme is able to merge the 440 

prior estimates of storage changes and observed storage as intended. Seasonally adjusted 441 

anomalies were calculated for the prior and posterior estimates of the different water cycle 442 

components by subtracting the mean seasonal pattern. The 2003–2012 linear trends in these 443 

adjusted anomalies (Figure 5) show that the analysis has (i) increased spatial variability in 444 

sub-surface water storage trends, with amplified increasing and decreasing trends (Figure 445 

5ab); (ii) drastically changes trends in snow and ice storage and typically made them more 446 

negative (Figure 5cd); (iii) reversed river water storage trends in the lower Amazon and 447 

Congo Rivers (Figure 5ef). The reanalysis shows a complex pattern of strongly decreasing 448 

and increasing sub-surface water storage trends in northwest India (Figure 5b). This may be 449 

an artefact from incorrectly specified errors in the groundwater depletion estimates (see 450 

Section 4.2). Less visible is that the analysis often reduced negative storage trends in other 451 



regions with groundwater depletion, that is, decreased the magnitude of estimated depletion. 452 

Because all sub-surface storage terms were combined, an alternative estimate of groundwater 453 

depletion cannot calculated directly, but it can be estimated: for all grid cells with significant 454 

prior groundwater depletion estimates (>0.5 mm y-1, representing 99% of total global 455 

groundwater depletion) the 2003–2012 trend in sub-surface storage change was estimated a 456 

priori at -168 ± 3 (SD) km3 y-1 of which 157 km3 (94%) due to groundwater depletion and the 457 

remaining -11 km3 due to climate variability. Analysis reduced the total trend for these grid 458 

cells to -103 ± 3 km3 per year, from which an alternative groundwater extraction estimate of 459 

ca. 92 km3 can be derived. 460 

From the seasonally adjusted anomalies, time series and trends of global storage in different 461 

water cycle components were calculated. We calculated snow and ice mass change separately 462 

for regions with seasonal snow cover, high (>55º) latitude glaciers, and remaining glaciers 463 

(Figure 6). The mean 2003–2012 trends are listed in Table 3; for the posterior estimates also 464 

as equivalent sea level rise (SLR, by dividing by the fraction of Earth’s surface occupied by 465 

oceans, i.e., 0.7116) and volume (km3 y-1, equivalent to Gt y-1). Some of the effects of the 466 

assimilation were to (i) remove the decreasing trend in prior global terrestrial sub-surface 467 

water storage estimates (Figure 6a), (ii) change the poor prior estimates of polar ice cap mass 468 

considerably (Figure 6fg), (iii) reduce the estimated rate of ocean mass increase from 1.84 ± 469 

0.06 (SD) mm to 1.45±0.05 mm (Table 3), and (iv) achieve mass balance closure between net 470 

terrestrial and ocean storage changes (cf. Section 3.3).  471 

 472 

3.5.  Evaluation against river level remote sensing 473 

The rank correlation (ρ) between river water level and estimated discharge for the 445 grid 474 

cells with altimetry time series are shown in Figure 7. Overall there was no significant change 475 

in agreement between the prior (ρ = 0.63 ± 0.27 SD) and posterior (ρ = 0.63 ± 0.26) 476 

estimates, with an average change of +0.01 ± 0.12. However, ρ did improve for more 477 

locations than it deteriorated (286 vs. 159). There are some spatial patterns in the influence of 478 

assimilation (Figure 7c): strong improvements in the northern Amazon and Orinoco basins 479 

and most African rivers, except for some stations along the Congo and middle Nile Rivers, 480 

and reduced agreement for rivers in China (where prior estimates agreed well) and most 481 

stations in the Paraná and Uruguay basins (where they did not). In most remaining rivers, 482 

agreement did not change much; in some cases because it was already very good (e.g., the 483 

Ganges-Brahmaputra and remainder of the Amazon basin). Altimetry and estimated 484 



discharge time series are shown in Figure 8 for grid cells with the most data points in three 485 

large river systems. In these cases, there is reasonably clear improvement in agreement. 486 

 487 

3.6. Evaluation against historic river discharge observations 488 

The prior estimate of discharge (i.e., the error-weighted average of the four bias-corrected 489 

models) provided estimates that were already considerably better than any of the individual 490 

members (Table 4, Figure 9). Assimilation led to small improvements in RMSE, from 47 to 491 

44 km3 y-1, and a slight deterioration in the median absolute percentage difference from 40 to 492 

41%. Combined recorded discharge from the 430 selected basins was 20,909 km3 y-1, 493 

representing 90% of estimated total discharge to the world’s oceans according to Dai et al. 494 

(2009). Assimilation improved the agreement with this number from -11% to -4%, of which 495 

about half (5%) is due to a closer estimate of Amazon River discharge. However, modelled 496 

and observed discharge values relate to different time periods and so it is not clear whether 497 

this should be considered evidence for improvement or merely reflects multi-annual 498 

variability. 499 

 500 

3.7.  Evaluation against snow water equivalent remote sensing 501 

The spatial RMSE and correlation between the prior and posterior SWE estimates and the 502 

GlobSnow retrievals are shown in Figure 10. Although RMSE deteriorated in a majority 503 

(57%) of grid cells, correlation remained unchanged at R2=0.79 and average RMSE improved 504 

slightly from 23.2 to 22.3 mm. Assimilation appeared most successful for grid cells with 505 

large prior RMSE in northern Canada (Figure 10a-c).  506 

  507 

3.8.  Evaluation against glacier mass balance estimates 508 

Glacier mass changes reported in the literature (Gardner et al., 2013; Jacob et al., 2012) are 509 

listed in Table 5 and compared to regional mass trends associated with glaciers and other 510 

components of the terrestrial water derived from the analysis. In the polar regions (e.g., 511 

Antarctica, Greenland, Iceland, Svalbard, and the Russian Arctic) a large part of the gravity 512 

signal is necessarily from glacier mass change. Published trends for most of these regions 513 

also heavily rely on GRACE data and hence our estimates are generally in good agreement. 514 

Remaining differences can be attributed to the products, product versions and post-processing 515 

methods used, without providing insight into the accuracy of our analysis estimates. In the 516 



other regions, the glaciated areas are smaller and surrounded by ice-free terrain, which 517 

strongly increases the potential for incorrect distribution of analysis increments, as evidenced 518 

by the high trend ratios (>47%, last column Table 5). As a consequence, glacier mass trends 519 

are not well constrained by GRACE data alone and alternative observations are required. The 520 

agreement with independently derived trend estimates varies. For the Canadian Arctic 521 

Archipelago, Alaska and adjoining North America, the assimilation scheme assigns only 55% 522 

(68 Gt y-1) of the total regional negative mass trend (-124 Gt y-1) to glacier mass changes, 523 

with most of the remainder (40% or 50 Gt y-1) assigned to sub-surface water storage changes. 524 

Excluding regions for which independent storage change estimates are not available 525 

(Greenland, Antarctica and Patagonia), our estimate of total glacier storage change in the 526 

world’s glaciers (-114 km3 y-1) was 101 km3 y-1 less than the estimate of Gardner et al. (2013) 527 

(-215 km3 y-1). 528 

 529 

4. Discussion 530 

4.1. Estimated errors  531 

The triple collocation method produced estimates of errors in month-to-month changes in 532 

GRACE TWS estimates of 12.8–14.3 mm over non-glaciated land areas. From these, 533 

GRACE TWS errors of 10.4–12.0 mm can be estimated (cf. Section 3.1). By comparison, 534 

reported uncertainty estimates based on formal error propagation are larger, usually in the 535 

order of 20–25 mm (e.g., Landerer and Swenson, 2012; Tregoning et al., 2012; Wahr et al., 536 

2006). One possible explanation is that the 5 mm we assumed to correct for potential 537 

covariance in errors between the GRACE products is too low, another that the formal 538 

uncertainty estimates are too conservative. Inflating the GRACE error estimates by 10 mm 539 

instead of 5 mm reduced the gain by 18% on average. The resulting uncertainty in the 540 

analysis is modest (see next section).  Formal error analyses predict that the retrieval errors 541 

decrease towards the poles due to the closer spacing of satellite overpasses (Wahr et al., 542 

2006), but we did not find such a latitudinal pattern.  543 

The mean errors in monthly changes in prior TWS for the different models were 16.5–27.9 544 

mm. We do not have independent estimates of errors in modelled large-scale TWS with 545 

which to compare, but the estimates would seem plausible and perhaps less than we 546 

anticipated. From a theoretical perspective, violation of the assumptions underpinning triple 547 

collocation is likely to have produced overestimates of model error, if anything. The 548 

calculated error in the prior estimates over oceans and very stable regions such as Mongolia 549 



and the Sahara are around 5 mm (Figure 2). This provides some further evidence to suggest 550 

that the 5 mm GRACE error inflation we applied may have been reasonable. The largest 551 

errors in the merged model estimates (>40 mm) were found for humid tropical regions and 552 

high latitudes. The former may be attributed to the combination of large storage variations 553 

and often uncertain rainfall estimates. Precipitation measurements are also fewer at high 554 

latitudes, while poor prediction of snow and ice dynamics and melt water river hydrology are 555 

also likely factors.  556 

 557 

4.2. Assimilation scheme performance 558 

The spatial pattern in analysis increments emphasises the importance of water stores other 559 

than the soil in explaining discrepancies between model and GRACE TWS estimates (Figure 560 

3). Adjustments to storage changes in large rivers, groundwater depletion, mass changes in 561 

high latitude ice caps and glaciers (e.g., Greenland, Alaska and Antarctica) and lake water 562 

levels (e.g., the Caspian Sea and the North-American Great Lakes) were all considerable 563 

within their region, absorbing monthly analysis increments, long-term trend discrepancies, or 564 

both.  565 

Uncertainty in error estimates for the different data sources affects the analysis in different 566 

ways. Incorrect estimation of GRACE and model-derived TWS errors by the triple 567 

collocation method primarily affects (i) the weighting of the ensemble members and (ii) the 568 

gain matrix. Appropriate weighting only requires that the relative magnitude of errors among 569 

ensemble members is estimated correctly (cf. Eq. (2)). The average errors for the different 570 

GRACE TWS estimates were all within 14% of the ensemble average (Table 2) and did not 571 

have strong spatial patterns, and therefore the analysis would likely have been very similar if 572 

equal weighting had been applied (cf. Sakumura et al., 2014). Estimated model errors showed 573 

greater differences (up to 52% greater than the ensemble mean, Table 2) as well as regional 574 

patterns. However, the relative rankings and their spatial pattern were robust to the choice of 575 

GRACE TWS members in triple collocation, as evidenced by a low coefficient of variation in 576 

error estimates (Table 2). This suggests that the errors were correctly specified in a relative 577 

sense. For the gain matrix, the relative magnitude of errors in GRACE versus model TWS 578 

ensemble means needed to be estimated correctly (cf. Eq. (8)). The estimated GRACE TWS 579 

ensemble errors are reasonably homogeneous in space (Figure 1a) which increases our 580 

confidence in their validity. The uncertainty due to the correction for assumed correlation 581 

between the GRGS and Tellus TWS (see previous section) is further mitigated by the design 582 



of the data assimilation scheme: the gain factor determines how rapidly the analysis 583 

converges towards the GRACE observations and therefore is important for month-to-month 584 

variations, but long-term trends in TWS will always approach those in the GRACE 585 

observations (cf. Figure 4b and c).   586 

The main sources of uncertainty in long-term trends in the individual water balance terms are 587 

(i) the removal of non-hydrological mass trends in the GRACE TWS time series and (ii) 588 

accurate specification of relative errors in the individual water balance terms, which is needed 589 

for correct redistribution of the integrated TWS analysis increments. For example, the 590 

analysis results illustrate the insufficiently constrained problem of separating gravity signals 591 

due to mass changes in mountain glaciers from nearby sub-surface water storage changes. 592 

This was particularly evident around the Gulf of Alaska and northwest India, where decreases 593 

can be expected not only in glacier mass but also in sub-surface storage due to, respectively, a 594 

regional drying trend and high groundwater extraction rates (Figure 5a). We suspect that 595 

unexpectedly strong increasing storage trends in parts of northwest India may be because the 596 

prior groundwater depletion estimates were too high and the assigned errors too low, causing 597 

the analysis update to distribute increments incorrectly. We could have addressed this by 598 

inflating the local groundwater depletion estimation errors, but more research is needed to 599 

understand the underlying causes. Plausible causes are that groundwater extraction is 600 

overestimated, or that extraction is compensated by induced groundwater recharge (e.g., from 601 

connected rivers) (see Wada et al., 2010 for further discussion). 602 

Mass balance closure was not enforced and hence provides a useful diagnostic of reanalysis 603 

quality. The GRGS product achieved approximate global mass balance closure at all time 604 

scales, but the three Tellus products showed a seasonal cycle and long-term negative trend in 605 

global water mass. Accounting for atmospheric water vapour mass changes (from ERA-606 

Interim reanalysis and the NVAP-M satellite product, data not shown) could not explain the 607 

trends and in fact slightly increased the seasonal cycle in global water mass. Data 608 

assimilation reduced the seasonal cycle and entirely removed the trend in total water mass, 609 

thanks to the prior estimates of sea mass increase. For comparison, we calculated average 610 

ocean mass increases by an alternative, more conventional method, which involved avoiding 611 

areas likely to be affected by nearby land water storage changes. Excluding a 1000 km buffer 612 

zone produced a 2003–2012 mass trend of +0.58 to +0.72 mm y-1 for the three Tellus 613 

retrievals, +1.12 mm y-1 for the GRGS retrieval , and +0.75 mm y-1 for the merged GRACE 614 

data. Data assimilation produced a stronger trend of +1.22 mm y-1 due to the influence of the 615 



prior estimate of +1.67 mm y-1. Our prior estimate followed Chen et al. (2013), who used an 616 

iterative modelling approach to attribute 75% of altimetry-observed SLR to mass increase. 617 

Chen et al. (2013) argue that the conventional method produces underestimates of ocean mass 618 

increase. Indeed, the trends we calculated for the ‘buffered’ ocean regions are lower than for 619 

the entire oceans (+1.22 vs. +1.45 mm y-1 for the reanalysis, and +1.67 vs. +1.84 mm y-1 for 620 

the prior estimates; Table 3). Nonetheless, the reduction in sea mass change of 0.39 mm y-1 621 

from prior to analysis does appear to reopen the problem of reconciling mass and temperature 622 

observations with the altimetry derived mean sea level rise of +2.45 ± 0.08 mm y-1 (cf. Chen 623 

et al., 2013). 624 

 625 

4.3. Evaluation against observations 626 

The reanalysis generally did not have much impact on the agreement with river and snow 627 

storage observations, with small improvements for some locations and small degradations for 628 

others. While a robust increase in the agreement would have been desirable, the fact that 629 

agreement was not degraded overall was encouraging. The data assimilation procedure 630 

applied has the important benefit of bringing the estimates into agreement with GRACE 631 

observations. Moreover, performance improvements with respect to river discharge and level 632 

data did occur in the Amazon, where they make an important contribution to TWS changes. 633 

Similarly, snow water equivalent estimates were improved in the North-American Arctic, 634 

where errors in the prior estimates were largest. This demonstrates that GRACE data can 635 

indeed be successfully used to constrain water balance estimates, although further 636 

development may be needed to avoid some of the undesired performance degradation for 637 

water balance components that do not contribute much to the TWS signal. 638 

The models used for our prior estimates provided poorly constrained estimates of ice mass 639 

balance changes, and our reanalysis ice mass loss estimates should not be assumed more 640 

accurate than estimates based on more direct methods (Table 5). Our analysis is unique when 641 

compared to previous estimates based on GRACE, in that data assimilation allowed some of 642 

the observed mass changes to be attributed to other water balance components within the 643 

same region, depending on relative uncertainties in the prior estimates. Comparison against 644 

independent estimates of glacier mass balance changes also demonstrated the challenge of 645 

correct attribution, however. Glacier mass balance estimates were in good agreement for 646 

several regions, but estimates for North American glaciers in particular were questionable: 647 

their combined mass loss (-68 Gt y-1) was much lower than the estimates derived by 648 



independent means (-124 Gt y-1; Table 5). This can be explained by incorrect specification of 649 

errors. Two caveats are made: (i) the GIA signal is relatively large for these three regions 650 

(+50 Gt y-1) and hence GIA estimation errors may have had an impact; and (ii) a significant 651 

change in sub-surface water storage is plausible in principle; for example, higher summer 652 

temperatures could be expected to enhance permafrost melting and runoff, as well as enhance 653 

evaporation. More accurate spatiotemporal observation and modelling of glacier dynamics 654 

are needed to reduce this uncertainty. 655 

 656 

4.4. Contributions to sea level rise 657 

The reanalysis estimate of net terrestrial water storage change of -495 Gt y-1 (Table 3) 658 

appears a plausible estimate of ocean mass change, equivalent to ca. +1.4 mm y-1 sea level 659 

rise. Our results confirmed that mass loss from the polar ice caps is the greatest contributor to 660 

net terrestrial water loss, with Antarctica and Greenland together contributing -342 Gt y-1. 661 

The next largest contribution was from the remaining glaciers. We combine the reanalysis 662 

estimate of -129 Gt y-1 with another -101 Gt y-1 estimated to be misattributed (cf. Section 3.8) 663 

and obtain an alternative estimate of -230 Gt y-1. A small but significant contribution of -18 664 

Gt y-1 (Table 3) was estimated to originate from reductions in seasonal snow cover 665 

(particularly in Quebec and Siberia; Figure 5cd). Inter-annual changes in river water storage 666 

were not significant. Small contributions of -10 Gt y-1 and +16 Gt y-1 were attributed to 667 

storage changes in existing lakes and large new dams, respectively, and compensated each 668 

other. The largest change in an individual water body was in the Caspian Sea (-27 Gt y-1, cf. 669 

Figure 5) which experiences strong multi-annual water storage variations depending on 670 

Volga River inflows.   671 

Finally, the analysis suggested at statistically insignificant change of +9 Gt y-1 in sub-surface 672 

storage globally. Adding back the suspected misattribution of 101 Gt y-1 associated with 673 

glaciers produces an alternative estimate of +110 Gt y-1 (cf. Figure 6a). Combining this with 674 

the -92 Gt y-1 attributed to groundwater depletion suggests that storage over the remaining 675 

land areas increased by 202 Gt y-1. Calculating sub-surface storage trends by latitude band 676 

suggests that most of the terrestrial water ‘sink’ can be found north of 40°N and between 0–677 

30°S and is opposite to the prior estimates (Figure 11). The main tropical regions 678 

experiencing increases are in the Okavango and upper Zambezi basins in southern Africa and 679 

the Amazon and Orinoco basins in northern South America (Figure 5b). Storage increases for 680 

these regions are also evident from the original GRACE data (Figure 4a) and cannot be 681 



attributed to storage changes in rivers or large lakes. The affected regions contain low relief, 682 

poorly drained areas with (seasonally) high rainfall. In such environments, the storage 683 

changes could occur in the soil, groundwater, wetlands, or a combination of these. Further 684 

attribution is impossible without additional constraining observations (Tregoning et al., 2012; 685 

van Dijk et al., 2011). The ten-year analysis period is short and this cautions against over-686 

interpreting this apparent ‘tropical water sink’. However it is of interest to note that a gradual 687 

strengthening of global monsoon rainfall extent and intensity has been observed, and is 688 

predicted to continue (Hsu et al., 2012). In any event, the difference between prior and 689 

posterior trends in Figure 11 illustrates that the current generation hydrological models, even 690 

as an ensemble, is probably not a reliable surrogate observation of long-term sub-surface 691 

groundwater storage changes. GRACE observations proved valuable in improving these 692 

estimates. 693 

 694 

5. Conclusions 695 

We presented a global water cycle reanalysis that merges four total water storage retrieval 696 

products derived from GRACE observations with water balance estimates derived from an 697 

ensemble of five global hydrological models, water level measurements from satellite 698 

altimetry, and ancillary data. We summarise our main findings as follows:  699 

1. The data assimilation scheme generally behaves as desired, but in hydrologically complex 700 

regions the analysis can be affected by poorly constrained prior estimates and error 701 

specification. The greatest uncertainties occur in regions where glacier mass loss and sub-702 

surface storage declines (may) both occur but are poorly known (e.g., northern India and 703 

North-American glaciers). 704 

2. The error in original GRACE TWS data was estimated to be around 11–12 mm over non-705 

glaciated land areas. Errors in the prior estimates of TWS changes are estimated to be 17–706 

28 mm for the five models.  707 

3. Water storage changes in other water cycle components (seasonal snow, ice, lakes and 708 

rivers) are often at least as important and uncertain as changes as sub-surface water 709 

storage in reconciling the various information sources. 710 

4. The analysis results were compared to independent river water level measurements by 711 

satellite altimetry, river discharge records, remotely sensed snow water storage, and 712 

independent estimates of glacier mass loss. In all cases the agreement improved or 713 

remained stable compared to the prior estimates, although results varied regionally. Better 714 



estimates and error specification of groundwater depletion and mountain glacier mass loss 715 

are required.  716 

5. Data assimilation achieved mass balance closure over the 2003–2012 period and 717 

suggested an ocean mass increase of ca. 1.45 mm y-1. This reopens some question about 718 

the reasons for an apparently unexplained 0.39 mm y-1 (16%) of 2.45 mm y-1 satellite 719 

observed sea level rise for the analysis period (Chen et al., 2013). 720 

6. For the period 2003–2012, we estimate glaciers and polar ice caps to have lost around 572 721 

Gt y-1, with an additional small contribution from seasonal snow (-18 Gt y-1). The net 722 

change in surface water storage in large lakes and rivers was insignificant, with 723 

compensating effects from new reservoir impoundments (+16 Gt y-1), lowering water 724 

level in the Caspian Sea (-27 Gt y-1) and increases in the other lakes combined (+16 Gt y-725 

1). The net change in subsurface storage was significant when considering a likely 726 

misattribution of glacier mass loss, and may be as high as +202 Gt y-1 when excluding 727 

groundwater depletion (-92 Gt y-1). Increases were mainly in northern temperate regions 728 

and in the seasonally wet tropics of South America and southern Africa (+87 Gt y-1). 729 

Continued observation will help determine if these trends are due to transient climate 730 

variability or likely to persist. 731 
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Table 1. Description and sources of data used in this analysis. Acronyms are explained in the 918 

text. 919 

Description Source Data access 

Prior estimates   

model estimates (CLM, 

MOS, NOAH, VIC) 

GLDAS ftp://hydro1.sci.gsfc.nasa.gov/data/s4pa/GLDAS_V1/ (data accessed 17 

April 2013). 

Model estimates 

(W3RA) 

 available from author Van Dijk 

groundwater depletion  available from author Wada 

river flow direction TRIP http://hydro.iis.u-tokyo.ac.jp/~taikan/TRIPDATA/Data/trip05.asc 

(downloaded 10 May 2013) 

discharge from small 

catchments 

 available from author Van Dijk 

discharge from large 

basins 

 http://www.cgd.ucar.edu/cas/catalog/surface/dai-runoff/index.html  

surface water extraction  available from author Wada 

lake water level Crop Explorer http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/ 

(downloaded 9 May 2013) 

new dam 

impoundments 

GranD http://atlas.gwsp.org/ (accessed 14 May 2014) 

new dam 

impoundments 

ICOLD http://www.icold-cigb.org/ (accessed 14 May 2014) 

sea level AVISO http://www.aviso.oceanobs.com/en/data/products/sea-surface-height-

products/global/ (downloaded 7 November 2013) 

glacier extent GGHYDRO http://people.trentu.ca/~gcogley/glaciology/ (downloaded 12 June 2013) 

Assimilated data  

TWS: CSR, GFZ, JPL Tellus ftp://podaac-ftp.jpl.nasa.gov/allData/tellus/L3/land_mass/RL05/netcdf/ 

(downloaded 16 April 2013) 

TWS: GRGS CNES http://grgs.obs-mip.fr/grace/variable-models-grace-lageos/grace-solutions-

release-02 (downloaded 16 April 2013) 

glacial isostatic 

adjustment 

Tellus ftp://podaac-ftp.jpl.nasa.gov/allData/tellus/L3/land_mass/RL05/netcdf/ 

(downloaded 16 April 2013) 

Evaluation data   

water level in large 

rivers 

LEGOS 

HYDROWEB 

http://www.legos.obs-mip.fr/en/soa/hydrologie/hydroweb/ (downloaded 

13 October 2013) 

idem ESA 

River&Lake 

http://tethys.eaprs.cse.dmu.ac.uk/RiverLake/shared/main (downloaded 25 

October 2012) 

snow water equivalent GLOBSNOW http://www.globsnow.info/swe/archive_v1.3/ (downloaded 9 October 

2013)  

920 



Table 2. Spatial mean values (non-glaciated land areas only) of the error in monthly mass 921 

change estimates for different GRACE and model sources as derived through triple 922 

collocation. Also listed is the number of triple collocation estimates derived (N) and the 923 

spatial mean of the coefficient of variation (C.V.) in these N estimates.  924 

   Mean error Mean C.V. N 

   mm %  

GRACE    

 GRG 14.3 15 15 

 CSR 12.8 15 5 

 GFZ 15.5 11 5 

 JPL 15.2 12 5 

 Merged 13.5 – – 

Models    

 CLM 26.7 6 3 

 MOS 21.9 7 3 

 NOAH 16.6 9 3 

 VIC 27.7 6 3 

  W3RA 17.9 7 3 

 Merged 18.1 – – 

 925 

  926 



Table 3. Calculated linear trends in global mean seasonally-adjusted anomalies associated 927 

with different water cycle components for 2003–2012. The posterior trend estimates are also 928 

expressed in equivalent sea level rise (SLR) and volume. Second number is standard 929 

deviation. 930 

Store 

 

Prior 

global mean 

mm y-1 

Posterior 

global mean 

mm y-1 

 

SLR 

mm y-1 

 

Volume 

km3 y-1 

Sub-surface -0.572 ± 0.029 0.017 ± 0.023 0.024 ± 0.032 9 ± 12 

Rivers 0.012 ± 0.009 0.003 ± 0.01 0.004 ± 0.014 1 ± 5 

Lakes -0.012 ± 0.005 -0.021 ± 0.005 -0.029 ± 0.006 -11 ± 2 

New dams 0.043 ± 0.001 0.032 ± 0.002 0.045 ± 0.003 16 ± 1 

Seasonal snow -0.022 ± 0.007 -0.035 ± 0.007 -0.049 ± 0.01 -18 ± 4 

Arctic glaciers (>55°N) 0.265 ± 0.004 -0.604 ± 0.009 -0.849 ± 0.013 -308 ± 5 

Antarctic glaciers (>55°S) - -0.301 ± 0.007 -0.423 ± 0.01 -154 ± 4 

Remaining glaciers -0.029 ± 0.004 -0.061 ± 0.003 -0.086 ± 0.004 -31 ± 2 

Total terrestrial - -0.97 ± 0.035 -1.364 ± 0.049 -495 ± 18 

Oceans 1.309 ± 0.044 1.029 ± 0.039 1.446 ± 0.054 525 ± 20 

 931 
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 933 

Table 4. Evaluation of alternative estimates of mean basin discharge using observations 934 

collated by Dai et al. (2009). Listed is the agreement for the ensemble models (without bias 935 

correction), the merged prior estimate and the posterior estimates resulting from reanalysis.  936 

 CLM MOS NOAH VIC W3RA prior  posterior 

Combined discharge 

(km3 y-1) 

21,874 9,003 11,474 13,666 16,518 18,663 20,149 

Diff. total (%) 5 -57 -45 -35 -21 -11 -4 

RMSE (km3 y-1) 
114 184 126 147 63 47 44 

Median |%| diff. 
60 63 57 48 61 40 41 
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 939 

Table 5. Published trends in glacier water storage (Gardner et al., 2013; Jacob et al., 2012) 940 

compared to estimates from reanalysis. Uncertainties are given at the 95% (2 standard 941 

deviation) interval, superscripts refer to estimates derived from GRACE (g) or independent 942 

methods (i). Also listed are regional trends attributed to other parts of the hydrological cycle, 943 

and the ratio of the relative magnitude of that residual trends over estimated glacier mass 944 

change. 945 

Region Reported This study 

 trend  glacier trend other components ratio 

 (Gt y-1)  (Gt y-1) (Gt y-1) (%) 

Greenland ice sheet + PGICs -222 ± 9 g -203  ±  10 -5  ±  1 3 

Canadian Arctic Archipelago -60 ± 6 i,g -48  ±  3 -19  ±  2 39 

Alaska -50 ± 17 i,g -23  ±  6 -23  ±  6 101 

Northwest America excl. Alaska -14 ± 3 i 3  ±  3 -8  ±  9 275 

Iceland -10 ± 2 i,g -6  ±  1 -0.6  ±  0.2 10 

Svalbard -5 ± 2 i,g -2  ±  1 0.1  ±  0.1 3 

Scandinavia -2 ± 0 i 0.4  ±  1.0 5  ±  2 >500 

Russian Arctic -11 ± 4 i,g -4  ±  1 2  ±  2 47 

High Mountain Asia -26 ± 12 i,g -29  ±  4 -15  ±  11 51 

South America excl. Patagonia -4 ± 1 i -2  ±  1 -21  ±  33 >500 

Patagonia -29 ± 10 g -15  ±  1 1  ±  2 4 

Antarctica ice sheet + PGICs -165 ± 72 g -139  ±  8 0 0 

Rest of world -4 ± 0  -3  ±  1 82  ±  107 >500 

Total -602 ± 77  -471  ±  25   

  946 



 947 

Figure 1. Illustration of the data assimilation approach followed using data along a transect 948 

through the USA for August 2003. Shown are: a) monthly satellite-derived TWS, 𝑦𝑡
𝑜

, and the 949 

equivalent prior estimate, 𝑦𝑡
𝑏; b) location of the West-East transect on a map of the gain 950 

matrix, k; c) profile of k along the transect (cf. Figure 2c); d) calculation of the TWS analysis 951 

increment, 𝛿𝑦𝑡 , from k and innovation, (𝑦𝑡
𝑜 − 𝑦𝑡

𝑏); e) the prior error in the change of each of 952 

the stores, σ𝑡(𝑖); f) the prior and posterior estimate of change in each store, Δ𝑠𝑡
𝑏(𝑖) and 953 

Δ𝑠𝑡
𝑏(𝑖) + 𝛿𝑠𝑡(𝑖), resp.; and g) visual illustration of the disaggregation of the TWS analysis 954 

increments to the different stores. All units are in mm unless indicated otherwise; see text for 955 

full explanation of symbols; stores shown include the sub-surface (green), rivers (blue) and 956 

sea (dark red; remaining stores not shown for clarity).  957 
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 959 

Figure 2. Triple collocation estimated error in storage change from the merged (a) GRACE 960 

and (b) prior estimates, and (c) resulting gain matrix.  961 
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 963 

Figure 3. The impact of GRACE data assimilation on total water storage expressed as (a) the 964 

root mean square (RMS) analysis increment and (b) the RMS difference between prior and 965 

posterior storage time series. 966 
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 968 

Figure 4. Trends in GRACE total water storage as derived from (a) prior storage estimates; 969 

(b) merged satellite retrievals; and (c) posterior estimates. 970 
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 972 

Figure 5. Trends in seasonal anomalies of prior (left column) and posterior (right column) 973 

estimates of (a-b) sub-surface, (c-d) snow and (e-f) surface water (i.e., lake and river) water 974 

storage.  975 
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 977 

 978 

Figure 6. Time series of the prior (grey lines) and posterior (black lines) estimates of global 979 

average seasonally-adjusted storage anomalies in different water cycle components. Dashed 980 

lines show linear trends for 2003–2012 as listed in Table 3. 981 
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 983 

Figure 7. Effect of assimilation agreement with satellite altimetry river water levels: 984 

Spearman’s rank correlation coefficient (ρ) for (a) prior and (b) posterior estimates and (c) 985 

difference between the two. 986 
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a) prior

b) posterior

c) change



 988 

 989 

Figure 8. Effect of assimilation agreement with satellite altimetry river water levels for grid 990 

cells including the a) Amazon River (~2.5°S, 65.5°W; ρ changed from 0.71 for prior to 0.80 991 

for posterior estimates); b) Congo River (~2.5°N, 21.5°E; ρ from 0.28 to 0.47) and 992 

Mississippi River (35.5°, 90.5°W; ρ from 0.37 to 0.56). 993 
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 995 

  996 

Figure 9. Comparison of mean basin discharge resulting from the analysis (Qa) and values 997 

based on observations (Dai et al., 2009) (darker areas indicate overlapping data points). 998 
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 1000 

Figure 10. Effect of assimilation on agreement with GlobSnow snow water equivalent 1001 

estimates, showing (a-c) root mean square error (RMSE) and (d-f) the coefficient of 1002 

correlation (R2). From left to right, agreement for (a,d) prior and (b, e) posterior estimates as 1003 

well as (c, f) the change in agreement. 1004 
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 1006 

Figure 11. Linear 2003–2012 trends in sub-surface water storage by 10° latitude band, 1007 

showing prior (blue) and posterior (red) estimates.  1008 
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