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Abstract 16 

In traditional hydrogeological investigations, one geological model is often used based on subjective 17 

interpretations and sparse data availability. This deterministic approach usually does not account for any 18 

uncertainties. Stochastic simulation methods address this problem and can capture the geological structure 19 

uncertainty. In this study the geostatistical software TProGS is utilized to simulate an ensemble of 20 

realizations for a binary (sand/clay) hydrofacies model in the Norsminde catchment, Denmark. TProGS 21 

can incorporate soft data, which represent the associated level of uncertainty. High density (20m x 20m x 22 

2m) airborne geophysical data (SkyTEM) and categorized borehole data are utilized to define the model 23 

of spatial variability in horizontal and vertical direction, respectively and both are used for soft 24 

conditioning the TProGS simulations. The category probabilities for the SkyTEM dataset are derived 25 

from a histogram probability matching method, where resistivity is paired with the corresponding 26 

lithology from the categorized borehole data. This study integrates two distinct datasources into the 27 

stochastic modeling process that represent two extremes of the conditioning density spectrum; sparse 28 

borehole data and abundant SkyTEM data. Conditioning to vast soft data causes overconditioning; 29 

triggered by incorporating spatially correlated data in the modelling process. This is addressed by a work 30 

around utilizing a sampling/decimation of the dataset. In the case of abundant conditioning data it is 31 

shown that TProGS is capable of reproducing non-stationary trends. The stochastic realizations are 32 

validated by five performance criteria: (1) Sand proportion, (2) mean length, (3) geobody connectivity, 33 

(4) facies probability distribution and (5) facies probability – resistivity bias. As conclusion, a 34 

stochastically generated set of realizations soft conditioned to 200m moving sampling of geophysical data 35 

performs most satisfying when balancing the five performance criteria. The ensemble can be used in 36 

subsequent hydrogeological flow modeling to address the predictive uncertainty originated from the 37 

geological structure uncertainty. 38 
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performance, TProGS 40 



1. Introduction 41 

Constraints in accurate and realistic solute transport modeling in hydrogeology are caused by the 42 

difficulty of characterizing the geological structure. The subsurface heterogeneity heavily influences the 43 

distribution of contaminants in the groundwater system. The scale of heterogeneity is often smaller than 44 

the data availability (e.g. borehole spacing). In traditional hydrogeological studies, one geological model 45 

is built based on the best comprehensive knowledge from often sparse borehole data and subjective 46 

interpretations. This can lead to alleged correct results, for instance when addressing the water balance on 47 

catchment scale, but will often prove to be inadequate for simulations beyond general flows and heads, 48 

e.g. contaminant transport modeling. Therefore, it is proposed by numerous studies that the uncertainty on 49 

the geological conceptualization is crucial when assessing uncertainties on flow paths (Neuman, 2003; 50 

Bredehoeft, 2005 ; Hojberg and Refsgaard, 2005; Troldborg et al., 2007; Seifert et al., 2008). One of the 51 

strategies often recommended for characterizing geological uncertainty and assessing its impact on 52 

hydrological predictive uncertainty is the use of multiple geological models (Renard, 2007; Refsgaard et 53 

al., 2012).  54 

In this respect geostatistical tools such as two-point statistics e.g. TProGS (Carle and Fogg, 1996; Carle et 55 

al., 1998) and multipoint statistics (MPS) (Caers and Zhang, 2002; Caers, 2003; Journel, 2004; Strebelle, 56 

2002) are powerful tools as they enable the generation of multiple equally plausible realizations of 57 

geological facies structure. This study targets the realistic description of heterogeneity in a geological 58 

model by introducing diverse data into the stochastic modeling process to generate a set of equally 59 

plausible realizations of the subsurface using geostatistics (Refsgaard et al., 2006). 60 

In geostatistical applications field observations can constrain the simulation as soft or hard conditioning. 61 

“Hard conditioning” forces the realizations to honor data completely whereas “soft conditioning” honors 62 

the data partly with respect to the uncertainty of the observation (Falivene et al., 2007). This feature is 63 

essential because it enables the user to associate uncertainties to the conditioning dataset that can be of 64 

either subjective or objective nature. Incorporating a comprehensive and continuous soft conditioning 65 



datasets to a stochastic simulation such as TProGS is challenging. Alabert (1987) published an early study 66 

on the implications of using sparse soft conditioning data to a stochastic simulation. The analysis shows 67 

that soft conditioning significantly increases the quality of the realizations. The same was also observed 68 

by McKenna and Poeter (1995) where soft data from geophysical measurements could significantly 69 

improve the geostatistical simulation. In the past years, highly sophisticated geophysical methods and 70 

advanced computational power allow stochastic simulations that are conditioned to a vast auxiliary 71 

dataset. This poses new challenges to the data handling and to the simulation techniques.   72 

Chugunova and Hu (2008) present a study where continuous auxiliary data is introduced directly, without 73 

classification to a MPS simulation data in addition to the general training image. MPS requires a site 74 

specific training image that represents the geological structure accordingly, which is often the main 75 

source of uncertainty in MPS simulations. The above mentioned MPS studies conduct mostly 2D 76 

simulations, partly on synthetic data. The training image is the backbone of the MPS method and it has 77 

been acknowledged by dell'Arciprete et al. (2012) and He et al. (2013) that reliable 3D training images 78 

are difficult to acquire.  79 

Alternative methods to integrate vast auxiliary information (e.g. geophysics) into the modeling process 80 

and at the same time force local accuracy are collocated cokriging or cosimulation techniques (Babak and 81 

Deutsch, 2009). Here a linear relationship between the auxiliary variable and the target variable is built in 82 

a model of cross covariance. The essentially linear relationship is often too restrictive and does not 83 

represent the complex physical processes. Mariethoz et al. (2009b) present a prospective method that 84 

extends the collocated simulation method by using a model of spatial variability of the target variable and 85 

a joint probability density distribution to depict the conditional distribution of the target variable and the 86 

auxiliary variable at any location. 87 

The method of anchored distributions (MAD) (Rubin et al., 2010) is a suitable approach for the inverse 88 

modeling of spatial random fields with conditioning to local auxiliary information. Structural parameters 89 

such as global trends and geostatistical attributes are considered in a conditional simulation. The 90 



conditioning is undertaken by anchored distributions which statistically represent the relationship between 91 

any data and the target variable.  92 

The truncated plurigaussian simulation method (Mariethoz et al., 2009a) generates a Gaussian field for 93 

the target and the auxiliary variable using variogram statistics. These Gaussian fields are truncated to 94 

produce categorical variables that represent the hydrofacies. The truncation is controlled by threshold 95 

values that can be defined in a “lithotype rule” that represents the general geological concept. It is a very 96 

flexible method, because conceptual understandings are easily incorporated, but non-stationarity and 97 

especially directional depended lithotype rules are difficult to incorporate. 98 

TProGS is a well-established stochastic modeling tool for 3D applications and it has been successfully 99 

applied to simulate highly heterogeneous subsurface systems by constraining the simulation to borehole 100 

data (Carle et al., 1998; Fleckenstein et al., 2006). Weissmann et al. (1999), Weissmann and Fogg (1999) 101 

and Ye and Khaleel (2008) use additional spatial information obtained from soil surveys, sequence 102 

stratigraphy and soil moisture, respectively for accessing the complex lateral sedimentary variability and 103 

thus improving the quality of the model in terms of  spatial variability. It has not been tested whether 104 

TProGS, is capable of handling abundant soft conditioning data. Moreover, the risk that a cell-by-cell soft 105 

constraining may cause an overconditioning of the simulation has not been fully investigated. 106 

Overconditioing is defined by the authors as an effect triggered by dense and spatial correlated 107 

conditioning data that produces an altered picture of observable uncertainties. Therefore the self-108 

consistency of the stochastic simulation is questioned, because soft constraining should be treated 109 

accordingly during the simulation.         110 

Recent studies by Lee et al. (2007) and dell'Arciprete et al. (2012) highlight that TProGS is compatible 111 

with other geostatistical methods like, multi-point statistics, sequential Gaussian simulations and 112 

variogram statistics (Gringarten and Deutsch, 2001). The distinct strength of TProGS is the simple and 113 

direct incorporation of explicit facies manifestations like mean length, proportion and (asymmetric) 114 

juxtapositional tendencies of the facies. 115 



Geophysical datasets are valuable information in many hydrogeological investigations. It can 116 

considerably improve the conceptual understanding of a facies or hydraulic conductivity distribution and 117 

identify non-stationary trends. However, the integration of geophysical data and lithological borehole 118 

descriptions is often difficult. A recent study by Emery and Parra (2013) presents an approach to combine 119 

borehole data and seismic measurements in a geostatistical simulation to generate multiple realizations of 120 

porosity. Hubbard and Rubin (2000) review three methods that allow hydrogeological parameter 121 

estimation based on geophysical data. The three methods link seismic, ground penetrating radar (GPR) 122 

and tomographic data with sparse borehole data to support the hydrogeological description of the study 123 

site. Our study integrates high resolution airborne geophysical data with borehole data to build a 124 

probabilistic classification of the subsurface at site. The geophysical data are collected by SkyTEM, an 125 

airborne transient electromagnetic method (TEM) that has been used extensively in Denmark for the 126 

purpose of groundwater mapping (Jorgensen et al., 2003b; Sorensen and Auken, 2004; Auken et al., 127 

2009. This study utilizes a method that translates SkyTEM observation data into facies probability which 128 

enables associating the geophysical data with softness, according to the level of uncertainty. Very few 129 

studies have integrated high resolution airborne geophysical data in a stochastic modeling process 130 

(Gunnink and Siemon, 2009; He et al., 2013).     131 

Most stochastic studies only make relatively simple validations of how well the simulations are able to 132 

reproduce known geostatistical properties. Carle (1997) and Carle et al. (1998) investigate the goodness 133 

of fit between the simulated and the defined spatial variability. The geobody connectivity is used by 134 

dell'Arciprete et al. (2012) to compare results originated from two- and multipoint geostatistics. 135 

Chugunova and Hu (2008) make a simple visual comparison between the auxiliary variable fracture 136 

density and stochastic realizations of the simulated fracture media. A more advanced validation is 137 

conducted in Mariethoz et al. (2009b) where simulated variograms and histograms are compared with 138 

reference data for the simulation of synthetic examples. In spite of these few studies that have addressed 139 

the validation issue, no guidance on which performance criteria to use and how to conduct a systematical 140 

validation of a stochastic simulation has been reported so far.   141 



It should be noted that we in line with Refsgaard and Henriksen (2004) do not use the term model 142 

validation in a universal manner, but in a site specific context where a model validation is limited to the 143 

variables for which it has been tested as well as to the level of accuracy obtained during the validation 144 

tests.  145 

The objectives of this study are: (1) to set up TProGS for a study site based on lithological borehole data 146 

and high resolution airborne geophysical data and investigate the effect of the two distinct conditioning 147 

datasets to the simulation; (2) to assess the problem of overconditioing in a stochastic simulation; (3) to 148 

ensure that non-stationary trends are simulated accordingly by TProGS; and (4) to identify and test a set 149 

of performance criteria for stochastic simulations that allow the validation against geostatistical properties 150 

derived from field data. The results of the present study are intended for application in a hydrological 151 

modeling context (Refsgaard et al., 2014).  152 



2. Study Site 153 

Figure 1 shows the 101 km
2
 Norsminde catchment, located on the east coast of Jutland south of Aarhus. 154 

The topography allows a separation between an elevated western part, with changing terrain and a 155 

maximum elevation of 100 m and a flat and low elevated eastern part, where the coastline represents the 156 

eastern boundary. Glacial morphologies, namely moraine landscapes are predominant in most of the 157 

catchment. The geological stratigraphy indicated by borehole logs encompasses Paleogene and Neogene 158 

marine sediments underlying a heterogeneous stratigraphy of Pleistocene glacial deposits. The Paleogene 159 

sediments are characterized by very fine-grained impermeable marl and clay. Above the Neogene 160 

sequence shows sandy formations encased by a clay-dominated environment with Miocene marine 161 

sediments. The entire Miocene sequence varies in thickness up to 40 m and the sandy formations reach 162 

thicknesses of more than 10 m. The Miocene sequence is only present in the western part of the 163 

catchment where the stochastic modeling is conducted and forms the lower boundary of the simulation 164 

domain. Thus, only the upper Pleistocene glacial sequence is modeled. The glacial deposits in the western 165 

part of the catchment contain both sandy and clayey sediments, where clay is predominant. Borehole logs 166 

indicate that the Pleistocene clay spans from glaciolacustrine clay to clay till. Within the clay 167 

environment, the sandy units are allocated in small units and vary between gravel, meltwater-sand and 168 

sandy tills. The total thickness of glacial sediments varies between 10 and 40 m with heterogeneous 169 

distributions of the mostly glaciofluvial sand features between less than a meter and 20 m in thickness. 170 

The subject to the stochastic modeling, the delineated Pleistocene glacial sequence in the western part, 171 

provides interesting challenges like distinct heterogeneity and a diverse terrain.   172 



3. Data 173 

Two different sources of data, namely lithological borehole data and airborne based geophysical data 174 

(SkyTEM) are used, where the former is utilized to describe the vertical sand and clay variability and the 175 

latter for assessing the lateral direction.  176 

3.1. Borehole Data 177 

The borehole dataset contains 112 borehole logs with varying depths. The descriptions in the borehole 178 

reports are converted to a categorical binary (sand/clay) system at 5 cm vertical discretization. Further 179 

each borehole’s uncertainty is validated He et al. (2014). The uncertainty assessment allows defining 180 

individual trust scores and thus the definition of how much each borehole should constrain the conditional 181 

simulation in the form of soft data.  Drilling method, age, purpose of drilling, among others are used as 182 

variables to ensure a systematic approach to validate the uncertainty of each individual borehole. The 183 

boreholes are grouped into four quality groups with 100%, 95%, 90% and 85% as trust scores. The 184 

classified borehole dataset states an overall sand proportion of 30%.  185 

3.2. Geophysical Data 186 

The geophysical dataset comprises resistivity data from SkyTEM helicopter surveys. The SkyTEM 187 

method has been extensively used for subsurface mapping in Denmark (Jorgensen et al., 2003a; 188 

Jorgensen et al., 2005), where it has proven to be a successful tool for hydrogeological investigations. 189 

SkyTEM data have the advantage of a high spatial resolution in the top 20 to 30m and at large spatial 190 

coverage. However, some studies rise concern about the accuracy of interpretations of deep soundings 191 

(Andersen et al., 2013). In the Norsminde catchment data were collected at 2000 flight km containing 192 

over 100,000 sounding points. The distance between the flight lines is between 50 and 100 m. The dataset 193 

is processed with a spatially constrained inversion algorithm (Schamper and Auken, 2012) giving a 3D 194 

distribution of the underground resistivity. The sounding data were interpolated to a 20m x 20m x 2m grid 195 

domain by using 3D kriging as the interpolation method. The gridded resistivity data can be utilized as a 196 

proxy for lithology, as high and low resistivity cells indicate a high probability of sand and clay, 197 



respectively. Bowling et al. (2007) conduct a detailed study on the relationship between sediment and 198 

resistivity at a field site. Resistivity is linked to grainsize distribution and is used to delineate mayor 199 

geological structures. A strong positive correlation between gravel content in the lithology and resistivity 200 

is observed.  201 

The SkyTEM dataset covers approximately 85% of the delineated glacial sequence. Figure 2 shows the 202 

spatial variation of the median resistivity for a 4- and a 16- subarea grid. Higher median resistivity values 203 

are located in the southern part of the glacial sequence. This indicates a greater sand proportion in the 204 

given areas. The conclusion of the spatial pattern in Figure 2 is that stationarity cannot be attested to the 205 

glacial sequence. This will have implications for the stochastic simulation.  206 

The exact sand proportion can be derived by introducing a cut off value that divides the SkyTEM dataset 207 

into a sand and a clay fraction. Jorgensen et al. (2003b) estimate resistivity thresholds to differentiate 208 

between sediments in buried valleys in Denmark. Accordingly, glacial sand has a resistivity greater than 209 

60 Ωm whereas clayey till sediments are placed between 25 and 50 Ωm and thus the exact cut off value 210 

varies between study sites.  211 

3.3. Data integration 212 

Figure 3 underlines some of the associated problems of the data integration of geophysical SkyTEM data 213 

and borehole descriptions. The lithological information from the borehole interprets thin layers of 214 

meltwater sand confined by clay in the top few meters. The SkyTEM data with a vertical resolution of 215 

two meters cannot capture this small scale variability. This supports to use geophysical data only for the 216 

lateral model of spatial variability and to incorporate the fine descriptions from the borehole data for the 217 

vertical model of spatial variability. 218 

He et al. (2014) developed a method to manually calibrate the cut off value by comparing borehole with 219 

SkyTEM data at different spatial domains with the aim to reduce the deviation in sand proportion 220 

between the two data types. It is assumed that the deviation has to be minimized at domains with a high 221 

borehole density where the boreholes are assumed to best represent the domain conditions. It is shown 222 



that a borehole density of 2 per km
2
 reduces the representative error and that 46 Ωm as cut off value 223 

reduces the deviation in sand proportion between the two datasets. The calibrated cut off value yields a 224 

sand proportion of 23%.  225 

Further He et al. (2014) developed a histogram probability matching (HPM) method that enables a direct 226 

translation from resistivity into facies probability. Resistivity is paired with the lithological borehole 227 

description at the coinciding cell. The data pairs are grouped in 10 Ωm bins and for each bin the sand/clay 228 

fraction is first calculated and then plotted as a histogram. 3
rd

 order polynomial curve fitting is applied to 229 

the histogram and the manually calibrated cut off value is superimposed to the fitted curve (Figure 4). The 230 

shape of the curve reflects the lumped uncertainties from both datasets. The flatness of the transition 231 

zone, around 50%, sand probability indicates a high uncertainty for the corresponding resistivity values. 232 

There are many sources of uncertainty that will affect the relationship between electrical conductivity and 233 

facies information. The HPM-method lumps various sources and the shape of the fitted curve reflects 234 

those, especially the width of the transition zone. He et al. (2014) discussed the prevalent uncertainties: 235 

first, borehole descriptions are not accurate, and classification of borehole lithology is subjective. Second, 236 

there are uncertainties on the resistivity data due to the resolution of the physics itself, the geophysics 237 

instruments, field measurements and signal processing (inversion). Third, there is no unique relationship 238 

between resistivity and lithology, and the curve can therefore be fitted in various ways. Last, there are 239 

uncertainties related to the scale of aggregation, since the borehole data and geophysical data have 240 

different resolutions and hence different supporting scales. The HPM-method used in this study is purely 241 

based on spatial correlations and is not build up on physical relationships. The main limitation is that it is 242 

site specific and cannot be applied to other catchments.   243 



4. Methods 244 

4.1. TProGS – Transition Probability Geostatistical Software 245 

The geostatistical software TProGS is applied in this study. It is based on the transition probability (TP) 246 

approach (Carle and Fogg, 1996; Carle et al., 1998). Continuous Markov Chain models (MCM) are used 247 

to represent the model of spatial variability (Krumbein and Dacey, 1969; Carle and Fogg, 1997; Ritzi, 248 

2000). TProGS allows for the simulation of multiple realizations by utilizing a sequential indicator 249 

simulation (SIS) (Seifert and Jensen, 1999) and by performing simulated quenching (Deutsch and 250 

Cockerham, 1994; Carle, 1997). These two steps are mutually dependent and they make sure that the 251 

realizations honor local conditioning data as well as the defined model of spatial variability. 252 

The major advantage of TProGS is that fundamental observable attributes are parameterized in the 253 

modelling process: volumetric fractions (proportions), mean lengths (thickness and lateral extent) and 254 

(asymmetric) juxtapositional tendencies. These attributes can be assessed by data analysis and geological 255 

interpretations and control the shape of the MCM model. The facies proportion is related to the 256 

asymptotic limit of the MCM. The mean length is indicated on a plot of auto-transition probabilities as 257 

the intersection of the tangent at the origin with the x-axis. Asymmetric juxtapositional tendencies are of 258 

interest when simulating a system with at least three categories and can thus be neglected in this study. 259 

TProGS computes the realizations of the geology in two uncoupled, but mutually dependent steps. An 260 

initial configuration of facies distribution is produced by the SIS algorithm (Deutsch and Journel, 1992). 261 

Secondly, the initial configuration is reshuffled by the simulation quenching optimization algorithm 262 

(Deutsch and Cockerham, 1994). The TProGS simulation domain of this study is discretized into 20m x 263 

20m x 2m cells on a 450 x 600 x 40 cell grid. The horizontal transition probabilities (TP) are based on 264 

SkyTEM data, that is categorized by a cut off value of 46 Ωm and the vertical extent is purely based on 265 

borehole data. 266 

 

 



4.2. Split Sample Test 267 

The two incorporated conditioning datasets are very distinct and will affect the simulation in opposite 268 

ways: sparse borehole data allow large simulation freedom whereas dense SkyTEM data limit the 269 

simulation freedom. Naturally they will be combined in order to condition the simulation to the best 270 

combined knowledge of the system. However it is of interest to know how each individual conditioning 271 

dataset affects the simulation. In this context a split sample test can reveal valuable information: one 272 

simulation conditioning to purely borehole data and the other one conditioned to purely SkyTEM data. It 273 

will be tested how well the simulations conditioned to borehole data reproduce the high resistivity cells, 274 

where a high sand probability is evident and how well the simulations conditioned to SkyTEM data 275 

reproduce the locations with borehole information.      276 

4.3. Moving Sampling 277 

Most studies on stochastic modeling condition the simulation to sparse data. In this study a 278 

comprehensive cell-by-cell soft conditioning dataset is applied and it is anticipated that this may result in 279 

overconditioning. Decimating the conditioning dataset out is a very intuitive sampling approach to work 280 

around the problem of overconditioning. However, if the resampled conditioning dataset is too sparse, 281 

information from the original dataset might not be sufficiently accounted for. Thus the tradeoff between 282 

two extremes, too much and too few data is investigated. Opposed to the static sampling technique a 283 

moving sampling method is applied. n different location grids with the same distance between the 284 

samples for each chosen distance (100m, 200m, etc.), where each has an accumulated shift of the origin 285 

(+ sampling distance/n in X and Y direction). For the 100m moving sampling approach the first sampling 286 

grid has the origin (0,0) the second (20,20), the third (40,40), etc. For the TProGS application in this 287 

study five location grids are generated, which yields five independent soft conditioning datasets. Five 288 

realizations are computed for each soft dataset; giving a total of 25 realizations. In addition to the 289 

comparison between moving and static sampling, different sample densities are also be tested.  290 

4.4. Sampling scenarios 291 



In total, eight conditioning scenarios are tested in this study. For the split sample test two scenarios are 292 

used, namely purely borehole data (‘onlyBH’) and purely cell-by-cell SkyTEM data (‘onlySky20’). In the 293 

following both datasources are combined to represent the best combined knowledge of the system. 294 

Further, static and moving sampling are applied: Borehole data and SkyTEM data sampled statically at 295 

20m, 100m, 200m and 500m (‘BH-Sky20static’, ‘BH-Sky100static’, ‘BH-Sky200static’ and ‘BH-296 

Sky500static’, respectively). Moving sampling is tested at 100m and 200m sampling distance (‘BH-297 

Sky100moving’and ‘BH-Sky200moving’, respectively). 298 

4.5. Performance criteria 299 

Five performance criteria are defined to evaluate an ensemble of realizations of the geology. They aim for 300 

validating the ensemble with respect to the TProGS input, namely the defined model of spatial variability 301 

(mean length and proportion) and the soft conditioning dataset. The five performance criteria test the self-302 

consistency of TProGS and thus if all input parameters and data are treated accordingly. The glacial 303 

structure in the Norsminde catchment represents only approximately 20% of the entire TProGS 304 

simulation domain and deviations in simulated spatial statistics between the entire model domain and the 305 

simulation target are expected.      306 

4.5.1. Sand proportion 307 

The deviation between the mean simulated sand proportion and the defined sand proportion in the MCM 308 

can be calculated for a set of realizations. The focus should be on the target area only, the area that will be 309 

extracted from the rectangular model domain for subsequent applications. The analysis of the sand 310 

proportion is based on 25 realizations.   311 

4.5.2. Mean length 312 

The simulated mean length can be estimated by recalculating the TPs from the TProGS output for the 313 

target area only. The simulated TPs for a set of realizations can be averaged (10 realizations in this case) 314 



and compared with the measured TPs to estimate the deviation in mean length between the predefined 315 

and the mean simulated length.    316 

4.5.3.  Geobody connectivity 317 

The degree of connectivity of permeable areas in the subsurface has major implications for flowlines and 318 

particle ages. Renard and Allard (2013) conducted a methodology study on various static and dynamic 319 

connectivity metrics. These metrics can be utilized as a comparison and interpretation indicator for 320 

multiple stochastically generated realizations of the geology. The work by dell'Arciprete et al. (2012) 321 

shows the successfully implementation of connectivity metrics to compare stochastic realizations 322 

computed by two- and multi-point statistics. Giudici et al. (2011) underline that evidence of a single 323 

“best” connectivity metric is still missing and further research is necessary in that field.    324 

For this study two static connectivity metrics, θ and Г, are selected. They refer to the first and second 325 

geobody connectivity defined by Hovadik and Larue (2007). A geobody is defined as one connected 3D 326 

cluster of sand. Hence it is a distinct sand feature that is confined by clay. The architectural elements are 327 

interpreted on a 20m x 20m x 2m scale. 328 
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       Eq.2 330 

where Vi is the volume of an individual geobody, n is the number of unconnected geobodies and Vl is the 331 

volume of the largest occurring geobody. θ represents the ratio of the volume of the largest geobody to 332 

the total volume. Denoted as Г is the proportion of the pairs of cells that are connected among the entire 333 

pairs. The two selected connectivity metrics originate from the percolation theory, which describes the 334 

transition from many disconnected clusters to one large coherent cluster. This is mainly depending on the 335 

facies proportion. As the proportion gradually increases it reaches a point where one big cluster appears. 336 



The percolation threshold is expected to be approximately 0.59 and 0.31 for a 2D and 3D grid, 337 

respectively Hovadik and Larue (2007). Mean values of θ and Г are computed based on 10 realizations.       338 

 

4.5.4. Facies probability distribution 339 

The facies probability distribution reflects the inter variability among a set of realizations and can be 340 

extracted from a probability map. Each cell in the probability map reflects the simulated category 341 

probability within a set of realizations. The comparison between the distribution of the original soft 342 

dataset, which constrains the simulation and the simulated facies probability distribution, allows 343 

validating the performance of the simulation. Ideally the distribution of the original soft dataset is 344 

reproduced by the simulation, which does not allow assumptions concerning the accuracy of the 345 

allocation pattern of the simulated facies probability.  346 

4.5.5. Facies probability – resistivity bias 347 

The validation of the facies probability – resistivity bias depicts if the simulated facies probability 348 

corresponds to the fitted curve derived from the histogram probability matching method, and thereby test 349 

whether the simulated facies probability is according to the resistivity pattern. The simulated facies 350 

probability value is paired with the coinciding resistivity value of the gridded SkyTEM dataset. The pairs 351 

are grouped in 5 Ωm bins and the median values of simulated facies probability can be plotted for each 352 

bin. Further the RMSE can be calculated between the simulated facies probability and the fitted curve at 353 

each bin in order to quantify the agreement.    354 

5. Results 355 

5.1. TProGS setup 356 

The computed transition probabilities (TP) and the fitted Markov Chain model (MCM) for both 357 

horizontal and vertical direction are given in Figure 5. A sand proportion of 23% and a mean length of a 358 

sand lens of 5m and 500m for vertical and horizontal direction respectively yield MCMs that are in good 359 



agreement with the measured TPs. Figure 3 indicates an increasing gradient in sand proportion from north 360 

to south. This non-stationary trend is also shown in Figure 5 where the additional sand-sand transition 361 

MCMs are plotted that fit measured TP data from the northern and southern subdomain; defined by 13%, 362 

2m, 400m and 30%, 5m and 600m respectively. 25 realizations are generated based on the MCMs that are 363 

specified in Figure 5.  364 

5.2. Split sample test 365 

Two sets of 25 realizations are computed. The entire conditioning dataset is split into two parts, in order 366 

to analyze the effect of both extremes of the conditioning spectrum: Abundant data (onlySky20) and 367 

sparse data (onlyBH).   368 

5.2.1. Visual comparison 369 

Figure 6 presents two individual realizations (a) and (b) and the resulting probability maps (c) and (e) 370 

from both conditioning datasets at an elevation of 49m. Examining the individual realizations reveals that 371 

the spatial variability is much greater for the onlyBH scenario results. This is reasonable, because the 372 

amount of constraining data is also much less. This conclusion is supported by the probability maps. The 373 

probability map computed from the onlySky20 conditioning scenario shows only little inter variability 374 

among the 25 realizations and resembles almost a binary sand and clay image. The onlyBH scenario 375 

simulates a probability map that shows high inter variability among the computed realizations, but the 376 

high probable sand areas do not coincide with the high resistivity areas in the SkyTEM data (d), because 377 

many large sand features are not captured by borehole data. On the other hand, some high probable sand 378 

features in the onlyBH scenario are not represented by the onlySky20 scenario, because small sand 379 

features that are indicated by the borehole data are not detected by the SkyTEM survey.  380 

5.2.2. Quantitative comparison 381 

High resistivity areas are defined by a minimum resistivity value of 60 Ωm which is equivalent to 70% 382 

probability of sand occurrence based on the fitted histogram curve in Figure 4. The results of the split 383 



sample test are given in Table 1. The onlyBH scenario allocates only 20.1% of the high resistivity cells 384 

accordingly. Also, only 74.3% of the cells, where the lithology in the borehole reports shows sand are 385 

simulated correspondingly. Some of the borehole data are treated as soft data, which enables the 386 

simulation to overwrite the lithological information, during the SIS and the simulated quenching. This 387 

will happen especially when sand lenses are very thin and vertically confined by clay. The onlySky20 388 

scenario simulates 44% of those cells accordingly and allocates almost all high resistivity cells as sand. 389 

However, almost 60% of the high resistivity cells are simulated with 100% sand probability. This is in 390 

poor agreement with field data, because the fitted histogram curve does not exceed sand probability 391 

values higher than 85% (Figure 4). The SkyTEM dataset indicates a large high resistivity cluster in the 392 

south-west at an elevation of 49 m (Figure 6), which is not detected at all by the borehole dataset, because 393 

there is only one borehole penetrating this area.  394 

5.2.3. Local comparison 395 

Figure 7 shows the vertical profile of one borehole (99.918) that penetrates the sand cluster and compares 396 

the simulation results from the onlyBH and onlySky20 scenarios. The borehole has a trust score of 95%. 397 

While both datasets agree on the top layer being sandy and the occurrence of a thick clay layer below 75 398 

m followed by a sand layer, they disagree on the location of the deeper sand layer. In the borehole data 399 

this sand deeper sand layer is detected at an elevation of 45m and below, whereas the SkyTEM dataset 400 

indicates sand occurrence approximately 8m higher; 53m and below. This discrepancy between 45m and 401 

53 m has considerable implications for the simulation results at 49 m shown in Figure 6. However, one 402 

borehole alone will not be sufficient to substantially influence the simulation over large areas. Marginal 403 

amplification of the onlyBH scenario is noticeable at borehole 99.918. On the other hand, sand 404 

probabilities are clearly amplified in the onlySky20 scenario; everything above 0.5 is amplified close to 405 

1.0 and everything below 0.5 close to 0. The results from Table 1 and Figures 6 and 7 support the 406 

assumption of overconditioning caused by the comprehensive cell by cell soft conditioning.    407 

5.3. Overconditioing 408 



The observed problem of overconditioing is caused by spatially correlated data which are incorporated 409 

into the modeling process. A very intuitive approach to work around the problem of overconditioning is 410 

decimating the SkyTEM dataset by only sampling part of it. This will only be necessary in horizontal 411 

direction because the correlation length of the data is much less in the vertical direction. There is a 412 

tradeoff between the correctly simulated facies probability and the accuracy of the spatial allocation 413 

pattern. To illustrate this tradeoff three resampled conditioning scenarios are compiled: 100m, 200m and 414 

500m sampling distance in X- and Y-direction and at the same time also including the boreholes for 415 

conditioning. For each of the three conditioning scenarios (BH-Sky100static, BH-Sky200static and BH-416 

Sky500static, respectively) 25 realizations are computed and the probability maps for sand are presented 417 

in Figure 8. The simulated probability maps of the BH-Sky100static and BH-Sky200static conditioning 418 

scenarios are visually almost identical. Therefore only the latter is shown (d) and the image reflects 419 

already a higher variability than the results by the BH-Sky20static scenario (c). Reducing the conditioning 420 

data density increases the uncertainty of sand or clay. But at the same time the accuracy of correctly 421 

locating sand or clay units decreases, because the BH-Sky500static scenario (e) shows high probable sand 422 

areas which are not indicated by the original dataset (b). If for instance a high resistivity cell embedded in 423 

low resistivity cells is sampled for the conditioning, this cell may generate a sand lens in the out thinned 424 

conditioning scenario but would be limited by the neighboring cells in the BH-Sky20static scenario. The 425 

moving sampling method can improve the spatial coverage of the conditioning datasets and thus improve 426 

the quality of a set of realizations.    427 

Again, the high resistivity cells are investigated to analyze if the bigger sand lenses are simulated 428 

correctly by the different conditioning datasets (Table 2). It is evident that the percentage of cells at the 429 

extreme ends of the simulated sand probability falls drastically after decimating the soft data out. The 430 

100m distance scenarios still allocates more than 80% of the high resistivity correctly. On the other hand, 431 

the BH-Sky500static performs poorly, by only simulating 32.7% of the high resistivity cells correctly. It is 432 

also evident that the differences between static and moving sampling are small with regard to the correct 433 

allocation of the higher resistivity cells.    434 



5.4. Performance criteria 435 

For further validation of the different sampling distances (20m, 100m, 200m and 500m) and sampling 436 

schemes (static and moving) the five identified performance criteria will be applied to quantify the quality 437 

of the simulations.    438 

5.4.1. Sand proportion 439 

Table 3 shows the defined sand proportions of the delineated glacial structure. In order to investigate non-440 

stationarities the model domain is additionally subdivided into north and south. The SkyTEM dataset 441 

indicates a higher sand fraction in the southern part compared to the north, 30% and 13% respectively. 442 

The simulated sand proportions for the BH-Sky20static scenario show a good agreement with the defined 443 

values. Larger deviations are evident for the BH-Sky200moving scenario.  Both conditioning scenarios are 444 

capable of reproducing the non-stationarity of the system, in regard to the sand proportion. The sand 445 

proportions are somewhat overestimated for BH-Sky200moving scenario, and much less for the BH-446 

Sky20static scenario. Also the overestimation of simulated sand proportion in the northern subarea is 447 

larger than in the southern subarea. 448 

5.4.2. Mean length 449 

The comparison of the early (first lag = 100m) measured and simulated TPs for the sand-sand transitions 450 

in X- and Y-direction allows to validate how well the lateral mean length is simulated by TProGS. Figure 451 

9 comprises the measured TPs in horizontal direction, the fitted MCM and the computed mean TPs for 452 

the BH-Sky20static scenario and BH-Sky200moving scenario, based on 10 realizations, for the total and 453 

the sub-domains. The effect of overconditioning is very evident, as the computed mean TPs based on 20m 454 

sampling conditioning data purely represent the original measured TP values. Since no simulation 455 

freedom is present, the MCM cannot control the output. On the contrary, the BH-Sky200moving scenario 456 

computes mean TPs that are more independent from the original data and rather follow the defined MCM. 457 

The mean length of a sand lens can be derived by the steepness of the tangent where the lag approaches 458 

zero. In general, the TP at lag 0 and 100 m are simulated too low; indicating that the simulated mean size 459 



of a sand lens is too small. This is more prominent in results by the BH-Sky200moving scenario. It is 460 

evident that the non-stationarity of the mean length of a sand lens is represented accordingly, although it 461 

is undersimulated at all domains.       462 

5.4.3. Geobody connectivity 463 

For the categorized SkyTEM data θ and Г are computed as 98.7% and 99.3%, respectively. This shows 464 

values close to unity and should not be seen as a real reference, rather as a benchmark, because the 465 

extreme low variability picture does not account for any uncertainties. The TProGS simulations based on 466 

the two conditioning scenarios both undersimulate the connectivity metrics. The BH-Sky20static scenario 467 

yields negative deviations of 2.1% and 1.1%, respectively and the BH-Sky200moving scenario 2.8% and 468 

1.4%, respectively. The results indicate that θ and Г show a similar behavior, where Г appears to be 469 

decreasingly greater as the proportion increases. Values close to unity and the very small deviations are in 470 

good agreement with the general percolation theory, which sets the percolation threshold to 471 

approximately 30% for 3D grids (Hovadik and Larue, 2007).  472 

5.4.4. Facies probability distribution 473 

Figure 10 shows the probability distribution for all discussed conditioning scenarios, with static (a) and 474 

moving (b) sampling, with 25 realizations in each set. The original soft data distribution has its maximum 475 

at approximately 20% and less than 5% are with either 0% or 100% sand probability. The BH-Sky20static 476 

scenario simulates approximately 70% of the cells with zero change and thus has an extremely poor fit 477 

with the soft dataset and the overconditioning is very prominent. It appears that overconditioning 478 

amplifies the conditioning values to the extremes (e.g. 0.6 is simulated as 1.0 and 0.4 as 0.0, Figure 7). 479 

The BH-Sky500static scenario reproduces the probabilities from the original soft dataset well, with only 480 

approximately 10% zero change cells. However, the allocation pattern shows small resemblance with the 481 

original dataset (Figure 8, (b)). BH-Sky100static scenario gives an intermediate solution, as the 482 

probability is better reproduced than with the BH-Sky20static scenario, but still, more than 20% of the 483 

cells are simulated as purely either sand or clay within the ensemble. Nevertheless, the BH-Sky100static 484 



scenario is dense enough to capture the full variability of the system, as indicated by the original SkyTEM 485 

dataset. Additionally the results of the BH-Sky200static scenario are plotted in (a). The number of zero 486 

variability cells is decreased to approximately 20% and the maximum at 20% sand probability is close to 487 

the original soft dataset. Figure 10, (b) compares the static with the moving sampling approach for the 488 

100m and 200m distance scenarios. The simulated facies probability distribution shows no differences for 489 

the static and moving 100m distance scenarios. However, at 200m sampling distance, the two sampling 490 

techniques are distinguishable, as the moving sampling yields fewer zero variability cells than the static 491 

sampling.         492 

5.4.5. Facies probability – resistivity bias 493 

The results are given in Figure 11 for the static sampling (a) and the moving sampling approach (b). The 494 

strong amplification of the resulting probabilities originating from the BH-Sky20static scenario is obvious 495 

in (a). The BH-Sky500static scenario performs poorly, especially in high resistivity areas, because those 496 

areas are not sufficiently covered by the 500m sampling distance. A better fit is represented by the BH-497 

Sky100static scenario, because the amplification is much lower than for the BH-Sky20static scenario, 498 

especially for high resistivity areas. On the other hand, low resistivity areas are more amplified than high 499 

resistivity areas. The BH-Sky200static scenario gives a satisfying fit with the original fitted curve, 500 

especially in high resistivity areas, which indicates that the high probable sand cells are mostly allocated 501 

correctlty by the model. The simulated facies uncertainty for the low resisitivty cells is rather amplified 502 

by the BH-Sky200static scenario. Figure 11, (b) investigates the simulation differences caused by the 503 

static and moving sampling approach. The behaviour is similar to Figure 10, (b), because the differences 504 

for the 100m distance scenarios are marginal, while the BH-Sky200moving scenario generates a slightly 505 

lower facies probability – resisitivity bias than the BH-Sky200static scenario. The RMSEs between the 506 

fitted curve (Figure 4) and the simulations show that the BH-Sky200moving and BH-Sky200static 507 

sampling conditioing scenarios perform best, both with a RMSE of 0.06. Comparable are the BH-508 

Sky100moving and BH-Sky100static sampling conditioing scenarios with a RMSE of 0.09 and 0.08, 509 

respectivley. The BH-Sky20static scenario performs poorest with a RMSE of 0.2.  510 



6. Discussion 511 

6.1. Choice of geostatistical method 512 

The choice of the stochastic method for this study is application driven (Refsgaard et al., 2014). In the 513 

Norsminde catchment, it is evident from both borehole and geophysical data that the glacial sequence 514 

contains till clay and sand lenses distributed in extremely irregular patterns that are non-stationary. 515 

Without dense conditioning data the heterogeneous and non-stationary structures will not be simulated 516 

correctly. TProGS among other two-point statistics enables soft conditioning, where the soft information 517 

represents the associated level of uncertainty of an observation. The other distinct strength of TProGS is 518 

the easy incorporation of observable geological attributes when defining the Markov Chain models. In 519 

multi-point statistics (MPS) the definition of a reliable 3D training image is challenging, especially when 520 

simulating extremely irregular patterns (Honarkhah and Caers, 2012). Defining a MPS training image for 521 

the Norsminde catchment is peculiar, because it could only be based on interpreted SkyTEM data; with 522 

inflated length scales in the vertical direction. This makes the model of spatial variability in TProGS more 523 

reliable and objective, because it is based on measured transition probabilities and not on an interpreted 524 

training image. Further the transition probabilities are based on the data type we trust best: borehole data 525 

in the vertical- and SkyTEM data in the horizontal direction. In this study it is of spatial interest to 526 

correctly simulate the vertical transition probabilities in order to subsequently simulate the flow paths in 527 

the shallow groundwater system most accurately. This requires a detailed description of the spatial 528 

variability of the vertical direction, with indication of thin sand lenses, only provided by borehole data.  529 

However, MPS is broadly applied in 2D and 3D applications: The snesim algorithm (Liu, 2006) combines 530 

object-based and pixel-based methods in the general MPS framework, to enforce spatial pattern 531 

reproduction and local conditioning, respectively. It was successfully applied by He et al. (2013) in a 3D 532 

application. Another promising approach is given by Chugunova and Hu (2008), where MPS is tested on 533 

non-stationary 2D structures, by continuous soft conditioning to a secondary variable. Here two training 534 

images from the geological structure and from the secondary variable are joint in the simulation. 535 



Many promising geostatistical methods have advanced to incorporate auxiliary information to constrain 536 

the simulated target variable: Truncated plurigaussian simulation (Mariethoz et al., 2009a), collocated 537 

simulation with probability aggregation (Mariethoz et al., 2009b). Most of them are only tested on 2D 538 

applications partly with synthetic data. This present study uses TProGS as the geostatistical tool, because 539 

of its reliable model of spatial variability and further it is well established in 3D applications with sparse 540 

conditioning data. The application of vast soft conditioning data to a TProGS simulation gives valuable 541 

information on how such data can influence the stochastic simulation results.  542 

6.2. TProGS setup 543 

Direct transformation of geophysical data, such as SkyTEM, into a deterministic subsurface model is 544 

risky, because too much reliance on geophysical mapping can lead to seriously wrong hydrogeological 545 

models (Andersen et al., 2013). Uncertainties are expected in both, geophysical and lithological data and 546 

the shape of the fitted histogram curve reflects those. High uncertainty is associated with the transition 547 

zone; around 50% sand probability. Although the cut off value that divides the SkyTEM dataset into sand 548 

and clay is calibrated, there is a large quantity of high uncertain cells included which make the measured 549 

TPs directly dependent on the cut off value. Therefore the facies proportion and mean length are very 550 

sensitive to the selection of the cut-off value. As a result, the MCM in the lateral direction, as part of the 551 

TProGS setup, is highly dependent on the way the SkyTEM data is treated. Difficulties in the integration 552 

of the two data types are indicated in Figure 2. Small scale heterogeneities indicated by the borehole 553 

descriptions are not represented by the coarser SkyTEM dataset. This supports computing the horizontal 554 

and vertical TPs individually using SkyTEM and borehole data, respectively.   555 

The SkyTEM dataset used in the present study is a 3D grid of 20m x 20m x 2m which was spatially 556 

interpolated from soundings with distances of about 17 m and 50-100 m along and between the flight 557 

lines, respectively. To reduce the overconditioning problem it might have been preferable to use the direct 558 

sounding data instead of the interpolated dataset. A similar effect is achieved by resampling, but here 559 

interpolated data with a higher uncertainty than the direct soundings are used.  560 



Simulating a binary system is a crude simplification of the broad range of sediments in the glacial 561 

sequence. However, classifying the SkyTEM data into discrete facies or deriving the soft information on 562 

facies membership are peculiar in a multi facies environment. Additionally less abundant facies (e.g. 563 

gravel) will show extremely uncertain correlations in the histogram probability matching method. Last the 564 

less abundant facies might be represented on a 20m domain, but it will often not be visible on the 100m 565 

domain chosen for the subsequent hydrological flow simulations. Dell'Arciprete et al. (2012) present a 566 

study where geostatistics are implemented to simulate small scale heterogeneities in a multi facies 567 

environment.      568 

6.3. Data footprint 569 

Borehole and SkyTEM data are integrated by the histogram probability matching method (He et al., 2014) 570 

where differences in support scale are partly neglected. The support scales of the two data types are 571 

expected to vary. The lithological data from the boreholes are aggregated to 2m to be in better vertical 572 

agreement with the geophysical dataset. The agreement in the lateral direction is more questionable, 573 

because the footprint increases with depth for the geophysical data. The footprint is approximately 15-574 

20m on the surface and in the range of 50m at 30m penetration depth. Further the footprint will depend on 575 

the material; with a larger energized volume for high conductance materials (high clay content). The two 576 

steps of processing the sounding data, namely inversion and kriging are both expected to inflate the 577 

footprint by smoothing values. However one can assume that the chosen grid size of 20m x 20m x 2m is 578 

suitable for near surface resistivity values, because the footprint of the geophysical data is constantly 579 

smaller than the correlation length, which is approximately 500m in vertical direction and 5m in lateral 580 

direction. 581 

6.4. Split sample test 582 

Both datasources have advantages and disadvantages: Borehole data have a higher data certainty and a 583 

finer spatial resolution in the vertical extent to better represent smaller sand features, but are essentially 584 

undersampled in the lateral extend. On the other hand, SkyTEM data have a good spatial coverage and 585 



represent the bigger sand features well, but at the same time the data are associated with a higher data 586 

uncertainty. At this point, four major sources of uncertainty can be defined: (1) The inversion that 587 

transforms the SkyTEM measurement into resistivity, (2) the borehole data, (3) the relationship between 588 

lithology and resistivity and (4) the footprint mismatch between small scale borehole data and large scale 589 

SkyTEM data. So it is precarious to assume the SkyTEM data as true geology, but it can serve as a 590 

reference/benchmark when validating the simulation results. The onlyBH scenario does not capture all of 591 

the main sand features, which are revealed by the SkyTEM survey: Only 20% of the high resistivity cells, 592 

where the resistivity is greater than 70Ωm are simulated correctly. For the onlySky20 scenario only 44% 593 

of the sand descriptions in the boreholes are simulated correctly, which underlines that the SkyTEM data 594 

does not measure the finer sand features correctly. The conducted split sample test does not allow to draw 595 

firm conclusions on simulation performance, it rather analyses the agreement between the two dataset 596 

propagated through the model. 597 

6.5. Overconditioning 598 

Correlated data, both temporally and spatially are a common problem in hydrogeological investigations. It 599 

has not been previously reported how TProGS is able to handle such a conditioning dataset. TProGS 600 

stochastically simulates the subsurface facies system by utilizing the two mutually dependent steps SIS 601 

and simulated quenching. It is not assured if the soft information is considered accordingly for the 602 

cokriging of the local probability estimate in the SIS step nor if it is accounted for in the objective 603 

function used for the simulated quenching in the latest TProGS version. However Deutsch and Wen 604 

(2000) successfully integrate exhaustive soft data in simulated quenching.  605 

Work around methods have to be developed to overcome the problems associated with overconditioning. 606 

Decimating the soft conditioning dataset may seem as an overly simplistic and very crude approach, but 607 

the study aims at finding the balance between too few data and too many data. The risk to miss important 608 

features is high when conditioning to too few data. This study mainly deals with the latter case, where too 609 

many data lead to an underestimation of the simulation uncertainty. Including a moving sampling strategy 610 



ensures that the spatial variation in the original dataset is best represented. A drawback of this approach is 611 

that valuable information might be lost, which again underlines the need for model validation, where the 612 

entire geophysical dataset is used for the evaluation. The decimation approach works as a very pragmatic 613 

solution for a study-specific problem and its generalization might be limited. Decimating the SkyTEM 614 

dataset and only considering data on a 200m spaced moving sampling grid gives the most satisfying 615 

results. A 200m sampling distance is expected to be sufficient to adequately capture all relevant 616 

geological features proxied by the entire dataset; this can be argued by the fraction between the observed 617 

mean length and the conditioning spacing. The mean length of a sand lens is found to be 500m and can 618 

proxy the correlation length. With a horizontal length scale of 500m and sampling at 200m we still 619 

condition the simulation with two to three soft data points in each horizontal direction for each mean 620 

sized sand feature.   621 

Concluding it cannot be directly concluded that overconditioning is a general problem in stochastic 622 

simulations where a vast conditioning dataset is applied. However it can be presume that heavily spatially 623 

correlated data will affect also other stochastic simulation algorithms. TProGS was clearly not developed 624 

to run with such comprehensive conditioning. To our knowledge, the problem of overconditioning has not 625 

yet been reported nor discussed and with our study we would like to create awareness. In regard to the 626 

technique of geophysical prospecting it can be concluded that the problem of overconditioning is clearly 627 

not limited to airborne based TEM data.  628 

6.6. Non-stationarity 629 

Non-stationarity can be identified by subdividing the SkyTEM dataset (Figure 3 and 5). It is successfully 630 

tested if abundant conditioning data alone is capable of reproducing the observed non-stationary patterns. 631 

In a situation of sparse data, e.g. only borehole data for conditioning, these non-stationary trends cannot 632 

be reproduced correctly. Seifert and Jensen (1999) present an approach to model non-stationarity, which 633 

might be more suitable for sparse conditioning data. They suggested dividing the model domain into 634 

several stationary sub-domains, and each subdomain is then characterized using independent MCMs. 635 



When subdiving the model domain, care must be taken, that no major features are cut, because it is then 636 

difficult to model them correctly. This approach was tested in the present study, but results revealed that 637 

this method is not easily applicable in situations of abundant conditioning data, because large coherent 638 

sand features are cut by the sub-division and their connectivity could not be simulated adequately.     639 

6.7. Performance criteria 640 

We identified and tested five performance criteria for validating the model.  641 

(1) Sand proportion. Artificial conditioning data outside the target area honoring the defined proportion 642 

and MCM may help to make the simulation more homogeneous. In that context, exhaustive hard 643 

conditioning outside the simulation target can be tested.  644 

(2) Mean length. The simulated and measured TPs are compared by Carle (1997) and Carle et al. 645 

(1998). Carle et al. (1998) simulate a four category system and the simulated quenching yields a 646 

perfect match between the modeled TPs and the defined MCM. On the other hand, Carle (1997) 647 

underlines that small deviations are to be expected and shows this by various examples where 648 

different SIS and simulated quenching parameters are tested.   649 

(3) Geobody connectivity. The connectivity is partly dependent on the proportion. The sand connectivity 650 

for the simulation based on the BH-Sky200moving scenario is simulated lower and the sand 651 

proportion higher in comparison to the results from the BH-Sky20static scenario. This shows that the 652 

geobody connectivity is not fully depending on the proportion in this study. However it is a more 653 

feasible performance criterion for proportions far below the percolation threshold.  654 

(4) Facies probability distribution. A good agreement between the simulated facies probability 655 

distribution and the original soft dataset doesn’t ensure that the allocation pattern of the simulated 656 

probability is correct. This becomes evident when validating the results of the BH-Sky500static 657 

scenario.    658 



(5) Facies probability – resistivity bias. The simulated facies probability should be in agreement with a 659 

corresponding resistivity observation to ensure that the spatial allocation pattern is simulated 660 

correctly. All bins are weighted the same, neglecting the inequality of data in each bin.   661 

We used 25, 10 and 10 realizations to compute the first three performance criteria, respectively. 662 

Computing a moving average shows than the mean converges to +/-2% deviation to the final mean after 663 

ca. 15 realizations for the first criterion and after ca. 5 realizations for the second and third criteria, which 664 

justifies the selected number of realizations. The two latter criteria incorporate the computed probability 665 

map based on 25 realizations. Probability maps proved to be a useful tool to investigate the inter 666 

variability among realizations (Alabert, 1987; Carle, 2003; Mariethoz et al., 2009b). The results of the 667 

onlyBH scenario show the highest inter variability and a moving average tested at 10 random locations in 668 

the grid shows that after 20 realizations the mean converges to less than +/-20% from the final mean and 669 

to less than +/-10% after 23 realizations. These numbers are supposed to decrease as the conditioning data 670 

increase and therefore are 25 realizations in the analysis of the two latter criteria justifiable. 671 

Table 4 compiles the five performance criteria for two different TProGS simulations: The BH-672 

Sky20static- and the BH-Sky200moving scenario. The advantage of using multiple performance criteria is 673 

that concentrating on a single criterion may reveal an alleged good result, while another criterion attests a 674 

poor performance to the same simulation. Therefore a weighted and balanced analysis of the performance 675 

criteria helps to identify the best result. In this study, where abundant data are available, a good 676 

performance of the two latter criteria is as important as simulating accurate mean length/proportion. For 677 

example, if only considering sand proportion and mean length, it can be argued that the validation favors 678 

the BH-Sky20static scenario. However both, the facies probability distribution as well as the facies 679 

probability - resistivity bias attest poor performance.  On the other hand, if interpreting the probability 680 

distribution only, it seems that the validation favors the BH-Sky500static scenario. Collectively, the 681 

conclusion is that the BH-Sky200moving scenario generates the overall most balanced results. 682 
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Tables 

Table 1. Split sample test showing how many of the high probable sand cells (resistivity > 60 Ωm) are simulated 

with corresponding sand probabilities (> 70%) or fully deterministic (probability = 1.0) among 25 realizations. 

Conditioned to onlyBH and onlySky20. The last column shows how many of the areas that are shown as sand in 

the boreholes are simulated with sand probabilities > 85%. 

Conditioning 

Scenario 

Prob. of sand > 0.7 

AND            

resistivity > 60 Ωm 

Prob. of sand = 1.0 

AND             

resistivity > 60 Ωm 

Prob. of sand > 0.85 

AND             

borehole = sand 

onlyBH 20.1 % 1.34 % 74.3 % 

onlySky20 99.0 % 59.1% 44.0 % 

  



 

 

 

Table 2. Proportion of high probable sand cells (resistivity > 60 Ωm) that are simulated with corresponding sand 

probabilities (> 70%) or fully deterministic (probability = 1.0) for six conditioning datasets based on 25 

realizations. 

Conditioning 

Dataset 

Prob. of sand > 0.7 

AND            

resistivity > 60 Ωm 

Prob. of sand = 1.0 

AND             

resistivity > 60 Ωm 

BH-Sky20static 97.9 % 63.8 % 

 

BH-Sky100static / 

BH-Sky100moving 

 

84.1 % / 87,3 

 

10.4 % / 10.1 %  

 

BH-Sky200static / 

BH-Sky200moving 

 

75.8 % / 71.0 % 

 

5.4% / 3.6 % 

 

BH-Sky500static  

 

32.7 % 

 

1.5 % 

  



 

 

 

Table 3. Simulated and defined sand proportions for the total domain and two sub-domains based on two 

simulations with different soft conditioning datasets (BH-Sky20static and BH-Sky200moving), based on 25 

realizations. 

Mean sand 

proportion (%) 

based on 25 

realizations 

BH-Sky20static 

Total South North 

Defined 23 30 13 

Simulated 25.0 30.7 13.8 

Deviation +2.0 +0.7 +1.8 

 BH-Sky200moving 

Defined 23 30 13 

Simulated 29.3 33.7 21.5 

Deviation +6.3 +3.7 +8.5 

  



 

 

 

Table 4.  The five performance criteria and categorized SkyTEM data as benchmark that are applied to the two 

simulations with different soft conditioning datasets: Cell by cell soft conditioning and 200m moving sampling soft 

conditioning; both including borehole data. The first three criteria are expressed as deviation to the benchmark.  

Performance 

Criteria 

Categorized 

SkyTEM 

 

BH-Sky20static  

 

BH-Sky200moving 

1. Sand proportion 23% +2% +6.3% 

2. Mean length 

(X/Y) 
500m -21% / -20% -37% / -37% 

3. Geobody 

Connectivity (θ/Г) 
98.7% / 99.3% -2.1% / -1.1% -2.8% / -1.4% 

4. Facies 

probability 

distribution 

n.a. 

Poor (approx. 

70% cells with 

zero change) 

Satisfying (approx. 

15% cells with zero 

change) 

5. Facies 

probability-

resistivity bias 

n.a. 0.20 0.06 

    



 

 

 

Figure Captions 

Figure 1. The study site in eastern Jutland, Dk. The Norsminde catchment with the delineated glacial structure in 

the western part of the catchment. Additionally the river network and the topography. 

Figure 2. The median resistivity values from the SkyTEM data for the 4- and 16- subarea grid. Dark colors indicate 

a high median (max: 43.2 Ωm and 45.0 Ωm for the 4- and 16- subarea grid, respectively), light colors a low 

median (min: 32.0 Ωm and 29.5 Ωm for the 4- and 16- subarea grid, respectively) and white colors the absence of 

data. Additionally the location of the boreholes, the river network and the delineated glacial structure. The extent is 

9km in X- and 12km in Y-direction.   

Figure 3: Side-by-side comparison of borehole lithological data and SkyTEM vertical sounding data at borehole 

number 99.625 (He. et. al, 2014). 

Figure 4. The bias corrected histogram curve: The calibrated cut off value (46 Ωm) is added to the histogram and 

the fitted curve is forced to honor it He et al. (2013). 

Figure 5. The computed transition probabilities in vertical and horizontal direction and the fitted MCM: Vertical 

5m, horizontal 500m mean length of a sand lens and 23% sand proportion. Additionally the fitted MCM for the 

north- and south-sub-domain are plotted for the vertical and horizontal sand-sand transitions: 2m, 400m, 13% and 

5m, 600m, 30%, respectively.   

Figure 6. Upper panel: Two individual realizations for two different conditioning scenarios: onlyBH (a) and 

onlySky20 data (b). Lower panel: Probability maps for the two scenarios c) and e) showing the probability of sand 

in each cell based on 25 realizations. The derived sand probability which is used for conditioning the simulation is 

shown in (d). All maps show data at an elevation of 49m.    

Figure 7. The simulated versus the conditioned sand probability over the vertical extent at one borehole (98.918), 

located in the south western part of the glacial structure. The results originate from the two different soft 

conditioning scenarios: onlyBH and onlySky20 (based on 25 realizations each).   

Figure 8. a): 100 m (small dots) and 500 m (big dots) sampling grids for thinning out the conditioning dataset; b-e): 

probability of sand at an elevation of 49 m for SkyTEM dataset (b), and for static 20m, 200m and 500m 

conditioning (c-e) Red colors represent high sand probability and blue colors low sand probability (based on 25 

realizations). 

Figure 9. The simulated transition probabilities for the south-, north-, and total-domain are compared with the 

SkyTEM data and the fitted MCM. The results for two soft conditioning dataset are shown: BH-Sky20static and 

BH-Sky200moving. The simulated TP and the MCM at lag 100m are compared to quantify the underestimation of 

a sand lens. The TP values are mean values based on 10 realizations. The defined length of a sand lens (X) and the 

mean simulated length for the BH-Sky20static (Y) and BH-Sky200moving scenario (Z) are given in each graph. 

(Xm – Ym / Zm). 

Figure 10. The simulated facies probability distributions based on sets of realizations conditioned to differently 

sampled soft datasets (based on 25 realizations): (a) static sampling at different sampling distances and (b) 

stationary and moving sampling at different sampling distances. Also showing the sand probability distribution of 

the original soft dataset which is desired to be reproduced.  

Figure 11. The simulated facies probability – resistivity bias based on sets of realizations conditioned to differently 

sampled soft datasets (based on 25 realizations): (a) static sampling at different sampling distances and (b) 

stationary and moving sampling at different sampling distances. The simulated sand probability is paired with the 

original resistivity value, grouped into 5 Ωm bins and then plotted as median for each bin. Also showing the 

observed data and the fitted curve from the histogram which is desired to be reproduced.   



 

 

 

Figures 

 

Figure 1. The study site in eastern Jutland, Dk. The Norsminde catchment with the delineated glacial structure in 

the western part of the catchment. Additionally the river network and the topography. 

  



 

 

 

 

 

Figure 2. The median resistivity values from the SkyTEM data for the 4- and 16- subarea grid. Dark colors indicate 

a high median (max: 43.2 Ωm and 45.0 Ωm for the 4- and 16- subarea grid, respectively), light colors a low 

median (min: 32.0 Ωm and 29.5 Ωm for the 4- and 16- subarea grid, respectively) and white colors the absence of 

data. Additionally the location of the boreholes, the river network and the delineated glacial structure. The extent is 



 

 

 

9km in X- and 12km in Y-direction.  

 

Figure 3 Side-by-side comparison of borehole lithological data and SkyTEM vertical sounding data at borehole 

number 99.625 (He. et. al, 2014). 

  



 

 

 

 

Figure 4. The bias corrected histogram curve: The calibrated cut off value (46 Ωm) is added to the histogram and 

the fitted curve is forced to honor it He et al. (2014). 

 

 



 

 

 

 

Figure 5. The computed transition probabilities in vertical and horizontal direction and the fitted MCM: Vertical 

5m, horizontal 500m mean length of a sand lens and 23% sand proportion. Additionally the fitted MCM for the 

north- and south-sub-domain are plotted for the vertical and horizontal sand-sand transitions: 2m, 400m, 13% and 

5m, 600m, 30%, respectively.    



 

 

 

 

Figure 6. Upper panel: Two individual realizations for two different conditioning scenarios: onlyBH (a) and 

onlySky20 data (b). Lower panel: Probability maps for the two scenarios c) and e) showing the probability of sand 

in each cell based on 25 realizations. The derived sand probability which is used for conditioning the simulation is 

shown in (d). All maps show data at an elevation of 49m.     

 



 

 

 

 

Figure 7. The simulated versus the conditioned sand probability over the vertical extent at one borehole (98.918), 

located in the south western part of the glacial structure. The results originate from the two different soft 

conditioning scenarios: onlyBH and onlySky20 (based on 25 realizations each).   

 



 

 

 

 

Figure 8. a): 100 m (small dots) and 500 m (big dots) sampling grids for thinning out the conditioning dataset; b-e): 

probability of sand at an elevation of 49 m for SkyTEM dataset (b), and for static 20m, 200m and 500m 

conditioning (c-e) Red colors represent high sand probability and blue colors low sand probability (based on 25 

realizations). 



 

 

 

 

Figure 9. The simulated transition probabilities for the south-, north-, and total-domain are compared with the 

SkyTEM data and the fitted MCM. The results for two soft conditioning dataset are shown: BH-Sky20static and 

BH-Sky200moving. The simulated TP and the MCM at lag 100m are compared to quantify the underestimation of a 

sand lens. The TP values are mean values based on 10 realizations. The defined length of a sand lens (X) and the 

mean simulated length for the BH-Sky20static (Y) and BH-Sky200moving scenario (Z) are given in each graph. 

(Xm – Ym / Zm).    

  



 

 

 

 

Figure 10. The simulated facies probability distributions based on sets of realizations conditioned to differently 

sampled soft datasets (based on 25 realizations): (a) static sampling at different sampling distances and (b) 

stationary and moving sampling at different sampling distances. Also showing the sand probability distribution of 

the original soft dataset which is desired to be reproduced.    



 

 

 

 

Figure 11. The simulated facies probability – resistivity bias based on sets of realizations conditioned to differently 

sampled soft datasets (based on 25 realizations): (a) static sampling at different sampling distances and (b) 

stationary and moving sampling at different sampling distances. The simulated sand probability is paired with the 

original resistivity value, grouped into 5 Ωm bins and then plotted as median for each bin. Also showing the 

observed data and the fitted curve from the histogram which is desired to be reproduced.  

 


