
The editor has absolutely right. Again the equation (14) is not correct. According with the editor the 

equation (14) has been corrected and assumes the following expression: 
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Represents the total resistance term equal to the inverse of the reciprocal of the sum of the each resistance 

term. 

However in the paper the equation (14) is not directly used. In fact the equation (29) is derived by applying 

directly the first and second Kirchhoff laws. 

For the simplest case of two resistances the equation (14) and equation (29) are equivalent. In fact: 
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Abstract 7 

In hydrogeology, the application of reliable tracer transport model approaches is a key issue to 8 

derive the hydrodynamic properties of aquifers. 9 

Laboratory and field – scale tracer dispersion breakthrough curves (BTC) in fractured media are 10 

notorious for exhibiting early time arrivals and late – time tailing that are not captured by the 11 

classical advection – dispersion equation (ADE). These ‘‘non – Fickian’’ features are proved to be 12 

better explained by a mobile – immobile (MIM) approach. In this conceptualization the fractured 13 

rock system is schematized as a continuous medium in which the liquid phase is separated into 14 

flowing and stagnant regions. 15 

The present study compares the performances and reliabilities of the classical Mobile – Immobile 16 

Model (MIM) and the Explicit Network Model (ENM) that takes expressly into account the 17 

network geometry for describing tracer transport behaviorbehaviour in a fractured sample at bench 18 

scale. Though ENM shows better fitting results than MIM, the latter remains still valid as it proves 19 

to describe the observed curves quite well. 20 

The results show that the presence of nonlinear flow plays an important role ion the behaviour of 21 

solute transport. Firstly the distribution of solute according to different pathways is not constant but 22 

it is related to the flow rate. Secondly nonlinear flow influences advection, in that it leads to a delay 23 

in solute transport respect to the linear flow assumption. Whereas nonlinear flow does not show to 24 

be related with dispersion. The experimental results show that in the study case the geometrical 25 

dispersion dominates the Taylor dispersion. However the interpretation with the ENM model shows 26 

a weak transitional regime from geometrical dispersion to Taylor dispersion for high flow rates. The 27 

experimental results show that in the study case the geometrical dispersion dominates the Taylor 28 
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dispersion. Incorporating the description of the flowpaths in the analytical modeling has proved to 29 

better fit the curves and to give a more robust interpretation of the solute transport. 30 

Introduction 31 

In fractured rock formations, the rock mass hydraulic behaviorbehaviour is controlled by fractures. 32 

In such aquifers, open and well – connected fractures constitute high permeability pathways and are 33 

orders of magnitude more permeable than the rock matrix (Bear & Berkowitz, 1987; Berkowitz, 34 

2002; Bodin et al., 2003; Cherubini, 2008; Cherubini & Pastore, 2011, Geiger et al., 2012, Neuman, 35 

2005). 36 

In most studies examining hydrodynamic processes in fractured media, it is assumed that flow is 37 

described by Darcy’s law, which expresses a linear relationship between pressure gradient and flow 38 

rate (Cherubini & Pastore, 2010). Darcy’s law has been demonstrated to be valid at low flow 39 

regimes (Re < 1). For Re > 1 a nonlinear flow behaviorbehaviour is likely to occur. 40 

But in real rock fractures, microscopic inertial phenomena can cause an extra macroscopic 41 

hydraulic loss (Kløv, 2000) which deviates flow from the linear relationship among pressure drop 42 

and flow rate. 43 

To experimentally investigate the fluid flow regimes through deformable rock fractures, Zhang & 44 

Nemcik (2013) carried out flow tests through both mated and non – mated sandstone fractures in 45 

triaxial cell. For water flow through mated fractures, the experimental data confirmed the validity of 46 

linear Darcy’s law at low velocity. For larger water flow through non – mated fractures, the 47 

relationship between pressure gradient and volumetric flow rate revealed that the Forchheimer 48 

equation offers a good description for this particular flow process. The obtained experimental data 49 

show that Izbash’s law can also provide an excellent description for nonlinear flow. They concluded 50 

that further work was needed to study the dependency of the two coefficients on flow 51 

velocity.(forse va citato qualche altro paper sul flusso non darciano nelle fratture) 52 

In fracture networks heterogeneity intervenes even in solute transport: due to the variable aperture 53 

and heterogeneities of the fracture surfaces the fluid flow will seek out preferential paths (Gylling et 54 

al., 1995) through which solutes are transported. 55 

Generally the geometry of fracture network is not well known and the study of solute transport 56 

behaviorbehaviour is based on multiple domain theory according to which the fractured medium is 57 

separated in two distinct domains: high velocity zones such as the network of connected fractures 58 

(mobile domain) where solute transport occurs predominantly by advection, and lower velocity 59 
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zones such as secondary pathways, stagnation zones (almost – immobile domain), such as the rock 60 

matrix. 61 

TMoreover, the presence of steep concentration gradients between fractures and matrix causes local 62 

disequilibrium in solute concentration which gives rise to dominantly diffusive exchange between 63 

fracture and matrix. This explains the non – Fickian nature of transport, which is characterized by 64 

breakthrough curves with early first arrival and long tails.  65 

 66 

Quantifying solute transport in fractured media has become a very challenging research topic in 67 

hydrogeology over the last three decades (Nowamooz et al., 2013, Cherubini et al., 2009). 68 

 69 

 70 

Therefore in the fracture network different pathways can be identified through which solute is 71 

generally distributed in function of the energy spent by solute particles to cross the path. In this 72 

context the presence of nonlinear flow plays an important role in the distribution of the solutes 73 

according to the different pathways. In fact the energy spent to cross the path is proportional to the 74 

resistance to flow associated to the single pathway, which in nonlinear flow regime is not constant 75 

but depends on the flow rate.  76 

This means that changing boundary conditions the resistance to flow varies and as a consequence 77 

the distribution of solute in the main and secondary pathways also changes giving rise to a different 78 

behaviour of solute transport. Moreover, the presence of steep concentration gradients between 79 

fractures and matrix causes local disequilibrium in solute concentration which gives rise to 80 

dominantly diffusive exchange between fracture and matrix. This explains the non – Fickian nature 81 

of transport, which is characterized by breakthrough curves with early first arrival and long tails. 82 

Quantifying solute transport in fractured media has become a very challenging research topic in 83 

hydrogeology over the last three decades (Nowamooz et al., 2013). 84 

Tracer tests are commonly conducted in such aquifers to estimate transport parameters such as 85 

effective porosity and dispersivity, to characterize subsurface heterogeneity, and to directly 86 

delineate flow paths. Testing involves injecting a tracer into the underground formation through an 87 

injection well, and then monitoring the tracer concentrations as a function of location and/or time at 88 

the surrounding observation well (breakthrough curve)..  89 

Transport parameters such as porosity and dispersion coefficient are estimated by fitting appropriate 90 

tracer transport models to the breakthrough data. (potrebbe essere eliminato troppo generico) 91 
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In this context, analytical models are frequently employed, especially for analyzing tests obtained 92 

under controlled conditions, because they involve a small number of parameters and provide 93 

physical insights into solute transport processes (Liu et al 2012). 94 

The advection – dispersion equation (ADE) has been traditionally applied to model tracer transport 95 

in fractures. However extensive evidence has shown that there exist two main features that cannot 96 

be explained by the ADE: the early first arrival and the long tail of the observed BTCs curves. 97 

(Neretnieks et al, 1982; Becker and Shapiro, 2000; Jiménez-Hornero et al. 2005; Bauget and Fourar, 98 

2008).  99 

Several other models have been used to fit the anomalous BTCs obtained in laboratory tracer tests 100 

carried out in single fractures. Among those, the Mobile-Immobile (MIM) model (van Genuchten 101 

and Wierenga, 1976), which recognizes the existence of mobile and immobile domains for 102 

transport, has showed to provide better fits of BTC curves (Gao et al., 2009, Schumer et.al 2003, 103 

Feehley et al, 2010). 104 

In the well – controlled laboratory tracer tests carried out by Qian et al. (2011) a mobile– immobile 105 

(MIM) model proved to fit both peak and tails of the observed BTCs better than the classical ADE 106 

model. 107 

Another powerful method to describe non – Fickian transport in fractured media is the continuous 108 

time random walk (CTRW) approach (Berkowitz et al. 2006) which is based on the conceptual 109 

picture of tracer particles undergoing a series of transitions of length s and time t. 110 

Together with a master equation conserving solute mass, the random walk is developed into a 111 

transport equation in partial differential equation form. The CTRW has been successfully applied 112 

for describing non – Fickian transport in single fractures (Berkowitz et al.2001; Jiménez – Hornero 113 

et al. 2005). 114 

Bauget and Fourar (2008) investigated non – Fickian transport in a transparent replica of a real 115 

single fracture. They employed three different models including ADE, CTRW, and a stratified 116 

model to interpret the tracer experiments. 117 

As expected, the solution derived from the ADE equation appears to be unable to model long-time 118 

tailing behaviorbehaviour. On the other hand, the CTRW and the stratified model were able to 119 

describe non – Fickian dispersion. The parameters defined by these models are correlated to the 120 

heterogeneities of the fracture. 121 

Nowamooz et al., (2013) carried out experimental investigation and modeling analysis of tracer 122 

transport in transparent replicas of two Vosges sandstone natural fractures.  123 
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The obtained breakthrough curves were then interpreted using a stratified medium model that 124 

incorporates a single parameter permeability distribution to account for fracture heterogeneity, 125 

together with a CTRW model, as well as the classical ADE model. . 126 

The results confirmed poorly fitting breakthrough curves for ADEThe results indicated that the 127 

classical ADE is not appropriate for modeling early arrival and long – time tailing. In contrast, the 128 

stratified model provides generally satisfactory matches to the data (even though it cannot explain 129 

the long-time tailing adequately) while the CTRW model captures the full evolution of the long 130 

tailing displayed by the breakthrough curves. 131 

Qian et al (2011) experimentally studied solute transport in a single fracture (SF) under non – 132 

Darcian flow condition which was found to closely follow the Forchheimer equation.  133 

They also investigated on the influence of the velocity contrast between the fracture wall and the 134 

plane of symmetry on the dispersion process, which was called ‘boundary layer dispersion’ by 135 

Koch and Brady (1985).  136 

They affirmed that this phenomenon had to be considered if the thickness of the boundary layer was 137 

greater than the roughness of the fracture. On the other hand, if the thickness of the boundary layer 138 

was smaller than the roughness of the fractures, the recirculation zones inside the roughness cavities 139 

rather than the boundary layer would be more relevant for the dispersion process, thus the hold – up 140 

dispersion would become important. Since smooth parallel planes were used for constructing the SF 141 

in their experiment, the fracture roughness and the hold – up dispersion were negligible. 142 

Bodin et al (2007) developed the SOLFRAC program, which performs fast simulations of solute 143 

transport in complex 2D fracture networks using the Time Domain Random Walk (TDRW) 144 

approach (Delay & Bodin, 2001) that makes use of a pipe network approximation. The code 145 

accounts for advection and hydrodynamic dispersion in the channels, matrix diffusion, diffusion 146 

into stagnant zones within the fracture planes, mass sharing at fracture intersections, and other 147 

mechanisms such as sorption reactions and radioactive decay. Comparisons between numerical 148 

results and analytical breakthrough curves for synthetic test problems have proven the accuracy of 149 

the model. 150 

Zafarani & Detwiler (2013) presented an alternate approach for efficiently simulating transport 151 

through fracture intersections.  152 

Rather than solving the two – dimensional Stokes equations, the model relies upon a simplified 153 

velocity distribution within the fracture intersection, assuming local parabolic velocity profiles 154 

within fractures entering and exiting the fracture intersection. Therefore, the solution of the two – 155 

dimensional Stokes equations is unnecessary, which greatly reduces the computational complexity. 156 
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The uUse of a time – domain approach to route particles through the fracture intersection in a single 157 

step further reduces the number of required computations. The model accurately reproduces mixing 158 

ratios predicted by high – resolution benchmark simulations. 159 

As mMost of previous investigations of flow and transport in fracture networks considered Darcian 160 

flow, t, and there are few controlled laboratory experiments on solute transport under non Darcian 161 

flow. Furthermore the behaviour of the solute transport in fracture networks under non – darcian 162 

flow conditions has been therefore poorly investigated. In the fracture networks different pathways 163 

can be identified through which solute is generally distributed in function of the energy spent by 164 

solute particles to cross the path. In this context the presence of nonlinear flow could plays an 165 

important role in the distribution of the solutes according to the different pathways. In fact the 166 

energy spent to cross the path should be proportional to the resistance to flow associated to the 167 

single pathway, which in nonlinear flow regime is not constant but depends on the flow rate. This 168 

means that changing the boundary conditions the resistance to flow varies and as a consequence the 169 

distribution of solute in the main and secondary pathways also changes giving rise to a different 170 

behaviour of solute transport. 171 

Most of previous investigations of flow and transport in fracture networks considered Darcian flow, 172 

and there are few controlled laboratory experiments on solute transport under non Darcian flow. 173 

In previous studies by Cherubini et al (2012, 2013) the presence of nonlinear flow and non fickian 174 

transport in a fractured rock formation has been analyzedanalyzed at bench scale in laboratory tests. 175 

The effects of nonlinearity in flow have been investigated by analyzinganalyzing hydraulic tests on 176 

an artificially created fractured limestone block of parallelepiped (0.60×0.40×0.8 m
3
) shape. 177 

The flow tests regard the observation of the volumes of water passing through different paths across 178 

the fractured sample. In particular, tThe inlet flow rate and the  for various hydraulic head 179 

difference between the inlet and outlet ports nces have been measured. The experimental results 180 

have shown evidence of a non-Darcy relationship between flow rate and hydraulic head 181 

differencesloss that is best described by a polynomial expressionForchheimer’s law. Transition 182 

from viscous dominant regime to inertial dominant regime has been detected. The experiments 183 

haves been compared with a 3d numerical model in order to evaluate the linear and non-linear terms 184 

of Fforchheimer equation for each paths.    185 

Moreover, a tortuosity factor has been determined which is a measure of the deviation of each flow 186 

path from the parallel plate model. A power law has been detected between the Forchheimer terms 187 

and the tortuosity factor, which means that the latter influences flow dynamics. (va accennato anche 188 

il discorso della tortuosità)  189 

Formatted: English (U.K.)

Formatted: English (U.K.)

Formatted: Font color: Auto, English (U.K.)

Formatted: Font color: Auto, English (U.K.)

Formatted: Font color: Auto, English (U.K.)

Formatted: English (U.K.)

Formatted: English (U.K.)

Formatted: English (U.K.)

Formatted: English (U.K.)

Formatted: English (U.K.)

Formatted: English (U.K.)

Formatted: English (U.K.)

Formatted: English (U.K.)

Formatted: English (U.K.)

Formatted: English (U.K.)

Formatted: English (U.K.)

Formatted: Font color: Auto

Formatted: English (U.K.)

Formatted: Font color: Auto

Formatted: English (U.K.)

Formatted: English (U.K.)

Formatted: Font color: Auto

Formatted: English (U.K.)

Formatted: Font color: Auto, English (U.K.)

Formatted: English (U.K.)



, and the results of the experiments have been reported as specific flow rate vs. head gradient (Fig 190 

1).  191 

The non fickian nature of transport has been investigated by means of tracer tests that regard the 192 

measurement of breakthrough curves for saline tracer pulse across a selected path varying the flow 193 

rate.  194 

The experimental results have shown evidence of a non-Darcy relationship between flow rate and 195 

hydraulic loss that is best described by Forchheimer’s law. Transition from viscous dominant 196 

regime to inertial dominant regime has been detected. The observed experimental breakthrough 197 

curves of solute transport have proved to be better modeled by the 1d analytical solution of MIM 198 

model.approach which recognizes the existence of mobile and immobile domains for transport.  199 

The carried out experiments show that there exists a pronounced mobile–immobile zone interaction 200 

that cannot be neglected and that leads to a non-equilibrium behaviour of solute transport. The 201 

existence of a non-Darcian flow regime has showed to influence the velocity field in that it gives 202 

rise to a delay in solute migration with respect to the predicted value assuming linear flow. 203 

furhtermoreFurthermoreTherefore the presence of inertial effects has proved to enhance non-204 

equilibrium behaviour.  205 

Instead, the presence of a transitional flow regime seems not to exert influence on the behaviour of 206 

dispersion. The linear-type relationship found between velocity and dispersion demonstrates that for 207 

the range of imposed flow rates and for the selected path the geometrical dispersion dominates the 208 

mixing processes along the fracture network. 209 

The authors concluded that for the case study, where a fracture network is present, fracture 210 

intersections interrupt the continuity of flow paths between single fractures and give rise to velocity 211 

fluctuations that do not permit Taylor dispersion to “develop” and instead enhance geometrical 212 

dispersion. 213 

 214 

Herein, in order to give a more physical interpretation of the flow and transport behaviour, we build 215 

on the work by Cherubini et al (2013) by interpreting the obtained experimental results of flow and 216 

transport tests by means of the comparison of two conceptual models: the 1d single rate mobile – 217 

immobile model (MIM) and the 2d Explicit Network Model (ENM). Differently from the former, 218 

the latter expressly takes the fracture network geometry into account. 219 

 220 

Starting from previous studies (Cherubini et al, 2012, 2013a), in order to give a physical 221 

interpretation of the flow and transport behavior, in this work the experimental results of flow and 222 

transport tests in a fractured block at bench scale are interpreted by means of two conceptual 223 
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models: the single rate mobile – immobile model (MIM) and the Explicit Network Model (ENM). 224 

Differently from the former, the latter expressly takes the fracture network geometry into account.  225 

The MIM approach is applied successfully in a broad variety of environmental context such as 226 

rivers and streams with hypoeric zone exchange, subsurface flow and transport in unsaturated and 227 

saturated heterogeneous media, reactive solute transport etc.  228 

When applied toin fractured media, the MIM approach does not explicitly take the fracture network 229 

geometry into account, but it conceptualizes the shape of fractures as 1done dimensional continuous 230 

media in which the liquid phase is separated into flowing and stagnant regions. The convective 231 

dispersive transport is restricted to the flowing region, and the solute exchange is described as a first 232 

– order process. 233 

Unlike MIM, the ENM model may allow to know the physical meaning of the flow and transport 234 

phenomena (i.e the meaning of long – time behaviorbehaviour of BTC curves that characterize 235 

fractured media) and permits to obtain a more accurate estimation of flow and solute transport 236 

parameters. In this model the fractures are represented as 1d – pipe elements and they form a 2d – 237 

pipe network.   238 

It is clear that ENM needs to address the problem of parameterization. In fact the transport 239 

parameters of each individual fracture should be specified and this leads to more uncertainty in the 240 

estimation. 241 

Our overarching objective is therefore of investigating the performances and the reliabilities of 242 

MIM and ENM approaches to describe conservative tracer transport in a fractured rock sample.  243 

The present paper aims to investigate the performance and the reliabilities of MIM and ENM 244 

approaches. In particular way the present paper focuses the attention on the effects of non-linear 245 

flow regime on different features whichthat depict the conservative solute transport in a fractured 246 

network such asincluding: mean travel time, dispersion, dual porosity behaviour, distribution of 247 

solute into the different pathways. 248 

The aim of this work is therefore to compare the performances and the reliabilities of MIM and 249 

ENM approaches in nonlinear flow regime to describe conservative tracer transport in a fractured 250 

rock sample. In particular manner the present paper aims to investigate …. (specificare nel dettaglio 251 

gli obiettivi del paper) 252 
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Theoretical background 253 

Nonlinear flow 254 

In the literature different laws are reported that account for the nonlinear relationship between 255 

velocity and pressure gradient. 256 

A cubic extension of Darcy's law that describes pressure loss versus flow rate for low flow rates is 257 

the weak inertia equation: 258 

2
3dp

v v
dx k

 


      (111) 259 

Where p (ML
-1

T
-2

)  is the pressure, k (L
2
) is the permeability,  (ML

-1
T

-1
) is the viscosity,  (ML

-3
) 260 

is the density, v (LT
-1

) is the velocity and  (L) is called the weak inertia factor. 261 

In case of higher Reynolds numbers (Re >> 1) the pressure losses pass from a weak inertial to a 262 

strong inertial regime, described by the Forchheimer equation (Forchheimer, 1901), given by: 263 

2dp
v v

dx k


      (222) 264 

Where  (L
-1

) is called the inertial resistance coefficient, or non – Darcy coefficient. 265 

Forchheimer law can be written in terms of hydraulic head: 266 

2' '
dh

a v b v
dx

      (333) 267 

Where a’ (TL
-1

) and b’ (TL
-2

) are the linear and inertial coefficient respectively equal to: 268 

' ;  'a b
gk g

 


   (444) 269 

In the same way the relationship between flow rate Q (L
3
T

-1
) and hydraulic head gradient can be 270 

written as: 271 

2h a Q b Q    
2QbQa

dx

dh
  (555) 272 

Where a (TL
-3

) and b (T
2
L

-6
) are related to a’ and b’: 273 
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eqeq

b
b

a
a







  ;  (666) 274 

Where eq (L
2
) represents the equivalent cross sectional area of fracture. 275 

Mobile Immobile Model  276 

The mathematical formulation of the MIM for non - reactive solute transport is usually given as 277 

follows: 278 

 

 

2

2

m m m
m im

im
m im

c c c
D v c c

t x x

c
c c

t



 

  
   

  


 



 (777) 279 

Where t (T) is the time, x (L) is the spatial coordinate along the direction of the flow, cm and cim 280 

(ML
-3

) are the cross - sectional averaged solute concentrations respectively in the mobile and 281 

immobile domain, v (LT
-1

) is the average flow velocity and D (L
2
T

-1
) is the dispersion coefficient,  282 

(T
-1

) is the mass exchange coefficient, β [-] is the mobile water fraction. For a non – reactive solute 283 

β is equivalent to the ratio between the immobile and mobile cross – sectional area (-). 284 

The solution of system Equation (7) describing one – dimensional (1d) non – reactive solute 285 

transport in an infinite domain for instantaneous pulse of solute injected at time zero at the origin is 286 

given by (Goltz & Roberts, 1986): 287 

     0 0

0

( , ) , , ,

t

t

mc x t e c x t H t c x d        (888) 288 

Where 0c  represents the analytical solution for the classical advection – dispersion equation (Crank, 289 

1956): 290 

 
2

0 4
0 ( , )

x vt

Dt

eq

M
c x t e

Dt 




  (999) 291 

Where Mo (M) is the mass of the tracer injected instantaneously at time zero at the origin of the 292 

domain. The term  ,H t   presents the following expression: 293 

 
 

 

 

1

2

,
t

I t

H t e
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
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


  

  

 
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 
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Where I1 represents the modified Bessel function of order 1. 295 

INote that iIn order to fit the BTCs curves with by the MIM model the assumptions forof the  296 

representative 1d length (L) of the fracture network should be carried outmade. However this matter 297 

question can be resolved by the introduction of the normalized velocity (v/L) and normalized 298 

dispersion (D/L
2
). The MIM model areis defined by four parameters regarding the whole fracture 299 

network (v/L, D/L
2
, , ).  300 

the length of 1d domain does not need to be known. The parameters v and D are normalized by 301 

dividing them by L and L
2
 respectively. In this way a unit length of 1d domain can be assumed. 302 

Explicit Network Model  303 

Assuming that a single fracture j can be represented by a 1d – pipe elements, the relationship 304 

between head loss jh  (L) and flow rate jQ  (L
3
T

-1
) can be written in finite terms on the basis of 305 

Forchheimer model:. 306 

 2j

j j j j j j

j

h
aQ bQ h l a bQ Q

l


      
 

 (111111) 307 

Where lj (L) is the length of fracture, a (TL
-3

) and b (T
2
L

-6
) are the Forchheimer parameters in finite 308 

terms. 309 

The term in the square brackets represents the resistance to flow  j jR Q  (TL
-3

) of j fracture. 310 

For steady – state condition and for a 2d simple geometry of the fracture network, the solution of 311 

flow field can be obtained in a straightforward manner applying the first and second Kirchhoff’s 312 

laws. 313 

The first law affirms that the algebraic sum of flow through a closed surface is equal to zero: in a 314 

network meeting at a point is zero: 315 

1

0
n

j

j

Q


  (121212) 316 

Whereas the second law affirms that the algebraic sum of the head losses along a closed loop of the 317 

network is equal to zero: 318 

1

0
n

j

j

h


   (131313) 319 
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Generally in a 2d fracture network, the single fracture can be set in series and/or in parallel. 320 

In particular the total resistance to flow of a network in which the fractures are arranged in a chain 321 

is found by simply adding up the resistance values of the individual fractures. 322 

In a parallel network the flow breaks up by flowing through each parallel branch and re – 323 

combining when the branches meet again. The total resistance to flow is found by adding up the 324 

reciprocals of the resistance values and then taking the reciprocal of the total. The flow rate crossing 325 

the generic fracture j belonging to parallel circuits Qj can be obtained as: 326 

1

1

1 1n

j

ij i

Q Q
R R





 
  

 
   (141414) 327 

Where Q ( LT
-3

) is the sum of the discharge flow evaluated for the fracture intersection located 328 

in correspondence of the inlet bond of j fractures, whereas the term in brackets represents the 329 

probability of water distribution of j fracture PQ,j. 330 

The BTC curves at the outlet of the network  outc t  (ML
-3

) , for an instantaneous injection, can be 331 

obtained as the summation of BTCs of each elementary path in the network. The latter can be 332 

expressed as the convolution product of the probability density functions of residence times in each 333 

individual fracture belonging to the elementary path. Using the convolution theorem,  outc t  can be 334 

expressed as: 335 

    
,

10
,

1 10

,
f iep nN

out c j j j

i j

M
c t F P F s l t

Q



 

 
  

  
  (151515) 336 

Where 0M  (M) is the injected mass of solute, F is the Fourier transform operator, Nep is the number 337 

of the elementary paths, nf,i is the number of fractures in i elementary path, Pc,j and  ,j js l t  (T
-1

) 338 

represents the fraction of solute crossing the single fracture and the probability density function of 339 

residence time respectively.  340 

,c jP  can be estimated as the probability of the particle transition in correspondence of the inlet bond 341 

of each individual single fracture. The rules for particle transition through fracture intersections play 342 

an important role in mass transport. In literature several models have been developed and tested in 343 

order to represent the mass transfer within fracture intersections. The simplest rule is represented by 344 
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the “perfect mixing model” in which the mass sharing is proportional to the relative discharge flow 345 

rates. 346 

The perfect mixing model assumes that the probability of particle transition of the fraction of solute 347 

crossing the single fracture can be written as: 348 

,

j

c j

Q
P

Q



 (161616) 349 

Where jQ  represents the flow rate in the single j fracture j. Note that if assuming valid the perfect 350 

mixing model PQ,j is equal to Pc,j. 351 

It is clear that in order to know  ,j js l t  the transport model and consequently the transport 352 

parameters of each single fracture need to be defined.  ,j js l t  can be evaluated in a simple way 353 

using the 1Dd analytical solution of the Advection Dispersion Equation model (ADE) for pulse 354 

input: 355 

 
2

4

,

( , )

j j

j

l v t

D tj

j j

eq j j

Q
s l t e

D t 




  (171717) 356 

in which the velocity vj and dispersion Dj relating to the generic j fracture j can be estimated 357 

through the following expression: 358 

,

j

j

eq j

Q
v


  (181818) 359 

,j L j jD v  (191919) 360 

Where ,eq j  and ,L j  are the equivalent crossing area and the dispersion coefficient of j fracture 361 

respectively. 362 

The ENM is defined by six parameters regarding each single fracture (a, b , PQ, eq, L and Pc). 363 
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Material and methods 364 

Experimental setup 365 

The experiments have been performed on a limestone block with parallelepiped shape 366 

(0.6×0.4×0.08 m
3
) recovered from the ‘Calcare di Altamura’ formation which is located in Apulia 367 

region in southeastern Italy (Cherubini et al., 2012). 368 

The experimental setup is detailed in Cherubini et al. (2012) and Cherubini et al. (2013a) and its 369 

schematic diagram is shown in Fig 1.  370 

Flow and tracer tests 371 

The experimental setup has been already extensively discussed in Cherubini et al. (2013), however 372 

for the completeness in this section a summary is reported a summary. The analysis of flow 373 

dynamics through the selected path (Fig 2) regards the observation of water flow from the upstream 374 

tank to the flow cell with a circular cross-section of 0.1963 m
2
 and 1.28×10

-4
 m

2
 respectively. 375 

Initially at time t0, the valves ‘a’ and ‘b’ are closed and the hydrostatic head in the flow cell is equal 376 

to h0. The experiment begins with the opening of the valve ‘a’ which is reclosed when the hydraulic 377 

head in the flow cell is equal to h1. Finally the hydraulic head in the flow cell is reported to h0 378 

through the opening of the valve ‘b’. The experiment procedure is repeated changing the hydraulic 379 

head of the upstream tank ch . The time  01 ttt   required to fill the flow cell from 0h  to 1h  has 380 

been registered. 381 

Given that the capacity of the upstream tank is much higher than that of the flow cell it is 382 

reasonable to assume that during the experiments the level of the upstream tank (hc) remains 383 

constant. Under this hypothesis the flow inside the system is governed by the equation: 384 

  1 c

dh
S h h h

dt
     (202020) 385 

Where S1 (L
2
) and h (L) are respectively the section area and the hydraulic head of the flow cell; hc 386 

(L) is the hydraulic head of upstream tank, (h) represents the hydraulic conductance term 387 

representative of both hydraulic circuit and the selected path. 388 

The average flow rate Q  can be estimated by means of the volumetric method: 389 

 1
1 0

1 0

S
Q h h

t t
 


 (212121) 390 
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Whereas the average hydraulic head difference h  is given by: 391 

0 1

2
c

h h
h h


    (222222) 392 

In correspondence of the average flow rate and head difference is it possible to evaluate the average 393 

hydraulic conductance as: 394 

  01

1 0 1

ln c

c

h hS
h

t t h h

 
    

  
 (232323) 395 

The inverse of  represents the average resistance to flow  R Q . 396 

Tracer tests 397 

The study of solute transport dynamics through the selected path has been carried out by means of a 398 

tracer test using sodium chloride. Initially a hydraulic head difference between the upstream tank 399 

and downstream tank is imposed. At t = 0 the valve ‘a’ is closed and the hydrostatic head inside the 400 

block is equal to the downstream tank. At t = 10 s the valve ‘a’ is opened while at time t = 60 s a 401 

mass of solute equal to 5×10
-4

 kg is injected into the inlet port through a syringe. The source release 402 

time (1 s) is very small therefore the instantaneous source assumption can be considered valid. 403 

In correspondence of the flow cell in which the multi - parametric probe is located it is possible to 404 

measure the tracer breakthrough curve and the hydraulic head; in the meanwhile the flow rate 405 

entering the system is measured by means of an ultrasonic velocimeter. For different flow rates a 406 

BTC curve can be recorded at the outlet port. 407 

Time moment analysis has been applied in order to characterize the BTC curves in terms of mean 408 

breakthrough time, degree of spread and asymmetry. 409 

The mean residence time tm is given by: 410 

0

0

( )

( )

n

m

t c t dt

t

c t dt









 (242424) 411 

The n
th

 normalized central moment of distribution of solute concentration versus time is defined as: 412 

 h 
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 

 

0

0

( )
n

m

n

t t c t dt

c t dt














 (252525) 413 

The second moment 
2  represents the degree of spread relative to tm. whereas the degree of 414 

asymmetry measured by the skewness coefficient is defined as: 415 

2/3

23 / S   (262626) 416 

Discussion 417 

Estimation of flow model parameters 418 

The flow field in each single fracture of the network can be solved in analytical way by means of 419 

Kirchhoff laws. In Figure 2 is represented the 2d – pipe network conceptualization. 420 

The resistance to flow of each single j fracture j is described by the Equation (12). The Forchheimer 421 

parameters are assumed constant for the whole fracture network. 422 

The application of the Kirchhoff’s first law at the node 3 can be written as: 423 

0 1 2 0Q Q Q    (272727) 424 

Whereas the application of the Kirchhoff’s second law at the loop 3 – 4 – 5 – 6 can be written as: 425 

        6 1 1 3 2 4 2 5 2 2 0R Q Q R Q R Q R Q Q     (282828) 426 

Substituting Equation (278) into Equation (289) the iterative equation of flow rate Q1 can be 427 

obtained: 428 

     
       

3 0 1 4 0 1 5 0 11

1 0

3 0 1 4 0 1 5 0 1 6 1

k k k

k

k k k k

R Q Q R Q Q R Q Q
Q Q

R Q Q R Q Q R Q Q R Q


     
 

       

 (292929) 429 

The Forchheimer parameters representative of whole fracture network can be derived matching the 430 

average resistance to flow derived experimentally with the resistance to flow evaluated for the 431 

whole network: 432 

     
       

     

1

1 0 2 0

6 1 3 2 4 2 5 2

7 0 8 0 9 0

1 1
R Q R Q R Q

R Q R Q R Q R Q

R Q R Q R Q



 
        

  

 (303030) 433 
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Figure 3 shows the fitting of observed resistance to flow determined by the inverse of Equation 434 

(234) and the theoretical resistance to flow (Equation 301). The linear and nonlinear terms of 435 

Forchheimer model in Equation (12) have been estimated and they are respectively equal to a = 436 

7.345×10
4
 sm

-3 
and sm

-3
 b = 11.65×10

9
 s

2
m

-6
. It is evident that the 2d - pipe network model closely 437 

matches the experimental results (r
2
 = 0.9913). Flow characteristics can be studied through the 438 

analysis of Forchheimer number F0 which represents the ratio of nonlinear to linear hydraulic 439 

gradient contribution: 440 

o

bQ
F

a
  (313131) 441 

Inertial forces dominate over viscous ones at the critical Forchheimer number (Fo=1) corresponding 442 

in our case to a flow rate equal to Qcrit = 6.30×10
-6

 m
3
/s, which is coherent with the results obtained 443 

in the previous study (Cherubini et al., 2013a). 444 

The term in square brackets in Equation (30) represents the probability of water distribution PQ 445 

evaluated for the branch 6. Note that it is not constant but it depends on the flow rate crossing the 446 

parallel branch. Figure 4 shows PQ as function of Q0. The probability of water distribution 447 

decreases as the injection flow rate increases. This means that when the injection flow rate increases 448 

the resistance to flow of the branch 6 increases faster than the resistance to flow of the branch 3 – 4 449 

– 5 and therefore the solute choses the secondary pathway. 450 

Fitting of breakthrough curves and interpretation of estimated transport model 451 

parameters 452 

Several tests haves been conducted in order to observe solute transport behaviour varying the 453 

injection flow rate in the range 1.20×10
-6

 - 9.34×10
-6

 m
3
s

-1
. For each experimental BTCs the mean 454 

travel time tm and the coefficient of Skewness S haves been estimated. 455 

Figure 5 shows tm as function of Q0.  Travel time decreases more slowly for high flow rates. In 456 

particular a change of slope is evident in correspondence of the injection flow rate equal to 4×10
-6

 457 

m
3
s

-1
 (Cherubini et al., 2013a), which evidences a delay of solute transport for high flow rates. 458 

which means the setting up of a transitional flow regime; the diagram of velocity profile is flattened 459 

because of inertial forces prevailing on viscous one, as already showed by Cherubini et al (2013a). 460 

The presence of a transitional flow regime leads to a delay on solute transport with respect to the 461 

values that can be obtained under the assumption of a linear flow field. Note that this 462 

behaviourbehaviour occurs before of Qcrit.  463 
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The skewness coefficient does not exhibit a trend upon varying the injection flow rate, but its mean 464 

value is equal to 2.018. A positive value of skewness indicates that BTCs are asymmetric with early 465 

first arrival and long tail. This behaviour seems not to be dependent on the presence of the 466 

transitional regime. 467 

The measured breakthrough curves for different flow rates have been individually fitted by the 468 

MIM  2/ ,  / ,  ,  v L D L    and ENM  ,  ,  ,  eq L Q CP P   models. 469 

In particular for the ENM model the parameters eq (equivalent area) and L are representative of 470 

all fracture network, whereas the parameters PQ and PC are associated only to the parallel branches. 471 

For the considered fracture network the Equation (156) becomes: 472 

           

                 

1 2 6 7 8 910

0 1 2 3 4 5 7 8 91

c

out

c

P F s F s F s F s F s F sM
c F

Q P F s F s F s F s F s F s F s F s


       

  
           

 (323232) 473 

The velocity and dispersion that characterize the probability density function s are related to the 474 

flow rate that crosses each branch by Equations (189) and Equation (1920). This one is equal to the 475 

injection flow rate Q0 except for branch 6 and branches 3 – 4 – 5 for which it is equal to 0QQ P Q  476 

and   01 QQ P Q   respectively.  477 

Furthermore three parameter configurations have been tested for the ENM model. The 478 

configurations are distinguished on the basis of the number of fitting parameters and assumptions 479 

made on CP  and QP  parameters. The first configuration named ENM2 has two fitting parameters 480 

eq and L. In this configuration CP  is imposed equal to QP  and is derived as the square brackets 481 

term in Equation (29).estimated by the flow tests described in previous sections. 482 

The second configuration named ENM3 has three fitting parameters eq, and L and CP ( QP ). In this 483 

configuration is it still true that CP  is still equal to QP  but they and both of them are 484 

evaluatedestimated by the interpretation of BTC curves.  485 

In the third configuration named ENM4 all four parameters  ,  ,  ,  eq L Q CP P   are estimated 486 

determined through the fitting of BTCs. 487 
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To compare all the considered models, both the determination coefficient (r
2
) and the root mean 488 

square error (RMSE) were used as criteria to determine the goodness of the fitting, which can be 489 

expressed as: 490 

 

 

2

, ,
2 1

2

, ,

1

1

N

i o i e

i

N

i o i o

i

C C

r

C C







 






 (333333) 491 

 
2

, ,

1

1 N

i o i e

i

RMSE C C
N 

   (343434) 492 

Where N is the number of observations, Ci,e is the estimated concentration, Ci,o is the observed 493 

concentration and, ,i oC  represents the mean value of Ci,o . 494 

Tables 1, 2, 3 and 4 show the estimated values of parameters, root mean square error RMSE and the 495 

determination coefficient r
2
 for all the considered models varying the inlet flow rate Q0. 496 

Figure 6 shows the fitting results of BTC curves for different injection flow rates.  497 

For higher flow rates (7.07×10
-6

 and 4.80 ×10
-6

 m
3
/s) the fitting is poorer than for lower flow rates 498 

(3.21 ×10
-6

 and 1.96×10
-6

 m
3
/s). However, all models provide a satisfactory fitting. The ENM4 499 

model provides the highest values of r
2
 varying in the range 0.9921 – 1.000 and the smallest values 500 

of RMSE in the range 0.0033 – 0.0252. This is expected for two reasons. First this model has more 501 

fitting parameters than ENM2 and ENM3, thus it is more flexible. Second, compared to MIM 502 

model, it takes explicitly into account the presence of the secondary path.  503 

The MIM model considers the existence of immobile and mobile domains and a rate – limited mass 504 

transfer between these two domains. In the present context this conceptualization can be a weak 505 

assumption especially for high flow rates when the importance of secondary path increases. 506 

However the fitting of BTCs shows that MIM model remains valid as it proves to describe the 507 

observed curves quite well. 508 

The extent of solute mixing can be assessed from the analysis of MIM first-order mass transfer 509 

coefficient   and the fraction of mobile water .  510 

Although somewhat scattered, the mass transfer coefficient of MIM model tends to increase with 511 

pore water velocity. Several authors have observed the variation of the mass-transfer coefficient 512 

between mobile and immobile water regions with pore-water velocity (van Genuchten and 513 
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Wierenga, 1977; Nkedi-Kizza et al., 1984; De Smedt and Wierenga, 1984; De Smedt et al., 1986; 514 

Schulin et al., 1987). The increase in  with increasing water velocity is attributed to higher mixing 515 

in the mobile phase at high pore water velocities (De Smedt and Wierenga, 1984) or to shorter 516 

diffusion path lengths as a result of a decrease in the amount of immobile water (van Genuchten and 517 

Wierenga, 1977). 518 

In the study, the increase in  with increasing water velocity is attributable to nonlinear flow that 519 

enhance the exchange between the main and secondary flow paths. Therefore the mass transfer 520 

coefficient increases as the importance of secondary path over the main path increases. 521 

The extent of solute mixing can also be assessed from the analysis of MIM mobile water fraction 522 

parameter . In our study the fraction of mobile water assumes a mean representative value of 0.56 523 

meaning that the 0,56% of the fracture networksoil is involved in advective transport. As concerns 524 

, various authors have observed different behaviour of the mobile water fraction parameter . 525 

Gaudet et al. (1977) reported increasing mobile water content with increasing pore water velocity. 526 

However, studies have also found that  appears to be constant with varying pore-water velocity 527 

(Nkedi-kizza et al. 1983). However, lower  values can be attributed to faster initial movement of 528 

the solute as it travels through a decreasing number of faster flow paths. As a result, some authors 529 

have related  values to the initial arrival of the solute. In fact, Gaudet et al. (1977) and Selim and 530 

Ma (1995) observed that the mobile water fraction parameter affects the time of initial appearance 531 

of the solute. 532 

In general, the initial breakthrough time increases as  increases (Gao et al., 2009) which can also 533 

be evidenced from Fig 6. For lower flow rates the initial arrival time is higher than for higher flow 534 

rates. As the fraction of mobile water increases, the breakthrough curves are shifted to longer times 535 

because the solute is being transported through larger and larger fractions of the fracture volume. In 536 

the limiting case that the fraction of mobile water reaches one, the MIM reduces to the equilibrium 537 

ADE (no immobile water) (Mulla & Strock, 2008). 538 

The evidence of dual porosity behaviour on solute transport is clearly shown by the analysis of the 539 

two MIM parameters: the ratio of mobile and immobile area  and the mass exchange coefficient , 540 

shown in Figure 7 as a function of velocity.  541 

A different behaviour of these two coefficients to varying the injection flow rate is observed in the 542 

present study. At Darcian-like flow conditions the mass exchange coefficient remains constant, 543 

whereas the ratio of mobile and immobile area decreases as velocity increases. When nonlinear 544 

flow starts to become dominant a different behaviour is observed:  increases in a potential way, 545 

whereas  assumes a weakly growing trend as velocity increases with a mean value equal to 0.56. 546 
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In order to better explain this behaviour, the transport time (reciprocal of normalized velocity) and 547 

the exchange time (reciprocal of the exchange term) varying the flow rate for the MIM model are 548 

showed in Figure 8. In analogous way in Figure 9 is showed the comparison between the mean 549 

travel time for the main path and the secondary path varying the injection flow rate for the ENM4 550 

model.  551 

For the MIM model at high flow rates the exchange time joins the transport time; analogously for 552 

the ENM4 as the flow rate increases the secondary path reaches the main path in terms of mean 553 

travel time. This analogy between MIM and ENM enhances the concept that the mass transfer 554 

coefficient is dependent on flow velocity. 555 

In Darcian-like flow conditions the main path is dominant on the secondary path. The latter can be 556 

considered as an immobile zone. In this condition the fracture network behaves as a single fracture 557 

and the observed dual porosity behaviour can be attributable only to the fracture – matrix 558 

interactions of the main path. 559 

For higher velocities, a higher contact area between the mobile and immobile region is evidenced, 560 

enhancing solute mixing between these two regions (Gao et al, 2009). The increase in  with 561 

increasing water velocity is therefore attributable to nonlinear flow that enhances the exchange 562 

between the main and secondary flow paths. Increasing the injection flow rate the importance of the 563 

secondary path grows and the latter cannot be considered as an immobile zone, as a consequence 564 

the dual porosity behaviour becomes stronger. 565 

Various authors have observed different behavior of the mobile water fraction parameter . Gaudet 566 

et al. (1977) reported increasing mobile water content with increasing pore water velocity. 567 

However, studies have also found that  appears to be constant with varying pore-water velocity 568 

(Nkedi-kizza et al. 1983). With the increase of mobile water fraction, the contact areas between the 569 

mobile and immobile regions increase, enhancing solute mixing between these two regions (Gao et 570 

al, 2009). However, lower  values can be attributed to faster initial movement of the solute as it 571 

travels through a decreasing number of faster flow paths. As a result, some authors have related  572 

values to the initial arrival of the solute. In fact, Gaudet et al. (1977) and Selim and Ma (1995) 573 

observed that the mobile water fraction parameter affects the time of initial appearance of the 574 

solute. 575 

In general, the initial breakthrough time increases as  increases (Gao et al., 2009) which can also 576 

be evidenced from Fig 6. For lower flow rates the initial arrival time is higher than for higher flow 577 

rates. As the fraction of mobile water increases, the breakthrough curves are shifted to longer times 578 
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because the solute is being transported through larger and larger fractions of the fracturesoil 579 

volume. In the limiting case that the fraction of mobile water reaches one, the MIM reduces to the 580 

equilibrium ADE (no immobile water) (Mulla & Strock, 2008). 581 

As showed in figure 10 7 and 118 QP
QP  as function of Q0 Q0 evaluated by means the fitting of 582 

BTCs by ENM3 and ENM4 models presents a different trend respect to 
QP  d QP

 583 

determinedevaluated by means of flow tests. 
QP QP

  evaluated by transport tests decreases more 584 

rapidly than 
QP  QP

 determinedevaluated by flow tests (Figure 107). In the ENM4 model  
QP QP

 585 

and CP
 CP  show a different behaviour, especially for higher velocity CP  CP

 presents values higher 586 

than 
QP  QP

(Figure 118). This result is coherent with what has been shown in Figure 5.  587 

In other words the interpretation of BTC curves evidences more enhanced nonlinear flow 588 

behaviourbehaviour than the flow tests. 589 

For the MIM model in Figure 9 are showed the comparison between the transport time (reciprocal 590 

of normalized velocity) and the exchange time (reciprocal of the exchange term) varying the flow 591 

rate. As the flow rate increases the difference between transport time and exchange time decreases, 592 

and for high values of flow rates they get closer each other (Cherubini et al, 2013a). In analogous 593 

way for the ENM4 model in Figure 10 is showed the comparison between the mean travel time for 594 

the main path and secondary path varying the injection flow rate. The same behavior as Figure 9 is 595 

evident, for high values of flow rates the secondary path reaches the main path in terms of mean 596 

travel time. This analogy between MIM and ENM enhances the concept that the mass transfer 597 

coefficient is dependent on flow velocity. 598 

In Figure 121 is reported the relationship between velocity v and injection flow rate Q0 . Note that, 599 

in order to compare the results, the velocities for MIM are evaluated assuming the length of the 600 

medium equal to the length of main path (L = 0.601 m). Instead for ENM4 model the velocities are 601 

evaluated dividing Q0 for the equivalent area eq. The models present the same behaviourbehaviour, 602 

and similarly to the mean travel time a change of slope is evident again in correspondence of flow 603 

rate equal to 4×10
-6

 m
3
s

-1
. This result confirms the fact that the presence of nonlinear flow regime 604 

leads to a delay on solute transport with respect to the values that can be obtained under the 605 

assumptions of a linear flow field. 606 
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In order to better represent the nonlinear flow regime, Figure 13 shows water pressure as a function 607 

of velocity. A change of slope is evident for -12 ms 105.1 v  which .corresponds to the flow rate 608 

equal to 4×10
-6

 m
3
s

-1
. v=1,5 x10-3 m/s. 609 

Moreover as shown in Figure 142 a linear trend of dispersion with the injection flow rates both for 610 

MIM and ENM models has been observed. This is coherent with what obtained in the previous 611 

study (Cherubini et al. 2013a) where a linear relationship is found between velocity and dispersion 612 

both for ADE and MIM models with the conclusion that geometrical dispersion dominated the 613 

effects of Aris – Taylor dispersion. The values of the coefficient of dispersion obtained for ENM 614 

models do not depend on flow velocity but assume a somehow scattered but fluctuating value. 615 

Being L  values constant, geometrical dispersion dominates the mixing processes along the 616 

fracture network. Therefore, the presence of a nonlinear flow regime does not prove to exert any 617 

influence on dispersion except for high velocities for the ENM model where a weak transitional 618 

regime appears.  619 

This does not happen for MIM dispersion values whose rates of increase are smaller than those of 620 

ENM dispersion values. 621 

The values of dispersion coefficient are in order of magnitude of decimeter, which is comparable 622 

with the values obtained for darcian condition (Qian et al, 2011), and the .dispersion values of MIM 623 

are much lower than those of ENM.  624 

This may be attributable to the fact that the MIM separates solute spreading into dispersion in 625 

mobile region and mobile-immobile mass transfer. The dispersive effect is therefore partially taken 626 

into account by the mass transfer between the mobile zone and the immobile zone (Qian et al, 2011; 627 

Gao et al, 2009). 628 

Conclusion 629 

Flow and tracer test experiments were have been carried outonducted in a fracture network. The aim 630 

of the present study is that of comparing the performances and reliabilities of two model paradigms: 631 

the Mobile - Immobile Model (MIM) and the Explicit Network Model (ENM) to describe 632 

conservative tracer transport in a fractured rock sample. 633 

Fluid flow experiments show a not negligible nonlinear behaviour of flow best described by the 634 

Forchheimer law. The solution of the flow field for each single fracture highlightsed that the 635 

probabilities of water distribution between the main and the secondary path are not constant but 636 

decrease as the injection flow rate increases. In other words varying the injection flow rate the 637 

conductance of the main path decreases more rapidly than the conductance of the secondary path. 638 
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The BTCs curves determined by transport experiments were have been fitted by MIM model and 639 

three versions of ENM model (ENM2, ENM3, ENM4) which differ on the basis of the assumptions 640 

made on the parameters PQ and PC. All models showprove a satisfactory fitting. The ENM4 model 641 

provides the best fit which is expectable because it has more fitting parameters than ENM2 and 642 

ENM3, thus it is more flexible. Secondly, compared to MIM model, it takes explicitly into account 643 

the presence of the secondary path. Furthermore for the ENM model the parameter PQ decreases 644 

more rapidly varying the injection flow rate than the same parameter evaluated determined by flow 645 

tests. The relationship between transport time and exchange time for MIM model and mean travel 646 

time for main path and secondary path for the ENM4 model varying the injection flow rate has 647 

shown similarity of behaviour: for higher values of flow rate the difference between transport time 648 

and exchange time decreases and the secondary path reaches the main path in terms of mean travel 649 

time. This analogy between MIM and ENM explains the fact that the mass transfer coefficient is 650 

dependent on flow velocity. The mass transfer coefficient increases as the importance of secondary 651 

path over the main path increases. 652 

The velocity values evaluated for MIM and ENM model show the same relationship with the 653 

injection flow rate. In particular a change of slope is evident in correspondence of the flow rate 654 

equal to 4 ×10
-6

 m
3
s

-1
. This behaviour occurs before the critical flow rate estimated by flow tests 655 

equal to 6.3×10
-6

 m
3
s

-1
. Therefore the interpretation of BTCs curves evidencesd more enhanced 656 

nonlinear behaviour than flow tests. These results confirm the fact that the presence of transitional 657 

flow regime leads to a delay on solute transport with respect to the values that can be obtained 658 

under the assumption of a linear flow field (Cherubini et al., 2013a). 659 

As concerns dispersion, a linear trend varying the velocity for both MIM and ENM models has been 660 

observed -coherently with the previous results- (Cherubini et al., 2013a), the MIM model 661 

underestimating the dispersion respect to ENM4 model. 662 

The dispersivity values obtained for ENM models do not depend on flow velocity but assume a 663 

somehow scattered but fluctuating value. Being L  values constant, geometrical dispersion 664 

dominates the mixing processes along the fracture network. Therefore, the presence of a nonlinear 665 

flow regime does not prove to exert any influence on dispersion except for high velocities for the 666 

ENM model where a weak transitional regime seems to appear. This result demonstrates that for our 667 

experiment geometrical dispersion still dominates Taylor dispersion. 668 

A major challenge for tracer tests modeling in fractured media is the adequate choice of the 669 

modeling approach for each different study scale.  670 
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When dealing with large scales, tracer tests breakthrough curves are generally modeled by a 671 

relatively small number of model parameters (Becker and Shapiro, 2000). 672 

At laboratory scale, the definition of the network of fractures by means of discrete approaches 673 

(DFN) can permit to identify transport pathways and mass transport coefficients, in order to better 674 

define heterogeneous advective phenomena (Cherubini et. al, 2013b). 675 

At an intermediate local field scale (1-100m), recognition that heterogeneous environments contain 676 

fast and slow paths led to the development of the MIM formulation applied successfully in a variety 677 

of hydrogeologic settings. However, the assumed velocity partitioning into flowing and not-flowing 678 

zones is not an accurate representation of the true velocity field (Gao et al., 2009). Especially when 679 

the rock mass is sparsely fractured, the breakthrough curves are characterized by early breakthrough 680 

and long tailing behaviour and a simple mobile-immobile conceptualization may be an over 681 

simplification of the physical transport phenomenon. 682 

Solute transport in fractured aquifers characterized by highly non-Fickian behaviour is therefore 683 

better described by an Explicit Network Model rather than by a simple MIM. Applying a discrete 684 

model in such a case can permit to determine if transport occurs through one or several fractures 685 

and if multiple arrivals are caused by fracture heterogeneity, in such a way as to yield a more robust 686 

interpretation of the subsurface transport regime.  687 

In such a context, geophysical imaging may provide detailed information about subsurface structure 688 

and dynamics (Dorn et al, 2012). Differently from “black – box” one – dimensional models the 689 

definition of the network of fracture may allow to better characterize the nonlinear flow behavior 690 

and its influence on solute propagation in a fractured medium at bench scale (Cherubini et. al, 691 

2013b). 692 
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 864 

MIM 1 

n° Q (m3/s)×10-6   v/L(s-1)×10-2    D/L2 (s-1)×10-2    (s-1)×10-2    (-)   RMSE   r2 

1 1.319 
 

0.73 ± 0.05 
 

0.15 ± 0.01 
 0.43 ± 0.09  

0.95 ± 0.14 
 

0.022 
 

0.979 

5 2.209 
 

1.05 ± 0.05 
 

0.16 ± 0.01 
 0.50 ± 0.12  

0.51 ± 0.07 
 

0.021 
 

0.991 

10 2.731 
 

1.26 ± 0.05 
 

0.18 ± 0.01 
 0.60 ± 0.12  

0.51 ± 0.06 
 

0.021 
 

0.994 

15 3.084 
 

1.74 ± 0.06 
 

0.19 ± 0.01 
 1.03 ± 0.16  

0.56 ± 0.05 
 

0.023 
 

0.995 

20 3.365 
 

1.75 ± 0.06 
 

0.20 ± 0.01 
 1.06 ± 0.17  

0.54 ± 0.05 
 

0.022 
 

0.996 

25 3.681 
 

2.49 ± 0.10 
 

0.25 ± 0.02 
 1.67 ± 0.32  

0.51 ± 0.06 
 

0.030 
 

0.995 

30 4.074 
 

2.57 ± 0.11 
 

0.26 ± 0.02 
 1.67 ± 0.35  

0.50 ± 0.06 
 

0.033 
 

0.994 

35 4.536 
 

2.25 ± 0.09 
 

0.21 ± 0.02 
 1.58 ± 0.29  

0.57 ± 0.06 
 

0.031 
 

0.994 

40 5.382 
 

3.20 ± 0.13 
 

0.26 ± 0.02 
 2.68 ± 0.44  

0.61 ± 0.06 
 

0.035 
 

0.994 

45 5.895 
 

3.32 ± 0.15 
 

0.26 ± 0.02 
 2.82 ± 0.50  

0.57 ± 0.06 
 

0.036 
 

0.995 

50 6.168 
 

3.02 ± 0.15 
 

0.26 ± 0.02 
 2.52 ± 0.52  

0.51 ± 0.07 
 

0.031 
 

0.996 

55 8.345   3.54 ± 0.29   0.35 ± 0.04   3.05 ± 1.07   0.41 ± 0.11   0.038   0.995 

 865 

MIM 1 

n° Q0 
 (m3/s)×10-6   v/L(s-1)×10-2    D/L2 (s-1)×10-2    (s-1)    (-)   RMSE   r2 

1 1.3194 
 

0.73 ± 0.0453 
 

0.15 ± 0.0103 
 

0.004 ± 0.0009 
 

0.95 ± 0.1442 
 

0.0220 
 

0.9786 

5 2.2090 
 

1.05 ± 0.0482 
 

0.16 ± 0.0096 
 

0.005 ± 0.0012 
 

0.51 ± 0.0705 
 

0.0213 
 

0.9915 

10 2.7312 
 

1.26 ± 0.0478 
 

0.18 ± 0.0095 
 

0.006 ± 0.0012 
 

0.51 ± 0.0596 
 

0.0212 
 

0.9938 

15 3.0842 
 

1.74 ± 0.0580 
 

0.19 ± 0.0105 
 

0.010 ± 0.0016 
 

0.56 ± 0.0526 
 

0.0233 
 

0.9950 

20 3.3648 
 

1.75 ± 0.0594 
 

0.20 ± 0.0104 
 

0.011 ± 0.0017 
 

0.54 ± 0.0511 
 

0.0220 
 

0.9956 

25 3.6813 
 

2.49 ± 0.1037 
 

0.25 ± 0.0166 
 

0.017 ± 0.0032 
 

0.51 ± 0.0587 
 

0.0304 
 

0.9948 

30 4.0735 
 

2.57 ± 0.1127 
 

0.26 ± 0.0182 
 

0.017 ± 0.0035 
 

0.50 ± 0.0617 
 

0.0333 
 

0.9940 

35 4.5356 
 

2.25 ± 0.0942 
 

0.21 ± 0.0153 
 

0.016 ± 0.0029 
 

0.57 ± 0.0626 
 

0.0310 
 

0.9936 

40 5.3824 
 

3.20 ± 0.1334 
 

0.26 ± 0.0199 
 

0.027 ± 0.0044 
 

0.61 ± 0.0627 
 

0.0349 
 

0.9944 

45 5.8945 
 

3.32 ± 0.1455 
 

0.26 ± 0.0208 
 

0.028 ± 0.0050 
 

0.57 ± 0.0634 
 

0.0358 
 

0.9946 

50 6.1684 
 

3.02 ± 0.1478 
 

0.26 ± 0.0205 
 

0.025 ± 0.0052 
 

0.51 ± 0.0673 
 

0.0312 
 

0.9955 

55 8.3455   3.54 ± 0.2916   0.35 ± 0.0363   0.030 ± 0.0107   0.41 ± 0.1060   0.0376   0.9948 

Table 111. Estimated values of parameters, root mean square error RMSE and determination coefficient r2 for mobile – immobile 866 
model MIM at different injection flow rates in the fractured medium. 867 

 868 

ENM 2 

n° Q (m3/s)×10-6   eq (m
2)×10-4   L (m)×10-1   RMSE   R2 

1 1.3194 
 

3.10 ± 0.14 
 

1.92 ± 0.86 
 

0.033 
 

0.952 

5 2.2090 
 

3.22 ± 0.04 
 

0.98 ± 0.06 
 

0.020 
 

0.993 

10 2.7312 
 

3.29 ± 0.04 
 

0.92 ± 0.05 
 

0.019 
 

0.995 

15 3.0842 
 

2.81 ± 0.03 
 

0.79 ± 0.03 
 

0.020 
 

0.996 

20 3.3648 
 

3.06 ± 0.03 
 

0.79 ± 0.03 
 

0.019 
 

0.997 

25 3.6813 
 

2.35 ± 0.02 
 

0.74 ± 0.03 
 

0.026 
 

0.996 

30 4.0735 
 

2.49 ± 0.02 
 

0.75 ± 0.03 
 

0.027 
 

0.996 

35 4.5356 
 

3.27 ± 0.04 
 

0.74 ± 0.04 
 

0.028 
 

0.995 

40 5.3824 
 

2.76 ± 0.02 
 

0.75 ± 0.02 
 

0.023 
 

0.998 
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45 5.8945 
 

2.90 ± 0.02 
 

0.69 ± 0.02 
 

0.027 
 

0.997 

50 6.1684 
 

3.30 ± 0.04 
 

0.68 ± 0.02 
 

0.032 
 

0.995 

55 8.3455   3.56 ± 0.05   0.78 ± 0.02   0.041   0.994 

 869 

ENM2 

n° Q0 
 (m3/s)×10-6   Aeq (m

2)×10-2   L (m)   RMSE   r2 

1 1.3194 
 

0.031 ± 0.0014 
 

0.1925 ± 0.0863 
 

0.0328 
 

0.9524 

5 2.2090 
 

0.032 ± 0.0004 
 

0.0984 ± 0.0064 
 

0.0199 
 

0.9925 

10 2.7312 
 

0.033 ± 0.0004 
 

0.0918 ± 0.0048 
 

0.0191 
 

0.9950 

15 3.0842 
 

0.028 ± 0.0003 
 

0.0793 ± 0.0033 
 

0.0204 
 

0.9962 

20 3.3648 
 

0.031 ± 0.0003 
 

0.0792 ± 0.0029 
 

0.0193 
 

0.9966 

25 3.6813 
 

0.024 ± 0.0002 
 

0.0739 ± 0.0030 
 

0.0262 
 

0.9961 

30 4.0735 
 

0.025 ± 0.0002 
 

0.0746 ± 0.0032 
 

0.0272 
 

0.9960 

35 4.5356 
 

0.033 ± 0.0004 
 

0.0735 ± 0.0035 
 

0.0278 
 

0.9948 

40 5.3824 
 

0.028 ± 0.0002 
 

0.0753 ± 0.0020 
 

0.0226 
 

0.9977 

45 5.8945 
 

0.029 ± 0.0002 
 

0.0688 ± 0.0017 
 

0.0266 
 

0.9970 

50 6.1684 
 

0.033 ± 0.0004 
 

0.0684 ± 0.0018 
 

0.0317 
 

0.9954 

55 8.3455   0.036 ± 0.0005   0.0775 ± 0.0020   0.0413   0.9938 

Table 222. Estimated values of parameters, root mean square error RMSE and determination coefficient r2 for ENM2 at 870 
different injection flow rates in the fractured medium.  871 

 872 

 873 

 874 

 875 

 876 

 877 

 878 

ENM 3 

n° Q (m3/s)×10-6   eq (m
2)×10-4   L (m)×10-1   PQ/PC (-)   RMSE   R2 

1 1.319 
 

3.43 ± 1.28  
1.92 ± 0.86 

 
0.82 ± 0.17 

 
0.032 

 
0.954 

5 2.209 
 

3.18 ± 0.11  
0.98 ± 0.06 

 
0.76 ± 0.02 

 
0.020 

 
0.993 

10 2.731 
 

3.28 ± 0.09  
0.92 ± 0.05 

 
0.75 ± 0.02 

 
0.019 

 
0.995 

15 3.084 
 

2.73 ± 0.05  
0.79 ± 0.03 

 
0.73 ± 0.01 

 
0.019 

 
0.997 

20 3.365 
 

2.94 ± 0.05  
0.79 ± 0.03 

 
0.72 ± 0.01 

 
0.017 

 
0.997 

25 3.681 
 

2.22 ± 0.04  
0.74 ± 0.03 

 
0.71 ± 0.01 

 
0.023 

 
0.997 

30 4.074 
 

2.37 ± 0.04  
0.75 ± 0.03 

 
0.71 ± 0.01 

 
0.025 

 
0.997 

35 4.536 
 

3.13 ± 0.06  
0.74 ± 0.04 

 
0.71 ± 0.01 

 
0.026 

 
0.995 

40 5.382 
 

2.61 ± 0.03  
0.75 ± 0.02 

 
0.70 ± 0.01 

 
0.016 

 
0.999 

45 5.895 
 

2.70 ± 0.03  
0.69 ± 0.02 

 
0.68 ± 0.01 

 
0.016 

 
0.999 
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50 6.168 
 

2.98 ± 0.03  
0.68 ± 0.02 

 
0.66 ± 0.01 

 
0.017 

 
0.999 

55 8.345   3.13 ± 0.02   0.78 ± 0.02   0.63 ± 0.01   0.016   0.999 

 879 

 880 

 881 

 882 

ENM3 

n° Q0 
 (m3/s)×10-6   Aeq (m

2)×10-2   L (m)   PQ/PC (-)   RMSE   r2 

1 1.3194 
 

0.0343 ± 0.0128 
 

0.1925 ± 0.0863 
 

0.8153 ± 0.1717 
 

0.0323 
 

0.9539 

5 2.2090 
 

0.0318 ± 0.0011 
 

0.0984 ± 0.0064 
 

0.7558 ± 0.0214 
 

0.0199 
 

0.9925 

10 2.7312 
 

0.0328 ± 0.0009 
 

0.0918 ± 0.0048 
 

0.7542 ± 0.0165 
 

0.0190 
 

0.9950 

15 3.0842 
 

0.0273 ± 0.0005 
 

0.0793 ± 0.0033 
 

0.7334 ± 0.0119 
 

0.0193 
 

0.9966 

20 3.3648 
 

0.0294 ± 0.0005 
 

0.0792 ± 0.0029 
 

0.7239 ± 0.0106 
 

0.0175 
 

0.9972 

25 3.6813 
 

0.0222 ± 0.0004 
 

0.0739 ± 0.0030 
 

0.7063 ± 0.0106 
 

0.0228 
 

0.9971 

30 4.0735 
 

0.0237 ± 0.0004 
 

0.0746 ± 0.0032 
 

0.7111 ± 0.0115 
 

0.0248 
 

0.9967 

35 4.5356 
 

0.0313 ± 0.0006 
 

0.0735 ± 0.0035 
 

0.7124 ± 0.0128 
 

0.0259 
 

0.9955 

40 5.3824 
 

0.0261 ± 0.0003 
 

0.0753 ± 0.0020 
 

0.6988 ± 0.0070 
 

0.0164 
 

0.9988 

45 5.8945 
 

0.0270 ± 0.0003 
 

0.0688 ± 0.0017 
 

0.6813 ± 0.0060 
 

0.0164 
 

0.9989 

50 6.1684 
 

0.0298 ± 0.0003 
 

0.0684 ± 0.0018 
 

0.6614 ± 0.0059 
 

0.0169 
 

0.9987 

55 8.3455   0.0313 ± 0.0002   0.0775 ± 0.0020   0.6297 ± 0.0051   0.0161   0.9991 

Table 333. Estimated values of parameters, root mean square error RMSE and determination coefficient r2 for ENM3 at different 883 
injection flow rates in the fractured medium. 884 

 885 

ENM 4 

n° Q (m3/s)×10-6   eq (m
2)×10-4   L (m)×10-1   PQ (-)   PC (-)   RMSE   R2 

1 1.319 
 

2.67 ± 0.13 
 

1.18 ± 0.11 
 

0.85 ± 0.02 
 

0.67 ± 0.02 
 

0.020 
 

0.981 

5 2.209 
 

3.15 ± 0.12 
 

0.96 ± 0.07 
 

0.76 ± 0.02 
 

0.75 ± 0.03 
 

0.020 
 

0.993 

10 2.731 
 

3.28 ± 0.10 
 

0.92 ± 0.06 
 

0.75 ± 0.02 
 

0.76 ± 0.02 
 

0.019 
 

0.995 

15 3.084 
 

2.74 ± 0.06 
 

0.80 ± 0.04 
 

0.73 ± 0.01 
 

0.74 ± 0.02 
 

0.019 
 

0.997 

20 3.365 
 

2.97 ± 0.06 
 

0.81 ± 0.04 
 

0.72 ± 0.01 
 

0.73 ± 0.02 
 

0.017 
 

0.997 

25 3.681 
 

2.28 ± 0.05 
 

0.80 ± 0.04 
 

0.70 ± 0.01 
 

0.74 ± 0.02 
 

0.020 
 

0.998 

30 4.074 
 

2.43 ± 0.06 
 

0.80 ± 0.04 
 

0.71 ± 0.01 
 

0.74 ± 0.02 
 

0.022 
 

0.997 

35 4.536 
 

3.18 ± 0.08 
 

0.76 ± 0.05 
 

0.71 ± 0.01 
 

0.73 ± 0.02 
 

0.025 
 

0.996 

40 5.382 
 

2.62 ± 0.04 
 

0.76 ± 0.03 
 

0.70 ± 0.01 
 

0.70 ± 0.01 
 

0.016 
 

0.999 

45 5.895 
 

2.76 ± 0.03 
 

0.73 ± 0.02 
 

0.68 ± 0.01 
 

0.71 ± 0.01 
 

0.014 
 

0.999 

50 6.168 
 

3.12 ± 0.04 
 

0.76 ± 0.02 
 

0.66 ± 0.01 
 

0.71 ± 0.01 
 

0.012 
 

0.999 

55 8.345   3.46 ± 0.02   0.96 ± 0.01   0.63 ± 0.00   0.73 ± 0.01   0.003   1.000 

Table 4. Estimated values of parameters, root mean square error RMSE and determination coefficient r2 for ENM4 at 886 
different injection flow rates in the fractured medium. 887 

ENM4 

n° Q0 
 (m3/s)×10-6   Aeq (m

2)×10-2   L (m)   PQ (-)   PC (-)   RMSE   r2 
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1 1.3194 
 

0.027 ± 0.0013 
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55 8.3455   0.035 ± 0.0002   0.096 ± 0.0013   0.628 ± 0.0021   0.728 ± 0.006   0.0033   1.0000 
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Table 44. Estimated values of parameters, root mean square error RMSE and determination coefficient r2 for ENM4 at different 890 
injection flow rates in the fractured medium. 891 

 892 
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 894 

Figure 111. Schematic diagram of experimental setup. 895 

 896 

Figure 222. 2d pipe network conceptualization of of the fractured medium. 897 
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 898 

Figure 333. Average resistance to flow versus injection flow rate Q0 (m
3/s). The circles represent the experimental values, the 899 

straight line represents the resistance to flow evaluated by equation (31). 900 

 901 

Figure 444. Probability of water distribution evaluated for main path PQ versus injection flow rate Q0 (m
3/s). 902 
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 903 

Figure 555. Mean travel time tm (s) versus injection flow rate Q0 (m
3/s). 904 
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 906 

Figure 666. Fitting of breakthrough curves at different injection flow rates using each of the four models (MIM, ENM1, 907 
ENM2, ENM3).  908 
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 911 

Figure 7. Immobile – mobile ratio () as function of normalized velocity v/L (s-1) for MIM model. An outlier is evidenced for 912 
v/L=0,028 s-1 913 

 914 

Figure 8. Transport time (L/v) (reciprocal of normalized velocity) and exchange time (1/) (reciprocal of the exchange term) 915 
as function of injection flow rate Q0 (m

3/s) for mobile - immobile model MIM. 916 
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 917 

Figure 9. Travel time for main path tm1 (s) and travel time for secondary path tm2 (s) for ENM4 as function of injection flow 918 
rate Q0 (m

3/s). 919 

 920 

 921 

Figure 107. Comparison between the Probability of water distribution PQ evaluated as the square brackets term in Equation 922 
(29 ) by the flow model (straight line) and  PQ supposed equal to the probability of particle transition PCc(PQ) for ENM3 923 
(circle) varying the injection flow rate Q0 (m

3/s). 924 
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 925 

Figure 811. Comparison between the Probability of water distribution PQ evaluated by the flow model (straight line) and the 926 
probability of particle transition Pc (square) and PQ (circle) for ENM4 varying the injection flow rate Q0 (m

3/s). 927 

 928 

Figure . Immobile – mobile ratio () as function of normalized velocity v/L (s-1) for MIM model. 929 
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 930 

Figure 109. Transport time (L/v) (reciprocal of normalized velocity) and exchange time (1/) (reciprocal of the exchange 931 
term) as function of injection flow rate Q0 (m

3/s) for immobile -mobile model MIM. 932 

 933 

Figure 1110. Travel time for main path tm1 (s) and travel time for secondary path tm2 (s) for ENM2 as function of injection 934 
flow rate Q0 (m

3/s). 935 
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 936 

Figure 121112. velocity v (m/s) as function of the injection flow rate Q0 (m
3/s) for MIM and ENM4 models. Note that for MIM 937 

model the v is determined assuming the length of medium equal to the length of main path (L = 0.601 m). Instead for the 938 
ENM4 model the velocity is determined dividing Q0 for the equivalent area eq.  939 

 940 

 941 

Figure 13. difference of pressure P (Pa) as function of velocity v (m/s) for ENM4. The velocity is determined dividing Q0 for 942 
the equivalent area eq.  943 
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 944 

 945 

Figure 141214. Dispersion D (m2/s) as function of velocity for MIM and ENM4 models. Note that for MIM model D is 946 
determined assuming the length of the medium equal to the length of the main path (l=0.601 m). Instead for ENM4 model D 947 
is determined as D=Q0L/eq. 948 
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