The editor has absolutely right. Again the equation (14) is not correct. According with the editor the equation (14) has been corrected and assumes the following expression:

$$Q_j = \sum Q \frac{1}{R_j} \left(\sum_{i=1}^n \frac{1}{R_i} \right)^{-1}$$

Where the following term:

$$\left(\sum_{i=1}^n \frac{1}{R_i}\right)^{-1}$$

Represents the total resistance term equal to the inverse of the reciprocal of the sum of the each resistance term.

However in the paper the equation (14) is not directly used. In fact the equation (29) is derived by applying directly the first and second Kirchhoff laws.

For the simplest case of two resistances the equation (14) and equation (29) are equivalent. In fact:

$$Q_{j} = \sum Q \frac{1}{R_{j}} \left(\sum_{i=1}^{n} \frac{1}{R_{i}} \right)^{-1} \Rightarrow Q_{1} = Q_{0} \frac{1}{R_{6}} \left(\frac{1}{R_{6}} + \frac{1}{R_{3} + R_{4} + R_{5}} \right)^{-1} \Rightarrow$$
$$\Rightarrow Q_{1} = Q_{0} \frac{1}{R_{6}} \frac{R_{6}(R_{3} + R_{4} + R_{5})}{R_{3} + R_{4} + R_{5} + R_{6}} \Rightarrow Q_{1} = Q_{0} \frac{R_{3} + R_{4} + R_{5}}{R_{3} + R_{4} + R_{5} + R_{6}}$$

Formatted: English (U.K.)

<u>On On</u> the reliability of analytical models to predict solute transport in a fracture network

3 Claudia Cherubini*, Concetta I. Giasi**, Nicola Pastore**

4 *HydrISE, Institut Polytechnique LaSalle Beauvais, 19 rue Pierre Waguet, 60026 Beauvais Cedex,

5 France

1 2

6 ** Polytechnical University of Bari, Bari, Italy

7 Abstract

8 In hydrogeology, the application of reliable tracer transport model approaches is a key issue to9 derive the hydrodynamic properties of aquifers.

Laboratory and field – scale tracer dispersion breakthrough curves (BTC) in fractured media are notorious for exhibiting early time arrivals and late – time tailing that are not captured by the classical advection – dispersion equation (ADE). These "non – Fickian" features are proved to be better explained by a mobile – immobile (MIM) approach. In this conceptualization the fractured rock system is schematized as a continuous medium in which the liquid phase is separated into flowing and stagnant regions.

16 The present study compares the performances and reliabilities of <u>the classical Mobile – Immobile</u> 17 Model (MIM) and the Explicit Network Model (ENM) that takes expressly into account the 18 network geometry for describing tracer transport <u>behaviorbehaviour</u> in a fractured sample at bench 19 scale. Though ENM shows better fitting results than MIM, the latter remains still valid as it proves 10 to describe the observed curves quite well.

21 The results show that the presence of nonlinear flow plays an important role ion the behaviour of 22 solute transport. Firstly the distribution of solute according to different pathways is not constant but 23 it is related to the flow rate. Secondly nonlinear flow influences advection, in that it leads to a delay 24 in solute transport respect to the linear flow assumption. Whereas nonlinear flow does not show to 25 be related with dispersion. The experimental results show that in the study case the geometrical 26 dispersion dominates the Taylor dispersion. However the interpretation with the ENM model shows 27 a weak transitional regime from geometrical dispersion to Taylor dispersion for high flow rates. The experimental results show that in the study case the geometrical dispersion dominates the Taylor 28

Formatted: English (U.K.)

dispersion. Incorporating the description of the flowpaths in the analytical modeling has proved to
 better fit the curves and to give a more robust interpretation of the solute transport.

31 Introduction

In fractured rock formations, the rock mass hydraulic <u>behaviorbehaviour</u> is controlled by fractures.
In such aquifers, open and well – connected fractures constitute high permeability pathways and are
orders of magnitude more permeable than the rock matrix (Bear & Berkowitz, 1987; Berkowitz,
2002; Bodin et al., 2003; Cherubini, 2008; Cherubini & Pastore, 2011, Geiger et al., 2012, Neuman,
2005).

In most studies examining hydrodynamic processes in fractured media, it is assumed that flow is
described by Darcy's law, which expresses a linear relationship between pressure gradient and flow
rate (Cherubini & Pastore, 2010). Darcy's law has been demonstrated to be valid at low flow
regimes (Re < 1). For Re > 1 a nonlinear flow behaviorbehaviour is likely to occur.

But in real rock fractures, microscopic inertial phenomena can cause an extra macroscopic
hydraulic loss (Kløv, 2000) which deviates flow from the linear relationship among pressure drop
and flow rate.

44 To experimentally investigate the fluid flow regimes through deformable rock fractures, Zhang & 45 Nemcik (2013) carried out flow tests through both mated and non - mated sandstone fractures in triaxial cell. For water flow through mated fractures, the experimental data confirmed the validity of 46 47 linear Darcy's law at low velocity. For larger water flow through non - mated fractures, the 48 relationship between pressure gradient and volumetric flow rate revealed that the Forchheimer 49 equation offers a good description for this particular flow process. The obtained experimental data show that Izbash's law can also provide an excellent description for nonlinear flow. They concluded 50 51 that further work was needed to study the dependency of the two coefficients on flow 52 velocity.(forse va citato qualche altro paper sul flusso non darciano nelle fratture)

In fracture networks heterogeneity intervenes even in solute transport: due to the variable aperture
and heterogeneities of the fracture surfaces the fluid flow will seek out preferential paths (Gylling et
al., 1995) through which solutes are transported.

Generally the geometry of fracture network is not well known and the study of solute transport
 behaviorbehaviour is based on multiple domain theory according to which the fractured medium is

58 separated in two distinct domains: high velocity zones such as the network of connected fractures

59 (mobile domain) where solute transport occurs predominantly by advection, and lower velocity

Formatted: English (U.K.)

Formatted: English (U.K.)

60	zones such as secondary pathways, stagnation zones (almost - immobile domain), such as the rock	
61	matrix.	
62	TMoreover, the presence of steep concentration gradients between fractures and matrix causes local	
63	disequilibrium in solute concentration which gives rise to dominantly diffusive exchange between	
64	fracture and matrix. This explains the non - Fickian nature of transport, which is characterized by	
65	breakthrough curves with early first arrival and long tails.	
66		
67	Quantifying solute transport in fractured media has become a very challenging research topic in	
68	hydrogeology over the last three decades (Nowamooz et al., 2013, Cherubini et al., 2009).	Formatted: English (U.K.)
69		
70		
71	Therefore in the fracture network different pathways can be identified through which solute is	
72	generally distributed in function of the energy spent by solute particles to cross the path. In this	
73	context the presence of nonlinear flow plays an important role in the distribution of the solutes	
74	according to the different pathways. In fact the energy spent to cross the path is proportional to the	
75	resistance to flow associated to the single pathway, which in nonlinear flow regime is not constant	
76	but depends on the flow rate.	
77	This means that changing boundary conditions the resistance to flow varies and as a consequence	
78	the distribution of solute in the main and secondary pathways also changes giving rise to a different	
79	behaviour of solute transport. Moreover, the presence of steep concentration gradients between	
80	fractures and matrix causes local disequilibrium in solute concentration which gives rise to	
81	dominantly diffusive exchange between fracture and matrix. This explains the non - Fickian nature	
82	of transport, which is characterized by breakthrough curves with early first arrival and long tails.	
83	Quantifying solute transport in fractured media has become a very challenging research topic in	
84	hydrogeology over the last three decades (Nowamooz et al., 2013).	
85	Tracer tests are commonly conducted in such aquifers to estimate transport parameters such as	
86	effective porosity and dispersivity, to characterize subsurface heterogeneity, and to directly	
87	delineate flow paths. Testing involves injecting a tracer into the underground formation through an	
88	injection well, and then monitoring the tracer concentrations as a function of location and/or time at	
89	the surrounding observation well (breakthrough curve).	Formatted: Font color: Auto, English (U.K.)
90	Transport parameters such as porosity and dispersion coefficient are estimated by fitting appropriate	Formatted: English (U.K.)
91	tracer transport models to the breakthrough data. (potrebbe essere eliminato troppo generico)	Formatted: Font color: Auto, English (U.K.)
		Formatted: English (ILK)

tted: Font color: Auto, English (U.K.) Formatted: English (U.K.)

In this context, analytical models are frequently employed, especially for analyzing tests obtained
under controlled conditions, because they involve a small number of parameters and provide
physical insights into solute transport processes (Liu et al 2012).

95 The advection – dispersion equation (ADE) has been traditionally applied to model tracer transport

96 in fractures. However extensive evidence has shown that there exist two main features that cannot

be explained by the ADE: the early <u>first</u> arrival and the long tail of the observed BTCs curves.
(Neretnieks et al, 1982; Becker and Shapiro, 2000; Jiménez-Hornero et al. 2005; Bauget and Fourar,
2008).

Several other models have been used to fit the anomalous BTCs obtained in laboratory tracer tests
carried out in single fractures. Among those, the Mobile-Immobile (MIM) model (van Genuchten
and Wierenga, 1976), which recognizes the existence of mobile and immobile domains for
transport, has showed to provide better fits of BTC curves (Gao et al., 2009, Schumer et.al 2003,
Feehley et al, 2010).

- In the well controlled laboratory tracer tests carried out by Qian et al. (2011) a mobile immobile
 (MIM) model proved to fit both peak and tails of the observed BTCs better than the classical ADE
 model.
- Another powerful method to describe non Fickian transport in fractured media is the continuous
 time random walk (CTRW) approach (Berkowitz et al. 2006) which is based on the conceptual
 picture of tracer particles undergoing a series of transitions of length s and time *t*.
- Together with a master equation conserving solute mass, the random walk is developed into a
 transport equation in partial differential equation form. The CTRW has been successfully applied
 for describing non Fickian transport in single fractures (Berkowitz et al.2001; Jiménez Hornero
 et al. 2005).
- Bauget and Fourar (2008) investigated non Fickian transport in a transparent replica of a real
 single fracture. They employed three different models including ADE, CTRW, and a stratified
 model to interpret the tracer experiments.
- 118 As expected, the solution derived from the ADE equation appears to be unable to model long-time
- 119 tailing behaviorbehaviour. On the other hand, the CTRW and the stratified model were able to

describe non – Fickian dispersion. The parameters defined by these models are correlated to the
heterogeneities of the fracture.

- 122 Nowamooz et al., (2013) carried out experimental investigation and modeling analysis of tracer
- 123 transport in transparent replicas of two Vosges sandstone natural fractures.

124 The obtained breakthrough curves were then interpreted using a stratified medium model that 125 incorporates a single parameter permeability distribution to account for fracture heterogeneity,

126 together with a CTRW model, as well as the classical ADE model.

127 The results confirmed poorly fitting breakthrough curves for ADEThe results indicated that the 128 elassical ADE is not appropriate for modeling early arrival and long time tailing. In contrast, the 129 stratified model provides generally satisfactory matches to the data (even though it cannot explain 130 the long-time tailing adequately) while the CTRW model captures the full evolution of the long 131 tailing displayed by the breakthrough curves.

Qian et al (2011) experimentally studied solute transport in a single fracture (SF) under non –
Darcian flow condition which was found to closely follow the Forchheimer equation.

They also investigated on the influence of the velocity contrast between the fracture wall and the
plane of symmetry on the dispersion process, which was called 'boundary layer dispersion' by
Koch and Brady (1985).

137 They affirmed that this phenomenon had to be considered if the thickness of the boundary layer was 138 greater than the roughness of the fracture. On the other hand, if the thickness of the boundary layer 139 was smaller than the roughness of the fractures, the recirculation zones inside the roughness cavities 140 rather than the boundary layer would be more relevant for the dispersion process, thus the hold – up 141 dispersion would become important. Since smooth parallel planes were used for constructing the SF

142 in their experiment, the fracture roughness and the hold – up dispersion were negligible.

Bodin et al (2007) developed the SOLFRAC program, which performs fast simulations of solute 143 144 transport in complex 2D fracture networks using the Time Domain Random Walk (TDRW) 145 approach (Delay & Bodin, 2001) that makes use of a pipe network approximation. The code 146 accounts for advection and hydrodynamic dispersion in the channels, matrix diffusion, diffusion 147 into stagnant zones within the fracture planes, mass sharing at fracture intersections, and other 148 mechanisms such as sorption reactions and radioactive decay. Comparisons between numerical 149 results and analytical breakthrough curves for synthetic test problems have proven the accuracy of 150 the model.

151 Zafarani & Detwiler (2013) presented an alternate approach for efficiently simulating transport152 through fracture intersections.

- 153 Rather than solving the two dimensional Stokes equations, the model relies upon a simplified.
- 154 velocity distribution within the fracture intersection, assuming local parabolic velocity profiles

155 within fractures entering and exiting the fracture intersection. Therefore, the solution of the two –

156 dimensional Stokes equations is unnecessary, which greatly reduces the computational complexity.

Formatted: English (U.K.)
Formatted: English (U.K.)

Formatted: Space After: 0 pt

Formatted: Space After: 10 pt

157 The uUse of a time – domain approach to route particles through the fracture intersection in a single
158 step further reduces the number of required computations. The model accurately reproduces mixing
159 ratios predicted by high – resolution benchmark simulations.

160	As m ₂ Most of previous investigations of flow and transport in fracture networks considered Darcian
161	flow, t- and there are few controlled laboratory experiments on solute transport under non Darcian
162	flow. Furthermore the behaviour of the solute transport in fracture networks under non – darcian
163	flow conditions has been therefore poorly investigated. In the fracture networks different pathways
164	can be identified through which solute is generally distributed in function of the energy spent by
165	solute particles to cross the path. In this context the presence of nonlinear flow could plays an
166	important role in the distribution of the solutes according to the different pathways. In fact the
167	energy spent to cross the path should be proportional to the resistance to flow associated to the
168	single pathway, which in nonlinear flow regime is not constant but depends on the flow rate. This
169	means that changing the boundary conditions the resistance to flow varies and as a consequence the
170	distribution of solute in the main and secondary pathways also changes giving rise to a different
171	behaviour of solute transport.
172	Most of previous investigations of flow and transport in fracture networks considered Darcian flow,
173	and there are few controlled laboratory experiments on solute transport under non Darcian flow.
174	In previous studies by Cherubini et al (2012, 2013) the presence of nonlinear flow and non fickian
175	transport in a fractured rock formation has been analyzed analyzed at bench scale in laboratory tests.
176	The effects of nonlinearity in flow have been investigated by analyzing analyzing hydraulic tests on
177	an artificially created fractured limestone block of parallelepiped (0.60×0.40×0.8 m ³) shape.
178	The flow tests regard the observation of the volumes of water passing through different paths across
179	the fractured sample. In particular, tThe inlet flow rate and the for various hydraulic head
180	difference between the inlet and outlet ports nees-have been measured. The experimental results
181	have shown evidence of a non-Darcy relationship between flow rate and hydraulic head
182	differences loss that is best described by a polynomial expression Forchheimer's law. Transition
183	from viscous dominant regime to inertial dominant regime has been detected. The experiments
184	haves been compared with a 3d numerical model in order to evaluate the linear and non-linear terms
185	of Fforchheimer equation for each paths.
186	Moreover, a tortuosity factor has been determined which is a measure of the deviation of each flow
187	path from the parallel plate model. A power law has been detected between the Forchheimer terms
188	and the tortuosity factor, which means that the latter influences flow dynamics. (ya accennato anche
189	il discorso della tortuosità)

Formatted: English (U.K.)
Formatted: English (U.K.)
Formatted: Font color: Auto
Formatted: English (U.K.)
Formatted: Font color: Auto
Formatted: English (U.K.)
Formatted: English (U.K.)
Formatted: Font color: Auto
Formatted: English (U.K.)

Formatted: Font color: Auto, English (U.K.)
Formatted: English (U.K.)

190	, and the results of the experiments have been reported as specific flow rate vs. head gradient (Fig
191	<u>1).</u>
192	The non fickian nature of transport has been investigated by means of tracer tests that regard the
193	measurement of breakthrough curves for saline tracer pulse across a selected path varying the flow
194	<u>rate.</u>
195	The experimental results have shown evidence of a non-Darcy relationship between flow rate and
196	hydraulie loss that is best described by Forehheimer's law. Transition from viscous dominant
197	regime to inertial dominant regime has been detected. The observed experimental breakthrough
198	curves of solute transport have proved to be better modeled by the <u>ld</u> analytical solution of <u>MIM</u>
199	model.approach which recognizes the existence of mobile and immobile domains for transport.
200	The carried out experiments show that there exists a pronounced mobile-immobile zone interaction
201	that cannot be neglected and that leads to a non-equilibrium behaviour of solute transport. The
202	existence of a non-Darcian flow regime has showed to influence the velocity field in that it gives
203	rise to a delay in solute migration with respect to the predicted value assuming linear flow.
204	furhtermoreFurthermoreTherefore the presence of inertial effects has proved to enhance non-
205	equilibrium behaviour.
206	Instead, the presence of a transitional flow regime seems not to exert influence on the behaviour of
207	dispersion. The linear type relationship found between velocity and dispersion demonstrates that for
208	the range of imposed flow rates and for the selected path the geometrical dispersion dominates the
209	mixing processes along the fracture network.
210	The authors concluded that for the case study, where a fracture network is present, fracture
211	intersections interrupt the continuity of flow paths between single fractures and give rise to velocity
212	fluctuations that do not permit Taylor dispersion to "develop" and instead enhance geometrical
213	dispersion.
214	
215	Herein, in order to give a more physical interpretation of the flow and transport behaviour, we build
216	on the work by Cherubini et al (2013) by interpreting the obtained experimental results of flow and
217	transport tests by means of the comparison of two conceptual models: the 1d single rate mobile –
218	immobile model (MIM) and the 2d Explicit Network Model (ENM). Differently from the former,
219	the latter expressly takes the fracture network geometry into account.
220	
221	Starting from previous studies (Cherubini et al, 2012, 2013a), in order to give a physical
222	interpretation of the flow and transport behavior, in this work the experimental results of flow and
223	transport tests in a fractured block at bench scale are interpreted by means of two conceptual

Formatted: Font color: Auto
Formatted: English (U.K.)

Formatted: English (U.K.), Not Highlight
Formatted: English (U.K.)
Formatted: English (U.K.), Not Highlight
Formatted: English (U.K.)
Formatted: English (U.K.)
Formatted: English (U.K.)

224	models: the single rate mobile immobile model (MIM) and the Explicit Network Model (ENM).
225	Differently from the former, the latter expressly takes the fracture network geometry into account.
226	The MIM approach is applied successfully in a broad variety of environmental context such as
227	rivers and streams with hypoeric zone exchange, subsurface flow and transport in unsaturated and
228	saturated heterogeneous media, reactive solute transport etc.
229	When applied toin fractured media, the MIM approach does not explicitly take the fracture network
230	geometry into account, but it conceptualizes the shape of fractures as <u>1done dimensional</u> continuous
231	media in which the liquid phase is separated into flowing and stagnant regions. The convective
232	dispersive transport is restricted to the flowing region, and the solute exchange is described as a first
233	– order process.
234	Unlike MIM, the ENM model may allow to know the physical meaning of the-flow and transport
235	phenomena (i.e the meaning of long - time behaviorbehaviour of BTC curves that characterize
236	fractured media) and permits to obtain a more accurate estimation of flow and solute transport
237	parameters. In this model the fractures are represented as 1d - pipe elements and they form a 2d -
238	pipe network.
239	It is clear that ENM needs to address the problem of parameterization. In fact the transport
240	parameters of each individual fracture should be specified and this leads to more uncertainty in the
241	estimation.
242	Our overarching objective is therefore of investigating the performances and the reliabilities of
243	MIM and ENM approaches to describe conservative tracer transport in a fractured rock sample.
244	The present paper aims to investigate the performance and the reliabilities of MIM and ENM
245	approaches. In particular way the present paper focuses the attention on the effects of non-linear
246	flow regime on different features which that depict the conservative solute transport in a fractured
247	network such asincluding: mean travel time, dispersion, dual porosity behaviour, distribution of
248	solute into the different pathways.
249	The aim of this work is therefore to compare the performances and the reliabilities of MIM and
250	ENM approaches in nonlinear flow regime to describe conservative tracer transport in a fractured
251	rock sample. In particular manner the present paper aims to investigate (specificare nel dettaglio
252	gli obiettivi del paper)

Formatted: English (U.K.)

Formatted: Font color: Text 1, English (U.K.), Not Highlight
Formatted: English (U.K.)
Formatted: Font color: Text 1, English (U.K.), Not Highlight
Formatted: Font color: Text 1, English (U.K.)
Formatted: Font color: Text 1, English (U.K.)
Formatted: English (U.K.)
Formatted: Font color: Text 1, English (U.K.)
Formatted: English (U.K.)
Formatted: Font color: Text 1, English (U.K.)
Formatted: Font color: Red, English (U.K.), Highlight

253 Theoretical background

254 Nonlinear flow

In the literature different laws are reported that account for the nonlinear relationship between
velocity and pressure gradient.

A cubic extension of Darcy's law that describes pressure loss versus flow rate for low flow rates isthe weak inertia equation:

259	$-\frac{dp}{dx} = \frac{\mu}{k} \cdot v + \frac{\gamma \rho^2}{\mu} \cdot v^3 \tag{111}$	Formatted: English (U.K.)
260	Where p (ML ⁻¹ T ⁻²) is the pressure, k (L ²) is the permeability, μ (ML ⁻¹ T ⁻¹) is the viscosity, ρ (ML ⁻³)	Formatted: English (U.K.)
261	is the density, v (LT ⁻¹) is the velocity and χ (L) is called the weak inertia factor.	Formatted: English (U.K.)
201	is the density, $V(LT)$ is the velocity and $\frac{V(L)}{V(L)}$ is called the weak metual factor.	Formatted: English (U.K.)
262	In case of higher Dermolds numbers $(\mathbf{P}_{2} > 1)$ the processing leases race from a weak inertial to a	Formatted: English (U.K.)
262	In case of higher Reynolds numbers ($Re >> 1$) the pressure losses pass from a weak inertial to a	Formatted: English (U.K.)
263	strong inertial regime, described by the Forchheimer equation (Forchheimer, 1901), given by:	Formatted: English (U.K.)
264	$-\frac{dp}{dx} = \frac{\mu}{k} \cdot v + \rho\beta \cdot v^2 \tag{222}$	Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.)
265	Where $\beta(L^{-1})$ is called the inertial resistance coefficient, or non – Darcy coefficient.	Formatted: English (U.K.)
203	where $p(L)$ is called the merital resistance coefficient, of non – Darcy coefficient.	Formatted: English (U.K.)
266	Forchheimer law can be written in terms of hydraulic head:	
267	dh (222)	Formatted: English (U.K.)
267	$-\frac{dh}{dx} = a' \cdot v + b' \cdot v^2 \tag{333}$	Formatted: English (U.K.)
		Formatted: English (U.K.)
268	Where $a'_{\perp}(TL^{-1})$ and $b'_{\perp}(TL^{-2})$ are the linear and inertial coefficient respectively equal to:	Formatted: English (U.K.)
		Formatted: English (U.K.)
	μ μ β	Formatted: English (U.K.)
269	$a' = \frac{\mu}{\rho g k}; \ b' = \frac{\beta}{g} \tag{444}$	Formatted: English (U.K.)
	<i>P</i> 8 8	Formatted: English (U.K.)
270	In the same way the relationship between flow rate Q (L ³ T ⁻¹) and hydraulic head gradient can be	
271	written as:	
		Field Code Changed
272	$-\nabla h = a \cdot Q + b \cdot Q^2 - \frac{dh}{dx} = a \cdot Q + b \cdot Q^2 $ (555)	Formatted: English (U.K.)

Formatted: English (U.K.)

Formatted: English (U.K.)

273 Where a (TL⁻³) and b (T²L⁻⁶) are related to a' and b':

274	$a = \frac{a'}{a}; b$	$b = \frac{b'}{b}$
	ω_{eq}	$\omega_{_{eq}}$

275 Where ω_{eq} (L²) represents the <u>equivalent</u> cross sectional area of fracture.

276 Mobile Immobile Model

The mathematical formulation of the MIM for non - reactive solute transport is usually given as follows:

279
$$\begin{aligned} \frac{\partial c_m}{\partial t} &= D \frac{\partial^2 c_m}{\partial x^2} - v \frac{\partial c_m}{\partial x} - \alpha \left(c_m - c_{im} \right) \\ \beta \frac{\partial c_{im}}{\partial t} &= \alpha \left(c_m - c_{im} \right) \end{aligned}$$
(777)

280 Where *t* (T) is the time, *x* (L) is the spatial coordinate along the direction of the flow, c_m and c_{im} 281 (ML⁻³) are the cross - sectional averaged solute concentrations respectively in the mobile and 282 immobile domain, *v* (LT⁻¹) is the average flow velocity and *D* (L²T⁻¹) is the dispersion coefficient, α 283 (T⁻¹) is the mass exchange coefficient, β [-] is the mobile water fraction. For a non – reactive solute 284 β is equivalent to the ratio between the immobile and mobile cross – sectional area (-).

The solution of system Equation (7) describing one – dimensional (1d) non – reactive solute
transport in an infinite domain for instantaneous pulse of solute injected at time zero at the origin is
given by (Goltz & Roberts, 1986):

288
$$c_m(x,t) = e^{-\alpha t} c_0(x,t) + \alpha \int_0^t H(t,\tau) c_0(x,\tau) d\tau$$

289 Where c_0 represents the analytical solution for the classical advection – dispersion equation (Crank, 290 1956):

291
$$c_0(x,t) = \frac{M_0}{\omega_{eq}\sqrt{\pi Dt}}e^{-\frac{(x-vt)^2}{4Dt}}$$
Formatted: English (U.K.)
Formatted: English (U.K.)
Formatted: English (U.K.)
Formatted: English (U.K.)

Where *Mo* (M) is the mass of the tracer injected instantaneously at time zero at the origin of the domain. The term $H(t,\tau)$ presents the following expression:

	Formatted: English (U.K.)
\square	Formatted: English (U.K.)
_	Formatted: English (U.K.)
_	Formatted: English (U.K.)
\leq	Formatted: English (U.K.)

(<u>66</u>6)

(<u>888</u>)

J	Formatted: English (U.K.)
X	Formatted: English (U.K.)
λ	Formatted: English (U.K.)

Formatted: English (U.K.)

Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.)

295 Where I_1 represents the modified Bessel function of order 1.

296	INote that in order to fit the BTCs curves with by the MIM model the assumptions for of the	Formatted: Font color: Auto, English (U.K.)
297	representative 1d length (L) of the fracture network should be carried outmade. However this matter	Formatted: English (U.K.)
		Formatted: Font color: Auto, English (U.K.)
298	guestion can be resolved by the introduction of the normalized velocity (y/L) and normalized	Formatted: English (U.K.)
299	dispersion (D/L^2) . The MIM model are defined by four parameters regarding the whole fracture	Formatted: Font color: Auto, English (U.K.)
300	network $(\nu/L, D/L^2, \alpha, \beta)$.	Formatted: English (U.K.)
500	network (V/L, D/L, <u>0, p)</u> .	Formatted: Font color: Auto, English (U.K.)
301	the length of 1d domain does not need to be known. The parameters v and D are normalized by	Formatted: English (U.K.)
		Formatted: Font: Italic, English (U.K.)
302	dividing them by L and L^2 respectively. In this way a unit length of 1d domain can be assumed.	Formatted: English (U.K.)
		Formatted: Font color: Auto, English (U.K.)
303	Explicit Network Model	Formatted: English (U.K.)
304	Assuming that a single fracture j can be represented by a 1d – pipe elements, the relationship	Formatted: Font color: Auto, English (U.K.)
205		Formatted: English (U.K.)
305	between head loss Δh_{j} (L) and flow rate Q_{j} (L ³ T ⁻¹) can be written in finite terms on the basis of	Formatted: Font color: Auto, English (U.K.)
306	Forchheimer model:-	Formatted: English (U.K.)
		Formatted: Font: Italic, English (U.K.)
	Λh	Formatted: English (U.K.)
307	$\frac{\Delta h_j}{l_j} = aQ_j + bQ_j^2 \Longrightarrow \Delta h_j = \left[l_j \left(a + bQ_j\right)\right]Q_j \tag{111111}$	Formatted: Font: Italic, English (U.K.)
		Formatted: English (U.K.)
••••		Formatted: Font color: Auto, English (U.K.)
308	Where l_j (L) is the length of fracture, a (TL ⁻³) and b (T ² L ⁻⁶) are the Forchheimer parameters in finite	Formatted: English (U.K.)
309	terms.	Formatted: Font color: Auto, English (U.K.)
		Formatted: English (U.K.)
310	The term in the square brackets represents the resistance to flow $R_j(Q_j)$ (TL ⁻³) of j fracture.	Formatted: English (U.K.)
		Formatted: English (U.K.)
311	For steady – state condition and for a 2d simple geometry of the fracture network, the solution of	Formatted: English (U.K.)
		Formatted: English (U.K.) Formatted: English (U.K.)
312	flow field can be obtained in <u>a</u> straightforward manner applying the first and second Kirchhoff's	Formatted: English (U.K.)
313	laws.	Formatted: English (U.K.)
		Formatted: English (U.K.)
314	The first law affirms that the algebraic sum of flow-through a closed surface is equal to zero: in a	Formatted: English (U.K.)
315	network meeting at a point is zero:	Formatted: English (U.K.)
	n	Formatted: English (U.K.)
316	$\sum_{i=1}^{n} Q_{i} = 0 \tag{121212}$	Formatted: English (U.K.)
	j=l	Formatted: English (U.K.)
317	Wheness the second low officers that the cleaning over of the head losses close a closed lose of the	
	Whereas the second law affirms that the algebraic sum of the head losses along a closed loop of the	
318	network is equal to zero:	
	$\sum_{n=1}^{n}$	Formatted: English (U.K.)
319	$\sum_{j=1}^{j} \Delta h_j = 0 \tag{131313}$	Formatted: English (U.K.)
	j=l	Formatted: English (U.K.)

320 Generally in a 2d fracture network, the single fracture can be set in series and/or in parallel.

In particular the total resistance to flow of a network in which the fractures are arranged in a chain 321 322 is found by simply adding up the resistance values of the individual fractures.

323 In a parallel network the flow breaks up by flowing through each parallel branch and re -324 combining when the branches meet again. The total resistance to flow is found by adding up the 325 reciprocals of the resistance values and then taking the reciprocal of the total. The flow rate crossing 326 the generic fracture *j* belonging to parallel circuits Q_i can be obtained as:

327	$Q_j = \sum Q \frac{1}{R_j} \left(\sum_{i=1}^n \frac{1}{R_i} \right)^{-1}$	(<u>14141</u> 4	4)
-----	---	------------------	----

Where $\sum Q(LT^{-3})$ is the sum of the discharge flow evaluated for the fracture intersection located 328 in correspondence of the inlet bond of j fractures, whereas the term in brackets represents the 329 330 probability of water distribution of *j* fracture $P_{O,j}$.

The BTC curves at the outlet of the network $c_{out}(t)$ (ML⁻³)-, for an instantaneous injection, can be 331 332 obtained as the summation of BTCs of each elementary path in the network. The latter can be 333 expressed as the convolution product of the probability density functions of residence times in each 334 individual fracture belonging to the elementary path. Using the convolution theorem, $c_{out}(t)$ can be 335 expressed as:

 $c_{out}(t) = \frac{M_0}{Q_0} F^{-1} \left[\sum_{i=1}^{N_{ep}} \prod_{j=1}^{n_{fj}} P_{c,j} F\left(s_j(l_j, t)\right) \right]$ 336

337 Where $M_{0}(M)$ is the injected mass of solute F is the Fourier transform operator, N_{ep} is the number 338 of the elementary paths, $n_{f,i}$ is the number of fractures in *i* elementary path, $P_{c,j}$ and $s_j(l_j,t)$ (T⁻¹) 339 represents the fraction of solute crossing the single fracture and the probability density function of 340 residence time respectively.

341 $P_{c,j}$ can be estimated as the probability of the particle transition in correspondence of the inlet bond

342 of each individual single fracture. The rules for particle transition through fracture intersections play 343 an important role in mass transport. In literature several models have been developed and tested in 344 order to represent the mass transfer within fracture intersections. The simplest rule is represented by

Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.)

Formatted: English (U.K.)

Formatted: English (U.K.)

Formatted: English (U.K.)

Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.)

Formatted: English (U.K.)

(151515)

347	The perfect mixing model assumes that the probability of particle transition of the fraction of solute	
348	crossing the single fracture can be written as:	
	Q_i	Formatted: English (U.K.)
349	$P_{c,j} = \frac{Q_j}{\sum Q} \tag{161616}$	Formatted: English (U.K.)
		Formatted: English (U.K.)
350	Where $Q_{j_{a}}$ represents the flow rate in the single <u>i</u> fracture- <u>j</u> . Note that if assuming valid the perfect	Formatted: English (U.K.)
351	mixing model $P_{Q,j}$ is equal to $P_{c,j}$.	
551	mixing model I_{Qj} is equal to I_{cj} .	
352	It is clear that in order to know $s(1, t)$ the transport model and consequently the transport	Formatted: English (U.K.)
552	It is clear that in order to know $s_j(l_j,t)$ the transport model and consequently the transport	
353	parameters of each single fracture need to be defined. $s_j(l_j,t)$ can be evaluated in <u>a</u> simple way	Formatted: English (U.K.)
354	using the 1 ^{Dd} analytical solution of the Advection Dispersion Equation model (ADE) for pulse	
355	input:	
555	input.	
	$\left(1-v,t\right)^2$	Formatted: English (U.K.)
356	$s_{i}(l_{i},t) = \frac{Q_{j}}{Q_{j}} e^{\frac{(j-1)^{2}}{4D_{j}t}} $ (1717)	Formatted: English (U.K.)
550	$s_{j}(l_{j},t) = \frac{Q_{j}}{\omega_{eq,j}\sqrt{\pi D_{j}t}} e^{\frac{(l_{j}-v_{j}t)}{4D_{j}t}} $ (171717)	Formatted: English (U.K.)
357	in which the velocity v_j and dispersion D_j relating to the generic <u>j</u> fracture <u>j</u> can be estimated	
358	through the following expression:	
000		
	O_{\pm}	Formatted: English (U.K.)
359	$v_j = \frac{z_j}{\omega} \tag{181818}$	Formatted: English (U.K.)
	$v_{j} = \frac{Q_{j}}{\omega_{eq,j}} $ $D_{j} = \alpha_{L,j} v_{j} $ (181818) (191919) (191919)	Formatted: English (U.K.)
360	$\mathbf{D} = \boldsymbol{\alpha} \mathbf{v} \tag{101010}$	Formatted: English (U.K.)
500	$D_j = \alpha_{L,j} v_j \tag{191919}$	Formatted: English (U.K.)
		Formatted: English (U.K.)
361	Where $\omega_{eq,j}$ and $\alpha_{L,j}$ are the <u>equivalent</u> crossing area and the dispersion coefficient of j fracture	Formatted: English (U.K.)
362	respectively.	Formatted: English (U.K.)
	1 2	
363	The ENM is defined by six parameters regarding each single fracture $(a, b, P_0, \omega_{ea}, \alpha_L)$ and P_c .	Formatted: English (U.K.)
		Formatted: English (U.K.)
		Formatted: English (U.K.)

the "perfect mixing model" in which the mass sharing is proportional to the relative discharge flowrates.

Material and methods 364 365 **Experimental setup** 366 The experiments have been performed on a limestone block with parallelepiped shape (0.6×0.4×0.08 m³) recovered from the 'Calcare di Altamura' formation which is located in Apulia 367 region in southeastern Italy (Cherubini et al., 2012). 368 The experimental setup is detailed in Cherubini et al. (2012) and Cherubini et al. (2013a) and its 369 370 schematic diagram is shown in Fig 1. 371 Flow and tracer tests

- 372 The experimental setup has been already extensively discussed in Cherubini et al. (2013), however 373 for the completeness in this section a summary is reported-a summary. The analysis of flow 374 dynamics through the selected path (Fig 2) regards the observation of water flow from the upstream 375 tank to the flow cell with a circular cross-section of 0.1963 m² and 1.28×10^{-4} m² respectively.
- 376 Initially at time t_0 , the valves 'a' and 'b' are closed and the hydrostatic head in the flow cell is equal 377 to h_0 . The experiment begins with the opening of the valve 'a' which is reclosed when the hydraulic 378 head in the flow cell is equal to h_1 . Finally the hydraulic head in the flow cell is reported to h_0 379 through the opening of the valve 'b'. The experiment procedure is repeated changing the hydraulic 380 head of the upstream tank h_c . The time $\Delta t = (t_1 - t_0)$ required to fill the flow cell from h_0 to h_1 has 381 been registered.
- 382 Given that the capacity of the upstream tank is much higher than that of the flow cell it is 383 reasonable to assume that during the experiments the level of the upstream tank (h_c) remains 384 constant. Under this hypothesis the flow inside the system is governed by the equation:
- $385 \qquad S_1 \frac{dh}{dt} = \Gamma(\Delta h) (h_c h)$

386 387

388

- Where S_I (L²) and h (L) are respectively the section area and the hydraulic head of the flow cell; h_c (L) is the hydraulic head of upstream tank, $\Gamma(\Delta h)$ represents the hydraulic conductance term representative of both hydraulic circuit and the selected path.
- 389 The average flow rate \overline{Q} can be estimated by means of the volumetric method:
- $390 \qquad \overline{Q} = \frac{S_1}{t_1 t_0} (h_1 h_0)$

Formatted: Font color: Text 1, English (U.K.)
Formatted: English (U.K.)

Formatted: Font color: Blue, English (U.K.)

Formatted: English (U.K.)

1	Formatted: English (U.K.)
-	Formatted: English (U.K.)
1	Formatted: English (U.K.)
Υ	Formatted: English (U.K.)

/	Formatted: English (U.K.)
-{	Formatted: English (U.K.)
-{	Formatted: English (U.K.)

Formatted: English (U.K.)
Formatted: English (U.K.)

Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.)

(<u>212121</u>)

(202020)

391	Whereas the average hydraulic head difference $\overline{\Delta h}_{a}$ is given by:	Formatted: English (U.K.)
392	$\overline{\Delta h} = h_c - \frac{h_0 + h_1}{2} \tag{222222}$	Formatted: English (U.K.)
• / -		Formatted: English (U.K.)
393	In correspondence of the average flow rate and head difference is it possible to evaluate the average	Formatted: English (U.K.)
394	hydraulic conductance as:	
394	nydraune conductance as.	
	- S $(h-h)$	Formatted: English (U.K.)
395	$\overline{\Gamma}(\Delta h) = \frac{S_1}{t_1 - t_0} \ln\left(\frac{h_0 - h_c}{h_1 - h_c}\right) \tag{232323}$	Formatted: English (U.K.)
		Formatted: English (U.K.)
396	The inverse of $\overline{\Gamma}(\Delta h)$ represents the average resistance to flow $\overline{R}(\overline{Q})$.	Formatted: English (U.K.)
570	The inverse of $\Gamma(\Delta n)$ represents the average resistance to now $\Gamma(\underline{\mathcal{Q}})$.	Formatted: English (U.K.)
397	Tracer tests	
398	The study of solute transport dynamics through the selected path has been carried out by means of a	
399	tracer test using sodium chloride. Initially a hydraulic head difference between the upstream tank	
400	and downstream tank is imposed. At $t = 0$ the valve 'a' is closed and the hydrostatic head inside the	
401	block is equal to the downstream tank. At $t = 10$ s the valve 'a' is opened while at time $t = 60$ s a	
402	mass of solute equal to 5×10^{-4} kg is injected into the inlet port through a syringe. The source release	
403	time (1 s) is very small therefore the instantaneous source assumption can be considered valid.	
404	In correspondence of the flow cell in which the multi - parametric probe is located it is possible to	
405	measure the tracer breakthrough curve and the hydraulic head; in the meanwhile the flow rate	
406	entering the system is measured by means of an ultrasonic velocimeter. For different flow rates a	
407	BTC curve can be recorded at the outlet port.	
408	Time moment analysis has been applied in order to characterize the BTC curves in terms of mean	
409	breakthrough time, degree of spread and asymmetry.	
410	The mean residence time t_m is given by:	
		Formatted: English (U.K.)
	$\int t^n c(t) dt$	Formatted: English (U.K.)
411	$t_{m} = \frac{0}{\int_{0}^{\infty} t^{n} c(t) dt} $ (242424)	Formatted: English (U.K.)
	$\int c(t)dt$	
	0	V
412	The n th normalized central moment of distribution of solute concentration versus time is defined as:	

413
$$\mu_{e} = \frac{\int_{0}^{1} [1 - t_{e}]^{-1} c(t) dt}{\int_{0}^{1} c(t) dt}$$
414 The second moment μ_{e} represents the degree of spread relative to $t_{e^{-}}$ whereas the degree of formatted: English (U.K.)
Formatted: English (

Figure 3 shows the fitting of observed resistance to flow determined by the inverse of Equation (2<u>3</u>4) and the theoretical resistance to flow (Equation 3<u>0</u>4). The linear and nonlinear terms of Forchheimer model in Equation (12) have been estimated and they are respectively equal to a =7.345×10⁴ sm⁻³ and sm⁻³-b = 11.65×10⁹ s²m⁻⁶. It is evident that the 2d - pipe network model closely matches the experimental results ($r^2 = 0.9913$). Flow characteristics can be studied through the analysis of Forchheimer number F₀ which represents the ratio of nonlinear to linear hydraulic gradient contribution:

441 $F_o = \frac{bQ}{a}$

(<u>313131</u>)

Formatted: English (U.K.)
Formatted: English (U.K.)
Formatted: English (U.K.)

442 Inertial forces dominate over viscous ones at the critical Forchheimer number ($F_0=1$) corresponding 443 in our case to a flow rate equal to $Q_{crit} = 6.30 \times 10^{-6} \text{ m}^3/\text{s}$, which is coherent with the results obtained 444 in the previous study (Cherubini et al., 2013a).

The term in square brackets in Equation (30) represents the probability of water distribution P_Q evaluated for the branch 6. Note that it is not constant but it depends on the flow rate crossing the parallel branch. Figure 4 shows P_Q as function of Q_0 . The probability of water distribution decreases as the injection flow rate increases. This means that when the injection flow rate increases the resistance to flow of the branch 6 increases faster than the resistance to flow of the branch 3 – 4 -5 and therefore the solute choses the secondary pathway.

451 Fitting of breakthrough curves and interpretation of estimated transport model 452 parameters

453 Several tests ha<u>ves</u> been conducted in order to observe solute transport behavio<u>u</u>r varying the 454 injection flow rate in the range $1.20 \times 10^{-6} - 9.34 \times 10^{-6}$ m³s⁻¹. For each experimental BTCs the mean 455 travel time t_m and <u>the</u> coefficient of Skewness *S* ha<u>ves</u> been estimated.

456 Figure 5 shows t_m as function of Q_{0} . Travel time decreases more slowly for high flow rates. In particular a change of slope is evident in correspondence of the injection flow rate equal to 4×10^{-6} 457 m^3s^{-1} (Cherubini et al., 2013a), which evidences a delay of solute transport for high flow rates. 458 459 which means the setting up of a transitional flow regime; the diagram of velocity profile is flattened because of inertial forces prevailing on viscous one, as already showed by Cherubini et al (2013a). 460 461 The presence of a transitional flow regime leads to a delay on solute transport with respect to the 462 values that can be obtained under the assumption of a linear flow field. Note that this behaviour<u>behaviour</u> occurs before of Qcrit. 463

The skewness coefficient does not exhibit a trend upon varying the injection flow rate, but its mean
value is equal to 2.018. A positive value of skewness indicates that BTCs are asymmetric with early
<u>first_arrival and long tail.</u> This behavio<u>u</u>r seems not to be dependent on the presence of <u>the</u>
transitional regime.

468 The measured breakthrough curves for different flow rates have been individually fitted by the 469 MIM $(v/L, D/L^2, \alpha, \beta)$ and ENM $(\omega_{eq}, \alpha_L, P_Q, P_C)$ models.

470 In particular for the ENM model the parameters ρ_{eq} (equivalent area) and ρ_L are representative of 471 all fracture network, whereas the parameters P_Q and P_C are associated only to the parallel branches. 472 For the considered fracture network the Equation (156) becomes:

473
$$c_{out} = \frac{M_0}{Q_0} F^{-1} \begin{bmatrix} P_c \cdot F(s_1) \cdot F(s_2) \cdot F(s_6) \cdot F(s_7) \cdot F(s_8) \cdot F(s_9) + (1 - P_c) \cdot F(s_1) \cdot F(s_2) \cdot F(s_3) \cdot F(s_4) \cdot F(s_5) \cdot F(s_7) \cdot F(s_8) \cdot F(s_9) \end{bmatrix}$$
(323232)

The velocity and dispersion that characterize the probability density function *s* are related to the flow rate that crosses each branch by Equations (189) and Equation (1920). This one is equal to the injection flow rate Q_0 except for branch 6 and branches 3 - 4 - 5 for which it is equal to $Q = P_0 Q_0$ and $Q = (1 - P_0) Q_0$ respectively.

Furthermore three parameter configurations have been tested for the ENM model. The configurations are distinguished on the basis of the number of fitting parameters and assumptions made on P_c and P_o parameters. The first configuration named ENM2 has two fitting parameters ω_{eq} and ω_L . In this configuration P_c is imposed equal to P_o and is derived as the square brackets term in Equation (29), estimated by the flow tests described in previous sections.

483 The second configuration named ENM3 has three fitting parameters ω_{eqa} and α_L and $P_C(P_Q)$. In this 484 configuration is it still true that P_C is still equal to P_Q but they and both of them are 485 evaluated estimated by the interpretation of BTC curves.

486 In the third configuration named ENM4 all four parameters $(\omega_{eq}, \alpha_L, P_Q, P_C)$ are estimated 487 determined through the fitting of BTCs.

Formatted: English (U.K.)
Formatted: English (U.K.)
Formatted: English (U.K.)
Field Code Changed
Formatted: English (U.K.)
Field Code Changed
Formatted: English (U.K.)
Formatted: English (U.K.), Not Highlight
Formatted: English (U.K.)
Field Code Changed
Formatted: English (U.K.)
Formatted: English (U.K.)
Field Code Changed
Field Code Changed
Formatted: English (U.K.)
Field Code Changed
Formatted: English (U.K.)
Field Code Changed
Formatted: English (U.K.)
Formatted: English (U.K.)

488 To compare all the considered models, both the determination coefficient (r^2) and the root mean square error (RMSE) were used as criteria to determine the goodness of the fitting, which can be 489 490 expressed as:

493 Where N is the number of observations, $C_{i,e}$ is the estimated concentration, $C_{i,o}$ is the observed 494 concentration and $\overline{C}_{i,o}$ represents the mean value of $C_{i,o}$.

495 Tables 1, 2, 3 and 4 show the estimated values of parameters, root mean square error RMSE and the determination coefficient r² for all the considered models varying the inlet flow rate Q₀. 496

497 Figure 6 shows the fitting results of BTC curves for different injection flow rates.

For higher flow rates $(7.07 \times 10^{-6} \text{ and } 4.80 \times 10^{-6} \text{ m}^3/\text{s})$ the fitting is poorer than for lower flow rates 498 $(3.21 \times 10^{-6} \text{ and } 1.96 \times 10^{-6} \text{ m}^3/\text{s})$. However, all models provide a satisfactory fitting. The ENM4 499 model provides the highest values of r^2 varying in the range 0.9921 - 1.000 and the smallest values 500 501 of RMSE in the range 0.0033 - 0.0252. This is expected for two reasons. First this model has more 502 fitting parameters than ENM2 and ENM3, thus it is more flexible. Second, compared to MIM model, it takes explicitly into account the presence of the secondary path. 503

504 The MIM model considers the existence of immobile and mobile domains and a rate - limited mass 505 transfer between these two domains. In the present context this conceptualization can be a weak 506 assumption especially for high flow rates when the importance of secondary path increases. 507 However the fitting of BTCs shows that MIM model remains valid as it proves to describe the 508 observed curves quite well.

509 The extent of solute mixing can be assessed from the analysis of MIM first-order mass transfer 510 coefficient α and the fraction of mobile water β .

511 Although somewhat scattered, the mass transfer coefficient of MIM model tends to increase with pore water velocity. Several authors have observed the variation of the mass-transfer coefficient 512

513 between mobile and immobile water regions with pore-water velocity (van Genuchten and

Formatted: English (U.K.) Formatted: English (U.K.)

Formatted: English (U.K.) Formatted: English (U.K.)

Formatted:	English (U.K.), Not Highlight
Formatted: Highlight	Font: Italic, English (U.K.), Not
Formatted:	English (U.K.), Not Highlight
Formatted: Highlight	Font: Italic, English (U.K.), Not
Formatted:	English (U.K.), Not Highlight
Formatted:	English (U.K.)

Wierenga, 1977; Nkedi-Kizza et al., 1984; De Smedt and Wierenga, 1984; De Smedt et al., 1986;
Schulin et al., 1987). The increase in *a* with increasing water velocity is attributed to higher mixing
in the mobile phase at high pore water velocities (De Smedt and Wierenga, 1984) or to shorter
diffusion path lengths as a result of a decrease in the amount of immobile water (van Genuchten and
Wierenga, 1977).

519 In the study, the increase in $\alpha_{\rm A}$ with increasing water velocity is attributable to nonlinear flow that 520 enhance the exchange between the main and secondary flow paths. Therefore the mass transfer 521 coefficient increases as the importance of secondary path over the main path increases.

522 The extent of solute mixing can also be assessed from the analysis of MIM mobile water fraction

523 parameter β . In our study the fraction of mobile water assumes a mean representative value of 0.56

524 meaning that the 0,56% of the <u>fracture network</u>soil is involved in advective transport. As concerns

525 β_a various authors have observed different behaviour of the mobile water fraction parameter β_c .

526 <u>Gaudet et al. (1977) reported increasing mobile water content with increasing pore water velocity.</u>

527 However, studies have also found that $\underline{\beta}$ appears to be constant with varying pore-water velocity

528 (Nkedi-kizza et al. 1983). However, lower $\underline{\beta}$ values can be attributed to faster initial movement of

529 the solute as it travels through a decreasing number of faster flow paths. As a result, some authors

530 <u>have related β values to the initial arrival of the solute. In fact, Gaudet et al. (1977) and Selim and</u>

531 <u>Ma (1995) observed that the mobile water fraction parameter affects the time of initial appearance</u>
 532 of the solute.

In general, the initial breakthrough time increases as <u>β</u> increases (Gao et al., 2009) which can also
be evidenced from Fig 6. For lower flow rates the initial arrival time is higher than for higher flow
rates. As the fraction of mobile water increases, the breakthrough curves are shifted to longer times
because the solute is being transported through larger and larger fractions of the fracture volume. In

537 the limiting case that the fraction of mobile water reaches one, the MIM reduces to the equilibrium

538 ADE (no immobile water) (Mulla & Strock, 2008).

539 The evidence of dual porosity behaviour on solute transport is clearly shown by the analysis of the

540 two MIM parameters; the ratio of mobile and immobile area β and the mass exchange coefficient α_{2}

541 shown in Figure 7 as a function of velocity.

- 542 A different behaviour of these two coefficients to varying the injection flow rate is observed in the
- 543 present study. At Darcian-like flow conditions the mass exchange coefficient remains constant,
- 544 whereas the ratio of mobile and immobile area decreases as velocity increases. When nonlinear
- 545 flow starts to become dominant a different behaviour is observed: α increases in a potential way,
- 546 whereas β assumes a weakly growing trend as velocity increases with a mean value equal to 0.56.

Formatted: Font: Italic, English (U.K.) Formatted: English (U.K.)

Formatted: English (U.K.)
Formatted: English (U.K.)

Formatted: English (U.K.)
Formatted: English (U.K.)

Formatted: Font: Italic, English (U.K.)
Formatted: English (U.K.)
Formatted: English (U.K.)
Formatted: English (U.K.)
Formatted: Font: Italic, English (U.K.)
Formatted: English (U.K.)
Formatted: Font: Italic, English (U.K.)
Formatted: English (U.K.)
Formatted: Font: Italic, English (U.K.)
Formatted: English (U.K.)

Formatted: Font: Italic, English (U.K.) Formatted: English (U.K.)

Formatted: Space After: 0 pt Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.), Not Highlight Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.)
Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.), Not Highlight Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.)
Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.), Not Highlight Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.)
Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.), Not Highlight Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.)
Formatted: English (U.K.) Formatted: English (U.K.), Not Highlight Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.)
Formatted: English (U.K.), Not Highlight Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.)
Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.)
Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.)
Formatted: English (U.K.) Formatted: English (U.K.)
Formatted: English (U.K.)
Formattad. English (III K)
Formatted: English (U.K.)

549	showed in Figure 8. In analogous way in Figure 9 is showed the comparison between the mean
550	travel time for the main path and the secondary path varying the injection flow rate for the ENM4
551	model.
552	For the MIM model at high flow rates the exchange time joins the transport time; analogously for
553	the ENM4 as the flow rate increases the secondary path reaches the main path in terms of mean
554	travel time. This analogy between MIM and ENM enhances the concept that the mass transfer
555	coefficient is dependent on flow velocity.
556	In Darcian-like flow conditions the main path is dominant on the secondary path. The latter can be
557	considered as an immobile zone. In this condition the fracture network behaves as a single fracture
558	and the observed dual porosity behaviour can be attributable only to the fracture - matrix
559	interactions of the main path.
560	For higher velocities, a higher contact area between the mobile and immobile region is evidenced,
561	enhancing solute mixing between these two regions (Gao et al, 2009). The increase in a with
562	increasing water velocity is therefore attributable to nonlinear flow that enhances the exchange
563	between the main and secondary flow paths. Increasing the injection flow rate the importance of the
564	secondary path grows and the latter cannot be considered as an immobile zone, as a consequence
565	the dual porosity behaviour becomes stronger.
566	Various authors have observed different behavior of the mobile water fraction parameter β_{c} Gaudet
567	et al. (1977) reported increasing mobile water content with increasing pore water velocity.
568	However, studies have also found that β appears to be constant with varying pore water velocity

In order to better explain this behaviour, the transport time (reciprocal of normalized velocity) and

the exchange time (reciprocal of the exchange term) varying the flow rate for the MIM model are

- 569 (Nkedi kizza et al. 1983). With the increase of mobile water fraction, the contact areas between the
- 570 mobile and immobile regions increase, enhancing solute mixing between these two regions (Gao et
- 571 al, 2009). However, lower β values can be attributed to faster initial movement of the solute as it
- 572 travels through a decreasing number of faster flow paths. As a result, some authors have related β .
- 573 values to the initial arrival of the solute. In fact, Gaudet et al. (1977) and Selim and Ma (1995)
- 574 observed that the mobile water fraction parameter affects the time of initial appearance of the
- 575 solute.

547

548

- 576 In general, the initial breakthrough time increases as β increases (Gao et al., 2009) which can also
- 577 be evidenced from Fig 6. For lower flow rates the initial arrival time is higher than for higher flow
- 578 rates. As the fraction of mobile water increases, the breakthrough curves are shifted to longer times

-{	Formatted: English (U.K.)
-{	Formatted: English (U.K.)
-{	Formatted: English (U.K.)
-(Formatted: English (U.K.), Not Highlight
1	Formatted: English (U.K.)

-	Formatted: English (U.K.)
-1	Formatted: English (U.K.)
-1	Formatted: English (U.K.)

Formatted: English (U.K.), Not Highlight	
Formatted: English (U.K.), Not Highlight	
Formatted: Font: (Default) Times New Roman, English (U.K.), Not Highlight	
Formatted: English (U.K.)	

Formatted: English (U.K.)	
Formatted: English (U.K.)	
Formatted: English (U.K.)	

Formatted: English (U.K.)	
Formatted: English (U.K.)	
Formatted: English (U.K.)	
Formatted: English (U.K.)	

-{	Formatted: English (U.K.)
-{	Formatted: English (U.K.)

because the solute is being transported through larger and larger fractions of the <u>fracture</u>soil
volume. In the limiting case that the fraction of mobile water reaches one, the MIM reduces to the
equilibrium ADE (no immobile water) (Mulla & Strock, 2008).

582	As showed in figure 10.7 -and $11.8^{\frac{P_0}{Q_0}}P_0$ as function of $Q_0_{\frac{Q_0}{Q_0}}$ evaluated by means the fitting of
583	BTCs by ENM3 and ENM4 models presents a different trend respect to $P_Q _ d _ P_Q$
584	<u>determined</u> evaluated by means of flow tests. $P_0^{\frac{P}{Q}}$ -evaluated by transport tests decreases more
585	rapidly than $P_{Q} \xrightarrow{P_{Q}} -\frac{determined}{evaluated}$ by flow tests (Figure <u>10</u> 7). In the ENM4 model $-P_{Q} \xrightarrow{P_{Q}}$
586	and $\frac{P_{C}}{P_{C}}$ show a different behaviour, especially for higher velocity P_{C} $\frac{P_{C}}{P_{C}}$ presents values higher
587	than $P_Q = \frac{P_Q}{Q}$ (Figure 118). This result is coherent with what has been shown in Figure 5.

In other words the interpretation of BTC curves evidences more enhanced nonlinear flow
 behaviourbehaviour than the flow tests.

590 For the MIM model in Figure 9 are showed the comparison between the transport time (reciprocal 591 of normalized velocity) and the exchange time (reciprocal of the exchange term) varying the flow 592 rate. As the flow rate increases the difference between transport time and exchange time decreases, 593 and for high values of flow rates they get closer each other (Cherubini et al, 2013a). In analogous way for the ENM4 model in Figure 10 is showed the comparison between the mean travel time for 594 595 the main path and secondary path varying the injection flow rate. The same behavior as Figure 9 is 596 evident, for high values of flow rates the secondary path reaches the main path in terms of mean travel time. This analogy between MIM and ENM enhances the concept that the mass transfer 597 598 coefficient is dependent on flow velocity.

599 In Figure 124 is reported the relationship between velocity v and injection flow rate Q_0 . Note that, 600 in order to compare the results, the velocities for MIM are evaluated assuming the length of the medium equal to the length of main path (L = 0.601 m). Instead for ENM4 model the velocities are 601 evaluated dividing Q_a for the equivalent area Q_{eq} . The models present the same behaviourbehaviour. 602 603 and similarly to the mean travel time a change of slope is evident again in correspondence of flow rate equal to 4×10^{-6} m³s⁻¹. This result confirms the fact that the presence of nonlinear flow regime 604 leads to a delay on solute transport with respect to the values that can be obtained under the 605 606 assumptions of a linear flow field.

Formatted: English (U.K.), Not Highlight
Formatted: English (U.K.)
Formatted: English (U.K.), Not Highlight
Formatted: English (U.K.)
Formatted: English (U.K.)
Formatted: English (U.K.)
Field Code Changed
Formatted: English (U.K.)
Formatted: Font: Italic
Field Code Changed
Formatted: English (U.K.)
Formatted: English (U.K.)
Field Code Changed
Formatted: English (U.K.)
Field Code Changed
Formatted: English (U.K.)
Field Code Changed
Formatted: English (U.K.)
Field Code Changed
Formatted: English (U.K.)
Formatted: English (U.K.)
Field Code Changed
Formatted: English (U.K.)
Formatted: English (U.K.)
Field Code Changed
Formatted: English (U.K.)
Formatted: Font color: Auto, English (U.K.)
Formatted: English (U.K.)
Formatted: English (U.K.)
Formatted: English (U.K.)

607	In order to h	better represent the	nonlinear flow r	egime. Figure	13 shows water	pressure as a function

608 of velocity. A change of slope is evident for $v = 1.5 \times 10^{-2} \text{ ms}^{-1}$ which -corresponds to the flow rate 609 equal to $4 \times 10^{-6} \text{ m}^3 \text{s}^{-1}$. $v = 1.5 \times 10^{-3} \text{ m/s}^{-1}$

- 610 Moreover as shown in Figure 142 a linear trend of dispersion with the injection flow rates both for MIM and ENM models has been observed. This is coherent with what obtained in the previous 611 612 study (Cherubini et al. 2013a) where a linear relationship is found between velocity and dispersion 613 both for ADE and MIM models with the conclusion that geometrical dispersion dominated the effects of Aris - Taylor dispersion. The values of the coefficient of dispersion obtained for ENM 614 615 models do not depend on flow velocity but assume a somehow scattered but fluctuating value. 616 Being $\alpha_{L_{\lambda}}$ values constant, geometrical dispersion dominates the mixing processes along the fracture network. Therefore, the presence of a nonlinear flow regime does not prove to exert any 617 618 influence on dispersion except for high velocities for the ENM model where a weak transitional 619 regime appears.
- 620 This does not happen for MIM dispersion values whose rates of increase are smaller than those of
 621 ENM dispersion values.
- The values of dispersion coefficient are in order of magnitude of decimeter, which is comparable
 with the values obtained for darcian condition (Qian et al, 2011), and the -dispersion values of MIM
 are much lower than those of ENM.
- This may be attributable to the fact that the MIM separates solute spreading into dispersion in
 mobile region and mobile-immobile mass transfer. The dispersive effect is therefore partially taken
 into account by the mass transfer between the mobile zone and the immobile zone (Qian et al, 2011;
 Gao et al, 2009).

629 Conclusion

Flow and tracer test experiments were have been carried outonducted in a fracture network. The aim
of the present study is that of comparing the performances and reliabilities of two model paradigms:
the Mobile - Immobile Model (MIM) and the Explicit Network Model (ENM) to describe
conservative tracer transport in a fractured rock sample.

Fluid flow experiments show a not negligible nonlinear behaviour of flow best described by the Forchheimer law. The solution of the flow field for each single fracture highlight<u>sed</u> that the probabilities of water distribution between the main and the secondary path are not constant but decrease as the injection flow rate increases. In other words varying the injection flow rate the conductance of the main path decreases more rapidly than the conductance of the secondary path.

_			
F	ormatted: English (U.K.)		
Formatted: English (U.K.)			
F	Field Code Changed		
F	ormatted: English (U.K.), Highlight		
F	ormatted: English (U.K.)		
F	ormatted: English (U.K.)		

Formatted: English (U.K.)

639 The BTCs curves determined by transport experiments were have been fitted by MIM model and three versions of ENM model (ENM2, ENM3, ENM4) which differ on the basis of the assumptions 640 made on the parameters P_{Q} and P_{C} All models showprove a satisfactory fitting. The ENM4 model 641 642 provides the best fit which is expectable because it has more fitting parameters than ENM2 and ENM3, thus it is more flexible. Secondly, compared to MIM model, it takes explicitly into account 643 644 the presence of the secondary path. Furthermore for the ENM model the parameter P_{Q} decreases 645 more rapidly varying the injection flow rate than the same parameter evaluated determined by flow 646 tests. The relationship between transport time and exchange time for MIM model and mean travel 647 time for main path and secondary path for the ENM4 model varying the injection flow rate has 648 shown similarity of behaviour: for higher values of flow rate the difference between transport time 649 and exchange time decreases and the secondary path reaches the main path in terms of mean travel 650 time. This analogy between MIM and ENM explains the fact that the mass transfer coefficient is 651 dependent on flow velocity. The mass transfer coefficient increases as the importance of secondary path over the main path increases. 652

The velocity values evaluated for MIM and ENM model show the same relationship with the injection flow rate. In particular a change of slope is evident in correspondence of the flow rate equal to 4×10^{-6} m³s⁻¹. This behaviour occurs before the critical flow rate estimated by flow tests equal to 6.3×10^{-6} m³s⁻¹. Therefore the interpretation of BTCs curves evidence<u>s</u>d more enhanced nonlinear behaviour than flow tests. These results confirm the fact that the presence of transitional flow regime leads to a delay on solute transport with respect to the values that can be obtained under the assumption of a linear flow field (Cherubini et al., 2013a).

As concerns dispersion, a linear trend varying the velocity for both MIM and ENM models has been
observed -coherently with the previous results- (Cherubini et al., 2013a), the MIM model
underestimating the dispersion respect to ENM4 model.

The dispersivity values obtained for ENM models do not depend on flow velocity but assume a somehow scattered but fluctuating value. Being α_L values constant, geometrical dispersion dominates the mixing processes along the fracture network. Therefore, the presence of a nonlinear flow regime does not prove to exert any influence on dispersion except for high velocities for the ENM model where a weak transitional regime seems to appear. This result demonstrates that for our experiment geometrical dispersion still dominates Taylor dispersion.

A major challenge for tracer tests modeling in fractured media is the adequate choice of the
modeling approach for each different study scale.

Formatted: English (U.K.)
Formatted: Font: Italic, English (U.K.)
Formatted: English (U.K.)
Formatted: Font: Italic, English (U.K.)
Formatted: English (U.K.)
Formatted: English (U.K.)
Formatted: Font: Italic, English (U.K.)
Formatted: English (U.K.)
Formatted: English (U.K.)

671	When dealing with large scales, tracer tests breakthrough curves are generally modeled by a		
672	relatively small number of model parameters (Becker and Shapiro, 2000).		
(70)			
673	At laboratory scale, the definition of the network of fractures by means of discrete approaches	Formatted: English (U.K.)	
674	(DFN) can permit to identify transport pathways and mass transport coefficients, in order to better		
675	define heterogeneous advective phenomena (Cherubini et. al, 2013b).		
676	At an intermediate local field scale (1-100m), recognition that heterogeneous environments contain		
677	fast and slow paths led to the development of the MIM formulation applied successfully in a variety		
678	of hydrogeologic settings. However, the assumed velocity partitioning into flowing and not-flowing		
679	zones is not an accurate representation of the true velocity field (Gao et al., 2009). Especially when		
680	the rock mass is sparsely fractured, the breakthrough curves are characterized by early breakthrough		
681	and long tailing behaviour, and a simple mobile-immobile conceptualization may be an over	Formatted: English (U.K.)	
682	simplification of the physical transport phenomenon.		
683	Solute transport in fractured aquifers characterized by highly non-Fickian behaviour is therefore	Formatted: English (U.K.)	
684	better described by an Explicit Network Model rather than by a simple MIM. Applying a discrete		
685	model in such a case can permit to determine if transport occurs through one or several fractures		
686	and if multiple arrivals are caused by fracture heterogeneity, in such a way as to yield a more robust		
687	interpretation of the subsurface transport regime.		
688	In such a context, geophysical imaging may provide detailed information about subsurface structure		
689	and dynamics (Dorn et al, 2012). Differently from "black box" one dimensional models the		
690	definition of the network of fracture may allow to better characterize the nonlinear flow behavior		
691	and its influence on solute propagation in a fractured medium at bench scale (Cherubini et. al,		
692	2013b).		
693			
694	References		
CO 5	Denset E. Ferrer M. M. Felin dimensionis in the Control of the Hall 19972 (b)		
695	Bauget, F., Fourar, M.: Non Fickian dispersion in a single fracture. J. Contam. Hydrol. 100(3–4),		
696	137–148 (2008). doi:10.1016/j.jconhyd.2008.06.005		
697	Bauget, F. and Fourar, M.: Non-Fickian dispersion in a single fracture, J. Contam. Hydrol., 100,		
698	<u>137–148, doi:10.1016/j.jconhyd.2008.06.005, 2008.</u>		
699	Bear, J.: Dynamics of Fluids in Porous Media, Elsevier, New York, 1972.		

700	Bear, J. and Berkowitz, B.: Groundwater flow and pollution in fractured rock aquifers, in:							
701	Developments in Hydraulic Engineering, vol. 4, edited by: Novak, P., Elsevier Applied Science							
702	Publishers Ltd., New York, 175–238, 1987.							
703	Becker, M. W. and Shapiro, A. M.: Tracer transport in fractured crystalline rock: evidence of							
704	nondiffusive breakthrough tailing, Water Resour. Res., 36, 1677-1686,							
705	<u>doi:10.1029/2000WR900080, 2000.</u>							
706	Berkowitz, B.: Characterizing flow and transport in fractured geological media: a review, Adv.							
707	Water Resour., 25, 861–884, 2002.							
708 709 710	Berkowitz, B., Cortis, A., Dentz, M., and Scher, H.: Modeling non-Fickian transport in geological formations as a continuous time random walk, Rev. Geophys., 44, RG2003, doi:10.1029/2005RG000178, 2006.							
711	Bodin, J., Delay, F., and de Marsily, G.: Solute transport in a single fracture with negligible matrix							
712	permeability: 1. fundamental mechanisms, Hydrogeol. J., 11, 418-433, 2003.							
713	Bodin, J., Porel, G., Delay, F., Ubertosi, F., Bernard, S., and de Dreuzy, J.: Simulation and analysis							
714	of solute transport in 2-D fracture/pipe networks: the SOLFRAC program, J. Contam. Hydrol., 89,							
715	<u>1–28, 2007.</u>							
716	Cherubini, C.: A modeling approach for the study of contamination in a fractured aquifer, in:							
717	Geotechnical and Geological Engineering, vol. 26, Springer, the Netherlands, 519-533, 2008.							
718	Cherubini, C. and Pastore, N.: Modeling contaminant propagation in a fractured and karstic aquifer,							
719	Fresen. Environ. Bull., 19, 1788–1794, 2010.							
720	Cherubini, C. and Pastore, N.: Critical stress scenarios for a coastal aquifer in southeastern Italy,							
721	Nat. Hazards Earth Syst. Sci., 11, 1381–1393, doi:10.5194/nhess-11-1381-2011, 2011.							
722	Cherubini, C., Giasi, C.I., Pastore, N.: Application of Modelling for Optimal Localisation of							
723	Environmental Monitoring Sensors, Proceedings of the Advances in sensor and Interfaces (IWASI),							
724	<u>Trani, Italy, 2009, 222-227, 2009</u>							
725	Cherubini, C., Giasi, C. I., and Pastore, N.: Bench scale laboratory tests to analyze non-linear flow							
726	in fractured media, Hydrol. Earth Syst. Sci., 16, 2511-2522, doi:10.5194/hess-16-2511-2012, 2012.							

728	in fractured media at laboratory scale, Hydrol. Earth Syst. Sci., 17, 2599-2611, doi:10.5194/hess-
729	<u>17-2599-2013, 2013a.</u>
730	Cherubini, C., Giasi, C. I., and Pastore, N.: Fluid flow modeling of a coastal fractured karstic
731	aquifer by means of a lumped parameter approach, Environ. Earth Sci., 70, 2055–2060, 2013b.
732	Delay, F. and Bodin, J.: Time domain random walk method to simulate transport by advection-
733	dispersion and matrix diffusion in fracture networks, Geophys. Res. Lett., 28, 4051–4054, 2001.
734	De Smedt, F. and Wierenga, P. J.: Solute transfer through columns of glass beads, Water Resour.
735	<u>Res., 20, 225–232, 1984.</u>
736	Feehley, C. E., Zheng, C., and Molz, F. J.: A dual-domain mass transfer approach for modeling
737	solute transport in heterogeneous aquifers: Application to the Macrodispersion Experiment
738	(MADE) site, Water Resour. Res., 36, 2501–2515, 2010. Formatted: German (Germany)
739	Forchheimer, P.: Wasserbewegung durch Boden, Z. Verein Deut. Ing., 45, 1781–1788, 1901.
740	Gaudet, J. P., Jégat, H., Vachaud, G., and Wierenga, P. J.: Solute transfer, with exchange between
741	mobile and stagnant water, through unsaturated sand, Soil Sci. Soc. Am. J., 41,665–671, 1977.
742	Geiger, S., Cortis, A., and Birkholzer, J. T.: Upscaling solute transport in naturally fractured porous
743	media with the continuous time random walk method, Water Resour. Res., 46,
744	doi:10.1029/2010WR009133, 2010.
745	Gylling, B., Moreno, L., and Neretnieks, I.: Transport of solute in fractured media, based on a
746	channel network model, in: Proceedings of Groundwater Quality: Remediation and Protection
747	Conference, edited by: Kovar, K. and Krasny, J., 14–19 May, Prague, 107–113, 1995.
748	Jiménez-Hornero, F. J., Giráldez, J. V., Laguna, A., and Pachepsky, Y.: Continuous time
749	randomwalks for analyzing the transport of a passive tracer in a single fissure, Water Resour. Res.,
750	41, W04009, doi:10.1029/2004WR003852, 2005.
751	Kamra, S. K., Lennartz, B., van Genuchten, M. T., and Widmoser, P.: Evaluating non-equilibrium
752	solute transport in small soil columns, J. Contam. Hydrol., 48, 189–212, 2001.
753	Klov, T.: High-velocity flow in fractures, Dissertation for the partial fulfillment of the requirements
754	for the degree of doktor ingenieur Norvegian University of Science Technology Department of
755	Petroleum Engineering and Applied Geophysics, Trondheim, 2000.

727 Cherubini, C., Giasi, C. I., and Pastore, N.: Evidence of non-Darcy flow and non-Fickian transport

756	Liu, H. H., Mukhopadhyay, S., Spycher, N., and Kennedy, B. M.: Analytical solutions of tracer	
757	transport in fractured rock associated with precipitation-dissolution reactions, Hydrogeol. J., 19,	
758	<u>1151–1160, 2011.</u>	
759	Moutsopoulos, K. N., Papaspyros, I. N. E., and Tsihrintzis, V. A.: Experimental investigation of	
760		
700	inernal now processes in porous media, J. Hydron, 574, 242–254, 2007.	
761	Mulla, D. J. and Strock, J. S.: Nitrogen transport processes in soil, in: Nitrogen in agricultural	
762	systems, edited by: Schepers, J. S. and Raun, W. R., Agron. Monogr. 49, ASA, CSSA, SSSA,	Formatted: English (U.S.)
763	<u>Madison, WI, 401–436, 2008.</u>	
764	Neretnieks, I., Eriksen, T., and Tahtinen, P.: Tracer movement in a single fissure in granitic rock:	
765	some experimental results and their interpretation, Water Resour. Res., 18, 849-858,	
766	<u>doi:10.1029/WR018i004p00849, 1982.</u>	
767	Bear, J., 1972. Dynamics of Fluids in Porous Media, Elsevier, New York.	Formatted: English (U.K.)
/0/	pear, s., 1772. Dynamics of Fluids in Forous Media, Elsevier, New Fork.	Tomatted. English (O.K.)
768	Bear, J. and B. Berkowitz (1987). Groundwater flow and pollution in fractured rock aquifers, in	
769	Developments in Hydraulic Engineering, Volume 4, pp. 175 238, P. Novak (ed.), Elsevier Applied	
770	Science Publishers Ltd., New York.	
771	Becker, M.W., Shapiro, A.M.: Tracer transport in fractured crystalline rock: evidence of	
772	nondiffusive breakthrough tailing. Water Resour. Res. 36(7), 1677-1686 (2000).	
773	doi:10.1029/2000WR900080	
774	Berkowitz B. (2002) Characterizing flow and transport in fractured geological media: A review.	
775		
115		
776	Berkowitz, B., Cortis, A., Dentz, M., Scher, H.: Modeling non Fickian transport in geological	
777	formations as a continuous time random walk. Rev. Geophys. 44, RG2003 (2006).	
778	doi:10.1029/2005RG000178	
779	Bodin J., Delay F., de Marsily G. (2003) Solute transport in a single fracture with negligible matrix	
780		
781	4 , pp 418 433	
782	Bodin J, Porel G, Delay F, Ubertosi F, Bernard S, de Dreuzy J (2007) Simulation and analysis of	
783		
784		
, 07		

705		
785	Cherubini Claudia (2008): A Modeling Approach For The Study of Contamination in a Fractured	
786	Aquifer. In:Geotechnical And Geological Engineering. Vol. 26 N.5, Pp. 519-533 ISSN: 0960-3182.	
787	Springer Netherlands.	
788	Cherubini, C., Pastore, N. (2010). Modeling contaminant propagation in a fractured and karstic	Formatted: Italian (Italy)
789	aquifer. Fresenius Environmental Bulletin. 19(9) pp. 1788-1794.	Formatted: English (U.K.)
790	Claudia Cherubini, Nicola Pastore (2011) Critical stress scenarios for a coastal aquifer in	
790 791	southeastern Italy. Natural Hazards and Earth System Sciences NHESS 11, 1381-1393, 2011	
791	doi:10.5194/nhess 11 1381 2011 ISSN: 1561 8633 eISSN: 1684 9981 © Author(s) 2011. CC	Formatted: Italian (Italy)
793	Attribution 3.0 License.	Formatted: English (U.S.)
794	Cherubini, C., Giasi, C. I., Pastore, N. (2012). Bench scale laboratory tests to analyze non-linear	Formatted: English (U.K.)
795	flow in fractured media. Hydrology and Earth System Sciences. 16(8), pp. 2511-2622.	
706		
796	Cherubini, C., Giasi, C. I., Pastore, N. (2013a). Evidence of non Darcy flow and non Fickian	Formatted: English (U.K.)
797	transport in fractured media at laboratory scale. Hydrology and Earth System Sciences. 17(7), pp.	
798	2599-2611.	
799	Cherubini, C., Giasi, C. I., Pastore, N. (2013b). Fluid flow modeling of a coastal fractured karstic	Formatted: English (U.K.)
800	aquifer by means of a lumped parameter approach. Environmental Earth Sciences, November 2013,	
801	Volume 70, Issue 5, pp 2055-2060	
802	De Smedt, F., and P. J. Wierenga, Solute transfer through columns of glass beads, Water Resour.	
	Res., 20, 225–232, 1984.	
803	Kes., 20, 223–232, 1984.	
804	Delay, F., Bodin, J., (2001). Time domain random walk method to simulate transport by advection	
805	dispersion and matrix diffusion in fracture networks. Geophys. Res. Lett. 28 (21), 4051–4054.	
806	Feehley C.E, Zheng C. and Molz F.J. (2010)A dual domain mass transfer approach for modeling	
807	solute transport in heterogeneous aquifers: Application to the Macrodispersion Experiment	
808	(MADE) site Water Resources Research Volume 36. Issue 9, pages 2501–2515, September 2000	
	(,	
809	Forchheimer, P. (1901). Wasserbewegung durch Boden. Zeitschrift Verein Deutscher Ingenieure	
810	vol 45, 1781–1788	
811	Gaudet, J.P., H. Jégat, G. Vachaud and P.J. Wierenga, 1977. Solute transfer, with exchange between	Formatted: English (U.K.)
812	mobile and stagnant water, through unsaturated sand. Soil Sci. Soc. Amer. J. 41: pp. 665-671	

813	Geiger S., Cortis A., and J. T. Birkholzer (2010) Upscaling solute transport in naturally fractured
814	porous media with the continuous time random walk method Water Resources Research Volume
815	46, Issue 12, December 2010 DOI: 10.1029/2010WR009133
816	Gylling B.; Moreno L.; and Neretnieks I. (1995) Transport of solute in fractured media, based on a
817	channel network model. In Proceedings of Groundwater Quality: Remediation and Protection
818	Conference, Eds K. Kovar and J. Krasny, 107-113, Prague May 14-19, 1995.
819	Jiménez-Hornero, F.J., Giráldez, J.V., Laguna, A., Pachepsky, Y.: Continuous time randomwalks for
820	analyzing the transport of a passive tracer in a single fissure. Water Resour. Res. 41, W04009
821	(2005). doi:10.1029/2004WR003852
822	Izbash, S. (1931). <i>O filtracii V Kropnozernstom Materiale</i> . Leningrad USSR, [in Russian].
823	Kamra, S. K., Lennartz, B., van Genuchten, M. T., and Widmoser, P.: Evaluating non-equilibrium
824	solute transport in small soil columns, J. Contam. Hydrol., 48, 189-212, 2001.
825	Klov, T. (2000). High velocity flow in fractures. Dissertation for the partial fulfillment of the
826	requirements for the degree of doktor ingenieur Norvegian University of Science Technology
827	Department of Petroleum Engineering and Applied Geophysics Trondheim.
828	Liu H H., Mukhopadhyay S., Spycher N., Kennedy B. M. (2011) Analytical solutions of tracer
829	transport in fractured rock associated with precipitation-dissolution reactions Hydrogeology Journal
830	September 2011, Volume 19, Issue 6, pp 1151-1160
831	Moutsopoulos K.N., Papaspyros I.N.E., Tsihrintzis V.A.Experimental investigation of inertial flow
832	processes in porous media J. Hydrol., 374 (3 4) (2009), pp. 242 254
833	Mulla, D.J. and J.S. Strock. 2008. Nitrogen transport processes in soil. p. 401–436. In J.S. Schepers
834	and W.R. Raun (ed.) Nitrogen in agricultural systems. Agron. Monogr. 49. ASA, CSSA,
835	SSSA, Madison, WI.
836	Neretnieks, I., Eriksen, T., Tahtinen, P.: Tracer movement in a single fissure in granitic rock: some
837	experimental results and their interpretation.Water Resour.Res. 18(4), 849-858 (1982).
838	doi:10.1029/WR018i004p00849
839	Neuman, S. P. (2005) Trends, prospects and challenges in quantifying flow and transport through
840	fractured rocks Hydrogeology Journal March 2005, Volume 13, Issue 1, pp 124-147

841	Nkodi Kizza	DI	W Biggar	МТ	. van Genuchte	n D I	Wierengo	нм	Salim	IM	Davidson
	TACUT MILLA,	, 1 ., J.	W. Diggar,	IVI. I	· van Oenaeme	n, <u>1</u> . <i>J</i> .	wierenga,	11. 111.	benn,	J. 1VI.	Daviason

842 and D. R. Nielsen. 1983. Modeling tritium and chloride 36 transport through an aggregated oxisol.

843 Water Resour. Res. 19:691-700

- 844 Nowamooz A, Radilla R., Fourar M., Berkowitz B. (2013) Non-Fickian Transport in Transparent
- 845 Replicas of Rough Walled Rock Fractures Transport in Porous Media July 2013, Volume 98, Issue
- 846 3, pp 651 682 DOI 10.1007/s11242 013 0165 7
- 847 Qian, J. Z., Chen, Z., Zhan, H. B., and Luo, S. H.: Solute transport in a filled single fracture under
 848 non-Darcian flow, Int. J. Rock Mech. Min., 48, 132–140, 2011.
- 849 Schumer R., Benson D A., Baeumer B. (2003) Fractal mobile/immobile solute transport. Water
- 850 Resources Research Volume 39, Issue 10, October 2003 DOI: 10.1029/2003WR002141
- 851 Selim, H. M., and L. Ma, Transport of reactive solutes in soils: A modified two region approach,
- 852 Soil Sci. Soc. Am. J. 59, 75 82, 1995Valocchi, A.J. (1985) Validity of the local equilibrium
- 853 assumption for modeling sorbing solute transport through homogeneous soils. Wat. Resour. Res.
 854 21(6), 808-820
- 855 Van Genuchten M. Th. And J. Wierenga (1976): Mass transfer studies in sorbing porous media, I-
- 856 Analytical solutions, SSSA Proceedings 40 (4), 473 480.Zafarani A., Detwiler R. L. (2013) An
- 857 efficient time domain approach for simulating Pe dependent transport through fracture intersections
- 858 Advances in Water Resources 53 (2013) 198-207

861

862

- 859 Zhang Z., Nemcik J. (2013) Fluid flow regimes and nonlinear flow characteristics in deformable
- 860 rock fractures Journal of Hydrology, Volume 477, 16 January 2013, Pages 139–151

Formatted:	Fnalish	(I I K)
i unnatteu.	LIIGUSU	(0.1.)

-	Formatted: English (U.K.)
-	Formatted: English (U.K.)
H H	Formatted: English (U.K.)
	Formatted: English (U.K.)
$\langle \rangle$	Formatted: English (U.K.)
	Formatted: English (U.K.)

<u>MIM 1</u>					
<u>n°</u> Q(n	$\frac{v/L(s^{-1}) \times 10^{-6}}{v/L(s^{-1})}$	<u>D/L² (s⁻¹)×10⁻²</u>	$\underline{\alpha \ (s^{-1}) \times 10^{-2}}$	<u>β(-)</u>	<u>RMSE</u> r^2
<u>1</u> <u>1.31</u>	$\underline{0.73} \pm \underline{0.05}$	$\underline{0.15} \pm \underline{0.01}$	<u>0.43</u> ± <u>0.09</u>	<u>0.95 ± 0.14</u>	<u>0.022</u> <u>0.979</u>
<u>5</u> <u>2.20</u>	$\underline{9} \qquad \underline{1.05} \ \underline{\pm} \ \underline{0.05}$	$\underline{0.16} \pm \underline{0.01}$	$\underline{0.50} \pm \underline{0.12}$	$\underline{0.51} \pm \underline{0.07}$	<u>0.021</u> <u>0.991</u>
<u>10</u> <u>2.73</u>	$\underline{1} \qquad \underline{1.26} \ \underline{\pm} \ \underline{0.05}$	$\underline{0.18} \pm \underline{0.01}$	0.60 ± 0.12	$\underline{0.51} \pm \underline{0.06}$	<u>0.021</u> <u>0.994</u>
<u>15</u> <u>3.08</u>	$\underline{4} \qquad \underline{1.74} \ \underline{\pm} \ \underline{0.06}$	$\underline{0.19} \pm \underline{0.01}$	1.03 ± 0.16	$\underline{0.56} \pm \underline{0.05}$	<u>0.023</u> <u>0.995</u>
<u>20</u> <u>3.36</u>	$\underline{5}$ $\underline{1.75} \pm \underline{0.06}$	$\underline{0.20} \pm \underline{0.01}$	1.06 ± 0.17	$\underline{0.54} \pm \underline{0.05}$	<u>0.022</u> <u>0.996</u>
<u>25</u> <u>3.68</u>	$1 2.49 \pm 0.10$	$\underline{0.25} \pm \underline{0.02}$	1.67 ± 0.32	$\underline{0.51} \pm \underline{0.06}$	<u>0.030</u> <u>0.995</u>
<u>30</u> <u>4.07</u>	$\underline{4} \qquad \underline{2.57} \ \underline{\pm} \ \underline{0.11}$	$\underline{0.26} \pm \underline{0.02}$	1.67 ± 0.35	$\underline{0.50} \pm \underline{0.06}$	<u>0.033</u> <u>0.994</u>
<u>35</u> <u>4.53</u>	$\underline{6}$ $\underline{2.25} \pm \underline{0.09}$	$\underline{0.21} \pm \underline{0.02}$	1.58 ± 0.29	<u>0.57</u> <u>±</u> <u>0.06</u>	<u>0.031</u> <u>0.994</u>
<u>40</u> <u>5.38</u>	$\underline{2} \qquad \underline{3.20} \ \underline{\pm} \ \underline{0.13}$	$\underline{0.26} \pm \underline{0.02}$	2.68 ± 0.44	$\underline{0.61} \pm \underline{0.06}$	<u>0.035</u> <u>0.994</u>
<u>45</u> <u>5.89</u>	$\underline{3.32} \pm \underline{0.15}$	$\underline{0.26} \pm \underline{0.02}$	2.82 ± 0.50	$\underline{0.57} \pm \underline{0.06}$	<u>0.036</u> <u>0.995</u>
<u>50</u> <u>6.16</u>	$\underline{8} \qquad \underline{3.02} \ \underline{\pm} \ \underline{0.15}$	$\underline{0.26} \pm \underline{0.02}$	2.52 ± 0.52	$\underline{0.51} \pm \underline{0.07}$	<u>0.031</u> <u>0.996</u>
<u>55</u> <u>8.34</u>	<u>5 3.54 ± 0.29</u>	<u>0.35</u> <u>±</u> 0.04	- <u>3.05</u> ± <u>1.07</u>	<u>0.41 ± 0.11</u>	<u>0.038</u> <u>0.995</u>
<u>55 8.54</u>	<u> </u>	<u>0.35 ± 0.04</u>	$-3.05 \equiv 1.07$	<u>0.41 ± 0.11</u>	0.030 0.993

Formatted Table

Formatted: English (U.K.)

865

MIM-1						
<u>p°</u> Q ₀ -(m ³ /s)×10 ⁻⁶	- v/L(s⁻¹)×10⁻²	- $\frac{\text{D/L}^2}{(\text{s}^4) \times 10^2}$	- α (s⁻¹)	- β() ·	- RMSE - # ²	Formatted: Englis
1 1.3194	0.73 ± 0.0453	0.15 ± 0.0103	0.004 ± 0.0009	0.95 ± 0.1442	0.0220 0.9786	Formatted: Englis
5 2.2090	$\frac{1.05}{\pm} \frac{0.0482}{0.0482}$	0.16 ± 0.0096	0.005 ± 0.0012	0.51 ± 0.0705	0.0213 0.9915	Formatted: Englis
10 2.7312	$\frac{1.26}{\pm} = \frac{0.0478}{0.0478}$	0.18 ± 0.0095	$\frac{0.006}{\pm} = \frac{0.0012}{0.0012}$	0.51 ± 0.0596	0.0212 0.9938	Formatted: Englis
15	$\frac{1.74}{\pm} \frac{0.0580}{\pm}$	$\frac{0.19}{\pm} \pm \frac{0.0105}{\pm}$	$\frac{0.010}{\pm} \frac{0.0016}{\pm}$	0.56 ± 0.0526	0.0233	Formatted: Englis
20	$\frac{1.75}{1.75} \pm \frac{0.0594}{1.75}$	0.20 ± 0.0104	$\frac{0.011}{\pm} \frac{0.0017}{\pm}$	$\frac{0.54}{\pm} = \frac{0.0511}{0.0511}$	0.0220 0.9956	Formatted: Englis
25	$\frac{2.49}{\pm} \pm \frac{0.1037}{\pm}$	0.25 ± 0.0166	0.017 ± 0.0032	0.51 ± 0.0587	0.0304 0.9948	Formatted: Englis
30 4 .0735	$\frac{2.57}{\pm} \frac{0.1127}{\pm}$	0.26 ± 0.0182	$\frac{0.017}{\pm} = \frac{0.0035}{0.0035}$	$\frac{0.50}{\pm} = \frac{0.0617}{0.0617}$	0.0333 0.9940	Formatted: Englis
35 4 .5356	$\frac{2.25}{\pm} = \frac{0.0942}{\pm}$	0.21 ± 0.0153	$\frac{0.016}{\pm} = \frac{0.0029}{0.0029}$	0.57 ± 0.0626	0.0310 0.9936	Formatted: Englis
40 5.3824	$\frac{3.20}{\pm} \frac{0.1334}{0.1334}$	0.26 ± 0.0199	0.027 ± 0.0044	0.61 ± 0.0627	0.0349 0.9944	Formatted: Englis
45 5.8945	$\frac{3.32}{\pm}$ \pm 0.1455	0.26 ± 0.0208	0.028 ± 0.0050	0.57 ± 0.0634	0.0358 0.9946	Formatted: Englis
50 6.1684	$\frac{3.02}{\pm} \pm \frac{0.1478}{\pm}$	0.26 ± 0.0205	0.025 ± 0.0052	0.51 ± 0.0673	0.0312 0.9955	Formatted: Englis
55 8.3455	- 3.54 ± 0.2916	- 0.35 ± 0.0363	- 0.030 ± 0.0107	- 0.41 <u>+</u> 0.1060 ·	- 0.0376 - 0.9948	Formatted: Englis
	P° Q ₄ -(m ³ / ₃)×10 ⁻⁶ I 1.3194 5 2.2090 I0 2.7312 I5 3.0842 20 3.3648 25 3.6813 30 4.0735 35 4.5356 40 5.3824 45 5.8945 50 6.1684	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	p^2 $Q_{n}^{-}(m^3/m) + 10^6$ $v + L(s^{-1}) + 10^2$ $D + D + 2^2 + (s^{-1}) + 10^2$ $v + (s^{-1})$ $ B + (s^{-1})$ $RMSE$ $v + r^2$ 11.31940.73 \pm 0.04530.15 \pm 0.0004 \pm 0.00090.95 \pm 0.14420.02200.978652.20901.05 \pm 0.04820.16 \pm 0.0005 \pm 0.00120.51 \pm 0.02130.9915102.73121.26 \pm 0.04780.18 \pm 0.0095 \pm 0.01120.51 \pm 0.05260.02130.9915142.73121.26 \pm 0.04780.18 \pm 0.0095 \pm 0.01120.51 \pm 0.05260.02130.9915142.73121.26 \pm 0.04780.18 \pm 0.00950.00140.01120.51 \pm 0.05260.02130.9916203.36481.75 \pm 0.05940.20 \pm 0.01040.0114 \pm 0.00170.54 \pm 0.05140.02200.9986253.68132.49 \pm 0.10370.25 \pm 0.01660.017 \pm 0.00320.51 \pm 0.03330.9940254.53562.25 \pm 0.04230.21 \pm 0.01530.016 \pm 0.02470.03400.9936405.38243.20 \pm 0.13340.26 \pm 0.01530.016 \pm 0.0050 </th

Formatted: English (U.K.)	
Formatted: English (U.K.)	

Table 14+. Estimated values of parameters, root mean square error RMSE and determination coefficient r² for mobile – immobile model MIM at different injection flow rates in the fractured medium.

866 867 868

<u>ENM 2</u> $Q(m^{3}/s) \times 10^{-6}$ $\underline{\omega_{eq}}(m^2) \times 10^{-4}$ $\underline{\alpha_{L}}(m) \times 10^{-1}$ RMSE $\underline{\mathbf{R}}^2$ $\underline{n^{\circ}}$ 1.3194 0.952 1 <u>3.10 ± 0.14</u> <u>1.92 ± 0.86</u> 0.033 <u>5</u> <u>2.2090</u> <u>3.22 ± 0.04</u> $\underline{0.98} \pm \underline{0.06}$ 0.020 <u>0.993</u> <u>10</u> <u>2.7312</u> <u>3.29 ± 0.04</u> $\underline{0.92} \pm \underline{0.05}$ <u>0.019</u> <u>0.995</u> <u>15</u> <u>3.0842</u> <u>2.81 ± 0.03</u> <u>0.79 ± 0.03</u> 0.020 0.996 <u>0.019</u> 20 3.3648 <u>3.06 ± 0.03</u> <u>0.79 ± 0.03</u> 0.997 <u>3.6813</u> <u>25</u> <u>2.35 ± 0.02</u> <u>0.74</u> <u>±</u> <u>0.03</u> 0.026 <u>0.996</u> <u>30</u> <u>4.0735</u> <u>2.49 ± 0.02</u> $\underline{0.75} \pm \underline{0.03}$ 0.027 <u>0.996</u> <u>35</u> <u>4.5356</u> <u>3.27 ± 0.04</u> $\underline{0.74} \ \underline{\pm} \ \underline{0.04}$ <u>0.028</u> <u>0.995</u> <u>40</u> <u>5.3824</u> <u>2.76 ± 0.02</u> <u>0.75 ± 0.02</u> 0.023 0.998 Formatted: Caption

Formatted: Font: Italic Formatted Table

<u>45</u>	<u>5.8945</u>	<u>2.90</u> ±	0.02	<u>0.69</u> ±	<u>0.02</u>	0.027	<u>0.997</u>
<u>50</u>	<u>6.1684</u>	<u>3.30</u> ±	0.04	<u>0.68</u> ±	<u>0.02</u>	<u>0.032</u>	<u>0.995</u>
<u>55</u>	8.3455	<u>3.56</u> ±	0.05	<u>0.78</u> ±	0.02	0.041	<u>0.994</u>

ENM2

<u>40</u> <u>5.382</u>

<u>45</u> <u>5.895</u>

 $\underline{2.61} \pm \underline{0.03}$

<u>2.70 ± 0.03</u>

 $\underline{0.75} \pm \underline{0.02}$

<u>0.69 ± 0.02</u>

_

<u>E4</u>	M12					
<mark>₽</mark> ⁰	Q ₀ -(m ³ /s)×10 ⁻⁶ -		«_L (m) -	RMSE -	f ²	Formatted: English (U.K.)
<u></u>	1.3194	0.031 ± 0.0014	0.1925 ± 0.0863	0.0328	0.9524	Formatted: English (U.K.)
5	2.2090	0.032 ± 0.0004	0.0984 <u>+</u> 0.0064	0.0199	0.9925	Formatted: English (U.K.)
,10	2.7312	0.033 ± 0.0004	0.0918 ± 0.0048	0.0191	0.9950	Formatted: English (U.K.)
15	3.0842	0.028 ± 0.0003	0.0793 ± 0.0033	0.0204	0.9962	Formatted: English (U.K.)
20	3.3648	0.031 ± 0.0003	0.0792 ± 0.0029	0.0193	0.9966	Formatted: English (U.K.)
25	3.6813	0.024 ± 0.0002	0.0739 ± 0.0030	0.0262	0.9961	Formatted: English (U.K.)
30	4.0735	0.025 ± 0.0002	$\frac{0.0746}{\pm} \pm \frac{0.0032}{\pm}$	0.0272	0.9960	Formatted: English (U.K.)
35	4.5356	0.033 ± 0.0004	0.0735 ± 0.0035	0.0278	0.9948	Formatted: English (U.K.)
40	5.382 4	0.028 ± 0.0002	0.0753 ± 0.0020	0.0226	0.9977	Formatted: English (U.K.)
<u>45</u>	5.8945	0.029 ± 0.0002	0.0688 ± 0.0017	0.0266	0.9970	Formatted: English (U.K.)
50	6.1684	0.033 ± 0.0004	0.0684 <u>+</u> 0.0018	0.0317	0.9954	Formatted: English (U.K.)
<u>55</u>	8.3455 -	0.036 ± 0.0005 -	$\frac{0.0775}{\pm} = \frac{0.0020}{\pm}$ -	0.0413 -	0.9938	Formatted: English (U.K.)
Table 222. Estimated	values of parameter	rs, root mean square	error RMSE and dete	ermination	coefficient r ² for ENM2 at	<u> </u>
different injection flow	v rates in the fractur	ed medium.				Formatted: English (U.K.)
						Formatted: English (U.K.)
						Formatted: English (U.K.)

870 871 872

873 874

875

876

877

878

Formatted: English (U.K.)

Formatted: English (U.K.)

<u>ENM 3</u>							\searrow	Formatted: Font: Italic
<u>n° Q (m³/s)×10⁻⁶</u>	$\underline{\omega_{eq}}$ (m ²)×10 ⁻⁴	<u>α_L (m)×10⁻¹</u>	<u>P_Q/P_C (-)</u>	RMSE	<u>R²</u>			Formatted Table
<u>1 1.319</u>	<u>3.43 ± 1.28</u>	1.92 ± 0.86	0.82 ± 0.17	<u>0.032</u>	<u>0.954</u>	•		Formatted Table
<u>5</u> <u>2.209</u>	3.18 ± 0.11	$\underline{0.98} \pm \underline{0.06}$	$\underline{0.76} \pm \underline{0.02}$	<u>0.020</u>	<u>0.993</u>			
<u>10</u> <u>2.731</u>	<u>3.28</u> ± <u>0.09</u>	$\underline{0.92} \pm \underline{0.05}$	0.75 ± 0.02	<u>0.019</u>	<u>0.995</u>			
<u>15</u> <u>3.084</u>	<u>2.73 ± 0.05</u>	<u>0.79 ± 0.03</u>	<u>0.73 ± 0.01</u>	<u>0.019</u>	<u>0.997</u>			
<u>20</u> <u>3.365</u>	<u>2.94 ± 0.05</u>	$\underline{0.79} \pm \underline{0.03}$	$\underline{0.72} \pm \underline{0.01}$	<u>0.017</u>	<u>0.997</u>			
<u>25</u> <u>3.681</u>	<u>2.22 ± 0.04</u>	<u>0.74 ± 0.03</u>	<u>0.71 ± 0.01</u>	<u>0.023</u>	<u>0.997</u>			
<u>30</u> <u>4.074</u>	<u>2.37</u> ± <u>0.04</u>	$\underline{0.75} \pm \underline{0.03}$	$\underline{0.71} \pm \underline{0.01}$	0.025	<u>0.997</u>			
<u>35</u> <u>4.536</u>	<u>3.13 ± 0.06</u>	0.74 ± 0.04	<u>0.71 ± 0.01</u>	<u>0.026</u>	<u>0.995</u>			

<u>0.016</u>

<u>0.016</u>

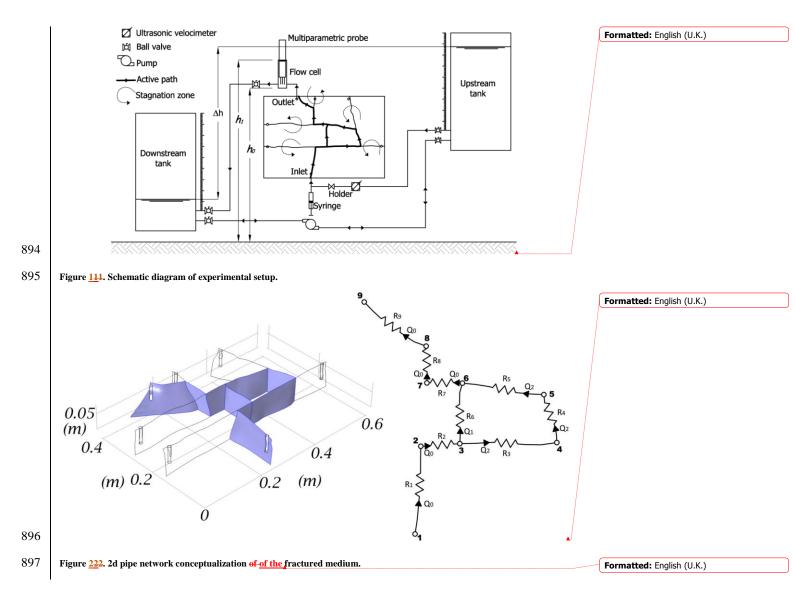
<u>0.999</u>

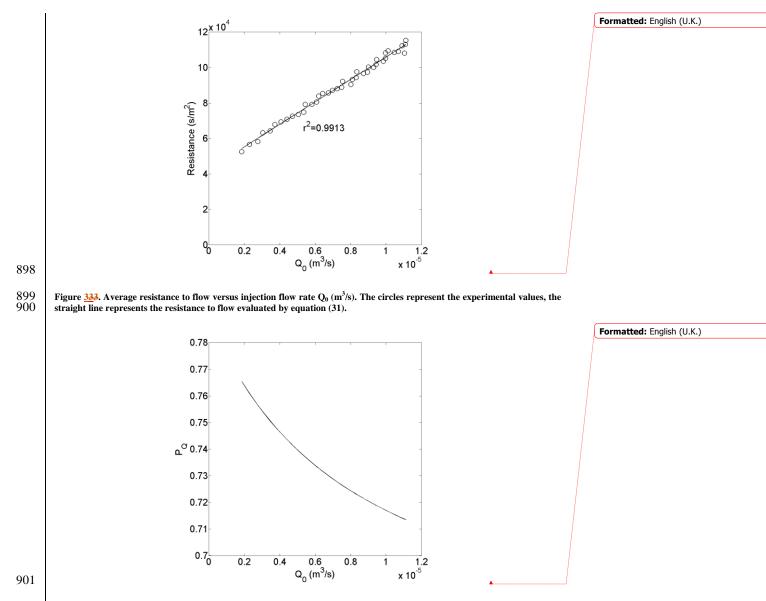
<u>0.999</u>

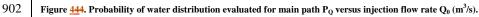
 $\underline{0.70} \pm \underline{0.01}$

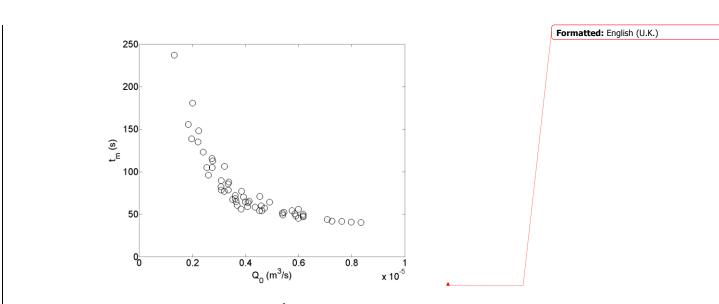
<u>0.68 ± 0.01</u>

					Formatted: English (U.K.)
ENM3					
$p^{\circ} = Q_{0}^{-}(m^{3}/s) \times 10^{-1}$	$\theta^{-6} - \Theta A_{eq} (m^2) \times 10^{-2} - \Theta_{E}$	$(\mathbf{m}) - \mathbf{P}_{\mathbf{Q}}/\mathbf{P}_{\mathbf{C}}(\cdot)$	- RMSE -	- <u></u>	Formatted: English (U.K.)
1 <u>1.3194</u>	$0.0343 \pm 0.0128 0.1925 =$	<u> 0.0863</u> 0.8153 ± 0.1	1717 0.0323	0.9539	Formatted: English (U.K.)
<u>5</u> 2.2090	$0.0318 \pm 0.0011 0.0984 =$	<u> 0.0064</u> 0.7558 <u></u> 0.0	0214 0.0199	0.9925	Formatted: English (U.K.)
10 2.7312	$0.0328 \pm 0.0009 0.0918 =$	$\pm 0.0048 0.7542 \pm 0.0000$	0165 0.0190	0.9950	Formatted: English (U.K.)
15	0.0273 ± 0.0005 $0.0793 =$	<u> 0.0033</u> 0.7334 <u> 0.(</u>	0119	0.9966	Formatted: English (U.K.)
20	0.0294 ± 0.0005 0.0792 =	± 0.0029 0.7239 ± 0.0	0106	0.9972	Formatted: English (U.K.)
25 3.6813	0.0222 ± 0.0004 0.0739 =	<u> 0.0030</u> 0.7063 <u></u> 0.0	0106 0.0228	0.9971	Formatted: English (U.K.)
30 4.0735	0.0237 ± 0.0004 0.0746 =	<u> 0.0032</u> 0.7111 <u> 0.0</u>	0115 0.0248	0.9967	Formatted: English (U.K.)
35 4 .5356	0.0313 ± 0.0006 0.0735 =		0128 0.0259	0.9955	Formatted: English (U.K.)
40 <u>5.382</u> 4	$0.0261 \pm 0.0003 0.0753 =$		0070 0.0164	0.9988	Formatted: English (U.K.)
45 <u>5.8945</u>	0.0270 ± 0.0003 $0.0688 =$		0060 0.0164	0.9989	Formatted: English (U.K.)
50 6.1684	$0.0298 \pm 0.0003 0.0684 =$		0059 0.0169	0.9987	Formatted: English (U.K.)
55 8.3455	$-0.0313 \pm 0.0002 - 0.0775 =$	± 0.0020 - 0.6297 ± 0.0	0051 - 0.0161 -	- 0.9991	Formatted: English (U.K.)
	ues of parameters, root mean square erro fractured medium.	or RMSE and determination	coefficient r ² for I	ENM3 at different	Formatted: English (U.K.)
		or RMSE and determination	coefficient r ² for E	ENM3 at different	
		or RMSE and determination	coefficient r ² for E	ENM3 at different	Formatted: English (U.K.)
		or RMSE and determination	coefficient r ² for E	ENM3 at different	Formatted: English (U.K.) Formatted: English (U.K.)
ijection flow rates in the f	fractured medium.	or RMSE and determination of RMSE and determination of the second s		ENM3 at different	Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.)
njection flow rates in the f	fractured medium.		<u>) RMSE</u>	•	Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: Caption
bijection flow rates in the flow $\underline{ENM 4}$ $\underline{n^{\circ} Q (m^{3}/s) \times 10^{\circ}}$	fractured medium. $\frac{D^6}{2} = \omega_{eg} (m^2) \times 10^4 = \alpha_L (m) \times 10.1$. <u>Po(-) . Pc(-</u>	<u>-) _ RMSE</u> _ 	• - <u>R²</u>	Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: Caption Formatted: Font: Italic
$\frac{ENM 4}{n^{\circ} Q (m^{3}/s) \times 10}$ $1 1.319$	fractured medium. $\frac{D^6}{2.67 \pm 0.13} = \frac{\alpha_L (m) \times 10^{-1}}{1.18 \pm 0.11}$	<u>P₀(-) P_C(-</u> 0.85 ± 0.02 0.67 ±	<u>) _ RMSE</u> . 0.02 0.020 0.03 0.020	<u>- R²</u> 0.981	Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: Caption Formatted: Font: Italic
$ \underbrace{ ENM 4}_{\underline{n^{\circ}} Q (\underline{m^{3}/s}) \times 10} \\ \underline{1 1.319}_{\underline{5} 2.209} $	fractured medium. $\frac{0.6}{2.67} \pm \frac{\omega_{eg} (m^2) \times 10^4}{2.67} \pm \frac{\alpha_1 (m) \times 10 - 1}{1.18} \pm 0.111$ $\frac{3.15}{3.15} \pm 0.12$	Po(-) Pc(- 0.85 ± 0.02 0.67 ± 0.76 ± 0.02 0.75 ±) _ RMSE 0.02 0.020 0.03 0.020 0.02 0.019	<u> </u>	Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: Caption Formatted: Font: Italic
ENM 4 \underline{n}° Q (\underline{m}^{3} /s)×10 1 1.319 5 2.209 10 2.731	fractured medium. $\frac{0.6}{2.67} \pm 0.13 \qquad 1.18 \pm 0.11 \\ 3.15 \pm 0.12 \qquad 0.96 \pm 0.07 \\ 3.28 \pm 0.10 \qquad 0.92 \pm 0.06 $	P ₀ .(-) _ P _c .(- 0.85 ± 0.02 0.67 ± 0.76 ± 0.02 0.75 ± 0.75 ± 0.02 0.76 ±) _ RMSE _ 0.02 0.020	<u> </u>	Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: Caption Formatted: Font: Italic
ENM 4 $\underline{n^{\circ}}$ Q (m^{3}/s)×10 1 1.319 5 2.209 10 2.731 15 3.084	fractured medium. $\frac{0^{-6}}{2.67} \pm \frac{\omega_{eq}}{2.67} \pm \frac{0.13}{2.15} \pm \frac{1.18}{2.67} \pm \frac{0.12}{2.67} \pm \frac{0.12}{2.67} \pm \frac{0.96}{2.74} \pm \frac{0.06}{2.04} \pm \frac{0.07}{2.88} \pm \frac{0.10}{2.74} \pm \frac{0.92}{2.04} \pm \frac{0.04}{2.04}$	$\begin{array}{c c} \underline{P_0(\cdot)} & & \underline{P_C(\cdot)} \\ \hline 0.85 & \pm & 0.02 & & 0.67 & \pm \\ \hline 0.76 & \pm & 0.02 & & 0.75 & \pm \\ \hline 0.75 & \pm & 0.02 & & 0.76 & \pm \\ \hline 0.73 & \pm & 0.01 & & 0.74 & \pm \end{array}$	2) 2 RMSE . 0.02 0.020 0.020 . 0.03 0.020 0.019 . 0.02 0.019 . . 0.02 0.017 . .	<u><u>R²</u> 0.981 0.993 0.995 0.997</u>	Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: Caption Formatted: Font: Italic
ENM 4 n° $O(m^{3}/s) \times 10$ 1 1.319 5 2.209 10 2.731 15 3.084 20 3.365	fractured medium. $\frac{0^{-6}}{2.67} \pm 0.13 \qquad 1.18 \pm 0.11 \\ 3.15 \pm 0.12 \qquad 0.96 \pm 0.07 \\ 3.28 \pm 0.10 \qquad 0.92 \pm 0.06 \\ 2.74 \pm 0.06 \qquad 0.80 \pm 0.04 \\ 2.97 \pm 0.06 \qquad 0.81 \pm 0.04 $	$\begin{array}{c c} \hline P_0(\cdot) & & P_C(\cdot) \\ \hline 0.85 \pm 0.02 & 0.67 \pm \\ \hline 0.76 \pm 0.02 & 0.75 \pm \\ \hline 0.75 \pm 0.02 & 0.76 \pm \\ \hline 0.73 \pm 0.01 & 0.74 \pm \\ \hline 0.72 \pm 0.01 & 0.73 \pm \\ \end{array}$) 2 RMSE . 0.02 0.020 0.020 . 0.03 0.020 0.019 . 0.02 0.019 . . 0.02 0.017 . . 0.02 0.020 . .	<u>- R²</u> <u>0.981</u> <u>0.993</u> <u>0.995</u> <u>0.997</u> <u>0.997</u>	Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: Caption Formatted: Font: Italic
ENM 4 n° $Q(m^{3}/s) \times 10$ 1 1.319 5 2.209 10 2.731 15 3.084 20 3.365 25 3.681	fractured medium. $\frac{0^6}{2.67} \pm 0.13 + 0.11 + 0.11 + 0.11 + 0.11 + 0.11 + 0.11 + 0.11 + 0.11 + 0.11 + 0.11 + 0.11 + 0.11 + 0.12 + 0.12 + 0.06 + 0.07 + 0.06 + 0.04 + 0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$) 2 RMSE 0.02 0.020 0.03 0.020 0.02 0.019 0.02 0.019 0.02 0.017 0.02 0.020 0.02 0.020	<u>- R²</u> <u>0.981</u> <u>0.993</u> <u>0.995</u> <u>0.997</u> <u>0.998</u>	Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: Caption Formatted: Font: Italic
ENM 4 $\underline{n^{\circ}}$ $Q (\underline{m^3/s}) \times 10^{\circ}$ 1 1.319 5 2.209 10 2.731 15 3.084 20 3.365 25 3.681 30 4.074	fractured medium. $\frac{0^6}{2.67 \pm 0.13} = \frac{\alpha_{L} (m) \times 10 - 1}{1.18 \pm 0.11}$ $\frac{2.67 \pm 0.13}{3.15 \pm 0.12} = \frac{1.18 \pm 0.11}{0.96 \pm 0.07}$ $\frac{3.28 \pm 0.10}{2.74 \pm 0.06} = \frac{0.80 \pm 0.04}{0.81 \pm 0.04}$ $\frac{2.97 \pm 0.06}{2.43 \pm 0.05} = \frac{0.80 \pm 0.04}{0.80 \pm 0.04}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$) 2 RMSE 0.02 0.020 0.03 0.020 0.02 0.019 0.02 0.019 0.02 0.017 0.02 0.020 0.02 0.022 0.02 0.022 0.02 0.022 0.02 0.022 0.02 0.022	<u>- R²</u> <u>0.981</u> <u>0.993</u> <u>0.995</u> <u>0.997</u> <u>0.997</u> <u>0.998</u> <u>0.997</u>	Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: Caption Formatted: Font: Italic
ENM 4 \underline{n}° $Q (\underline{m}^{3}/\underline{s}) \times 10$ 1 1.319 5 2.209 10 2.731 15 3.084 20 3.365 25 3.681 30 4.074 35 4.536	fractured medium. $\frac{0^6}{2.67} \pm 0.13 \qquad \underline{\alpha_L} (m) \times 10 - 1 \qquad .$ $2.67 \pm 0.13 \qquad \underline{1.18} \pm 0.11 \qquad .$ $3.15 \pm 0.12 \qquad 0.96 \pm 0.07 \qquad .$ $3.28 \pm 0.10 \qquad 0.92 \pm 0.06 \qquad .$ $2.74 \pm 0.06 \qquad 0.80 \pm 0.04 \qquad .$ $2.97 \pm 0.06 \qquad 0.81 \pm 0.04 \qquad .$ $2.28 \pm 0.05 \qquad 0.80 \pm 0.04 \qquad .$ $2.43 \pm 0.06 \qquad 0.80 \pm 0.04 \qquad .$ $3.18 \pm 0.08 \qquad 0.76 \pm 0.05 \qquad .$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2) 2 RMSE 2 0.02 0.020 0.020 0 0.03 0.019 0.019 0 0.02 0.019 0.017 0 0.02 0.020 0.020 0 0.02 0.020 0.021 0 0.02 0.022 0.022 0 0.02 0.022 0.025 0 0.02 0.025 0.025 0 0.01 0.016 0.016 0	<u>R²</u> <u>0.981</u> <u>0.993</u> <u>0.995</u> <u>0.997</u> <u>0.997</u> <u>0.998</u> <u>0.997</u> <u>0.996</u>	Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: Caption Formatted: Font: Italic
ENM 4 \underline{n}° Q ($\underline{m}^{3}/\underline{s}$)×10 1 1.319 5 2.209 10 2.731 15 3.084 20 3.365 25 3.681 30 4.074 35 4.536 40 5.382	fractured medium. $\frac{0^6}{2.67} \pm 0.13 + 0.18 \pm 0.11 + 0.12 + 0.12 + 0.13 + 0.12 + 0.13 + 0.11 + 0$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $) , RMSE , 0.02 0.020 0.020 , 0.03 0.020 0.019 , 0.02 0.019 , , 0.02 0.019 , , 0.02 0.017 , , 0.02 0.020 , , 0.02 0.022 , , 0.02 0.022 , , 0.02 0.025 , , 0.02 0.025 , , 0.02 0.025 , , 0.01 0.016 , ,	<u>R²</u> <u>0.981</u> <u>0.993</u> <u>0.995</u> <u>0.997</u> <u>0.998</u> <u>0.997</u> <u>0.998</u> <u>0.997</u> <u>0.996</u> <u>0.999</u>	Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: Caption Formatted: Font: Italic
ENM 4 \underline{n}° $Q (\underline{m}^{3} (\underline{s}) \times 10)$ 1 1.319 5 2.209 10 2.731 15 3.084 20 3.365 25 3.681 30 4.074 35 4.536 40 5.382 45 5.895	fractured medium. $\frac{0.6}{2} = \frac{\omega_{eq}}{(m^2) \times 10^4} = \frac{\alpha_1}{(m) \times 10^{-1}} = \frac{1}{2}$ $\frac{2.67}{2} \pm 0.13 = 1.18 \pm 0.11$ $\frac{3.15}{3.15} \pm 0.12 = 0.96 \pm 0.07$ $\frac{3.28}{2.74} \pm 0.06 = 0.80 \pm 0.04$ $\frac{2.97}{2} \pm 0.06 = 0.81 \pm 0.04$ $\frac{2.97}{2.28} \pm 0.05 = 0.80 \pm 0.04$ $\frac{2.43}{2.43} \pm 0.06 = 0.80 \pm 0.04$ $\frac{2.43}{2.18} \pm 0.08 = 0.76 \pm 0.05$ $\frac{2.62}{2} \pm 0.04 = 0.76 \pm 0.03$ $\frac{2.76}{2.76} \pm 0.03 = 0.73 \pm 0.02$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 2 RMSE 2 0.02 0.020 0.020 0 0.03 0.020 0 0 0.02 0.019 0 0 0.02 0.019 0 0 0.02 0.017 0 0 0.02 0.022 0 0 0.02 0.022 0 0 0.02 0.022 0 0 0.02 0.025 0 0 0.01 0.014 0 0	<u>R²</u> <u>0.981</u> <u>0.993</u> <u>0.995</u> <u>0.997</u> <u>0.997</u> <u>0.998</u> <u>0.997</u> <u>0.998</u> <u>0.997</u> <u>0.998</u> <u>0.997</u> <u>0.998</u> <u>0.999</u> <u>0.999</u>	Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: Caption Formatted: Font: Italic
ENM 4 n° Q (m³/s)×10 1 1.319 5 2.209 10 2.731 15 3.084 20 3.365 25 3.681 30 4.074 35 4.536 40 5.382 45 5.895 50 6.168 55 8.345 Table 4. Estimated value	fractured medium. $\frac{0^6}{2.67} \pm 0.13 + 0.1(m) \times 10^{-1} + 0.13 + 0.11 + 0.11 + 0.11 + 0.11 + 0.11 + 0.11 + 0.11 + 0.11 + 0.12 + 0.12 + 0.06 + 0.07 + 0.02 \pm 0.06 + 0.04 + 0.04 + 0.04 + 0.06 + 0.80 \pm 0.04 + 0.04 + 0.05 + 0.04 + 0.05 + 0.06 + 0.80 \pm 0.04 + 0.14 + 0.06 + 0.80 \pm 0.04 + 0.14 + 0.06 + 0.08 + 0.04 + 0.16 \pm 0.03 + 0.04 + 0.16 \pm 0.02 + 0.04 + 0.16 \pm 0.02 + 0.01 + 0.02 + 0.02 + 0.01 + 0.02 + 0.01 + 0.02 + 0.01 + 0.02 + 0.01 + 0.02 + 0.01 + 0.02 + 0.01 + 0.02 + 0.01 + 0.02 + 0.01 + 0.02 + 0.01 + 0.02 + 0.01 + 0.02 + 0.01 + 0.02 + 0.01 + 0.02 + 0.01 + 0.02 + 0.01 + 0.02 + 0.02 + 0.01 + 0.02 + 0.01 + 0.02 + 0.02 + 0.01 + 0.02 + 0.01 + 0.02 + 0.02 + 0.01 + 0.02 + 0.02 + 0.01 + 0.02 + 0.02 + 0.01 + 0.02 + 0.02 + 0.01 + 0.02 + 0.02 + 0.02 + 0.02 + 0.02 + 0.02 + 0.02 + 0.02 + 0.02 + 0.02 + 0.02 + 0.0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$) 2 RMSE . 0.02 0.020 0.020 0.020 0.03 0.019 0.019 0.019 0.02 0.017 0.020 0.020 0.02 0.017 0.020 0.021 0.02 0.022 0.022 0.022 0.02 0.025 0.016 0.014 0.01 0.012 0.012 0.012 0.01 0.012 0.012 0.014	<u>R²</u> 0.981 0.993 0.995 0.997 0.997 0.998 0.997 0.998 0.997 0.996 0.999 0.999 0.999 0.999 0.999 0.999	Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: Caption Formatted: Font: Italic
ENM 4 n° Q (m³/s)×10 1 1.319 5 2.209 10 2.731 15 3.084 20 3.365 25 3.681 30 4.074 35 4.536 40 5.382 45 5.895 50 6.168 55 8.345	fractured medium. $\frac{0^6}{2.67 \pm 0.13} + \frac{\alpha_L (m) \times 10 - 1}{1.18 \pm 0.11}$ $\frac{2.67 \pm 0.13}{3.15 \pm 0.12} + \frac{1.18 \pm 0.11}{0.96 \pm 0.07}$ $\frac{3.28 \pm 0.10}{3.28 \pm 0.10} + \frac{0.92 \pm 0.06}{0.80 \pm 0.04}$ $\frac{2.74 \pm 0.06}{2.74 \pm 0.06} + \frac{0.80 \pm 0.04}{0.44}$ $\frac{2.97 \pm 0.06}{2.43 \pm 0.06} + \frac{0.80 \pm 0.04}{0.44}$ $\frac{2.43 \pm 0.06}{3.18 \pm 0.08} + \frac{0.04}{0.76 \pm 0.05}$ $\frac{2.62 \pm 0.04}{0.76 \pm 0.02} + \frac{0.02}{3.12 \pm 0.04} + \frac{0.76 \pm 0.02}{0.26 \pm 0.01}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$) 2 RMSE . 0.02 0.020 0.020 0.020 0.03 0.019 0.019 0.019 0.02 0.017 0.020 0.020 0.02 0.017 0.020 0.021 0.02 0.022 0.022 0.022 0.02 0.025 0.016 0.014 0.01 0.012 0.012 0.012 0.01 0.012 0.012 0.014	<u>R²</u> 0.981 0.993 0.995 0.997 0.997 0.998 0.997 0.998 0.997 0.996 0.999 0.999 0.999 0.999 0.999 0.999	Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: Caption Formatted: Font: Italic
ENM 4 n° Q (m³/s)×10 1 1.319 5 2.209 10 2.731 15 3.084 20 3.365 25 3.681 30 4.074 35 4.536 40 5.382 45 5.895 50 6.168 55 8.345	fractured medium. $\frac{0^6}{2.67} \pm 0.13 + 0.1(m) \times 10^{-1} + 0.13 + 0.11 + 0.11 + 0.11 + 0.11 + 0.11 + 0.11 + 0.11 + 0.11 + 0.12 + 0.12 + 0.06 + 0.07 + 0.02 \pm 0.06 + 0.04 + 0.04 + 0.04 + 0.06 + 0.80 \pm 0.04 + 0.04 + 0.05 + 0.04 + 0.05 + 0.06 + 0.80 \pm 0.04 + 0.14 + 0.06 + 0.80 \pm 0.04 + 0.14 + 0.06 + 0.08 + 0.04 + 0.16 \pm 0.03 + 0.04 + 0.16 \pm 0.02 + 0.01 + 0.02 + 0.02 + 0.01 + 0.02 + 0.0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$) 2 RMSE . 0.02 0.020 0.020 0.020 0.03 0.019 0.019 0.019 0.02 0.017 0.020 0.020 0.02 0.017 0.020 0.021 0.02 0.022 0.022 0.022 0.02 0.025 0.016 0.014 0.01 0.012 0.012 0.012 0.01 0.012 0.012 0.014	<u>R²</u> 0.981 0.993 0.995 0.997 0.997 0.998 0.997 0.998 0.997 0.996 0.999 0.999 0.999 0.999 0.999 0.999	Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: Caption Formatted: Font: Italic Formatted Table
ENM 4 n° Q (m³/s)×10 1 1.319 5 2.209 10 2.731 15 3.084 20 3.365 25 3.681 30 4.074 35 4.536 40 5.382 45 5.895 50 6.168 55 8.345	fractured medium. $\frac{0^6}{2.67} \pm 0.13 + 0.1(m) \times 10^{-1} + 0.13 + 0.11 + 0.11 + 0.11 + 0.11 + 0.11 + 0.11 + 0.11 + 0.11 + 0.12 + 0.12 + 0.06 + 0.07 + 0.02 \pm 0.06 + 0.04 + 0.04 + 0.04 + 0.06 + 0.80 \pm 0.04 + 0.04 + 0.05 + 0.04 + 0.05 + 0.06 + 0.80 \pm 0.04 + 0.14 + 0.06 + 0.80 \pm 0.04 + 0.14 + 0.06 + 0.08 + 0.04 + 0.16 \pm 0.03 + 0.04 + 0.16 \pm 0.02 + 0.01 + 0.02 + 0.02 + 0.01 + 0.02 + 0.0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$) 2 RMSE . 0.02 0.020 0.020 0.020 0.03 0.019 0.019 0.019 0.02 0.017 0.020 0.020 0.02 0.017 0.020 0.021 0.02 0.022 0.022 0.022 0.02 0.025 0.016 0.014 0.01 0.012 0.012 0.012 0.01 0.012 0.012 0.014	<u>R²</u> 0.981 0.993 0.995 0.997 0.997 0.998 0.997 0.998 0.997 0.996 0.999 0.999 0.999 0.999 0.999 0.999	Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: Caption Formatted: Font: Italic Formatted Table
ENM 4 n° Q (m³/s)×10 1 1.319 5 2.209 10 2.731 15 3.084 20 3.365 25 3.681 30 4.074 35 4.536 40 5.382 45 5.895 50 6.168 55 8.345 'able 4. Estimated value ifferent injection flow rates	fractured medium. $\frac{0^6}{2.67} \pm 0.13 + 0.1(m) \times 10^{-1} + 0.13 + 0.11 + 0.11 + 0.11 + 0.11 + 0.11 + 0.11 + 0.11 + 0.11 + 0.12 + 0.12 + 0.06 + 0.07 + 0.02 \pm 0.06 + 0.04 + 0.04 + 0.04 + 0.06 + 0.80 \pm 0.04 + 0.04 + 0.05 + 0.04 + 0.05 + 0.06 + 0.80 \pm 0.04 + 0.14 + 0.06 + 0.80 \pm 0.04 + 0.14 + 0.06 + 0.08 + 0.04 + 0.16 \pm 0.03 + 0.04 + 0.16 \pm 0.02 + 0.01 + 0.02 + 0.02 + 0.01 + 0.02 + 0.0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2) 2 RMSE 0.02 0.020 0.03 0.020 0.02 0.019 0.02 0.019 0.02 0.017 0.02 0.020 0.02 0.022 0.02 0.025 0.01 0.016 0.01 0.014 0.01 0.012 0.01 0.013 0.01 0.014 0.01 0.003	<u>R²</u> 0.981 0.993 0.995 0.997 0.997 0.998 0.997 0.998 0.997 0.996 0.999 0.999 0.999 0.999 0.999 0.999	Formatted: English (U.K.) Formatted: English (U.K.) Formatted: English (U.K.) Formatted: Caption Formatted: Font: Italic Formatted Table Formatted: English (U.K.) Formatted: English (U.K.) Formatted Table

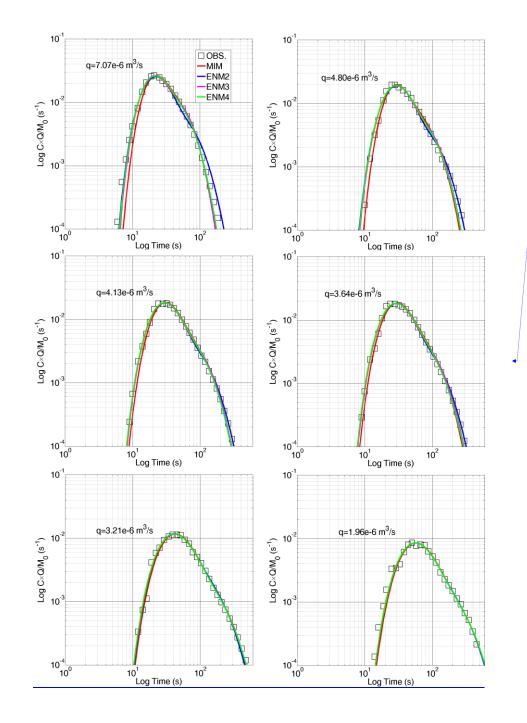

1 1.3194	0.027 ± 0.0013	0.118 ± 0.0107	0.847 ± 0.0195	0.667 ± 0.020	0.0205 0.9815	Formatted: English (U.K.)
5 2.2090	$\frac{0.032}{\pm} \pm \frac{0.0012}{\pm}$	0.096 ± 0.0071	0.756 ± 0.0203	0.749 ± 0.026	0.0198 0.9926	Formatted: English (U.K.)
10 2.7312	0.033 ± 0.0010	$\frac{0.092}{\pm} = \frac{0.0057}{\pm}$	0.750 ± 0.0175	0.756 ± 0.022	0.0190 0.9950	Formatted: English (U.K.)
15	$\frac{0.027}{\pm} \pm \frac{0.0006}{\pm}$	0.080 ± 0.0040	0.732 ± 0.0129	$\frac{0.739}{\pm} \frac{0.017}{\pm}$	0.0192	Formatted: English (U.K.)
20	0.030 ± 0.0006	0.081 ± 0.0037	0.722 ± 0.0116	0.734 ± 0.016	0.0172 0.9973	Formatted: English (U.K.)
25	$\frac{0.023}{\pm} \pm \frac{0.0005}{\pm}$	0.080 ± 0.0039	0.703 ± 0.0122	$\frac{0.739}{\pm} \frac{0.017}{\pm}$	0.0200 0.9977	Formatted: English (U.K.)
<mark>30 4.0735</mark>	0.024 ± 0.0006	$\frac{0.080}{-0.0042}$	0.706 ± 0.0135	0.743 ± 0.019	0.0220 0.9974	Formatted: English (U.K.)
35 4 .5356	$\frac{0.032}{\pm} = \frac{0.0008}{\pm}$	0.076 ± 0.0046	0.709 ± 0.0147	$\frac{0.730}{\pm} = \frac{0.020}{\pm}$	0.0252 0.9958	Formatted: English (U.K.)
40 <u>5.382</u> 4	0.026 ± 0.0004	0.076 ± 0.0027	0.699 ± 0.0072	$\frac{0.703}{\pm} = \frac{0.012}{\pm}$	0.0163	Formatted: English (U.K.)
45 <u>5.8945</u>	0.028 ± 0.0003	0.073 ± 0.0022	0.680 ± 0.0061	0.708 ± 0.010	0.0137 0.9992	Formatted: English (U.K.)
50 6.1684	0.031 ± 0.0004	0.076 ± 0.0022	0.662 ± 0.0056	$\frac{0.707}{\pm} = \frac{0.011}{\pm}$	0.0115 0.9994	Formatted: English (U.K.)
55	- 0.035 ± 0.0002	- 0.096 ± 0.0013 -	0.628 ± 0.0021	- 0.728 ± 0.006 -	- 0.0033 - 1.0000	Formatted: English (U.K.)

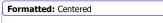


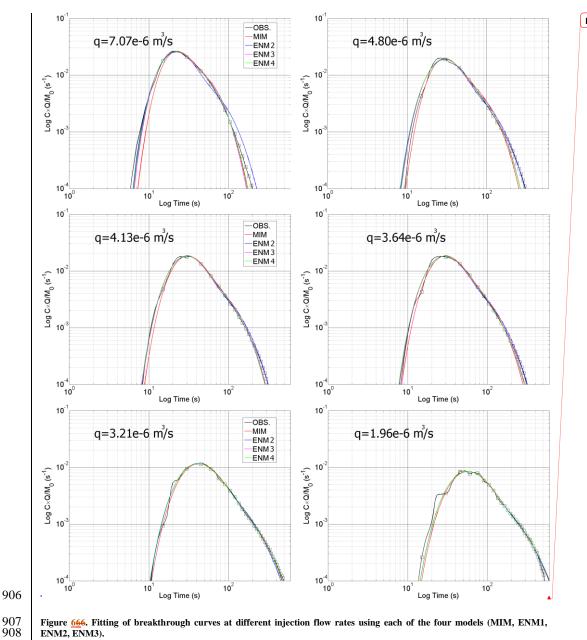

 $\frac{890}{891} \qquad \frac{\text{Table } \underline{4}4. \text{ Estimated values of parameters, root mean square error RMSE and determination coefficient } r^2 \text{ for ENM4 at different injection flow rates in the fractured medium.}$


Formatted: English (U.K.)

892

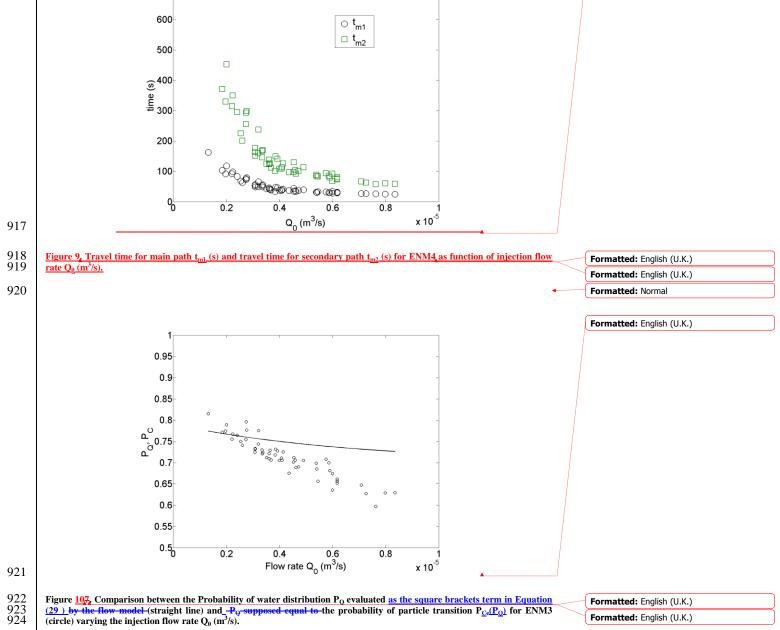


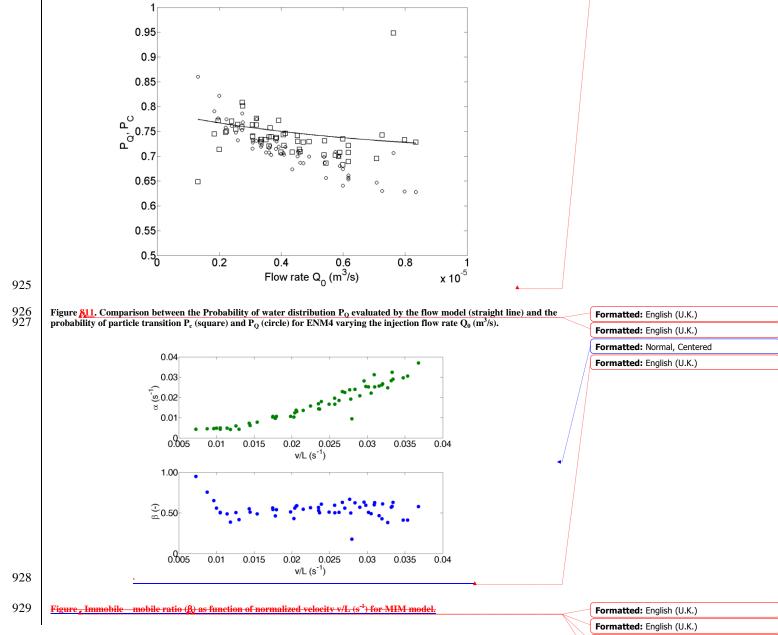




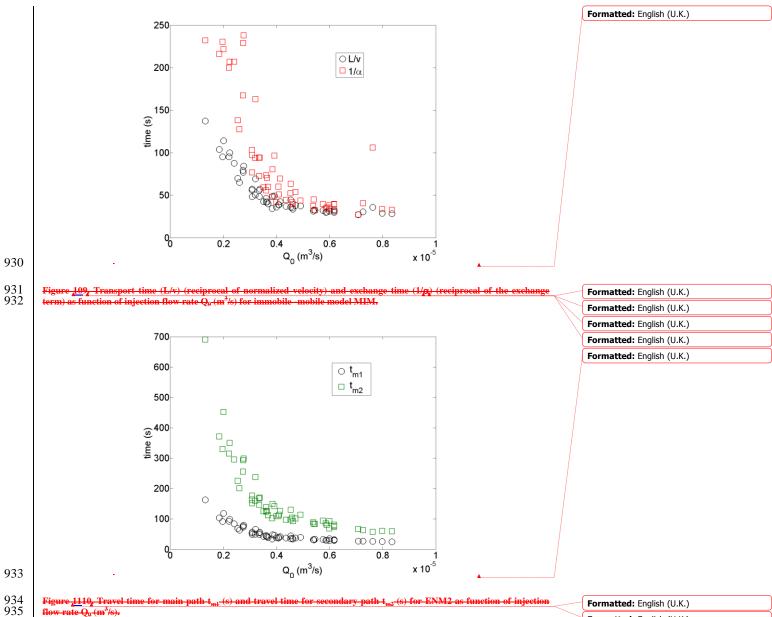
904 Figure 555. Mean travel time t_m (s) versus injection flow rate Q_0 (m³/s).

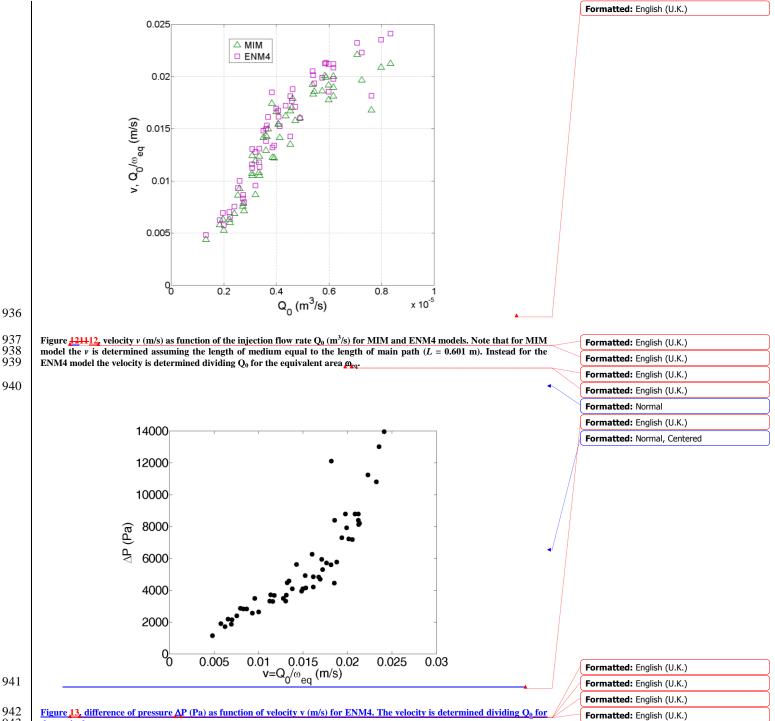
Formatted: Normal

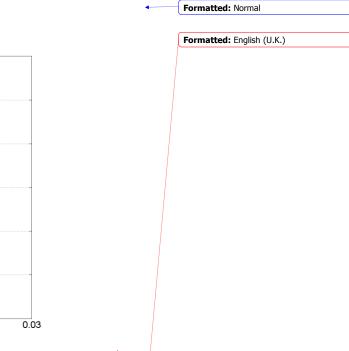

910

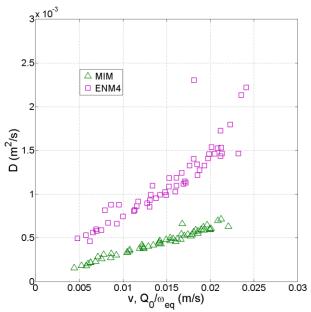


 $\frac{915}{916} \quad \frac{\text{Figure 8, Transport time (L/v) (reciprocal of normalized velocity) and exchange time (1/g) (reciprocal of the exchange term)}{\text{as function of injection flow rate } Q_0 (m^3/s) \text{ for mobile - immobile model MIM.}}$


Formatted: English (U.K.)	
Formatted: English (U.K.)	


Formatted: English (U.K.)


Formatted: English (U.K.)
Formatted: English (U.K.)
Formatted: English (U.K.)


the equivalent area weat

Formatted: English (U.K.) Formatted: English (U.K.)

946
947Figure 141214, Dispersion D (m²/s) as function of velocity for MIM and ENM4 models. Note that for MIM model D is
determined assuming the length of the medium equal to the length of the main path (l=0.601 m). Instead for ENM4 model D
is determined as D=Q_{0}c_{0}/p_{eq}.

Formatted: Font: Bold, English (U.K.)
Formatted: Font: Bold
Formatted: English (U.K.)

