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Abstract 7 

In hydrogeology, the application of reliable tracer transport model approaches is a key issue to 8 

derive the hydrodynamic properties of aquifers. 9 

Laboratory and field – scale tracer dispersion breakthrough curves (BTC) in fractured media are 10 

notorious for exhibiting early time arrivals and late – time tailing that are not captured by the 11 

classical advection – dispersion equation (ADE). These ‘‘non – Fickian’’ features are proved to be 12 

better explained by a mobile – immobile (MIM) approach. In this conceptualization the fractured 13 

rock system is schematized as a continuous medium in which the liquid phase is separated into 14 

flowing and stagnant regions. 15 

The present study compares the performances and reliabilities of the classical Mobile – Immobile 16 

Model (MIM) and the Explicit Network Model (ENM) that takes expressly into account the 17 

network geometry for describing tracer transport behaviour in a fractured sample at bench scale. 18 

Though ENM shows better fitting results than MIM, the latter remains still valid as it proves to 19 

describe the observed curves quite well. 20 

The results show that the presence of nonlinear flow plays an important role in the behaviour of 21 

solute transport. Firstly the distribution of solute according to different pathways is not constant but 22 

it is related to the flow rate. Secondly nonlinear flow influences advection, in that it leads to a delay 23 

in solute transport respect to the linear flow assumption. Whereas nonlinear flow does not show to 24 

be related with dispersion. The experimental results show that in the study case the geometrical 25 

dispersion dominates the Taylor dispersion. However the interpretation with the ENM model shows 26 

a weak transitional regime from geometrical dispersion to Taylor dispersion for high flow rates. 27 

Incorporating the description of the flowpaths in the analytical modeling has proved to better fit the 28 

curves and to give a more robust interpretation of the solute transport. 29 



Introduction 30 

In fractured rock formations, the rock mass hydraulic behaviour is controlled by fractures. In such 31 

aquifers, open and well – connected fractures constitute high permeability pathways and are orders 32 

of magnitude more permeable than the rock matrix (Bear & Berkowitz, 1987; Berkowitz, 2002; 33 

Bodin et al., 2003; Cherubini, 2008; Cherubini & Pastore, 2011, Geiger et al., 2012, Neuman, 34 

2005). 35 

In most studies examining hydrodynamic processes in fractured media, it is assumed that flow is 36 

described by Darcy’s law, which expresses a linear relationship between pressure gradient and flow 37 

rate (Cherubini & Pastore, 2010). Darcy’s law has been demonstrated to be valid at low flow 38 

regimes (Re < 1). For Re > 1 a nonlinear flow behaviour is likely to occur. 39 

But in real rock fractures, microscopic inertial phenomena can cause an extra macroscopic 40 

hydraulic loss (Kløv, 2000) which deviates flow from the linear relationship among pressure drop 41 

and flow rate. 42 

To experimentally investigate fluid flow regimes through deformable rock fractures, Zhang & 43 

Nemcik (2013) carried out flow tests through both mated and non – mated sandstone fractures in 44 

triaxial cell. For water flow through mated fractures, the experimental data confirmed the validity of 45 

linear Darcy’s law at low velocity. For larger water flow through non – mated fractures, the 46 

relationship between pressure gradient and volumetric flow rate revealed that the Forchheimer 47 

equation offers a good description for this particular flow process. The obtained experimental data 48 

show that Izbash’s law can also provide an excellent description for nonlinear flow. They concluded 49 

that further work was needed to study the dependency of the two coefficients on flow velocity. 50 

In fracture networks heterogeneity intervenes even in solute transport: due to the variable aperture 51 

and heterogeneities of the fracture surfaces the fluid flow will seek out preferential paths (Gylling et 52 

al., 1995) through which solutes are transported. 53 

Generally the geometry of fracture network is not well known and the study of solute transport 54 

behaviour is based on multiple domain theory according to which the fractured medium is separated 55 

in two distinct domains: high velocity zones such as the network of connected fractures (mobile 56 

domain) where solute transport occurs predominantly by advection, and lower velocity zones such 57 

as secondary pathways, stagnation zones (almost – immobile domain), such as the rock matrix. 58 

The presence of steep concentration gradients between fractures and matrix causes local 59 

disequilibrium in solute concentration which gives rise to dominantly diffusive exchange between 60 



fracture and matrix. This explains the non – Fickian nature of transport, which is characterized by 61 

breakthrough curves with early first arrival and long tails.  62 

Quantifying solute transport in fractured media has become a very challenging research topic in 63 

hydrogeology over the last three decades (Nowamooz et al., 2013). 64 

Tracer tests are commonly conducted in such aquifers to estimate transport parameters such as 65 

effective porosity and dispersivity, to characterize subsurface heterogeneity, and to directly 66 

delineate flow paths. Transport parameters are estimated by fitting appropriate tracer transport 67 

models to the breakthrough data.  68 

In this context, analytical models are frequently employed, especially for analyzing tests obtained 69 

under controlled conditions, because they involve a small number of parameters and provide 70 

physical insights into solute transport processes (Liu et al 2012). 71 

The advection – dispersion equation (ADE) has been traditionally applied to model tracer transport 72 

in fractures. However extensive evidence has shown that there exist two main features that cannot 73 

be explained by the ADE: the early first arrival and the long tail of the observed BTCs curves. 74 

(Neretnieks et al, 1982; Becker and Shapiro, 2000; Jiménez-Hornero et al. 2005; Bauget and Fourar, 75 

2008).  76 

Several other models have been used to fit the anomalous BTCs obtained in laboratory tracer tests 77 

carried out in single fractures. Among those, the Mobile-Immobile (MIM) model (van Genuchten 78 

and Wierenga, 1976), has showed to provide better fits of BTC curves (Gao et al., 2009, Schumer 79 

et.al 2003, Feehley et al, 2010). 80 

In the well – controlled laboratory tracer tests carried out by Qian et al. (2011) a mobile– immobile 81 

(MIM) model proved to fit both peak and tails of the observed BTCs better than the classical ADE 82 

model. 83 

Another powerful method to describe non – Fickian transport in fractured media is the continuous 84 

time random walk (CTRW) approach (Berkowitz et al. 2006) which is based on the conceptual 85 

picture of tracer particles undergoing a series of transitions of length s and time t. 86 

Together with a master equation conserving solute mass, the random walk is developed into a 87 

transport equation in partial differential equation form. The CTRW has been successfully applied 88 

for describing non – Fickian transport in single fractures (Berkowitz et al.2001; Jiménez – Hornero 89 

et al. 2005). 90 

Bauget and Fourar (2008) investigated non – Fickian transport in a transparent replica of a real 91 

single fracture. They employed three different models including ADE, CTRW, and a stratified 92 

model to interpret the tracer experiments. 93 



As expected, the solution derived from the ADE equation appears to be unable to model long-time 94 

tailing behaviour. On the other hand, the CTRW and the stratified model were able to describe non 95 

– Fickian dispersion. The parameters defined by these models are correlated to the heterogeneities 96 

of the fracture. 97 

Nowamooz et al., (2013) carried out experimental investigation and modeling analysis of tracer 98 

transport in transparent replicas of two Vosges sandstone natural fractures.  99 

The obtained breakthrough curves were then interpreted using a stratified medium model that 100 

incorporates a single parameter permeability distribution to account for fracture heterogeneity, 101 

together with a CTRW model, as well as the classical ADE model.  102 

The results confirmed poorly fitting breakthrough curves for ADE. In contrast, the stratified model 103 

provides generally satisfactory matches to the data (even though it cannot explain the long-time 104 

tailing adequately) while the CTRW model captures the full evolution of the long tailing displayed 105 

by the breakthrough curves. 106 

Qian et al (2011) experimentally studied solute transport in a single fracture (SF) under non – 107 

Darcian flow condition which was found to closely follow the Forchheimer equation.  108 

They also investigated on the influence of the velocity contrast between the fracture wall and the 109 

plane of symmetry on the dispersion process, which was called ‘boundary layer dispersion’ by 110 

Koch and Brady (1985). They affirmed that this phenomenon had to be considered if the thickness 111 

of the boundary layer was greater than the roughness of the fracture. On the other hand, if the 112 

thickness of the boundary layer was smaller than the roughness of the fractures, the recirculation 113 

zones inside the roughness cavities rather than the boundary layer would be more relevant for the 114 

dispersion process, thus the hold – up dispersion would become important. Since smooth parallel 115 

planes were used for constructing the SF in their experiment, the fracture roughness and the hold – 116 

up dispersion were negligible. 117 

Bodin et al (2007) developed the SOLFRAC program, which performs fast simulations of solute 118 

transport in complex 2D fracture networks using the Time Domain Random Walk (TDRW) 119 

approach (Delay & Bodin, 2001) that makes use of a pipe network approximation. The code 120 

accounts for advection and hydrodynamic dispersion in  channels, matrix diffusion, diffusion into 121 

stagnant zones within the fracture planes, mass sharing at fracture intersections, and other 122 

mechanisms such as sorption reactions and radioactive decay. Comparisons between numerical 123 

results and analytical breakthrough curves for synthetic test problems have proven the accuracy of 124 

the model. 125 

Zafarani & Detwiler (2013) presented an alternate approach for efficiently simulating transport 126 

through fracture intersections. Rather than solving the two – dimensional Stokes equations, the 127 



model relies upon a simplified velocity distribution within the fracture intersection, assuming local 128 

parabolic velocity profiles within fractures entering and exiting the fracture intersection. Therefore, 129 

the solution of the two – dimensional Stokes equations is unnecessary, which greatly reduces the 130 

computational complexity. The use of a time – domain approach to route particles through the 131 

fracture intersection in a single step further reduces the number of required computations. The 132 

model accurately reproduces mixing ratios predicted by high – resolution benchmark simulations. 133 

As most of previous investigations of flow and transport in fracture networks considered Darcian 134 

flow, the behaviour of the solute transport in fracture networks under non – darcian flow conditions 135 

has been therefore poorly investigated. In fracture networks different pathways can be identified 136 

through which solute is generally distributed in function of the energy spent by solute particles to 137 

cross the path. In this context the presence of nonlinear flow could play an important role in the 138 

distribution of the solutes according to the different pathways. In fact the energy spent to cross the 139 

path should be proportional to the resistance to flow associated to the single pathway, which in 140 

nonlinear flow regime is not constant but depends on the flow rate. This means that changing the 141 

boundary conditions the resistance to flow varies and as a consequence the distribution of solute in 142 

the main and secondary pathways also changes giving rise to a different behaviour of solute 143 

transport. 144 

In previous studies by Cherubini et al (2012, 2013) the presence of nonlinear flow and non fickian 145 

transport in a fractured rock formation has been analyzed at bench scale in laboratory tests. The 146 

effects of nonlinearity in flow have been investigated by analyzing hydraulic tests on an artificially 147 

created fractured limestone block of parallelepiped (0.60×0.40×0.8 m3) shape. 148 

The volumes of water passing through different paths across the fractured sample. The inlet flow 149 

rate and the hydraulic head difference between the inlet and outlet ports have been measured. The 150 

experimental results have shown evidence of a non-Darcy relationship between flow rate and 151 

hydraulic head differences that is best described by a polynomial expression. Transition from 152 

viscous dominant regime to inertial dominant regime has been detected. The experiments has been 153 

compared with a 3d numerical model in order to evaluate the linear and non-linear terms of 154 

forchheimer equation for each paths.    155 

Moreover, a tortuosity factor has been determined which is a measure of the deviation of each flow 156 

path from the parallel plate model. A power law has been detected between the Forchheimer terms 157 

and the tortuosity factor, which means that the latter influences flow dynamics.  158 

The non fickian nature of transport has been investigated by means of tracer tests that regard the 159 

measurement of breakthrough curves for saline tracer pulse across a selected path varying the flow 160 

rate. The observed experimental breakthrough curves of solute transport have proved to be better 161 



modeled by the 1d analytical solution of MIM model. The carried out experiments show that there 162 

exists a pronounced mobile–immobile zone interaction that cannot be neglected and that leads to a 163 

non-equilibrium behaviour of solute transport. The existence of a non-Darcian flow regime has 164 

showed to influence the velocity field in that it gives rise to a delay in solute migration with respect 165 

to the predicted value assuming linear flow. Furthermore the presence of inertial effects has proved 166 

to enhance non-equilibrium behaviour. Instead, the presence of a transitional flow regime seems not 167 

to exert influence on the behaviour of dispersion.  168 

Herein, in order to give a more physical interpretation of the flow and transport behaviour, we build 169 

on the work by Cherubini et al (2013) by interpreting the obtained experimental results of flow and 170 

transport tests by means of the comparison of two conceptual models: the 1d single rate mobile – 171 

immobile model (MIM) and the 2d Explicit Network Model (ENM). Differently from the former, 172 

the latter expressly takes the fracture network geometry into account. 173 

When applied to fractured media, the MIM approach does not explicitly take the fracture network 174 

geometry into account, but it conceptualizes the shape of fractures as 1d continuous media in which 175 

the liquid phase is separated into flowing and stagnant regions. The convective dispersive transport 176 

is restricted to the flowing region, and the solute exchange is described as a first – order process. 177 

Unlike MIM, the ENM model may allow to know the physical meaning of flow and transport 178 

phenomena (i.e the meaning of long – time behaviour of BTC curves that characterize fractured 179 

media) and permits to obtain a more accurate estimation of flow and solute transport parameters. In 180 

this model the fractures are represented as 1d – pipe elements and they form a 2d – pipe network.   181 

It is clear that ENM needs to address the problem of parameterization. In fact the transport 182 

parameters of each individual fracture should be specified and this leads to more uncertainty in the 183 

estimation. 184 

Our overarching objective is therefore of investigating the performances and the reliabilities of 185 

MIM and ENM approaches to describe conservative tracer transport in a fractured rock sample.  186 

In particular way the present paper focuses the attention on the effects of nonlinear flow regime on 187 

different features that depict the conservative solute transport in a fracture network such as mean 188 

travel time, dispersion, dual porosity behaviour, distribution of solute into different pathways. 189 

Theoretical background 190 

Nonlinear flow 191 

In the literature different laws are reported that account for the nonlinear relationship between 192 

velocity and pressure gradient. 193 



A cubic extension of Darcy's law that describes pressure loss versus flow rate for low flow rates is 194 

the weak inertia equation: 195 

2
3dp

v v
dx k

µ γρ
µ

− = ⋅ + ⋅  (1) 196 

Where p (ML-1T-2)  is the pressure, k (L2) is the permeability, µ (ML -1T-1) is the viscosity, ρ (ML -3) 197 

is the density, v (LT-1) is the velocity and γ (L) is called the weak inertia factor. 198 

In case of higher Reynolds numbers (Re >> 1) the pressure losses pass from a weak inertial to a 199 

strong inertial regime, described by the Forchheimer equation (Forchheimer, 1901), given by: 200 

2dp
v v

dx k

µ ρβ− = ⋅ + ⋅  (2) 201 

Where β (L-1) is called the inertial resistance coefficient, or non – Darcy coefficient. 202 

Forchheimer law can be written in terms of hydraulic head: 203 

2' '
dh

a v b v
dx

− = ⋅ + ⋅  (3) 204 

Where a’ (TL-1) and b’ (TL-2) are the linear and inertial coefficient respectively equal to: 205 

' ;  'a b
gk g

µ β
ρ

= =  (4) 206 

In the same way the relationship between flow rate Q (L3T-1) and hydraulic head gradient can be 207 

written as: 208 

2QbQa
dx

dh ⋅+⋅=−  (5) 209 

Where a (TL-3) and b (T2L-6) are related to a’ and b’: 210 

eqeq

b
b

a
a

ωω
′

=
′

=  ;  (6) 211 

Where ωeq (L
2) represents the equivalent cross sectional area of fracture. 212 

Mobile Immobile Model  213 

The mathematical formulation of the MIM for non - reactive solute transport is usually given as 214 

follows: 215 
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 (7) 216 

Where t (T) is the time, x (L) is the spatial coordinate along the direction of the flow, cm and cim 217 

(ML -3) are the cross - sectional averaged solute concentrations respectively in the mobile and 218 

immobile domain, v (LT-1) is the average flow velocity and D (L2T-1) is the dispersion coefficient, α 219 

(T-1) is the mass exchange coefficient, β [-] is the mobile water fraction. For a non – reactive solute 220 

β is equivalent to the ratio between the immobile and mobile cross – sectional area (-). 221 

The solution of system Equation (7) describing one – dimensional (1d) non – reactive solute 222 

transport in an infinite domain for instantaneous pulse of solute injected at time zero at the origin is 223 

given by (Goltz & Roberts, 1986): 224 

( ) ( ) ( )0 0

0

( , ) , , ,
t

t
mc x t e c x t H t c x dα α τ τ τ−= + ∫  (8) 225 

Where 0c  represents the analytical solution for the classical advection – dispersion equation (Crank, 226 

1956): 227 
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M
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=  (9) 228 

Where Mo (M) is the mass of the tracer injected instantaneously at time zero at the origin of the 229 

domain. The term ( ),H t τ  presents the following expression: 230 
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1
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β
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 − 
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−
 (10) 231 

Where I1 represents the modified Bessel function of order 1. 232 

In order to fit the BTCs curves with the MIM model the assumption of representative 1d length (L) 233 

of the fracture network should be made. However this matter can be solved by the introduction of 234 

the normalized velocity (v/L) and normalized dispersion (D/L2). The MIM model is defined by four 235 

parameters regarding the whole fracture network (v/L, D/L2, α, β).  236 



Explicit Network Model  237 

Assuming that a single fracture j can be represented by a 1d – pipe element, the relationship 238 

between head loss jh∆  (L) and flow rate jQ  (L3T-1) can be written in finite terms on the basis of 239 

Forchheimer model: 240 

( )2j
j j j j j j

j

h
aQ bQ h l a bQ Q

l

∆
 = + ⇒ ∆ = +   (11) 241 

Where l j (L) is the length of fracture, a (TL-3) and b (T2L-6) are the Forchheimer parameters in finite 242 

terms. 243 

The term in the square brackets represents the resistance to flow ( )j jR Q  (TL-3) of j fracture. 244 

For steady – state condition and for a 2d simple geometry of the fracture network, the solution of 245 

flow field can be obtained in a straightforward manner applying the first and second Kirchhoff’s 246 

laws. 247 

The first law affirms that the algebraic sum of flow in a network meeting at a point is zero: 248 

1

0
n

j
j

Q
=

=∑  (12) 249 

Whereas the second law affirms that the algebraic sum of the head losses along a closed loop of the 250 

network is equal to zero: 251 

1

0
n

j
j

h
=

∆ =∑  (13) 252 

Generally in a 2d fracture network, the single fracture can be set in series and/or in parallel. 253 

In particular the total resistance to flow of a network in which the fractures are arranged in a chain 254 

is found by simply adding up the resistance values of the individual fractures. 255 

In a parallel network the flow breaks up by flowing through each parallel branch and re – 256 

combining when the branches meet again. The total resistance to flow is found by adding up the 257 

reciprocals of the resistance values and then taking the reciprocal of the total. The flow rate crossing 258 

the generic fracture j belonging to parallel circuits Qj can be obtained as: 259 



1

1

1

n

i
i

j n
j

i
i

R
Q Q

R
R

=

=

 
 
 =
 
 
 

∏
∑

∑
 (14) 260 

Where Q∑ ( LT-3) is the sum of the discharge flow evaluated for the fracture intersection located 261 

in correspondence of the inlet bond of j fracture, whereas the term in brackets represents the 262 

probability of water distribution of j fracture PQ,j. 263 

The BTC curves at the outlet of the network( )outc t  (ML -3), for an instantaneous injection, can be 264 

obtained as the summation of BTCs of each elementary path in the network. The latter can be 265 

expressed as the convolution product of the probability density functions of residence times in each 266 

individual fracture belonging to the elementary path. Using the convolution theorem, ( )outc t  can be 267 

expressed as: 268 

( ) ( )( )
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∑∏  (15) 269 

Where 0M  (M) is the injected mass of solute, F is the Fourier transform operator, Nep is the number 270 

of elementary paths, nf,i is the number of fractures in i elementary path, Pc,j and ( ),j js l t  (T-1) 271 

represent the fraction of solute crossing the single fracture and the probability density function of 272 

residence time respectively.  273 

,c jP  can be estimated as the probability of the particle transition in correspondence of the inlet bond 274 

of each individual single fracture. The rules for particle transition through fracture intersections play 275 

an important role in mass transport. In literature several models have been developed and tested in 276 

order to represent the mass transfer within fracture intersections. The simplest rule is represented by 277 

the “perfect mixing model” in which the mass sharing is proportional to the relative discharge flow 278 

rates. 279 

The perfect mixing model assumes that the probability of particle transition of the fraction of solute 280 

crossing the single fracture can be written as: 281 

,
j

c j

Q
P

Q
=
∑

 (16) 282 



Where jQ  represents the flow rate in the single j fracture. Note that if assuming valid the perfect 283 

mixing model PQ,j is equal to Pc,j. 284 

It is clear that in order to know ( ),j js l t  the transport model and consequently the transport 285 

parameters of each single fracture need to be defined. ( ),j js l t  can be evaluated in a simple way 286 

using the 1D analytical solution of the Advection Dispersion Equation model (ADE) for pulse 287 

input: 288 
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D tω π

−
−

=  (17) 289 

in which the velocity vj and dispersion Dj relating to the generic j fracture can be estimated through 290 

the following expression: 291 

,

j
j

eq j

Q
v

ω
=  (18) 292 

,j L j jD vα=  (19) 293 

Where ,eq jω  and ,L jα  are the equivalent crossing area and the dispersion coefficient of j fracture 294 

respectively. 295 

The ENM is defined by six parameters regarding each single fracture (a, b , PQ, ωeq, αL and Pc). 296 

Material and methods 297 

Flow and tracer tests 298 

The experimental setup has been already extensively discussed in Cherubini et al. (2013), however 299 

for the completeness in this section a summary is reported. The analysis of flow dynamics through 300 

the selected path (Fig 2) regards the observation of water flow from the upstream tank to the flow 301 

cell with a circular cross-section of 0.1963 m2 and 1.28×10-4 m2 respectively. 302 

Initially at time t0, the valves ‘a’ and ‘b’ are closed and the hydrostatic head in the flow cell is equal 303 

to h0. The experiment begins with the opening of the valve ‘a’ which is reclosed when the hydraulic 304 

head in the flow cell is equal to h1. Finally the hydraulic head in the flow cell is reported to h0 305 

through the opening of the valve ‘b’. The experiment procedure is repeated changing the hydraulic 306 



head of the upstream tankch . The time ( )01 ttt −=∆  required to fill the flow cell from 0h  to 1h  has 307 

been registered. 308 

Given that the capacity of the upstream tank is much higher than that of the flow cell it is 309 

reasonable to assume that during the experiments the level of the upstream tank (hc) remains 310 

constant. Under this hypothesis the flow inside the system is governed by the equation: 311 

( )( )1 c

dh
S h h h

dt
= Γ ∆ −  (20) 312 

Where S1 (L
2) and h (L) are respectively the section area and the hydraulic head of the flow cell; hc 313 

(L) is the hydraulic head of upstream tank, Γ(∆h) represents the hydraulic conductance term 314 

representative of both hydraulic circuit and the selected path. 315 

The average flow rate Q can be estimated by means of the volumetric method: 316 

( )1
1 0

1 0

S
Q h h

t t
= −

−
 (21) 317 

Whereas the average hydraulic head difference h∆  is given by: 318 

0 1

2c

h h
h h

+∆ = −  (22) 319 

In correspondence of the average flow rate and head difference is it possible to evaluate the average 320 

hydraulic conductance as: 321 

( ) 01

1 0 1

ln c

c

h hS
h

t t h h

 −Γ ∆ =  − − 
 (23) 322 

The inverse of  represents the average resistance to flow ( )R Q . 323 

The study of solute transport dynamics through the selected path has been carried out by means of a 324 

tracer test using sodium chloride. Initially a hydraulic head difference between the upstream tank 325 

and downstream tank is imposed. At t = 0 the valve ‘a’ is closed and the hydrostatic head inside the 326 

block is equal to the downstream tank. At t = 10 s the valve ‘a’ is opened while at time t = 60 s a 327 

mass of solute equal to 5×10-4 kg is injected into the inlet port through a syringe. The source release 328 

time (1 s) is very small therefore the instantaneous source assumption can be considered valid. 329 

( )hΓ ∆



In correspondence of the flow cell in which the multi - parametric probe is located it is possible to 330 

measure the tracer breakthrough curve and the hydraulic head; in the meanwhile the flow rate 331 

entering the system is measured by means of an ultrasonic velocimeter. For different flow rates a 332 

BTC curve can be recorded at the outlet port. 333 

Time moment analysis has been applied in order to characterize the BTC curves in terms of mean 334 

breakthrough time, degree of spread and asymmetry. 335 

The mean residence time tm is given by: 336 
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 (24) 337 

The nth normalized central moment of distribution of solute concentration versus time is defined as: 338 

[ ]

( )
0

0

( )
n

m

n

t t c t dt

c t dt

µ

∞

∞

−
=
∫

∫
 (25) 339 

The second moment 2µ  represents the degree of spread relative to tm. whereas the degree of 340 

asymmetry measured by the skewness coefficient is defined as: 341 

2/3
23 / S µµ=  (26) 342 

Discussion 343 

Estimation of flow model parameters 344 

The flow field in each single fracture of the network can be solved in analytical way by means of 345 

Kirchhoff laws. In Figure 2 is represented the 2d – pipe network conceptualization. 346 

The resistance to flow of each single j fracture is described by the Equation (12). The Forchheimer 347 

parameters are assumed constant for the whole fracture network. 348 

The application of the Kirchhoff’s first law at the node 3 can be written as: 349 

0 1 2 0Q Q Q− − =  (27) 350 

Whereas the application of the Kirchhoff’s second law at the loop 3 – 4 – 5 – 6 can be written as: 351 



( ) ( ) ( ) ( )( )6 1 1 3 2 4 2 5 2 2 0R Q Q R Q R Q R Q Q− + + =  (28) 352 

Substituting Equation (27) into Equation (28) the iterative equation of flow rate Q1 can be obtained: 353 
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 (29) 354 

The Forchheimer parameters representative of whole fracture network can be derived matching the 355 

average resistance to flow derived experimentally with the resistance to flow evaluated for the 356 

whole network: 357 

( ) ( ) ( ) ( ) ( ) ( ) ( )
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 (30) 358 

Figure 3 shows the fitting of observed resistance to flow determined by the inverse of Equation (23) 359 

and the theoretical resistance to flow (Equation 30). The linear and nonlinear terms of Forchheimer 360 

model in Equation (12) have been estimated and they are respectively equal to a = 7.345×104 sm-3 361 

and b = 11.65×109 s2m-6. It is evident that the 2d - pipe network model closely matches the 362 

experimental results (r2 = 0.9913). Flow characteristics can be studied through the analysis of 363 

Forchheimer number F0 which represents the ratio of nonlinear to linear hydraulic gradient 364 

contribution: 365 

o

bQ
F

a
=  (31) 366 

Inertial forces dominate over viscous ones at the critical Forchheimer number (Fo=1) corresponding 367 

in our case to a flow rate equal to Qcrit = 6.30×10-6 m3/s, which is coherent with the results obtained 368 

in the previous study (Cherubini et al., 2013a). 369 

The term in square brackets in Equation (30) represents the probability of water distribution PQ 370 

evaluated for the branch 6. Note that it is not constant but it depends on the flow rate crossing the 371 

parallel branch. Figure 4 shows PQ as function of Q0. The probability of water distribution 372 

decreases as the injection flow rate increases. This means that when the injection flow rate increases 373 

the resistance to flow of the branch 6 increases faster than the resistance to flow of the branch 3 – 4 374 

– 5 and therefore the solute choses the secondary pathway. 375 



Fitting of breakthrough curves and interpretation of estimated transport model 376 

parameters 377 

Several tests have been conducted in order to observe solute transport behaviour varying the 378 

injection flow rate in the range 1.20×10-6 - 9.34×10-6 m3s-1. For each experimental BTCs the mean 379 

travel time tm and the coefficient of Skewness S have been estimated. 380 

Figure 5 shows tm as function of Q0.  Travel time decreases more slowly for high flow rates. In 381 

particular a change of slope is evident in correspondence of the injection flow rate equal to 4×10-6 382 

m3s-1 (Cherubini et al., 2013a), which means the setting up of a transitional flow regime; the 383 

diagram of velocity profile is flattened because of inertial forces prevailing on viscous one, as 384 

already showed by Cherubini et al (2013a). The presence of a transitional flow regime leads to a 385 

delay on solute transport with respect to the values that can be obtained under the assumption of a 386 

linear flow field. Note that this behaviour occurs before Qcrit.  387 

The skewness coefficient does not exhibit a trend upon varying the injection flow rate, but its mean 388 

value is equal to 2.018. A positive value of skewness indicates that BTCs are asymmetric with early 389 

first arrival and long tail. This behaviour seems not to be dependent on the presence of the 390 

transitional regime. 391 

The measured breakthrough curves for different flow rates have been individually fitted by MIM 392 

( )2/ ,  / ,  ,  v L D L α β  and ENM ( ),  ,  ,  eq L Q CP Pω α  models. 393 

In particular for the ENM model the parameters ωeq (equivalent area) and αL are representative of 394 

all fracture network, whereas the parameters PQ and PC are associated only to the parallel branches. 395 

For the considered fracture network the Equation (15) becomes: 396 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 6 7 8 910

0 1 2 3 4 5 7 8 91

c

out

c

P F s F s F s F s F s F sM
c F

Q P F s F s F s F s F s F s F s F s
−
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +

=  
+ − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

 (32) 397 

The velocity and dispersion that characterize the probability density function s are related to the 398 

flow rate that crosses each branch by Equations (18) and (19). This one is equal to the injection 399 

flow rate Q0 except for branch 6 and branches 3 – 4 – 5 for which it is equal to 0QQ P Q=  and 400 

( ) 01 QQ P Q= −  respectively.  401 

Furthermore three parameter configurations have been tested for the ENM model. The 402 

configurations are distinguished on the basis of the number of fitting parameters and assumptions 403 



made on CP  and QP  parameters. The first configuration named ENM2 has two fitting parameters 404 

ωeq and αL. In this configurationCP  is imposed equal to QP  and is derived as the square brackets 405 

term in Equation (29). 406 

The second configuration named ENM3 has three fitting parameters ωeq, αL and CP ( QP ). CP  is still 407 

equal to QP  but they are evaluated by the interpretation of BTC curves.  408 

In the third configuration named ENM4 all four parameters ( ),  ,  ,  eq L Q CP Pω α  are determined 409 

through the fitting of BTCs. 410 

To compare all the considered models, both the determination coefficient (r2) and the root mean 411 

square error (RMSE) were used as criteria to determine the goodness of the fitting, which can be 412 

expressed as: 413 

( )
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 (33) 414 

( )2

, ,
1

1 N

i o i e
i

RMSE C C
N =

= −∑  (34) 415 

Where N is the number of observations, Ci,e is the estimated concentration, Ci,o is the observed 416 

concentration and ,i oC  represents the mean value of Ci,o . 417 

Tables 1, 2, 3 and 4 show the estimated values of parameters, root mean square error RMSE and the 418 

determination coefficient r2 for all the considered models varying the inlet flow rate Q0. 419 

Figure 6 shows the fitting results of BTC curves for different injection flow rates.  420 

For higher flow rates (7.07×10-6 and 4.80 ×10-6 m3/s) the fitting is poorer than for lower flow rates 421 

(3.21 ×10-6 and 1.96×10-6 m3/s). However, all models provide a satisfactory fitting. The ENM4 422 

model provides the highest values of r2 varying in the range 0.9921 – 1.000 and the smallest values 423 

of RMSE in the range 0.0033 – 0.0252. This is expected for two reasons. First this model has more 424 

fitting parameters than ENM2 and ENM3, thus it is more flexible. Second, compared to MIM 425 

model, it takes explicitly into account the presence of the secondary path.  426 



The MIM model considers the existence of immobile and mobile domains and a rate – limited mass 427 

transfer between these two domains. In the present context this conceptualization can be a weak 428 

assumption especially for high flow rates when the importance of secondary path increases. 429 

However the fitting of BTCs shows that MIM model remains valid as it proves to describe the 430 

observed curves quite well. 431 

The extent of solute mixing can be assessed from the analysis of MIM first-order mass transfer 432 

coefficient α  and the fraction of mobile water β.  433 

Several authors have observed the variation of the mass-transfer coefficient between mobile and 434 

immobile water regions with pore-water velocity (van Genuchten and Wierenga, 1977; Nkedi-Kizza 435 

et al., 1984; De Smedt and Wierenga, 1984; De Smedt et al., 1986; Schulin et al., 1987). The 436 

increase in α with increasing water velocity is attributed to higher mixing in the mobile phase at 437 

high pore water velocities (De Smedt and Wierenga, 1984) or to shorter diffusion path lengths as a 438 

result of a decrease in the amount of immobile water (van Genuchten and Wierenga, 1977). 439 

As concerns β, various authors have observed different behaviour of the mobile water fraction 440 

parameter. Gaudet et al. (1977) reported increasing mobile water content with increasing pore water 441 

velocity. However, studies have also found that β appears to be constant with varying pore-water 442 

velocity (Nkedi-kizza et al. 1983). However, lower β values can be attributed to faster initial 443 

movement of the solute as it travels through a decreasing number of faster flow paths. As a result, 444 

some authors have related β values to the initial arrival of the solute. In fact, Gaudet et al. (1977) 445 

and Selim and Ma (1995) observed that the mobile water fraction parameter affects the time of 446 

initial appearance of the solute. 447 

In general, the initial breakthrough time increases as β increases (Gao et al., 2009) which can also 448 

be evidenced from Fig 6. For lower flow rates the initial arrival time is higher than for higher flow 449 

rates. As the fraction of mobile water increases, the breakthrough curves are shifted to longer times 450 

because the solute is being transported through larger and larger fractions of the fracture volume. In 451 

the limiting case that the fraction of mobile water reaches one, the MIM reduces to the equilibrium 452 

ADE (no immobile water) (Mulla & Strock, 2008). 453 

The evidence of dual porosity behaviour on solute transport is clearly shown by the analysis of the 454 

two MIM parameters: the ratio of mobile and immobile area β and the mass exchange coefficient α, 455 

shown in Figure 7 as a function of velocity.  456 

A different behaviour of these two coefficients to varying the injection flow rate is observed in the 457 

present study. At Darcian-like flow conditions the mass exchange coefficient remains constant, 458 



whereas the ratio of mobile and immobile area decreases as velocity increases. When nonlinear 459 

flow starts to become dominant a different behaviour is observed: α increases in a potential way, 460 

whereas β assumes a weakly growing trend as velocity increases with a mean value equal to 0.56. 461 

In order to better explain this behaviour, the transport time (reciprocal of normalized velocity) and 462 

the exchange time (reciprocal of the exchange term) varying the flow rate for the MIM model are 463 

showed in Figure 8. In analogous way in Figure 9 is showed the comparison between the mean 464 

travel time for the main path and the secondary path varying the injection flow rate for the ENM4 465 

model.  466 

For the MIM model at high flow rates the exchange time joins the transport time; analogously for 467 

the ENM4 as the flow rate increases the secondary path reaches the main path in terms of mean 468 

travel time. This analogy between MIM and ENM enhances the concept that the mass transfer 469 

coefficient is dependent on flow velocity. 470 

In Darcian-like flow conditions the main path is dominant on the secondary path. The latter can be 471 

considered as an immobile zone. In this condition the fracture network behaves as a single fracture 472 

and the observed dual porosity behaviour can be attributable only to the fracture – matrix 473 

interactions of the main path. 474 

For higher velocities, a higher contact area between the mobile and immobile region is evidenced, 475 

enhancing solute mixing between these two regions (Gao et al, 2009). The increase in α with 476 

increasing water velocity is therefore attributable to nonlinear flow that enhances the exchange 477 

between the main and secondary flow paths. Increasing the injection flow rate the importance of the 478 

secondary path grows and the latter cannot be considered as an immobile zone, as a consequence 479 

the dual porosity behaviour becomes stronger. 480 

As showed in figure 10 and 11QP  as function of Q0 evaluated by means the fitting of BTCs by 481 

ENM3 and ENM4 models presents a different trend respect to QP  determined by means of flow 482 

tests. QP  evaluated by transport tests decreases more rapidly than QP  determined by flow tests 483 

(Figure 10). In the ENM4 model QP  and CP  show a different behaviour, especially for higher 484 

velocity CP  presents values higher than QP  (Figure 11). In other words the interpretation of BTC 485 

curves evidences more enhanced nonlinear flow behaviour than the flow tests. 486 

In Figure 12 is reported the relationship between velocity v and injection flow rate Q0 . Note that, in 487 

order to compare the results, the velocities for MIM are evaluated assuming the length of the 488 



medium equal to the length of main path (L = 0.601 m). Instead for ENM4 model the velocities are 489 

evaluated dividing Q0 for the equivalent area ωeq. The models present the same behaviour, and 490 

similarly to the mean travel time a change of slope is evident again in correspondence of flow rate 491 

equal to 4×10-6 m3s-1. This result confirms the fact that the presence of nonlinear flow regime leads 492 

to a delay on solute transport with respect to the values that can be obtained under the assumption of 493 

a linear flow field. 494 

In order to better represent the nonlinear flow regime, Figure 13 shows water pressure as a function 495 

of velocity. A change of slope is evident for -12 ms 105.1 −×=v  which corresponds to the flow rate 496 

equal to 4×10-6 m3s-1.  497 

Moreover as shown in Figure 14 a linear trend of dispersion with the injection flow rate both for 498 

MIM and ENM models has been observed. This is coherent with what obtained in the previous 499 

study (Cherubini et al. 2013a) where a linear relationship is found between velocity and dispersion 500 

both for ADE and MIM models with the conclusion that geometrical dispersion dominated the 501 

effects of Aris – Taylor dispersion. The values of the coefficient of dispersion obtained for ENM 502 

models do not depend on flow velocity but assume a somehow scattered but fluctuating value. 503 

Being Lα  values constant, geometrical dispersion dominates the mixing processes along the 504 

fracture network. Therefore, the presence of a nonlinear flow regime does not prove to exert any 505 

influence on dispersion except for high velocities for the ENM model where a weak transitional 506 

regime appears.  507 

This does not happen for MIM dispersion values whose rates of increase are smaller than those of 508 

ENM dispersion values. 509 

The values of dispersion coefficient are in order of magnitude of decimeter, which is comparable 510 

with the values obtained for darcian condition (Qian et al, 2011), and the dispersion values of MIM 511 

are much lower than those of ENM.  512 

This may be attributable to the fact that the MIM separates solute spreading into dispersion in 513 

mobile region and mobile-immobile mass transfer. The dispersive effect is therefore partially taken 514 

into account by the mass transfer between the mobile zone and the immobile zone (Qian et al, 2011; 515 

Gao et al, 2009). 516 

Conclusion 517 

Flow and tracer test experiments have been carried out in a fracture network. The aim of the present 518 

study is that of comparing the performances and reliabilities of two model paradigms: the Mobile - 519 



Immobile Model (MIM) and the Explicit Network Model (ENM) to describe conservative tracer 520 

transport in a fractured rock sample. 521 

Fluid flow experiments show a not negligible nonlinear behaviour of flow best described by the 522 

Forchheimer law. The solution of the flow field for each single fracture highlights that the 523 

probabilities of water distribution between the main and the secondary path are not constant but 524 

decrease as the injection flow rate increases. In other words varying the injection flow rate the 525 

conductance of the main path decreases more rapidly than the conductance of the secondary path. 526 

The BTCs curves determined by transport experiments have been fitted by MIM model and three 527 

versions of ENM model (ENM2, ENM3, ENM4) which differ on the basis of the assumptions made 528 

on the parameters PQ and PC. All models show a satisfactory fitting. The ENM4 model provides the 529 

best fit which is expectable because it has more fitting parameters than ENM2 and ENM3, thus it is 530 

more flexible. Secondly, compared to MIM model, it takes explicitly into account the presence of 531 

the secondary path. Furthermore for the ENM model the parameter PQ decreases more rapidly 532 

varying the injection flow rate than the same parameter determined by flow tests. The relationship 533 

between transport time and exchange time for MIM model and mean travel time for main path and 534 

secondary path for the ENM4 model varying the injection flow rate has shown similarity of 535 

behaviour: for higher values of flow rate the difference between transport time and exchange time 536 

decreases and the secondary path reaches the main path in terms of mean travel time. This analogy 537 

between MIM and ENM explains the fact that the mass transfer coefficient is dependent on flow 538 

velocity. The mass transfer coefficient increases as the importance of secondary path over the main 539 

path increases. 540 

The velocity values evaluated for MIM and ENM model show the same relationship with the 541 

injection flow rate. In particular a change of slope is evident in correspondence of the flow rate 542 

equal to 4 ×10-6 m3s-1. This behaviour occurs before the critical flow rate estimated by flow tests 543 

equal to 6.3×10-6 m3s-1. Therefore the interpretation of BTCs curves evidences more enhanced 544 

nonlinear behaviour than flow tests. These results confirm the fact that the presence of transitional 545 

flow regime leads to a delay on solute transport with respect to the values that can be obtained 546 

under the assumption of a linear flow field (Cherubini et al., 2013a). 547 

As concerns dispersion, a linear trend varying the velocity for both MIM and ENM models has been 548 

observed -coherently with the previous results- (Cherubini et al., 2013a), the MIM model 549 

underestimating the dispersion respect to ENM4 model. 550 



The dispersivity values obtained for ENM models do not depend on flow velocity but assume a 551 

somehow scattered but fluctuating value. Being Lα  values constant, geometrical dispersion 552 

dominates the mixing processes along the fracture network. Therefore, the presence of a nonlinear 553 

flow regime does not prove to exert any influence on dispersion except for high velocities for the 554 

ENM model where a weak transitional regime seems to appear. This result demonstrates that for our 555 

experiment geometrical dispersion still dominates Taylor dispersion. 556 

A major challenge for tracer tests modeling in fractured media is the adequate choice of the 557 

modeling approach for each different study scale.  558 

When dealing with large scales, tracer tests breakthrough curves are generally modeled by a 559 

relatively small number of model parameters (Becker and Shapiro, 2000). 560 

At laboratory scale, the definition of the network of fractures by means of discrete approaches 561 

(DFN) can permit to identify transport pathways and mass transport coefficients, in order to better 562 

define heterogeneous advective phenomena (Cherubini et. al, 2013b). 563 

At an intermediate local field scale (1-100m), recognition that heterogeneous environments contain 564 

fast and slow paths led to the development of the MIM formulation applied successfully in a variety 565 

of hydrogeologic settings. However, the assumed velocity partitioning into flowing and not-flowing 566 

zones is not an accurate representation of the true velocity field (Gao et al., 2009). Especially when 567 

the rock mass is sparsely fractured, the breakthrough curves are characterized by early breakthrough 568 

and long tailing behaviour and a simple mobile-immobile conceptualization may be an over 569 

simplification of the physical transport phenomenon. 570 

Solute transport in fractured aquifers characterized by highly non-Fickian behaviour is therefore 571 

better described by an Explicit Network Model rather than by a simple MIM. Applying a discrete 572 

model in such a case can permit to determine if transport occurs through one or several fractures 573 

and if multiple arrivals are caused by fracture heterogeneity, in such a way as to yield a more robust 574 

interpretation of the subsurface transport regime.  575 

In such a context, geophysical imaging may provide detailed information about subsurface structure 576 

and dynamics (Dorn et al, 2012).  577 
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 681 

 682 

 683 



 684 

MIM 1 
n° Q (m3/s)×10-6   v/L(s-1)×10-2    D/L2 (s-1)×10-2   α (s-1)×10-2   β (-)   RMSE   r2 

1 1.319 
 

0.73 ± 0.05 
 

0.15 ± 0.01 
 0.43 ± 0.09 

 
0.95 ± 0.14 

 
0.022 

 
0.979 

5 2.209 
 

1.05 ± 0.05 
 

0.16 ± 0.01 
 0.50 ± 0.12 

 
0.51 ± 0.07 

 
0.021 

 
0.991 

10 2.731 
 

1.26 ± 0.05 
 

0.18 ± 0.01 
 0.60 ± 0.12 

 
0.51 ± 0.06 

 
0.021 

 
0.994 

15 3.084 
 

1.74 ± 0.06 
 

0.19 ± 0.01 
 1.03 ± 0.16 

 
0.56 ± 0.05 

 
0.023 

 
0.995 

20 3.365 
 

1.75 ± 0.06 
 

0.20 ± 0.01 
 1.06 ± 0.17 

 
0.54 ± 0.05 

 
0.022 

 
0.996 

25 3.681 
 

2.49 ± 0.10 
 

0.25 ± 0.02 
 1.67 ± 0.32 

 
0.51 ± 0.06 

 
0.030 

 
0.995 

30 4.074 
 

2.57 ± 0.11 
 

0.26 ± 0.02 
 1.67 ± 0.35 

 
0.50 ± 0.06 

 
0.033 

 
0.994 

35 4.536 
 

2.25 ± 0.09 
 

0.21 ± 0.02 
 1.58 ± 0.29 

 
0.57 ± 0.06 

 
0.031 

 
0.994 

40 5.382 
 

3.20 ± 0.13 
 

0.26 ± 0.02 
 2.68 ± 0.44 

 
0.61 ± 0.06 

 
0.035 

 
0.994 

45 5.895 
 

3.32 ± 0.15 
 

0.26 ± 0.02 
 2.82 ± 0.50 

 
0.57 ± 0.06 

 
0.036 

 
0.995 

50 6.168 
 

3.02 ± 0.15 
 

0.26 ± 0.02 
 2.52 ± 0.52 

 
0.51 ± 0.07 

 
0.031 

 
0.996 

55 8.345   3.54 ± 0.29   0.35 ± 0.04   3.05 ± 1.07   0.41 ± 0.11   0.038   0.995 

Table 1. Estimated values of parameters, root mean square error RMSE and determination coefficient r2 for mobile – 686 
immobile model MIM at different injection flow rate s in the fractured medium. 687 

ENM 2 
n° Q (m3/s)×10-6   ωeq (m

2)×10-4   αL (m)×10-1
   RMSE   R2 

1 1.3194 
 

3.10 ± 0.14 
 

1.92 ± 0.86 
 

0.033 
 

0.952 

5 2.2090 
 

3.22 ± 0.04 
 

0.98 ± 0.06 
 

0.020 
 

0.993 

10 2.7312 
 

3.29 ± 0.04 
 

0.92 ± 0.05 
 

0.019 
 

0.995 

15 3.0842 
 

2.81 ± 0.03 
 

0.79 ± 0.03 
 

0.020 
 

0.996 

20 3.3648 
 

3.06 ± 0.03 
 

0.79 ± 0.03 
 

0.019 
 

0.997 

25 3.6813 
 

2.35 ± 0.02 
 

0.74 ± 0.03 
 

0.026 
 

0.996 

30 4.0735 
 

2.49 ± 0.02 
 

0.75 ± 0.03 
 

0.027 
 

0.996 

35 4.5356 
 

3.27 ± 0.04 
 

0.74 ± 0.04 
 

0.028 
 

0.995 

40 5.3824 
 

2.76 ± 0.02 
 

0.75 ± 0.02 
 

0.023 
 

0.998 

45 5.8945 
 

2.90 ± 0.02 
 

0.69 ± 0.02 
 

0.027 
 

0.997 

50 6.1684 
 

3.30 ± 0.04 
 

0.68 ± 0.02 
 

0.032 
 

0.995 

55 8.3455   3.56 ± 0.05   0.78 ± 0.02   0.041   0.994 

Table 2. Estimated values of parameters, root mean square error RMSE and determination coefficient r2 for ENM2 at 689 
different injection flow rates in the fractured medium.  690 

 691 

 692 

 693 

 694 

 695 

 696 

 697 



ENM 3 
n° Q (m3/s)×10-6   ωeq (m

2)×10-4   αL (m)×10-1
   PQ/PC (-)   RMSE   R2 

1 1.319 
 

3.43 ± 1.28  
1.92 ± 0.86 

 
0.82 ± 0.17 

 
0.032 

 
0.954 

5 2.209 
 

3.18 ± 0.11  
0.98 ± 0.06 

 
0.76 ± 0.02 

 
0.020 

 
0.993 

10 2.731 
 

3.28 ± 0.09  
0.92 ± 0.05 

 
0.75 ± 0.02 

 
0.019 

 
0.995 

15 3.084 
 

2.73 ± 0.05  
0.79 ± 0.03 

 
0.73 ± 0.01 

 
0.019 

 
0.997 

20 3.365 
 

2.94 ± 0.05  
0.79 ± 0.03 

 
0.72 ± 0.01 

 
0.017 

 
0.997 

25 3.681 
 

2.22 ± 0.04  
0.74 ± 0.03 

 
0.71 ± 0.01 

 
0.023 

 
0.997 

30 4.074 
 

2.37 ± 0.04  
0.75 ± 0.03 

 
0.71 ± 0.01 

 
0.025 

 
0.997 

35 4.536 
 

3.13 ± 0.06  
0.74 ± 0.04 

 
0.71 ± 0.01 

 
0.026 

 
0.995 

40 5.382 
 

2.61 ± 0.03  
0.75 ± 0.02 

 
0.70 ± 0.01 

 
0.016 

 
0.999 

45 5.895 
 

2.70 ± 0.03  
0.69 ± 0.02 

 
0.68 ± 0.01 

 
0.016 

 
0.999 

50 6.168 
 

2.98 ± 0.03  
0.68 ± 0.02 

 
0.66 ± 0.01 

 
0.017 

 
0.999 

55 8.345   3.13 ± 0.02   0.78 ± 0.02   0.63 ± 0.01   0.016   0.999 

Table 3. Estimated values of parameters, root mean square error RMSE and determination coefficient r2 for ENM3 at 699 
different injection flow rates in the fractured medium. 700 

ENM 4 
n° Q (m3/s)×10-6   ωeq (m

2)×10-4   αL (m)×10-1   PQ (-)   PC (-)   RMSE   R2 

1 1.319 
 

2.67 ± 0.13 
 

1.18 ± 0.11 
 

0.85 ± 0.02 
 

0.67 ± 0.02 
 

0.020 
 

0.981 

5 2.209 
 

3.15 ± 0.12 
 

0.96 ± 0.07 
 

0.76 ± 0.02 
 

0.75 ± 0.03 
 

0.020 
 

0.993 

10 2.731 
 

3.28 ± 0.10 
 

0.92 ± 0.06 
 

0.75 ± 0.02 
 

0.76 ± 0.02 
 

0.019 
 

0.995 

15 3.084 
 

2.74 ± 0.06 
 

0.80 ± 0.04 
 

0.73 ± 0.01 
 

0.74 ± 0.02 
 

0.019 
 

0.997 

20 3.365 
 

2.97 ± 0.06 
 

0.81 ± 0.04 
 

0.72 ± 0.01 
 

0.73 ± 0.02 
 

0.017 
 

0.997 

25 3.681 
 

2.28 ± 0.05 
 

0.80 ± 0.04 
 

0.70 ± 0.01 
 

0.74 ± 0.02 
 

0.020 
 

0.998 

30 4.074 
 

2.43 ± 0.06 
 

0.80 ± 0.04 
 

0.71 ± 0.01 
 

0.74 ± 0.02 
 

0.022 
 

0.997 

35 4.536 
 

3.18 ± 0.08 
 

0.76 ± 0.05 
 

0.71 ± 0.01 
 

0.73 ± 0.02 
 

0.025 
 

0.996 

40 5.382 
 

2.62 ± 0.04 
 

0.76 ± 0.03 
 

0.70 ± 0.01 
 

0.70 ± 0.01 
 

0.016 
 

0.999 

45 5.895 
 

2.76 ± 0.03 
 

0.73 ± 0.02 
 

0.68 ± 0.01 
 

0.71 ± 0.01 
 

0.014 
 

0.999 

50 6.168 
 

3.12 ± 0.04 
 

0.76 ± 0.02 
 

0.66 ± 0.01 
 

0.71 ± 0.01 
 

0.012 
 

0.999 

55 8.345   3.46 ± 0.02   0.96 ± 0.01   0.63 ± 0.00   0.73 ± 0.01   0.003   1.000 

Table 4. Estimated values of parameters, root mean square error RMSE and determination coefficient r2 for ENM4 at 701 
different injection flow rates in the fractured medium. 702 
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 704 

 705 

 706 



 707 

Figure 1. Schematic diagram of experimental setup. 708 

 709 

Figure 2. 2d pipe network conceptualization of the fractured medium. 710 



 711 

Figure 3. Average resistance to flow versus injection flow rate Q0 (m
3/s). The circles represent the experimental values, the 712 

straight line represents the resistance to flow evaluated by equation (31). 713 

 714 

Figure 4. Probability of water distribution evaluated for main path PQ versus injection flow rate Q0 (m
3/s). 715 



 716 

Figure 5. Mean travel time tm (s) versus injection flow rate Q0 (m
3/s). 717 



 718 

Figure 6. Fitting of breakthrough curves at different injection flow rates using each of the four models (MIM, ENM1, ENM2, 719 
ENM3).  720 

 721 

 722 



 723 

Figure 7. Immobile – mobile ratio (ββββ) as function of normalized velocity v/L (s-1) for MIM model. An outlier is evidenced for 724 
v/L=0,028 s-1 725 

 726 

Figure 8. Transport time (L/v) (reciprocal of normalized velocity) and exchange time (1/αααα) (reciprocal of the exchange term) 727 
as function of injection flow rate Q0 (m

3/s) for mobile - immobile model MIM. 728 



 729 

Figure 9. Travel time for main path tm1 (s) and travel time for secondary path tm2 (s) for ENM4 as function of injection flow 730 
rate Q0 (m

3/s). 731 

 732 

 733 

Figure 10. Comparison between the Probability of water distribution P Q evaluated as the square brackets term in Equation 734 
(29 ) (straight line) and the probability of particle transition PC(PQ) for ENM3 (circle) varying the injection flow rate Q0 735 
(m3/s). 736 



 737 

Figure 11. Comparison between the Probability of water distribution P Q evaluated by the flow model (straight line) and the 738 
probability of particle transition P c (square) and PQ (circle) for ENM4 varying the injection flow rate Q0 (m

3/s). 739 

 740 

Figure 12. velocity v (m/s) as function of the injection flow rate Q0 (m
3/s) for MIM and ENM4 models. Note that for MIM 741 

model the v is determined assuming the length of medium equal to the length of main path (L = 0.601 m). Instead for the 742 
ENM4 model the velocity is determined dividing Q0 for the equivalent area ωωωωeq.  743 

 744 



 745 

Figure 13. difference of pressure ∆∆∆∆P (Pa) as function of velocity v (m/s) for ENM4. The velocity is determined dividing Q0 for 746 
the equivalent area ωωωωeq.  747 

 748 

 749 

Figure 14. Dispersion D (m2/s) as function of velocity for MIM and ENM4 models. Note that for MIM model D is determined 750 
assuming the length of the medium equal to the length of the main path (l=0.601 m). Instead for ENM4 model D is 751 
determined as D=Q0⋅⋅⋅⋅ααααL/ωωωωeq. 752 


