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Abstract. Many environmental systems models, such as
conceptual rainfall-runoff models, rely on model calibra-
tion for parameter identification. For this, an observed out-
put time series (such as runoff) is needed, but frequently
not available (e.g. when making predictions in ungauged
basins). In this study, we provide an alternative approach
for parameter identification using constraints based on two
types of restrictions derived from prior (or expert) knowl-
edge. The first, called parameter constraints, restricts the so-
lution space based on realistic relationships that must hold
between the different model parameters while the second,
called process constraints requires that additional realism re-
lationships between the fluxes and state variables must be sat-
isfied. Specifically, we propose a search algorithm for finding
parameter sets that simultaneously satisfy such constraints,
based on stepwise sampling of the parameter space. Such pa-
rameter sets have the desirable property of being consistent
with the modeler’s intuition of how the catchment functions,
and can (if necessary) serve as prior information for further
investigations by reducing the prior uncertainties associated
with both calibration and prediction.

1 Introduction

Environmental systems models, such as conceptual rainfall-
runoff (CRR) models, are abstract simplifications of real
system behavior. Often, the parameters in such models
cannot be specified through direct measurements of physical
properties of the system. Further, even when a parameter
is related to measurable quantities, its value in the model
typically represents an integrated value over a much larger
scale than the measurement scale. For this reason, such
models typically rely upon calibration (tuning to match
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system input-output behavior for some historical data
period) to ensure satisfactory performance when applied
to specific hydrological systems of interest (Wheater et al.,
1993; Beven, 2001).
In the case of CRR, parameter values are typically specified
through a process of calibration that seeks to match the
model runoff simulations to observed hydrographs by the
use of an objective function (e.g. root mean square error,
RMSE). Expert knowledge is brought to bear implicitly,
by the prior selection of the model and the specification
of parameter ranges that define the prior parameter space.
Recently, several studies have tested strategies that relate
the parameters of CRR models to catchment physical
characteristics (Koren et al., 2000, 2003; Anderson et al.,
2006; Yadav et al., 2007; Pokhrel et al., 2008, 2012; Kling
and Gupta, 2009; Hrachowitz et al., 2013). The general
picture that emerges from these studies is that exploiting
expert knowledge (by somehow imposing more rigorous
constraints on the parameters) has the potential to result in
more realistic models (Martinez and Gupta, 2011) that in
several cases has practical benefits.
For example, Pokhrel et al. (2008, 2012) linked the param-
eters of a spatially-distributed model to catchment physical
characteristics via a set of regularization (or regionaliza-
tion) relationships, and thereby converting the original
high-dimensional parameter space to a much reduced set
of ”super-parameters”, which then leads to a dramatically
simplification for a calibration problem. Similarly, Merz
and Blöschl (2004) and Kling and Gupta (2009) and Yadav
et al. (2007), amongst others, investigated explicit links
between catchment characteristics and the parameters of a
simple lumped conceptual model; they concluded, however,
that such relationships are difficult to establish and may not
be often possible given the available data. Other studies
have used a comparison of catchment characteristics based
on similarities between catchment responses to constrain
parameter values. For example, Zhang et al. (2008), imposed
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a set of three constraints to infer the runoff characteristics
of catchments, following the concept of regionalization of
hydrological signatures (initially developed by Yadav et al.,
2007). Recently, Kapangaziwiri et al. (2012) constrained the
Pitman monthly rainfall runoff model (Hughes et al., 2006)
based on a regionalization of runoff signatures. Perrin et al.
(2008) proposed a method called discrete parameterization
based on the use of parameter sets compiled a priori via
calibration to other catchments. Their approach ”abandon(s)
the idea of searching for an optimum parameter set in the
continuous, n-dimensional parameter space” and instead
”limit(s) the calibration process to a search within a finite
collection (a library) of predefined parameter sets”. More
recently, Samaniego et al. (2010) and Kumar et al. (2010,
2013) demonstrated that a multi-scale approach to parameter
regionalization can provide consistent model performance
for both gauged and ungauged catchments.
In a complementary direction, the use of multiple objective
functions or multiple system responses for calibration
(Gupta et al., 1998) has been shown to result in more
realistic parameter sets that achieve improved simulations
of system dynamics. The multi-objective approach seeks to
identify parameter sets that simultaneously provide optimal
performance for different aspects of system response (Gupta
et al., 1998; Boyle et al., 2000, 2001). This can include
constraining the model to reproduce multiple system fluxes
and state variables such as runoff, evaporation, groundwater
levels or tracer concentrations (e.g. Gupta et al., 1999;
Bastidas et al., 1999; Freer et al., 2002; Seibert and Mc-
Donnell, 2002; Khu and Madsen, 2005; Fenicia et al., 2008;
Winsemius et al., 2008; Birkel et al., 2011; Hrachowitz et al.,
2013; Seibert and McDonnell, 2013).
While the aforementioned studies have demonstrated that
incorporation of expert- and a priori knowledge can help
improve the realism of models, to our knowledge, no
systematic strategy has been presented in the literature for
constraining the model parameters to be consistent with
the patchy understanding of a modeler regarding how the
real system might work. Part of the difficulty in doing
this is that expert knowledge may not directly translate to
quantifiable relationships (e.g. between catchment physical
characteristics and model parameters) rather, it may consist
of conceptual understanding about consistency relationships
that must exist among modeled state variables and/or fluxes,
as well as, among various model parameters. For example,
the geology of a given catchment may suggest that the catch-
ment response during intense rainfall events is characterized
by a slow responding groundwater component accompanied
by fast responding Hortonian overland flow. In this case,
any model result that implies peak flows are composed of a
strong groundwater response should be discarded or should
be given low importance.
An example of such an approach toward modeling was
mentioned by Götzinger and Bárdossy (2007), where they
impose the Lipschitz and monotonic conditions to avoid

the abrupt jump in soil moisture values for the neighboring
cells of a distributed model based on the physical premises
that such jumps are numerical artifacts and hydrologically
unrealistic. Such kinds of information, which are not explic-
itly provided during model calibration, act as constraints to
limit the feasible extent of the model parameter space, thus
resulting in physically more meaningful model simulations.
As pointed out by Efstratiadis and Koutsoyiannis (2010) ”It
also offers a means to partially handle the huge uncertainty
resulting from the complexity of model parameterizations
in contrast to data scarcity, which is a global engineering
problem that is getting increasingly severe. Actual research
should provide more guidance on the effective combination
of statistical and expert-based evaluation procedures.”
In this study, we present a constraint-based algorithm to
limit the feasible parameter space of a conceptual hydrologic
model, based on relational constraints inferred from expert
knowledge regarding plausible catchment behavior. The
approach is applicable to both lumped/semi-distributed and
spatially distributed catchment models.

2 Constraints in environmental models:

In the companion paper, Gharari et al. (2013), we test the
importance of constraining the feasible parameter space.
The case study focuses on the meso-scale catchment of the
Wark in Luxembourg covering an area of approximately
82 km2. Three different models with varying (spatial)
complexity are developed to capture hydrological processes
across different delineated landscapes, wetland, hillslope
and plateau, following the work by Gharari et al. (2011). The
first model, FLEXA, is a lumped model which considers the
whole catchment as a single unit. A more complex model,
FLEXB, takes into account wetlands (i.e., riparian zones),
and considers the rest of the catchment as another unit. The
most complex model of all, FLEXC, distinguishes between
the aforementioned landscape classes (wetland, hillslope
and plateau).
A set of parameter and process constraints is defined for
each of the three landscape entities, based on the expert
knowledge. Parameter constraints are considered to be a
priori because they can be imposed without actually running
the model, while process constraints can only be imposed
after a model is run with selected parameter sets. The
number of constraints may vary from model to model, and
here depends on the model complexity. For example all of
the pre-defined constraints (see the following section for
more detail) can be applied to the most complex model,
FLEXC, while only a subset of constraints can be applied
to FLEXB and just few constraints to FLEXA. Using the
proposed search algorithm, explained later in this study,
we define the behavioral set of parameters that satisfy all
the parameter and process constraints. These resulting
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parameter sets are termed as constrained but un-calibrated.
The performance of the constrained but un-calibrated
parameter sets for the three models could then be evaluated
based on Nash-Sutcliffe efficiency, ENS (Nash and Sutcliffe,
1970). Figure 1 illustrates the 95% uncertainty interval
of the model simulations generated using the constrained
but un-calibrated parameter sets, and reports the median
Nash-Sutcliffe efficiency (ENS,median) for three model
structures.
The results show that the constrained and calibrated
FLEXC, the most complex model, has lower predictive
uncertainty compared to a (loosely) constrained and cal-
ibrated lumped model, FLEXA. This result contradicts
to what appears to be a general belief about the higher
predictive uncertainty of complex models, and shows that
if a complex model is properly constrained then it can
perform well during the evaluation period while providing
even lower predictive uncertainty than a simpler model.
Result of the recent study by Gao et al. (2014) had shown
that a more complex, but simultaneously constrained and
calibrated model, can provide better predictions of extreme
events outside of the calibration period as well as capturing
the flow duration curve in nested catchments for the large
scale Heihe basin in China. Meanwhile, Hrachowitz et al.
(2014) reported similar results for a small-scale catchment in
France, using 11 different model structures and 20 different
runoff signatures. In these studies, the introduction of
constraints was found to be crucial for ensuring better model
performance, particularly outside of a calibration period.
As mentioned earlier, constraints on a model consists of two
main types, a priori constraints applicable to model parame-
ters (i.e. parameter constraints) and a posteriori constraints
on model states and fluxes (i.e. process constraints; e.g., see
Bulygina and Gupta, 2009, 2010, 2011). These two types of
constrains are elaborated in the following section.

2.1 Parameter constraints

Parameter constraints provide information regarding the
relationships between parameters of the same process that
correspond to different spatial components (or units or grid
cells) of a (semi-) distributed model. Such constraints can
be expressed by inequality (or equality) constraints; for
example:

A1

A2
<G (1)

Where G is a dimensionless constant

A1<A2 +G (2)

Where G has the same units as A1 and A2.

A1B1<A2B2 (3)

As a simple illustration of this concept, the maximum
interception capacity of a forested area (Imax,forest) can typi-
cally be assumed to be larger than the maximum interception
capacity of a grassland area (Imax,grass).

2.2 Process constraints

Process constraints provide comparative information regard-
ing the fluxes and/or states of a model at each time step, or
integrated over some specific time period. Examples of such
constraints include:

∑t1
t2
F1∆t∑t1

t2
F2∆t

<G (4)

F1(t)

F2(t)
<G (5)

Where G is a dimensionless constant.
As an illustration, one can compare the transpiration fluxes
from different spatial entities of a (semi-) distributed model.
For example for two regions having similar soil type and
aspect, the region with smaller normalized difference vege-
tation index (NDVI) is expected to transpire at a lower rate.
It is worth noting that in either case, parameter sets that
satisfy the constraints are not conditional on the information
provided by observations (or measurements) of the output
response of the system (e.g. the runoff hydrograph), and
these can therefore be determined without resorting to model
calibration. Moreover, parameter sets that satisfy all of
the constraints (within some acceptable range) can provide
insights into how the real system can be expected to behave,
assuming that it corresponds to the expert’s perception of
realistic (behavioral) system properties and dynamics.
Unfortunately, the use of available evolutionary algorithms
to search for parameter sets that satisfy such constraints
is complicated by the non-convex and potentially non-
continuous parameter search space that results. In the
following section, we propose a stepwise search strategy that
can be used to identify behavioral parameter sets fulfilling
the constraints imposed by expert knowledge.
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3 Methodology and algorithm - Constraint Based
Search (CBS):

The Constraint Based Search (CBS) algorithm is based on a
simple parameter sampling approach to identify the parts of
the feasible parameter space that satisfy the set of constraints
as discussed in the previous section. At each step, the
algorithm tries to generate new parameter sets that satisfy
the parameter constraints, while only violating the process
constraints to an acceptable level. This level could be set-up
based on the desired model performance. The process of
search continues until all of the parameter sets generated
properly satisfy the set of imposed process constraints.
In the following description M refers to the total number
of process constraints and m, m ∈ {1,...,M}, is an index
indicating how many of the process constraints are satisfied
by a given parameter set; for example, if a parameter set
satisfies two process constraints then m will be equal to 2.
The algorithm ultimately generates a set P of n number of
behavioral parameter sets that satisfy all of the parameter
and process constraints (i.e. m=M for all of members of P).
The search algorithm is as follows; let C be a counter which
identifies the minimum number of process constraints to be
satisfied (at a given stage of the search) by the parameter
sets considered to be behavioral, N is the initial sample size,
and S is the sample size at each stage. The user-specified
parameter f represents the memory in CBS corresponding
to which of the existing parameter sets should be used to
generate the new parameter sets at each stage; specifically,
it indicates the extent to which the algorithm is allowed to
relax the acceptable minimum number of process constraints
(C) when considering parameter sets for use in generating
the new samples1.

– Step 0: Begin with C = 2.

– Step 1: Generate N random samples (parameter sets)
across the entire feasible parameter space using uniform
prior distributions.

– Step 2: Evaluate the parameter constraints and identify
the K1 samples that satisfy them.

– Step 3: Run the model K1 times, one time for each of
the samples identified in step 2, evaluate the M process
constraints for each sample and assign a value of m to
each parameter set corresponding to the number of pro-
cess constraints satisfied.

– Step 4: Place the K2 samples that satisfy C or more
process constraints in set P, and the K3 samples that
satisfy exactly C-f -1 to C-1 process constraints in set

1C, S, N and f can be changed by the user in accordance with
the model, nature and number of constraints. We propose C to be
set at 2 initially.

P’. Discard samples that satisfy C-f -2 or fewer process
constraints.

– Step 5: Use the members of sets P and P’ to gener-
ate S new samples by applying each of the three Monte
Carlo based rules below to generate S/3 of the samples,
where θnew is the newly generated sample. θP and θP ′

are samples selected randomly from sets P and P’ re-
spectively and α is a random value between 0 and 1
which differs for each newly generated sample. Figure
2 shows a graphical illustration of these rules.

θnew =αθP +(1−α)θP (6)

θnew =αθP +(1−α)θP ′ (7)

θnew =αθP ′ +(1−α)θP ′ (8)

– Step 6: Discard all existing members of set P’ which
satisfy exactly C-f -1 process constraints2.

– Step 7: Increase C by one and return to step 2. Re-
peat this process until C becomes equal to the total num-
ber of process constraints (i.e. C=M), or the maximum
number of model evaluation is exceeded, or the size of
P is satisfactory.

In step 5, the selection of parameter sets from P and P’ can
also be based on the number of satisfied process constraints
or any other distribution different from a uniform distribu-
tion.
Note that any member of set P is within the space marked
by members of set P’. Using members of P’ to generate
new parameter sets (step 5) helps to identify the boundary
between the parameter space that satisfies exactly C-f -1 to
C-1 (set P’) and C or more (set P) constraints. The intention
is to obtain a diverse parameter representation for set P by
including the set P’ (Figure 2).
The final set P contains parameters that simultaneously
satisfy all of the parameter and process constraints. These
parameter sets can be referred to as constrained but un-
calibrated, as they are not calibrated to match observed data
sets or target variables (e.g. discharge time-series). Figure 3
presents a graphical illustration of the steps of CBS to find
set constrained but un-calibrated parameter sets.
Note that the set P can also be used to constrain a search for
optimal parameter sets within this space of constrained but
un-calibrated parameter sets. This can be easily achieved by
evaluating them based on model performance in regard to a
target variable (e.g. observed runoff). The set P can be used
as an initial sample for any evolutionary algorithm. In this

2In the case that f is set to 0 there won’t be any existing param-
eter sets in P’ (i.e. P’=Φ).
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case, any new parameter set generated by an optimization
algorithm would need to be checked for both parameter and
process constraints and would be retained only if they satisfy
the entire set of constraints.

4 Case study

A synthetic case study was designed to illustrate the effi-
ciency of the proposed constraint-based search algorithm.
First, the lumped model FLEXA (figure 4; see companion
paper Gharari et al., 2013) was calibrated to runoff data
from the Wark catchment for the year 2002-2005, using
year 2001 as warm up period. A multi-criteria calibration
was conducted without imposing any parameter or process
constraints, based on three objective functions: (i) the Nash-
Sutcliffe efficiency of the flows (ENS), (ii) the Nash-Sutcliffe
efficiency of the logarithm of the flows (ENS,log) and (iii)
the Nash-Sutcliffe efficiency of the flow duration curve
(ENS,FDC). From the parameter sets belonging to the Pareto
front, the parameter set having minimum distance to the
origin was taken as the best behavioral parameter set (θbest).
A set of (parameter and process) constraints was then
designed based on the model simulations (fluxes and states)
provided by this best parameter set (θbest). Since the
constraints were constructed so that the best performing
parameter set (θbest) is behavioral, we are guaranteed the
existence of feasible parameter sets that satisfy all of those
constraints. Table 1 summarizes the parameter and process
constraints designed in this manner; note that the value for
each constraint corresponding to θbest is mentioned, along
with the acceptable range limits for each constraint to be
used during the search.
The proposed algorithm was then applied to search for
parameter sets that satisfy the constraints mentioned in Table
1. The initial sample size (N) was taken as 50000 parameter
sets. S, f and C were set to be 5000, 1 and 2 respectively.
The search was terminated when the number of generated
parameter sets satisfying all of the parameter and process
constraints exceeded 8000.
The parameter sets identified by the proposed search algo-
rithm were then compared with the best parameter set (θbest).
Figure 5 shows the results using a normalized parameter plot
(Gupta et al., 1998), where the red trajectory indicates θbest
and the hue of the grey-to-black lines indicates the number
of process constraints satisfied by a given parameter set (the
darker the line, the higher number of process constraints
satisfied). The result clearly shows that with the increasing
number of process constraints satisfied, the feasible solution
space converges towards the best parameter set (θbest).
A similar comparison (Figure 6) was conducted for the
modeled hydrographs associated with these parameter sets.
The hydrograph for the best performing parameter set
(θbest) is indicated in red, and the simulated hydrographs for

different parameter sets generated by the proposed search
algorithm are depicted in different shades ranging from
grey-to-black (darker colors indicate that larger numbers of
process constraints are satisfied). Clearly, with increasing
number of satisfied process constraints, the hydrographs
progressively approach the one simulated using the θbest.
Overall the search algorithm generated and evaluated 102106
parameter sets to find 8000 feasible solutions that satisfy
all of the nine constraints imposed, which corresponds
to approximately 8% efficiency. In comparison, when a
conventional Monte-Carlo sampling approach was applied
using 102106 samples, none of the samples were found to
be able to satisfy all of the constraints, while only two of
the samples were able to satisfy at least 7 of the 9 process
constraints imposed. Clearly, the proposed search algorithm
is capable of relatively rapid convergence towards the region
of the parameter space where all of the constraints are
satisfied.
Figure-7 illustrates how quickly the search algorithm is
able to locate the behavioral parameter sets. It depicts the
percentages of generated samples satisfying a given number
of process constraints at each step of the search. Darker
colors are used to indicate the proportions of parameter sets
that satisfy progressively more of the process constraints
(white indicates none of the parameter constraints being
satisfied). The initial sample of 50,000 parameter sets, see
region (a) in Figure-7, consists of samples drawn uniformly
from the entire parameter space, of which less than 10%
satisfy any of the imposed constraints, and only a very few
satisfy 1, 2 and 3 constraints (progressively darker shades
of grey). Each progressive step (see region (b) in Figure-7)
then consists of S=5000 samples generated according to
the strategy discussed above, in which the value of C is
increased by one. Clearly, at each step, the proportion
of newly generated samples satisfying larger numbers of
constraints increases rapidly. Note that when C was set equal
to 9 (i.e., the maximum number of design constraints), the
search was continued until the pre-specified 8000 behavioral
parameter sets had been found, and then terminated. At this
point the fraction of number of newly generated samples
(behavioral parameter sets) that satisfy all of the constraints
has reached approximately 40% (region (c) in Figure-7).
Of course, in this illustrative case study, the constraints
were specifically designed to guarantee that the observed
hydrograph corresponding to the ”best” performing pa-
rameter set lie within a predetermined feasible space. In
principle the constraints can be specified without recourse
to the information contained in the discharge time series (as
discussed earlier). The main purpose of this synthetic case
study was to illustrate the capability of the proposed CBS
algorithm to efficiently locate behavioral parameter sets that
satisfy user-specified a priori parameter and a posteriori
process constraints.
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5 Conclusions

One of the most challenging tasks in the development of
complex conceptual hydrological models for simulation of
catchment responses to inputs is the realistic specification
of parameter values. We have presented a constraint-based
search strategy that facilitates the incorporation of expert
knowledge (i.e. the modeler’s perception of catchment
behavior and characteristics) into the parameter specification
process. Because the CBS algorithm does not require
observational data regarding the target system output (e.g.
runoff) it can provide a way forward for better prediction
in ungauged basins in absence of streamflow (or other
system output) data for model calibration. As constraints are
much easier for understand, rather than parameters, when
discussing system behavior, they can potentially be used as
an efficient tools to bridge the gap in the dialogue between
modelers and experimentalists. Further, the approach can
help to provide behaviorally more conceptually realistic
parameter sets when used in conjunction with model calibra-
tion. Future study may apply the proposed CBS algorithm
to identify behavioral parameter sets for different kind of
hydrologic models in different regions, and compare the
results with other existing parameter specification methods
and algorithms. A MatlabTM code of the CBS algorithm can
be obtained through personal communication with the lead
author.
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Fig. 1. The observed hydrograph and the 95% uncertainty interval of the modeled hydrograph derived from the complete set of constrained
but un-calibrated parameter sets for the three different model set-ups (a) FLEXA, (b) FLEXB and (c) FLEXC for the two years (2002-2003)
of calibration period. The median performance of the constrained but un-calibrated models based on Nash-Sutcliffe efficiency (ENS,median)
are reported.
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Eq. 6
Eq. 7
Eq. 8

ʹ PPʹ

θ22

θθ1

Fig. 2. A conceptual illustration of possible positions of newly generated parameter sets based on parameter sets randomly drawn from P and
P’ for a two dimensional parameter space. The area indicated in yellow represents the set P’ that satisfies exactly C-f -1 to C-1 process based
constraints. The area indicated in green represents the set of P that satisfies C or more process constraints. The circles indicate randomly
selected parameter sets drawn from the sets P or P’. Different line styles indicate different parameter generation rules (corresponding to
the different equations). Solid lines represent the first rule where the parameter sets are randomly selected from set P (Eq.6), dashed lines
illustrate the second rule where one parameter set is randomly selected from P and one from P’ (Eq.7), the dash-dot line represents the third
rule where both randomly selected parameter sets are selected from set P’ (Eq.8). Note that due to possible non-convexity of sets of P and
P’ the newly generated parameter sets based on the three rules can be outside of sets P and P’.
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Fig. 3. A conceptual illustration of stepwise search for the parameter space satisfying all of the parameter and process constraints.
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Fig. 4. The models structure of FLEXA. Precipitation is indicated by P; I and T represent components of evaporation which are interception
and transpiration respectively. Qf and Qs indicate the fast and slow components that make the total model output (Qm).
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Fig. 6. 95% uncertainty intervals of simulated stream flows using parameter sets satisfying different numbers of process constraints. Darker
colors indicate the uncertainty intervals which satisfy more of the process constraints. The hydrograph generated by θbest is indicated in red.
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the search when C is set to the maximum number of design constraints (here 9), at which point the search continues until 8000 behavioral
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Table 1. The ”true” values for each of the design constraints (cor-
responding to θbest) along with the acceptable limits assigned to
each constraint for use during the search. Dry and wet periods
are defined as May to October and November to April respectively.
Events in which the discharge increases with a rate of more than 0.2
mm(3h)−2 are defined as peak flows.

No Quantification of designed constraints based on θbest Acceptable range for each designed constraints

Parameter constraint
1 KF

KS
= 4.18 3< KF

KS
< 5

Process constraints
1

∑
I∆t∑

I∆t+
∑

T∆t
= 0.30 0.25<

∑
I∆t∑

I∆t+
∑

T∆t
< 0.35

2
∑

Qf∆t∑
Qf∆t+

∑
Qs∆t

= 0.33 0.25<
∑

Qf∆t∑
Qf∆t+

∑
Qs∆t

< 0.35

3
∑

Qf,wet,peaks∆t∑
Qf,wet,peaks∆t+

∑
Qs,wet,peaks∆t

= 0.57 0.50<
∑

Qf,wet,peaks∆t∑
Qf,wet,peaks∆t+

∑
Qs,wet,peaks∆t

< 0.60

4
∑

Qf,dry,peaks∆t∑
Qf,dry,peaks∆t+

∑
Qs,dry,peaks∆t

= 0.60 0.55<
∑

Qf,dry,peaks∆t∑
Qf,dry,peaks∆t+

∑
Qs,dry,peaks∆t

< 0.65

5
∑

Qm,dry,2002∆t∑
Pdry,2002∆t

= 0.10 0.05<
∑

Qm,dry,2002∆t∑
Pdry,2002∆t

< 0.15∑
Qm,wet,2002∆t∑
Pwet,2002∆t

= 0.59 0.55<
∑

Qm,wet,2002∆t∑
Pwet,2002∆t

< 0.65∑
Qm,2002∆t∑
P2002∆t

= 0.39 0.35<
∑

Qm,2002∆t∑
P2002∆t

< 0.45

6
∑

Qm,dry,2003∆t∑
Pdry,2003∆t

= 0.06 0.00<
∑

Qm,dry,2003∆t∑
Pdry,2003∆t

< 0.10∑
Qm,wet,2003∆t∑
Pwet,2003∆t

= 0.44 0.40<
∑

Qm,wet,2003∆t∑
Pwet,2003∆t

< 0.50∑
Qm,2003∆t∑
P2003∆t

= 0.27 0.20<
∑

Qm,2003∆t∑
P2003∆t

< 0.30

7
∑

Qm,dry,2004∆t∑
Pdry,2004∆t

= 0.10 0.05<
∑

Qm,dry,2004∆t∑
Pdry,2004∆t

< 0.15∑
Qm,wet,2004∆t∑
Pwet,2004∆t

= 0.35 0.30<
∑

Qm,wet,2004∆t∑
Pwet,2004∆t

< 0.40∑
Qm,2004∆t∑
P2004∆t

= 0.20 0.15<
∑

Qm,2004∆t∑
P2004∆t

< 0.25

8
∑

Qm,dry,2005∆t∑
Pdry,2005∆t

= 0.05 0.00<
∑

Qm,dry,2005∆t∑
Pdry,2005∆t

< 0.10∑
Qm,wet,2005∆t∑
Pwet,2005∆t

= 0.26 0.20<
∑

Qm,wet,2005∆t∑
Pwet,2005∆t

< 0.30∑
Qm,2005∆t∑
P2005∆t

= 0.17 0.10<
∑

Qm,2005∆t∑
P2005∆t

< 0.20

9∗,∗∗
∑

f(Su)
t

= 0.53 0.4<
∑

f(Su)
t

< 0.6
∗t indicates the number of time steps over the entire period of simulation.
∗∗f(Su) =

{
1, 0.5Su,max ≤Su

0, Su < 0.5Su,max


