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Abstract: 16 
 17 
Many environmental systems models, such as conceptual rainfall-runoff models, rely on 18 
model calibration for parameter identification. For this, an observed output time series (such 19 
as runoff) is needed, but frequently not available (e.g. when making predictions in ungauged 20 
basins). In this study, we provide an alternative approach for parameter identification using 21 
constraints based on two types of restrictions derived from prior (or expert) knowledge. The 22 
first, called “parameter constraints”, restricts the solution space based on realistic 23 
relationships that must hold between the different model parameters while the second, called 24 
“process constraints” requires that additional realism relationships between the fluxes and 25 
state variables must be satisfied. Specifically, we propose a strategy for finding parameter sets 26 
that simultaneously satisfy such constraints, based on stepwise sampling of the parameter 27 
space. Such parameter sets have the desirable property of being consistent with the modeler’s 28 
intuition of how the catchment functions, and can (if necessary) serve as prior information for 29 
further investigations by reducing the prior uncertainties associated with both calibration and 30 
prediction. 31 
 32 
1 Introduction: 33 
 34 
Environmental systems models, such as conceptual rainfall-runoff (CRR) models, are abstract 35 
simplifications of real system behavior. Often, the parameters in such models cannot be 36 
specified through direct measurements of physical properties of the system. Further, even 37 
when a parameter is related to measurable quantities, its value in the model typically 38 
represents an integrated value over a much larger scale than the measurement scale. For this 39 
reason, such models typically rely upon calibration (tuning to match system input-output 40 
behavior for some historical data period) to ensure satisfactory performance when applied to 41 
specific hydrological systems of interest (Wheater et al., 1993; Beven 2001). 42 
In the case of CRR, parameter values are typically specified through a process of calibration 43 
that seeks to match the model runoff simulations to observed hydrographs by the use of an 44 
objective function (e.g. root mean square error, RMSE). Expert knowledge is brought to bear 45 
implicitly, by the prior selection of the model and the specification of parameter ranges that 46 
define the prior parameter space. Recently, several studies have tested strategies that relate the 47 
parameters of CRR models to catchment physical characteristics (Koren et al., 2000, 2003; 48 
Anderson et al., 2006; Yadav et al., 2007; Pokhrel et al., 2008, 2012; Kling and Gupta, 2009; 49 
Hrachowitz et al., 2013b). The general picture that emerges from these studies is that 50 
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exploiting expert knowledge (by somehow imposing more rigorous constraints on the 1 
parameters) has the potential to result in more realistic models (Martinez and Gupta 2011) 2 
that in several cases has practical benefits. 3 
For example, Pokhrel et al. (2008, 2012) linked the parameters of a spatially-distributed 4 
model to catchment physical characteristics via a set of regularization (or regionalization) 5 
relationships, and thereby converting the original high-dimensional parameter space to a 6 
much reduced set of “super-parameters”, thereby leading to a dramatically simplification for a 7 
calibration problem. Similarly, Merz and Blöschl (2004) and Kling and Gupta (2009) and 8 
Yadav et al., (2007), amongst others, investigated explicit links between catchment 9 
characteristics and the parameters of a simple lumped conceptual model; they concluded, 10 
however, that such relationships are difficult to establish and may not be often possible given 11 
the available data. Other studies have used a comparison of catchment characteristics based 12 
on similarities between catchment responses to constrain parameter values. For example, 13 
Zhang et al. (2008), imposed a set of three constraints to infer the runoff characteristics of 14 
catchments, following the concept of regionalization of hydrological signatures (initially 15 
developed by Yadav et al. 2007). Recently, Kapangaziwiri et al. (2012) constrained the 16 
Pitman monthly rainfall runoff model (Hughes et al. 2006) based on a regionalization of 17 
runoff signatures. Perrin et al. (2008) proposed a method called discrete parameterization 18 
based on the use of parameter sets compiled a priori via calibration to other catchments. Their 19 
approach “abandon(s) the idea of searching for an optimum parameter set in the continuous, 20 
n-dimensional parameter space” and instead “limit(s) the calibration process to a search 21 
within a finite collection (a library) of predefined parameter sets”. More recently, Samaniego 22 
et al. (2010) and Kumar et al. (2010, 2013) demonstrated that a multi-scale approach to 23 
parameter regionalization can provide consistent model performance for both gauged and 24 
ungauged catchments. 25 
In a complementary direction, the use of multiple objective functions or multiple system 26 
responses for calibration (Gupta et al 1998) has been shown to result in more realistic 27 
parameter sets that achieve improved simulations of system dynamics. The multi-objective 28 
approach seeks to identify parameter sets that simultaneously provide “optimal” performance 29 
for different aspects of system response (Gupta et al. 1998; Boyle et al. 2000, 2001). This can 30 
include constraining the model to reproduce multiple system fluxes and state variables such as 31 
runoff, evaporation, groundwater levels or tracer concentrations (e.g. Gupta et al., 1999; 32 
Bastidas et al 1999; Freer et al., 2002; Seibert and McDonnell 2002; Khu ans Madsen., 33 
2005; Fenicia et al., 2008; Winsemius et al., 2008; Birkel et al., 2011; Hrachowitz et al., 34 
2013a; Seibert and McDonnell 2013). 35 
While the aforementioned studies have demonstrated that incorporation of expert- and a 36 
priori knowledge can help improve the realism of models, to our knowledge, no systematic 37 
strategy has been presented in the literature for constraining the model parameters to be 38 
consistent with the patchy understanding of a modeler regarding how the real system might 39 
work. Part of the difficulty in doing this is that expert knowledge may not directly translate to 40 
quantifiable relationships (e.g. between catchment physical characteristics and model 41 
parameters) rather, it may consist of conceptual understanding about consistency relationships 42 
that must exist among modeled state variables and/or fluxes, as well as, among various model 43 
parameters. For example, the geology of a given catchment may suggest that the catchment 44 
response during intense rainfall events is characterized by a slow responding groundwater 45 
component accompanied by fast responding Hortonian overland flow. In this case, any model 46 
result that imply peak flows are composed of a strong groundwater response should be 47 
discarded or should be given low importance. 48 
An example of such an approach toward modeling was mentioned by Götzinger and Bárdossy 49 
(2007), where they impose the Lipschitz and monotonic conditions to avoid the abrupt jump 50 
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in soil moisture values for the neighboring cells of a distributed model based on the physical 1 
premises that such jumps are numerical artifacts and hydrologically unrealistic.  Such kinds of 2 
information, which are not explicitly provided during model calibration, act as constraints to 3 
limit the feasible extent of the model parameter space, thus resulting in physically more 4 
meaningful model simulations. As pointed out by Efesteridiatis et al. (2010) “It also offers a 5 
means to partially handle the huge uncertainty resulting from the complexity of model 6 
parameterizations in contrast to data scarcity, which is a global engineering problem that is 7 
getting increasingly severe. Actual research should provide more guidance on the effective 8 
combination of statistical and expert-based evaluation procedures.” 9 
In this study, we present a “constraint-based” strategy to limit the feasible parameter space of 10 
a conceptual hydrologic model, based on relational constraints inferred from expert 11 
knowledge regarding plausible catchment behavior. The approach is applicable to both 12 
lumped/semi-distributed and spatially distributed catchment models. 13 
 14 
2 Constraints in environmental models: 15 
 16 
In the companion paper, Gharari et al. (2014a), we test the importance of constraining the 17 
feasible parameter space. The case study focuses on the meso-scale catchment of the Wark in 18 
Luxembourg covering an area of approximately 82 km2. Three different models with varying 19 
(spatial) complexity are developed to capture hydrological processes across different 20 
delineated landscapes, wetland, hillslope and plateau, following the work by Gharari et al. 21 
(2011). The first model, FLEXA, is a lumped model which considers the whole catchment as a 22 
single unit. A more complex model, FLEXB, takes into account wetlands (i.e., riparian zones), 23 
and considers the rest of the catchment as another unit. The most complex model of all, 24 
FLEXC, distinguishes between the aforementioned landscape classes (wetland, hillslope and 25 
plateau). 26 
A set of parameter and process constraints is defined for each of the three landscape entities, 27 
based on the expert knowledge. Parameter constraints are considered to be a priori because 28 
they can be imposed without actually running the model, while process constraints can only 29 
be imposed after a model is run with selected parameter sets. The number of constraints may 30 
vary from model to model, and here depends on the model complexity. For example all of the 31 
pre-defined constraints (see the following section for more detail) can be applied to the most 32 
complex model, FLEXC, while only a subset of constraints can be applied to FLEXB and just 33 
few constraints to FLEXA. Using the proposed search method, explained later in this study, 34 
we define the behavioral set of parameters that satisfy all the parameter and process 35 
constraints. These resulting parameter sets are termed as “constrained but un-calibrated”. The 36 
performance of the “constrained but un-calibrated” parameter sets for the three models could 37 
then be evaluated based on efficiency measures of Nash-Sutcliffe efficiency, ENS (Nash and 38 
Sutcliffe, 1970). Figure 1 illustrates the 95% uncertainty interval of the model simulations 39 
generated using the “constrained but un-calibrated” parameter sets, and reports the median 40 
Nash-Sutcliffe efficiency (ENS,median) for three model structures. 41 
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 1 
Figure 1- The observed hydrograph and the 95% uncertainty interval of the modeled 2 
hydrograph derived from the complete set of constrained but un-calibrated parameter sets for 3 
the three different model set-ups (a) FLEXA, (b) FLEXB and (c) FLEXC for the two years 4 
(2002-2003) of calibration period. The median performance of the un-calibrated but 5 
constrained models based on Nash-Sutcliffe efficiency (ENS,median) are reported. 6 
 7 
The results show that the constrained and calibrated FLEXC, the most complex model, has 8 
lower predictive uncertainty compared to a (loosely) constrained and calibrated lumped 9 
model, FLEXA. This result contradicts to what appears to be a general belief about the higher 10 
predictive uncertainty of complex models, and shows that if a complex model is properly 11 
constrained then it can perform well during the evaluation period while providing even lower 12 
predictive uncertainty than a simpler model. Result of the recent study by Gao et al. (2014) 13 
had shown that a more complex, but simultaneously constrained and calibrated model, can 14 
provide better predictions of extreme events outside of the calibration period as well as 15 
capturing the flow duration curve in nested catchments for the large scale Heihe basin in 16 
China. Meanwhile, Hrachowitz et al. (in review) reported similar results for a small-scale 17 
catchment in France, using 11 different model structures and 20 different runoff signatures. In 18 
these studies, the introduction of constraints was found to be crucial for ensuring better model 19 
performance, particularly outside of a calibration period. 20 
As mentioned earlier, constraints on a model consists of two main types, a priori constraints 21 
applicable to model parameters (i.e. parameter constraints) and a posteriori constraints on 22 
model states and fluxes (i.e. process constraints; e.g., see Bulygina and Gupta 2009, 2010, 23 
2011). These two types of constrains are elaborated in the following section. 24 
 25 
2.1 Parameter constraints 26 
 27 
Parameter constraints provide information regarding the relationships between parameters of 28 
the same process that correspond to different spatial components (or units or grid cells) of a 29 
(semi-) distributed model. Such constraints can be expressed by equality or inequality 30 
constraints; for example:  31 

, Where G is a dimensionless constant   (1) 32 

, Where G has the same units as A1 and A2  (2) 33 

1
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  (3) 1 
As a simple illustration of this concept, the maximum interception capacity of a forested area 2 
(Imax,forest) can typically be assumed to be larger than the maximum interception capacity of a 3 
grassland area (Imax,grass). 4 
 5 
2.2. Process constraints 6 
 7 
Process constraints provide comparative information regarding the fluxes and/or states of a 8 
model at each time step, or integrated over some specific time period. Examples of such 9 
constraints include: 10 

   (4) 11 

  (5) 12 

Where G is a dimensionless constant. 13 
As an illustration, one can compare the transpiration fluxes from different spatial entities of a 14 
(semi-) distributed model. For example for two regions having similar soil type and aspect, 15 
the region with smaller normalized difference vegetation index (NDVI) is expected to 16 
transpire at a lower rate. 17 
It is worth noting that in either case, parameter sets that satisfy the constraints are not 18 
conditional on the information provided by observations (or measurements) of the output 19 
response of the system (e.g. the runoff hydrograph), and these can therefore be determined 20 
without resorting to model calibration. Moreover, parameter sets that satisfy all of the 21 
constraints (within some acceptable range) can provide insights into how the real system can 22 
be expected to behave, assuming that it corresponds to the expert’s perception of realistic 23 
(behavioral) system properties and dynamics. 24 
Unfortunately, the use of available evolutionary algorithms to search for parameter sets that 25 
satisfy such constraints is complicated by the non-convex and potentially non-continuous 26 
parameter search space that results. In the following section, we propose a stepwise search 27 
strategy that can be used to identify behavioral parameter sets fulfilling the constraints 28 
imposed by expert knowledge. 29 
 30 
3 Methodology and algorithm - Constraint Based Search (CBS): 31 
 32 
The Constraint Based Search (CBS) method is based on a simple parameter sampling 33 
approach to identify the parts of the feasible parameter space that satisfy the set of constraints 34 
as discussed in the previous section. At each step, the algorithm tries to generate new 35 
parameter sets that satisfy the parameter constraints, while only violating the process 36 
constraints to an ‘acceptable’ level. This level could be set-up based on the desired model 37 
performance. The process of search continues until all of the parameter sets generated 38 
properly satisfy the set of imposed process constraints.  39 
In the following description M refers to the total number of process constraints and m, 40 

, is an index indicating how many of the process constraints are satisfied by a 41 

given parameter set; for example, if a parameter set satisfies two process constraints then m 42 
will be equal to 2. The algorithm ultimately generates a set P of n number of behavioral 43 
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parameter sets that satisfy all of the parameter and process constraints (i.e. M=m for all of 1 
members of P). 2 
The search method is as follows; let C be a counter which identifies the minimum number of 3 
process constraints to be satisfied (at a given stage of the search) by the parameter sets 4 
considered to be behavioral, N is the initial sample size, and S is the sample size at each stage. 5 
The user-specified parameter f represents the memory in CBS corresponding to which of the 6 
existing parameter sets should be used to generate the new parameter sets at each stage; 7 
specifically, it indicates the extent to which the algorithm is allowed to relax the acceptable 8 
minimum number of process constraints (C) when considering parameter sets for use in 9 
generating the new samples.1  10 

Step 0: Begin with C = 2. 11 
Step 1: Generate N random samples (parameter sets) across the entire feasible 12 
parameter space using uniform prior distributions. 13 
Step 2: Evaluate the parameter constraints and identify the K1 samples that satisfy 14 
them. 15 
Step 3: Run the model K1 times, one time for each of the samples identified in step 2, 16 
evaluate the M process constraints for each sample and assign a value of m to each 17 
parameter set corresponding to the number of process constraints satisfied. 18 
Step 4: Place the K2 samples that satisfy C or more process constraints in set P, and 19 
the K3 samples that satisfy exactly C-f-1 to C-1 process constraints in set P′. Discard 20 
samples that satisfy C-f-2 or fewer process constraints. 21 
Step 5: Use the members of sets P and P′ to generate S new samples by applying each 22 
of the three Monte Carlo based rules below to generate S/3 of the samples, where θnew 23 
is the newly generated sample. θP and θP′ are samples selected randomly from sets P 24 
and P′ respectively and α is a random value between 0 and 1 which differs for each 25 
newly generated sample. Figure 2 shows a graphical illustration of these rules. 26 

  (6) 27 

  (7) 28 

  (8) 29 

Step 6: Discard all existing members of set P′ which satisfy exactly C-f-1 process 30 
constraints2. 31 
Step 7: Increase C by one and return to step 2. Repeat this process until C becomes 32 
equal to the total number of process constraints (i.e. C=M), or the maximum number 33 
of model evaluation is exceeded, or the size of P is satisfactory.  34 

In step 5, the selection of parameter sets from P and P′ can also be based on the number of 35 
satisfied process constraints or any other distribution different from a uniform distribution. 36 
Note that any member of set P is within the space marked by members of set P′. Using 37 
members of P' to generate new parameter sets (step 5) helps to identify the boundary between 38 
the parameter space that satisfies exactly C-f-1 to C-1 (set P’) and C or more (set P) 39 
constraints. The intention is to obtain a diverse parameter representation for set P by 40 
including the set P′ (Figure 2).  41 
 42 

                                                            
1 C, S, N and f can be changed by the user in accordance with the model, nature and number 
of constraints. We propose C to be set at 2 initially.   
2 In the case that f is set to 0 there won’t be any existing parameter sets in P′ (i.e. P′=Ф).  

(1 )new p pθ αθ α θ= + −

(1 )new p pθ αθ α θ ′= + −

(1 )new p pθ αθ α θ′ ′= + −
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 1 
Figure 2- A conceptual illustration of possible positions of newly generated parameter sets 2 
based on parameter sets randomly drawn from P and P' for a two dimensional parameter 3 
space. The area indicated in yellow represents the set P' that satisfies exactly C-f-1 to C-1 4 
process based constraints. The area indicated in green represents the set of P that satisfies C 5 
or more process constraints. The circles indicate randomly selected parameter sets drawn from 6 
the sets P or P'. Different line styles indicate different parameter generation rules 7 
(corresponding to the different equations). Solid lines represent the first rule where the 8 
parameter sets are randomly selected from set P (Eq.6), dashed lines illustrate the second rule 9 
where one parameter set is randomly selected from P and one from P' (Eq.7), the dash-dot 10 
line represents the third rule where both randomly selected parameter sets are selected from 11 
set P' (Eq.8). Note that due to possible non-convexity of sets of P and P' the newly generated 12 
parameter sets based on the three rules can be outside of sets P and P'. 13 
 14 
The final set P contains parameters that simultaneously satisfy all of the parameter and 15 
process constraints. These parameter sets can be referred to as constrained but un-calibrated, 16 
as they are not calibrated to match observed data sets or target variables (e.g. discharge time-17 
series). Figure 3 presents a graphical illustration of the steps of CBS to find set constrained 18 
but un-calibrated parameter sets. 19 
Note that the set P can also be used to constrain a search for ‘optimal’ parameter sets within 20 
this space of constrained but un-calibrated parameter sets. This can be easily achieved by 21 
evaluating them based on model performance in regard to a target variable (e.g. observed 22 
runoff). The set P can be used as an initial sample for any evolutionary algorithm. In this case, 23 
any new parameter set generated by an optimization algorithm would need to be checked for 24 
both parameter and process constraints and would be retained only if they satisfy the entire set 25 
of constraints. 26 
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  1 
Figure 3- A conceptual illustration of stepwise search for the parameter space satisfying all of 2 
the parameter and process constraints. 3 
 4 
 5 
4 Case study 6 
 7 
A synthetic case study was designed to illustrate the efficiency of the proposed constraint-8 
based search method. First, the lumped model FLEXA (figure 4; see companion paper Gharari 9 
et al., 2014a) was calibrated to runoff data from the Wark catchment for the year 2002-2005, 10 
using year 2001 as warm up period. A multi-criteria calibration was conducted without 11 
imposing any parameter or process constraints, based on three objective functions: (i) the 12 
Nash-Sutcliffe efficiency of the flows (ENS), (ii) the Nash-Sutcliffe efficiency of the logarithm 13 
of the flows (ENS,log) and (iii) the Nash-Sutcliffe efficiency of the flow duration curve 14 
(ENS,FDC). From the parameter sets belonging to the Pareto front, the parameter set having 15 
minimum distance to the origin was taken as the “best” behavioral parameter set (θbest).  16 
A set of (parameter and process) constraints was then designed based on the model 17 
simulations (flux and state trajectories) provided by this best parameter set (θbest). Since the 18 
constraints were constructed so that the best performing parameter set (θbest) is “behavioral”, 19 
we are guaranteed the existence of feasible parameter sets that satisfy all of those constraints. 20 
Table 1 summarizes the parameter and process constraints designed in this manner; note that 21 
the value for each constraint corresponding to θbest is mentioned, along with the acceptable 22 
range limits for each constraint to be used during the search. 23 
 24 
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 1 
Figure 4- The models structure of FLEXA. Precipitation is indicated by P; I and T represent 2 
components of evaporation which are interception and transpiration respectively. Qf and Qs 3 
indicate the fast and slow components that make the total model output. 4 
 5 
Table 1- The “true” values for each of the design constraints (corresponding to θbest) along 6 
with the acceptable limits assigned to each constraint for use during the search. Dry and wet 7 
periods are defined as April to November and December to March respectively. Events in 8 
which the discharge increases with a rate of more than 0.2 mm(3h)-2 are defined as peak 9 
flows. 10 
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The proposed algorithm was then applied to search for parameter sets that satisfy the 3 
constraints mentioned in Table 1. The initial sample size (N) was taken as 50000 parameter 4 
sets. S, f and C were set to be 5000, 1 and 2 respectively. The search was terminated when the 5 
number of generated parameter sets satisfying all of the parameter and process constraints 6 
exceeded 8000. 7 
The parameter sets identified by the proposed search methodology were then compared with 8 
the “best” value (θbest). Figure 5 shows the results using a normalized parameter plot (Gupta et 9 
al 1998), where the red trajectory indicates θbest and the hue of the grey-to-black lines 10 
indicates the number of process constraints satisfied by a given parameter set (the darker the 11 
line, the higher number of process constraints satisfied). The result clearly shows that with the 12 
increasing number of process constraints satisfied, the feasible solution space converges 13 
towards the “best” parameter set (θbest). 14 
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 1 
Figure 5- Normalized parameter plot for FLEXA. Darker colors indicate parameter sets that 2 
satisfy larger numbers of process constraints. The red trajectory indicates θbest. 3 
 4 
A similar comparison (Figure 6) was conducted for the modeled hydrographs associated with 5 
these parameter sets. The hydrograph for the best performing parameter set (θbest) is indicated 6 
in red, and the simulated hydrographs for different parameter sets generated by the proposed 7 
search method are depicted in different shades ranging from grey-to-black (darker colors 8 
indicate that larger numbers of process constraints are satisfied). Clearly, with increasing 9 
number of satisfied process constraints, the hydrographs progressively approach the one 10 
simulated using the θbest. 11 

 12 
Figure 6- 95% uncertainty intervals for parameter sets satisfying different numbers of process 13 
constraints. Darker colors indicate the uncertainty intervals which satisfy more of the process 14 
constraints. The hydrograph generated by θbest is indicated in red. 15 
 16 
Overall the search method generated and evaluated 102106 parameter sets to find 8000 17 
feasible solutions that satisfy all of the nine constraints imposed, which corresponds to  18 
approximately 8% efficiency. In comparison, when a conventional Monte-Carlo sampling 19 
approach was applied using 102106 samples,  none of the samples were found to be able to 20 
satisfy all of the constraints, while only two of the samples were able to satisfy at least 7 of 21 
the 9 process constraints imposed. Clearly, the proposed search method is capable of 22 
relatively rapid convergence towards the region of the parameter space where all of the 23 
constraints are satisfied.  24 
Figure-7 illustrates how quickly the search algorithm is able to locate the behavioral 25 
parameter sets. It depicts the percentages of generated samples satisfying a given number of 26 
process constraints at each step of the search. Darker colors are used to indicate the 27 
proportions of parameter sets that satisfy progressively more of the process constraints (white 28 
indicates none of the parameter constraints being satisfied). The initial sample of 50,000 29 
parameter sets, see region (a) in Figure-7, consists of samples drawn uniformly from the 30 
entire parameter space, of which less than 10% satisfy any of the imposed constraints, and 31 
only a very few satisfy 1, 2 and 3 constraints (progressively darker shades of grey). Each 32 
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progressive step (see region (b) in Figure-7) then consists of S=5000 samples generated 1 
according to the strategy discussed above, in which the value of C is increased by one. 2 
Clearly, at each step, the proportion of newly generated samples satisfying larger numbers of 3 
constraints increases rapidly. Note that when C was set equal to 9 (i.e., the maximum number 4 
of design constraints), the search was continued until the pre-specified 8000 “behavioral” 5 
parameter sets had been found, and then terminated. At this point the fraction of number of 6 
newly generated samples (behavioral parameter sets) that satisfy all of the constraints has 7 
reached approximately 40% (region (c) in Figure-7).  8 
 9 

 10 
Figure 7- Percentages of samples generated at each stage that satisfy a given number of 11 
process constraints. White indicates no satisfied constraints, and progressively darker colors 12 
indicate increasing numbers of satisfied constraints. (a) The initial sampling (N=50000). (b) 13 
Stepwise increase of C, thus requiring an increasing number of process constraints to be 14 
satisfied at each stage, and (c) the final stage of the search when C is set to the maximum 15 
number of design constraints (here 9), at which point the search continues until 8000 16 
behavioral parameter sets have been located.  17 
 18 
Of course, in this illustrative case study, the constraints were specifically designed to 19 
guarantee that the observed hydrograph corresponding to the “best” performing parameter set 20 
lie within a predetermined feasible space. In principle the constraints can be specified without 21 
recourse to the information contained in the discharge time series (as discussed earlier). The 22 
main purpose of this synthetic case study was to illustrate the capability of the proposed CBS 23 
search method to efficiently locate behavioral parameter sets that satisfy user-specified a 24 
priori parameter and a posteriori process constraints. 25 
 26 
5 Conclusions  27 
 28 
One of the most challenging tasks in the development of complex conceptual hydrological 29 
models for simulation of catchment responses to inputs is the realistic specification of 30 
parameter values. We have presented a constraint-based search strategy that facilitates the 31 
incorporation of expert knowledge (i.e. the modeler’s perception of catchment behavior and 32 
characteristics) into the parameter specification process. Because the CBS algorithm does not 33 
require observational data regarding the target system output (e.g. runoff) it can provide a way 34 
forward for better prediction in ungauged basins in absence of streamflow (or other system 35 



Page 13 of 16 
 

output) data for model calibration. As constraints are much easier for understand, rather than 1 
parameters, when discussing system behavior, they can potentially be used as an efficient 2 
tools to bridge the gap in the dialogue between modelers and experimentalists. Further, the 3 
approach can help to provide behaviorally more conceptually realistic parameter sets when 4 
used in conjunction with model calibration. Future study may apply the proposed CBS 5 
algorithm to identify behavioral parameter sets for different kind of hydrologic models in 6 
different regions. A MatlabTM code of the CBS algorithm can be obtained through personal 7 
communication with the lead author. 8 
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