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Abstract. Conceptual environmental system models, such
as rainfall runoff models, generally rely on calibration for
parameter identification. Increasing complexity of this type
of models for better representation of hydrological process
heterogeneity, typically makes parameter identification more
difficult. Although various, potentially valuable, approaches
for better parameter estimation have been developed, strate-
gies to impose general conceptual understanding of how a
catchment works into the process of parameter estimation has
not been fully explored. In this study we assess the effects of
imposing semi-quantitative, relational inequality constraints,
based on expert-knowledge, for model development and pa-
rameter specification, efficiently exploiting the complexity
of a semi-distributed model formulation. Making use of a
topography driven rainfall-runoff modeling (FLEX-TOPO)
approach, a catchment was delineated into three functional
units, i.e. wetland, hillslope and plateau. Ranging from
simple to complex, three model set-ups, FLEXA, FLEXB

and FLEXC were developed based on these functional units,
where FLEXA is a lumped representation of the study catch-
ment, and the semi-distributed formulations FLEXB and
FLEXC progressively introduce more complexity. In spite
of increased complexity, FLEXB and FLEXC allow model-
ers to compare parameters, as well as states and fluxes, of
their different functional units to each other, allowing the
formulation of constraints that limit the feasible parameter
space. We show that by allowing for more landscape-related
process heterogeneity in a model, e.g. FLEXC, the perfor-
mance increases even without traditional calibration. The
additional introduction of relational constraints further im-
proved the performance of these models.
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1 Introduction

Lumped conceptual and distributed physically based mod-
els are the two endpoints of the modeling spectrum, rang-
ing from simplicity to complexity, which here is defined as
the number of model parameters. Each modeling strategy
is characterized by advantages and limitations. In hydrol-
ogy, physically based models are typically applied under the
assumptions that (a) the spatial resolution and the complex-
ity of the model are warranted by the available data, and (b)
the catchment response is a mere aggregation of small scale
processes. However, these two fundamental assumptions are
commonly violated. As a result, the predictive power and
hydrological insight achievable via these models is limited
(e.g. Beven, 1989, 2001; Grayson et al., 1992; Blöschl, 2001;
Pomeroy et al., 2007; Sivapalan, 2006; McDonnell et al.,
2007; Hrachowitz et al., 2013b).
In contrast, lumped conceptual models require less data for
model parameters estimation. This advantage comes at the
expense of considerable limitations. Representing system
integrated processes, model structures and parameters are
not directly linked to observable quantities. Their estima-
tion therefore strongly relies on calibration. To limit parame-
ter identifiability issues arising from calibration, these mod-
els are often oversimplified abstractions of the system, and
if inadequately tested they may act as ”mathematical mari-
onettes” (Kirchner, 2006). They may outperform more com-
plex distributed models (e.g. Refsgaard and Knudsen, 1996;
Ajami et al., 2004; Reed et al., 2004), but often fail to provide
realistic representations of the underlying processes, leading
to limited predictive power (e.g. Freer et al., 2003; Seibert,
2003; Kirchner, 2006; Beven, 2006; Kling and Gupta, 2009;
Andréassian et al., 2012; Euser et al., 2013; Gharari et al.,
2013a).
Various strategies have been suggested to allow for increased
model complexity and to thereby improve the physical re-
alism of conceptual models. These strategies included the
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attempt to incorporate different data sources in the parameter
estimation process, such as ground- and soil water dynamics
(e.g. Seibert and McDonnell, 2002; Freer et al., 2004; Fenicia
et al., 2008a; Matgen et al., 2012; Sutanudjaja et al., 2013),
remotely sensed evaporation (e.g. Winsemius et al., 2008),
snow dynamics (e.g. Parajka and Blschl, 2008) or tracer data
(e.g. Vaché and McDonnell, 2006; Dunn et al., 2008; Son and
Sivapalan, 2007; Birkel et al., 2011; Capell et al., 2012; Hra-
chowitz et al., 2013a). Alternatively, one may seek to extract
more information from available data, for example through
the development of signatures representing different aspects
of the data (e.g. Gupta et al., 1998, 2008; Boyle et al., 2000,
2001; Madsen, 2000; Fenicia et al., 2006; Rouhani et al.,
2007; Khu et al., 2008; Winsemius et al., 2009; Bulygina and
Gupta, 2010; McMillan et al., 2011; Clark et al., 2011; Euser
et al., 2013; He et al., 2014; Hrachowitz et al., 2014).
Traditional parameter estimation of conceptual models re-
lies on the availability of calibration data, which, however,
are frequently not available for the time period or the spatio-
temporal resolution of interest. A wide range of regionaliza-
tion techniques for model parameters and hydrological signa-
tures have been developed to avoid calibration in such data
scarce environments (e.g. Bárdossy, 2007; Yadav et al., 2007;
Perrin et al., 2008; Zhang et al., 2008; Kling and Gupta,
2009; Samaniego et al., 2010; Kumar et al., 2010; Wagener
and Montanari, 2011; Kapangaziwiri et al., 2012; Viglione
et al., 2013). However, it is challenging to identify suit-
able functional relationships between catchment character-
istics and model parameters (e.g. Merz and Blöschl, 2004;
Kling and Gupta, 2009), and only recently did Kumar et al.
(2010, 2013b) show that multi-scale parameter regionaliza-
tion (MPR) can yield global parameters that perform consis-
tently over different catchment scales. In a further study they
successfully transferred parameters obtained by the MPR
technique to ungauged catchments in Germany and the USA
(Kumar et al., 2013a).
Related to these difficulties with parameter identifiability, the
lack of sufficient representation of processes heterogeneity
(i.e. complexity) in conceptual models limits the degree of
realism of these models. The concept of hydrological re-
sponse units (HRU) can be exploited as a strategy for an ef-
ficient tradeoff between model simplicity, required for ad-
equate parameter identifiability, and a sufficient degree of
process heterogeneity. HRUs are units within a catchment,
characterized by a different hydrological function and can be
represented by different model structures or parameters. In
most cases HRUs are defined based on soil types, land cover
and other physical catchment characteristics (e.g. Knudsen
et al., 1986; Flügel, 1995; Grayson and Blöschl, 2000; Kr-
cho, 2001; Winter, 2001; Scherrer and Naef, 2003; Uhlen-
brook et al., 2004; Wolock et al., 2004; Pomeroy et al., 2007;
Scherrer et al., 2007; Schmocker-Fackel et al., 2007; Efstra-
tiadis and Koutsoyiannis, 2008; Lindström et al., 2010; Nal-
bantis et al., 2011; Kumar et al., 2010).
A wide range of studies also points towards the potential

value of using topographical indices, readily available from
digital elevation models (DEM), to account for process het-
erogeneity (e.g. McGlynn and McDonnell, 2003; Seibert,
2003; McGuire et al., 2005; Hrachowitz et al., 2009; Jencso
et al., 2009; Detty and McGuire, 2010; Gascuel-Odoux et al.,
2010). Because standard metrics of landscape organization,
such as absolute elevation, slope or curvature, as used in the
catena concept (Milne, 1935; Park and van de Giesen, 2004),
are often not strong enough descriptors to infer hydrological
function, alternative concepts have been sought. The devel-
opment of derived metrics such as the Topographic Wetness
Index (Beven and Kirkby, 1979) facilitated an important step
forward, being at the core of TOPMODEL (e.g. Beven and
Kirkby, 1979; Beven and Freer, 2001b), which has proven
to be a valuable approach in specific environmental settings
meeting the assumptions of the model. A different descrip-
tor allowing a potentially more generally applicable and hy-
drologically meaningful landscape classification has recently
been suggested by Rennó et al. (2008): the Height Above the
Nearest Drainage (HAND). Nobre et al. (2011) showed the
hydrological relevance of HAND by investigating long term
groundwater behavior and land use.
Explicitly invoking the co-evolution of topography, vegeta-
tion and hydrology, Savenije (2010) argued that catchments,
as self-organizing systems, need to fulfill the contrasting hy-
drological functions of efficient drainage and sufficient water
storage to allow, in a feedback process, topography and veg-
etation to develop the way they did. These distinct hydro-
logical functions can be associated with different landscape
elements or HRUs as defined by HAND and slope, such that
each HRU is represented by a model structure best represent-
ing its function in the ecosystem (cf. Savenije, 2010).
While HAND-based landscape classification can potentially
show a way forward, it does not solve the problem arising
when moving from lumped to HRU-guided, semi-distributed
model formulations: multiple parallel model structures typ-
ically result in an increased number of parameters, which,
when not adequately constrained, may increase equifinal-
ity and thereby limit predictive uncertainty (e.g. Gupta and
Sorooshian, 1983; Beven, 2006; Gupta et al., 2008). To
better satisfy the contrasting priorities of model complex-
ity and predictive power, new strategies are sought to more
efficiently utilize the modelers’ understanding of the sys-
tem, particularly when for constraining the feasible model-
and parameter space is scarce (e.g. Gupta et al., 2008; Wa-
gener and Montanari, 2011; Singh and Bárdossy, 2012;
Andréassian et al., 2012; Gharari et al., 2013a; Hrachowitz
et al., 2013a; Razavi and Tolson, 2013).
In contrast to earlier attempts to constrain models using mul-
tiple evaluation criteria or a priori information on catchment
properties such as land use or soil type (e.g. Koren et al.,
2008), this study tests the utility of a different and so far
underexploited type of constraint, based on a priori under-
standing of the system. The concept of topography-driven
conceptual modeling involves the identification of HRUs that
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operate in parallel. Linked to the technique of regularization
(e.g. Tikhonov, 1963; Engl et al., 1996), this opens the possi-
bility to impose semi-quantitative, expert knowledge based,
relational constraints of catchment behavior on model pa-
rameters, similar to what was suggested by Pokhrel et al.
(2008) and Yilmaz et al. (2008). In contrast to those studies,
the suggested concept introduces relations between parallel
HRUs exclusively based on hydrological reasoning to ensure
that similar processes between parallel model structures are
represented in an internally consistent way, thereby reducing
the feasible parameter space. The advantage of this method
is that there is only minimal need to quantify the constraints
or the prior parameter distributions (e.g. Koren et al., 2000,
2003; Kuzmin et al., 2008; Duan et al., 2006), while allowing
for a meaningful and potentially more realistic representation
of the system in which each model component is, within cer-
tain limits, constrained to do what it is designed to do, rather
than allowing it to compensate for data and model structural
errors.
The objective of this paper is to test the hypothesis that appli-
cation of model constraints based on expert knowledge (re-
garding relations between parameters, fluxes and states) to
semi-distributed conceptual models defined by a hydrologi-
cally meaningful, topography-based, landscape classification
system combined can (1) increase model internal consistency
and thus the level of process realism as compared to lumped
model set-ups, (2) increase the predictive power compared
to lumped model set-ups and (3) reduce the need for model
calibration.

2 Study area and data

The outlined methodology will be illustrated and tested with
a case study using data of the Wark catchment in the Grand
Duchy of Luxembourg. The catchment has an area of 82 km2

with the catchment outlet located downstream of the town of
Ettelbrück at the confluence with the Alzette River (49.85o

N, 6.10o E, Figure 1). With an annual mean precipitation of
850 mm yr−1 and an annual mean potential evaporation of
650 mm yr−1 the annual mean runoff is approximately 250
mm yr−1. The geology in the northern part is dominated by
schist while the southern part of the catchment is mostly un-
derlain by sandstone and conglomerate. Hillslopes are gen-
erally characterized by forest, while plateaus and valley bot-
toms are mostly used as crop land and pastures, respectively.
Drogue et al. (2002) quantified land use in the catchment as
4.3% urban areas, 52.7% agricultural land and 42.9% forest.
In addition they reported that 61% of catchment is covered
by permeable soils while the remainder is characterized by
lower permeability substrate. The elevation varies between
195 to 532 m, with a mean value of 380 m. The slope of
the catchment varies between 0-200%, with a mean value of
17% (Gharari et al., 2011).
The hydrological data used in this study include discharge

measured at the outlet of the Wark catchment, potential
evaporation estimated by the Hamon equation (Hamon,
1961) with temperature data measured at Luxembourg air-
port (Fenicia et al., 2006); and precipitation measured by a
tipping bucket rain gauge located at Reichlange. The tempo-
ral resolution used in this study is 3 h.

3 FLEX-TOPO framework

Realizing the potential of ”reading the landscape” in a ”sys-
tems approach” (cf. Sivapalan et al., 2003),Savenije (2010)
argued that due to the co-evolution of topography, soil and
vegetation, all of which define the hydrological function of
a given location, an efficient, hydrologically meaningful de-
scriptor of topography together with land use could be used
to distinguish different HRUs. HAND, which can be loosely
interpreted as the hydraulic head at a given location in a
catchment, may be such a descriptor as it potentially allows
for meaningful landscape classification (e.g. Rennó et al.,
2008). It was argued previously (Gharari et al., 2011) that,
in Central European landscapes, HAND can efficiently dis-
tinguish between wetlands, hillslopes and plateaus. These
are landscape elements that may also be assumed to fulfill
distinct hydrological functions (HRUs) in the study catch-
ment (Savenije, 2010). Wetlands, located at low elevations
above streams, are characterized by shallow ground water ta-
bles with limited fluctuations. Due to reduced storage ca-
pacity between ground water table and soil surface, poten-
tially exacerbated by the relative importance of the capillary
fringe, wetlands tend to be saturated, and thus connected,
earlier during a rainfall event than the two other landscape el-
ements with arguably higher storage capacity, thus frequently
becoming the dominant source of storm flow during compa-
rably dry periods (e.g. Seibert, 2003; McGlynn et al., 2004;
Molnat et al., 2005; Blume et al., 2008; Anderson et al.,
2010; Kavetski et al., 2011). The dominant runoff process
in wetlands can therefore be assumed to be saturation over-
land flow. In contrast, forested hillslopes, landscape elements
with steeper slopes than the wetlands or plateaus, require
a balance between sufficient storage capacity and efficient
drainage to develop and maintain the ecosystem (Savenije,
2010). A dual system combining sufficient water storage in
the root zone and efficient lateral drainage through preferen-
tial flow networks, controlled by a suite of activation thresh-
olds as frequently observed on hillslopes (e.g. Hewlett, 1961;
Beven and Germann, 1982; Sidle et al., 2001; Freer et al.,
2002; Weiler et al., 2003; McNamara et al., 2005; Tromp-
van Meerveld and McDonnell, 2006a,b; Zehe and Sivapalan,
2009; Spence, 2010) can be seen as the dominant mecha-
nism. Finally, plateaus are landforms with low to moder-
ate slopes and comparably deep ground water tables. In
absence of significant topographic gradients and due to the
potentially increased unsaturated storage capacity, it can be
hypothesized that the primary functions of plateaus are sub-
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surface storage and groundwater recharge (Savenije, 2010).
Although plateaus may experience infiltration excess over-
land flow in specific locations, the topographical gradients
may not be sufficient to generate surface runoff connected to
the stream network (Liu et al., 2012). In the FLEX-TOPO
approach the proportions of the hydrologically distinct land-
scape units, i.e. HRUs, in a given catchment need to be de-
termined on the basis of topographical and land cover infor-
mation. Subsequently suitable model structures and param-
eterizations (read constitutive functions) will be assigned to
the different HRUs (Clark et al., 2009; Fenicia et al., 2011;
Hrachowitz et al., 2014). The integrated catchment output,
i.e. runoff and evaporative fluxes, can then be obtained by
combining the computed proportional outputs from the indi-
vidual HRUs. Note that the three landscape classes tested for
suitability in this study, i.e. wetland, hillslope and plateau
together with their assumed dominant runoff process are de-
signed for the Wark catchment and are likely to be different
for other environmental settings (e.g. Gao et al., 2014).

3.1 Landscape classification

As the objective of FLEX-TOPO is to efficiently extract
and use hydrologically relevant information from worldwide
readily available topographic data, i.e. DEMs, the Height
Above the Nearest Drainage (HAND; Rennó et al., 2008;
Nobre et al., 2011; Vannametee et al., 2014) is a potentially
powerful metric to classify landscapes into HRUs with dis-
tinct hydrological function, as discussed above. Testing a
suite of HAND-based classification methods Gharari et al.
(2011) found that results best matching observed landscape
types could be obtained by using HAND together with the
local slope. Based on a probabilistic framework to map the
desired HRUs which were then compared with in-situ obser-
vations they obtained a threshold for HAND and slope of ap-
proximately 5 m and 11% for the Wark catchment. Follow-
ing that, wetlands were defined to be areas with HAND≤5
m. Areas with HAND>5 m and local slopes>11% were
classified as hillslopes, while areas with HAND>5 m and
slope≤11% were defined as plateaus. The HAND and slope
map of the study catchment together with the classified land-
scape entities (wetland, hillslope and plateau) are presented
in Fig. 1. The proportion of the individual HRUs wetland,
hillslope and plateau are 15%, 45% and 40% respectively.

3.2 Model set up

In this study a lumped conceptual model of the Wark catch-
ment, hereafter referred to as FLEXA, is used as similar
lumped conceptual models are frequently used in catch-
ment hydrology (e.g. Merz and Blöschl, 2004; Clark et al.,
2008; Perrin et al., 2008; Seibert and Beven, 2009; Feni-
cia et al., 2013). The above discussed concept of FLEX-
TOPO (Savenije, 2010) is thereafter tested with a step-
wise increased number of parallel landscape units (FLEXB,

FLEXC), thereby increasing the conceptualized process het-
erogeneity and thus the model complexity. The core of the
three model set-ups is loosely based on the FLEX model
(Fenicia et al., 2006, 2008b).

3.2.1 FLEXA

This model set-up represents the catchment in a lumped
way. The FLEXA model structure consists of four storage
elements representing interception, unsaturated, slow (i.e.
groundwater) and fast responding reservoirs (i.e. preferential
flow and saturation overland flow). A schematic illustration
of FLEXA is shown in Fig. 2a. The water balance and
constitutive equations used are given in Table 2.
3.2.1.1 Interception reservoir (SI): The interception
reservoir is characterized by its maximum storage capacity
(Imax [L]). After precipitation (P [L T−1]) enters this
reservoir the excess precipitation, hereafter referred to as
effective precipitation (Pe [L T−1]), is distributed between
the unsaturated (SU), slow (SS) and fast (SF) reservoirs.
Interception (I [L T−1]) is then dependent on the potential
evaporation (Epot [L T−1]) and the amount of water stored
in the interception reservoir (SI).
3.2.1.2 Unsaturated reservoir (SU): The unsaturated
reservoir is characterized by a parameter that loosely
reflects the maximum soil moisture capacity in the root
zone (SU,max [L]). Part of the effective precipitation (Pe)
enters the unsaturated zone according to the coefficient Cr,
which here is defined by a power function with exponent
β [-], reflecting the spatial heterogeneity of thresholds for
activating fast lateral flows from SF. This coefficient Cr

will be 1 when soil moisture (SU) is lower than a specific
percentage of maximum soil moisture capacity (SU,max)
defined by relative soil moisture at field capacity (FC[-]),
meaning that the entire incoming effective precipitation (Pe)
at a given time step is stored in the unsaturated reservoir
(SU). The soil moisture reservoir feeds the slow reservoir
through matrix percolation (Rp [L T−1]), expressed as a
linear relation of the available moisture in the unsaturated
zone (SU) and the maximum percolation capacity (PPer [L
T−1]). The reverse process, capillary rise (RC), feeds the
unsaturated reservoir from the saturated zone. Capillary rise
(RC [L T−1]) has an inverse linear relation with the moisture
content in the unsaturated zone and is characterized by the
maximum capillary rise capacity (C [L T−1]). Soil moisture
is depleted by plant transpiration. Transpiration is assumed
to be moisture constrained when the soil moisture content
is lower than a fraction Lp [-] of the maximum unsaturated
capacity (SU,max). When the soil moisture content in
the unsaturated reservoir is higher than this fraction (Lp)
transpiration is assumed to be equal to the available potential
evaporation (Epot−I).
3.2.1.3 Splitter and transfer functions: The proportion of
effective rainfall which is not stored in the unsaturated zone,
i.e. 1-Cr, is further regulated by the partitioning coefficient
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(D [-]), distributing flows between preferential groundwater
recharge (RS [L T−1]) to SS and water that is routed to the
stream by fast lateral processes from SF (e.g. preferential
flow or saturation overland flow, RF). Both fluxes are lagged
by rising linear lag functions with parameters Nlagf and
Nlags, respectively (Fenicia et al., 2006).
3.2.1.4 Fast reservoir (SF): The fast reservoir is a linear
reservoir characterized by reservoir coefficient SF.
3.2.1.5 Slow reservoir (SS): The slow reservoir is a linear
reservoir characterized by a reservoir coefficient SS.

3.2.2 FLEXB

As discussed above, a range of process studies suggested that
wetlands can frequently exhibit storage-discharge dynamics
that are decoupled from other parts of a catchment, in partic-
ular due to their typically reduced storage capacity and close-
ness to the stream. FLEXB explicitly distinguishes wetlands
from the rest of the catchment, the remainder (i.e. hillslopes
and plateaus), which is represented in a lumped way, to ac-
count for this difference. The FLEXB model set-up therefore
consists of two parallel model structures which are connected
with a common groundwater reservoir (Figure 2b), similar
to what has been suggested by Knudsen et al. (1986). One
major difference between the two parallel structures is that
capillary rise is assumed to be a relevant process only in the
wetland, while it is considered negligible in the remainder of
the catchment due to the deeper groundwater. Further, since
the wetlands are predominantly ex-filtration zones of poten-
tially low permeability, preferential recharge is considered
negligible in wetlands. The areal proportions of wetland and
the remainder (i.e. hillslope and plateau) of the catchment
are 15% and 85%, respectively (Gharari et al., 2011).

3.2.3 FLEXC

This model set-up offers a complete representation of the
three HRUs in the study catchment: wetland, hillslope and
plateau (Figure 2c). The formulation of the wetland mod-
ule in FLEXC is identical to the one suggested above for
FLEXB. The hillslope HRU is represented by a model struc-
ture resembling the FLEXA set-up. Plateaus are assumed to
be dominated by vertical fluxes, while direct lateral move-
ment in the form of Hortonian overland flow is considered
negligible compared to those generated from hillslope and
wetland HRUs. Therefore the plateau model structure does
not account for these fast fluxes. Analogous to FLEXB, the
FLEXC set-up is characterized by one single groundwater
reservoir linking the three dominant HRUs in this catchment.
The individual proportions of wetland, hillslope and plateau
are 15%, 45% and 40%, respectively (Gharari et al., 2011).
The proportions of these HRUs are used to compute the total
discharge based on the contribution of each landscape unit.
The connection between the parallel structures of FLEXB

and FLEXC is through the surface drainage network (the
stream network) and through the slow (groundwater) reser-
voir.

3.3 Introducing realism constraints in selecting behav-
ioral parameter sets

With increasing process heterogeneity from FLEXA over
FLEXB to FLEXC, the respective model complexities and
therefore the number of calibration parameters also increase.
This, in the absence of sufficient suitable data to efficiently
constrain a model, typically leads to a situation where param-
eters have increased freedom to compensate for errors in data
and model structures, as recently reiterated by Gupta et al.
(2008). In this study, two fundamentally different types of
model constraints were applied to test their value for reduc-
ing equifinality in complex model set-ups, parameter con-
straints and process constraints.

3.3.1 Parameter constraints

Inequality conditions between parameters of parallel model
units, hereafter referred to as parameter constraints, were
imposed before each model evaluation run. These a priori
constraints ensure that the individual parameter values for
the same process in the parallel units, reflect the modeler’s
perception of the system. For example, it can be argued that
the maximum interception capacity (Imax) of a forested HRU
needs to be higher than that of a non-forested one. In the ab-
sence of more detailed information this does not only allow
overlapping prior distributions but it also avoids the need for
quantification of the constraints themselves. In the follow-
ing, a set of parameter constraints imposed on the different
model structure are listed. The applicability of each param-
eter constraint for every model structure is summarized in
Table 3. The subscripts w, h and p indicate parameters for
wetland, hillslope and plateau, respectively.

3.3.1.1 Interception: Different land cover proportions
of individual landscape units, here wetlands, hillslopes and
plateaus, can be used to define the relation between inter-
ception thresholds (Imax) of these individual units. The land
uses are defined as two general classes for this case study,
forested areas and grass or pasture-land areas. The maxi-
mum interception capacity (Imax) for each landscape entity
can be estimated from the proportion of land-use classes and
their maximum interception capacities, selected from their
respective prior distributions as given in Table 1:

Imax,w = awImax,forest +bwImax,cropland (1)

Imax,h = ahImax,forest +bhImax,cropland (2)

Imax,p = apImax,forest +bpImax,cropland (3)

The proportions of forested area are indicated with aw, ah
and ap for wetland, hillslope and plateau and are fixed at
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42%, 60% and 29%, respectively. The proportions of crop-
land and grass land areas are indicated by bw, bh and bp for
wetland, hillslope and plateau and are fixed at 58%, 40% and
71%, respectively. Moreover the parameter sets which are
selected for maximum interception capacity of forest are ex-
pected to be higher than crop- or grassland:

Imax,cropland<Imax,forest (4)

3.3.1.2 Lag functions: Preferential recharge (RS) is
routed to the slow reservoir by a lag function. Due to a deeper
groundwater table on plateaus it can be assumed that the lag
time for (RS) is longer for plateaus than for hillslopes. It can
also be assumed that the lag function used for fast reservoir
for hillslopes is longer than for wetlands due to the on av-
erage higher distance and therefore longer travel times from
hillslopes to the stream.

Nlags,w ≤Nlags,h ≤Nlags,p (5)

3.3.1.3 Soil moisture capacity: Wetlands have shallower
groundwater tables than the other two landscape entities in
this study. Therefore the unsaturated zone of wetland should
have a lower maximum soil moisture capacity (SU,max) than
hillslopes and plateaus. Moreover, as hillslopes in the study
catchment are predominantly covered with forest, it can, due
to the deeper root zone of forests, be expected that the maxi-
mum unsaturated soil moisture capacity (SU,max) in the root
zone of hillslopes is deeper than the other two landscape en-
tities.

SU,max,w<SU,max,p<SU,max,h (6)

3.3.1.4 Reservoir coefficients: The reservoir coefficient
of the wetland fast reservoir (KF) is assumed to be higher
than reservoir coefficient of the hillslope fast reservoir as,
once connectivity is established, the flow velocities of satu-
ration overland flow in wetlands are assumed to exceed the
integrated flow velocities of preferential flow networks (cf.
Anderson et al., 2009). Likewise, the reservoir coefficient
of the slow reservoir should be lower than both wetland and
hillslope fast reservoirs.

KS <KF,h <KF,w (7)

The reservoir constraints can be applied to all models while
the other constraints can only be applied to FLEXB and
FLEXC.

3.3.2 Process constraints

In contrast to the parameters constraints discussed above,
which are set a priori, process constraints are applied a pos-
teriori. Only parameters which generate model flux and
state dynamics in agreement with the modeler’s perception
of these dynamics are retained as feasible. Hence, while
with the use of parameter constraints there is no need to run

the model for rejected parameter sets, here it is necessary to
run the model to evaluate it with respect to the process con-
straints.
Process constraints are defined for dry and wet periods as
well as for peak-, high- and low flows. Here wet periods
were defined to be the months from November to April, while
the dry periods in the study catchment occur between May
and October. The thresholds for distinguishing between high
and low flow were chosen to be 0.05 and 0.2 mm(3h)−1 re-
spectively for dry and wet periods. Furthermore, events dur-
ing which discharge increases with a rate of more than 0.2
mm(3h)−2 are defined as peak flows. Note that in the follow-
ing the subscripts peak, high and low indicate peak-, high-
and low flows. The applicability of each process constraint
for every model structure is summarized in Table 3.

3.3.2.1 Transpiration: Transpiration typically exhibits a
clear relationship with the normalized difference vegetation
index (NDVI, Szilagyi et al., 1998). Therefore the ratios be-
tween NDVI values of different landscape units can serve as
constraints on modeled transpiration obtained from the indi-
vidual parallel model components. A rough estimation of the
ratio between transpiration from plateau and hillslope can be
derived from LANDSAT 7 images. For this ratio seven cloud
free images were selected (acquisition dates of 20/4/2000,
6/3/2000, 11/9/2000, 18/2/2001, 6/3/2001, 26/3/2001 and
29/8/2001). The ratio of transpiration between hillslope and
plateau (Rtrans) can be estimated by assuming a linear rela-
tion (Szilagyi et al., 1998) with slope of α and intercept zero
between transpiration and mean NDVI for each landscape
unit (µNDVI).

Rtrans =
αµNDVI,h

αµNDVI,p
=
µNDVI,h

µNDVI,p

Mean (µRtrans) and standard deviation (σRtrans) of the tran-
spiration ratio (Rtrans) can be used to estimate acceptable
limits of the transpiration ratios for hillslope and plateau.
Therefore the annual transpiration can be confined between
two values as follows:

µRtrans−σRtrans <

∑
Thdt∑
Tpdt

<µRtrans +σRtrans

Based on the mean (µRtrans=1.2) and standard deviation
(σRtrans=0.2) of the seven LANDSAT 7 images used the
following process constraint on transpiration from hillslope
(Th) and plateau (Tp) was imposed:

1.0<

∑
Thdt∑
Tpdt

< 1.4

Similar constraints can be imposed between transpiration
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fluxes from wetland, hillslope or plateau; however, the
spatial resolution of LANDSAT 7 data with resolution of 30
meters is coarser than the required 20-meter DEM resolution
for distinguishing wetlands from other landscape entities
(Gharari et al., 2011).

3.3.2.2 Runoff coefficient: The runoff coefficient is a fre-
quently used catchment signature (e.g. Sawicz et al., 2011;
Euser et al., 2013) and can be used as a behavioral constraint
(e.g. Duan et al., 2006; Winsemius et al., 2009). In this study
the runoff coefficients of dry and wet periods as well as the
annual runoff coefficient were used. Parameters that result
in modeled runoff coefficients that substantially deviate from
the observed ones are therefore discarded. In case of absence
of suitable runoff data, the long-term mean annual runoff co-
efficient can be estimated from the regional Budyko curve us-
ing for example the Turc-Pike relationship (Turc, 1954; Pike,
1964; Arora, 2002). However in this study the runoff coef-
ficients of each individual year, and their respective dry and
wet periods was used and determined the mean and standard
deviation of the runoff coefficients for these periods. Here,
as a conservative assumption, the limits are set to three times
the standard deviation around the mean runoff coefficient.
Note that the runoff coefficient is the only process constraint
that is not related to model structure in this study and can
therefore also be applied to the lumped FLEXA set-up.∑

Qm∆t∑
P∆t

< 0.43 (11)

∑
Qm∆t∑
P∆t

> 0.16 (12)∑
Qm,dry∆t∑
Pdry∆t

< 0.36 (13)∑
Qm,dry∆t∑
Pdry∆t

> 0 (14)∑
Qm,wet∆t∑
Pwet∆t

< 0.71 (15)∑
Qm,wet∆t∑
Pwet∆t

> 0.40 (16)

3.3.2.3 Preferential recharge: The slow reservoir can be
recharged by both preferential and matrix percolation from
the unsaturated reservoirs. Here, hillslopes and plateaus con-
tribute to the slow reservoir by preferential recharge. It can
be assumed that in a realistic model setup the long term con-
tribution volume of preferential recharge ratio between hill-
slope and plateau should not be unrealistically high or low.
For example, it can be assumed unrealistic that the ratio is
zero or infinity, meaning that one landscape unit is constantly
feeding the slow reservoir while another one is not contribut-
ing at all. To avoid such a problem, a loose and very conser-
vative constraint was imposed on the ratio of contribution of

the two fluxes.

0.2<

∑
RS,h∆t∑
RS,p∆t

< 5 (17)

3.3.2.4 Fast component discharge: During dry periods,
hillslopes and plateaus can exhibit significant soil moisture
deficits, limiting the amount of fast runoff generated from
these landscape elements. In contrast, due to their reduced
storage capacity, wetlands are likely to generate fast flows at
lower moisture levels, thus dominating event response dur-
ing dry periods (cf. Beven and Freer, 2001a; Seibert, 2003;
Molnat et al., 2005; Anderson et al., 2010; Birkel et al.,
2010). It can thus be assumed that peak flows during dry
periods the fast component of wetlands (Qf,w,dry,peaks) con-
tributes to runoff more than the fast component of hillslopes
(Qf,h,dry,peaks). In contrast, high flows during wet periods
are predominantly generated by fast reaction from hillslopes
(Qf,h,wet; Qf,h,wet,high) rather than of wetland (Qf,w,wet;
Qf,w,wet,high). This process constraint is also applied to
FLEXB. ∑

Qf,h,dry,peaks∆t∑
Qf,w,dry,peaks∆t

< 1 (18)

∑
Qf,h,wet,high∆t∑
Qf,w,wet,high∆t

> 1 (19)

∑
Qf,h,wet∆t∑
Qf,w,wet∆t

> 1 (20)

3.3.3 Calibration algorithm and objective functions

Based on uniform prior parameter distributions as well
as on the parameter- and process constraints the model
was calibrated using MOSCEM-UA (Vrugt et al., 2003).
However penalizing the objective function(s) based on the
number of unsatisfied constraints, can lead to non-smooth
objective functions that can cause instabilities in the search
algorithm and the generation of invalid results. To resolve
this issue, a recently developed stepwise search algorithm
was used to find parameter sets that satisfy both parameter-
and process constraints (Gharari et al., 2013b, this issue),
and these parameter sets were then used as initial sampling
parameter sets for MOSCEM-UA (instead of traditional
Latin Hypercube sampling).
The models were evaluated on the basis of three different
objective functions to emphasize different characteristics
of the system response: (i) the Nash-Sutcliffe efficiency of
the flows (Nash and Sutcliffe, 1970, ENS), (ii) the Nash-
Sutcliffe efficiency of the logarithm of the flows (ENS,log)
and (iii) the Nash-Sutcliffe efficiency of the flow duration
curve (ENS,FDC). These criteria evaluate the models’ ability
to simultaneously reproduce high flows, low flows and flow
duration curves respectively. While the year 2001 was used
as warm up period, the model set-ups were constrained and
calibrated for the year 2002-2005 and validated for year
2006-2009 (see below) and vice versa (see Supplementary
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Information).

3.4 Model validation and parameter evaluation

To assess the value of incorporating parameter and process
constraints in increasingly complex models a four-step pro-
cedure was followed.

3.4.1 Evaluating models with constrained but uncali-
brated parameter sets

First, all parameter sets that satisfy all the applied constraints
were evaluated for their ability to reproduce the observed hy-
drograph; these parameter sets are referred to as constrained
but uncalibrated parameter sets because they were obtained
without any calibration to the observed hydrographs. Using
these parameter sets, the mean performance of the three
constrained but uncalibrated models FLEXA, FLEXB and
FLEXC, was evalurated using the three objective functions
(ENS, ENS,log, ENS,FDC). Note that FLEXA , FLEXB and
FLEXC have an increasing number of constraints and so
this tests both whether the higher complexity models also
result in better model performance and how the predictive
uncertainty is affected by increased complexity and model
realism. To investigate how well the hydrographs match
the observed hydrograph, the simulated 95% uncertainty
intervals were generated and uncertainty was estimated as
the area contained within the 95% uncertainty intervals.
To further study the effect of constraints on the performance
and uncertainty of constrained but un-calibrated parameter
sets, three benchmark models were considered in which the
aforementioned constraints were not applied. This simply
means the models can produce any possible output without
any restriction on parameters, fluxes and states. However
the percentages of each landscape for model FLEXB and
FLEXC remains intact.

3.4.2 Evaluating models with constrained and calibrated
parameter sets

In the second step, the three models FLEXA, FLEXB and
FLEXC were calibrated while being constrained to the pa-
rameter space that satisfies all of the imposed parameter and
process constraints. Calibration was perfomed using a multi-
objective strategy (ENS, ENS,log, ENS,FDC), and the ob-
tained Pareto optimal model parameters are referred to as
constrained and calibrated.
Uncertainty intervals were evaluated based on the con-
strained and calibrated Pareto members and the uncertainty
was estimated on the basis of the area within the uncertainty
bands.
Again, the results were compared to the calibrated but un-
constrained benchmarks.

3.4.3 Comparison of model performance and uncer-
tainty for constrained but un-calibrated and con-
strained and calibrated parameter sets

To assess the added value of incorporating constraints in
higher complexity models, the performance and uncertain-
ties of the three models FLEXA, FLEXB and FLEXC were
compared for both the constrained but un-calibrated and the
constrained and calibrated case during calibration and vali-
dation periods.

3.4.4 Comparison of modeled hydrograph components
for different model structures

One of the main reasons for imposing constraints on model
parameters is to ensure realistic internal dynamics. Compar-
ing different fluxes contributing to the modeled hydrograph
can provide insights into the performance of imposed con-
straints on the model. The effect of imposing behavioral
constraints on fast and slow components of the three models
structures, FLEXA, FLEXB and FLEXC is compared visu-
ally. The fast component of the lumped model, FLEXA, is
compared with fast components of FLEXB that are wetland
and remainder of catchment and fast components of FLEXC

which are wetland and hillslope. This visual comparison is
based on normalized average contribution of each component
for Pareto optimal parameter sets in every time step.

4 Results and discussion

4.1 Evaluating the performance of constrained but un-
calibrated parameter sets

The median and the 95% uncertainty intervals of the perfor-
mance of modeled hydrographs for constrained but uncali-
brated parameter sets is presented in Table 4 for the 2002-
2005 calibration and 2006-2009 validation periods together
with their benchmarks (unconstrained). The lumped FLEXA

model has only one parameter and one process constraint,
i.e. the reservoir coefficient and the runoff coefficient, re-
spectively. Hence, this model is free within the limits of this
relatively weak condition, resulting in a wide range of feasi-
ble parameter sets, many of which cannot adequately repro-
duce the system response. As a consequence, the overall per-
formance is poor (ENS,median=0.18, ENS,log,median=0.05,
ENS,FDC,median=0.39) (Table 4, Figure 3).
FLEXB, run with the set of constrained but uncali-
brated parameters shows a substantial improvement in over-
all performance (ENS,median=0.56, ENS,log,median=0.33,
ENS,FDC,median=0.87) compared to FLEXA, as FLEXB not
only allows for more process heterogeneity but, more im-
portantly, it is conditioned with an increased number of con-
straints.
The additional process heterogeneity and constraints al-
lowed by FLEXC, results in the highest overall perfor-
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mance for all three objective functions (ENS,median=0.66,
ENS,log,median=0.36, ENS,FDC,median=0.93) (Table 4, Fig-
ure 3).
These results clearly illustrate that the imposed relational
constraints force the model and its parameters towards a
more realistic behavior, which significantly improves model
performance. Additionally, the comparison of result of the
three models with their unconstrained benchmarks (Table 4)
clearly shows that the incorporation of constraints improves
the median performance and 95% uncertainty intervals of all
the models by rejecting parameter sets that violate the con-
straints and cannot reproduce certain aspects of the response
patterns. In addition, the comparison between the uncon-
strained benchmark models themselves suggests that more
complex model structures improve the performance, imply-
ing that model structures themselves already contain a con-
siderable degree of information even in absence of any con-
straints or calibration attempts.
The 95% uncertainty areas mapped by simulated hydro-
graphs indicate that FLEXC, which might be expected to
produce the highest uncertainty interval due to its complex-
ity, is providing a lower uncertainty compared to FLEXB.
Although FLEXC cannot outperform FLEXA in terms of a
narrower uncertainty interval in the validation period, overall
performance of this model is better than FLEXA as discussed
earlier (Table 4, Figure 3).
Flipping calibration and validation gave equivalent results,
which are, for brevity, provided in the Supplementary mate-
rial (Table S1; Figure S1).

4.2 Evaluating the performance of constrained and cali-
brated parameter sets

The comparison of the constrained and calibrated model
set-ups shows that all three models set-ups can reproduce
the hydrograph similarly well (Table 5, Figure 4). FLEXA

exhibits a slightly better calibration performance, based on
ENS,log,median, compared to the other two model set-ups.
This can partly be attributed to the lower number of pa-
rameters which leads, with the same number of samples, to
a more exhaustive sampling of the parameter space and a
smoother identification of Pareto optimal solutions. In addi-
tion, FLEXA has the lowest number of imposed constraints,
i.e. only the runoff coefficient and one parameter constraints,
compared to FLEXB and FLEXC. This allows the model
more freedom in exploiting the parameter space to produce
mathematically good fits between observed and modeled sys-
tem response in the calibration period.
For the validation period, arguably more important for model
assessment because it provides independent information on
model consistency (cf. Klemeš, 1986; Andréassian et al.,
2009; Euser et al., 2013) and predictive uncertainty, the per-
formances of the three model set-ups exhibit quite different
patterns (Table 5). The simplest model, the lumped FLEXA,
is characterized by performance deterioration from calibra-

tion to validation. In contrast, FLEXB and FLEXC exhibit a
performance improvement in the validation period. Although
the increase in performance is subjected to the nature of the
forcing and observed discharge data in calibration and val-
idation period, and formally no meaningful comparison be-
tween Nash-Sutcliffe efficiencies for different periods can be
made, these results nevertheless indicate that the more com-
plex model structure together with its constraints performs in
a more stable manner outside of the calibration period. When
flipping the calibration and validation periods the difference
between model performance in calibration and validation is
not as strong (Supplementary material, Table S2). A pos-
sible explanation could be that the observed data quality is
not informative enough for calibration (period 2002-2005).
Constraints then prevent the model to over-fit and thus enable
the models to maintain a more reliable performance outside
the calibration period. In contrast, if the calibration period
is informative (period 2006-2009), constraints may not af-
fect performance outside the calibration period that much.
However constraints remain necessary to reduce model un-
certainty both during calibration and validation. In addition
to formal performance and uncertainty measures, it can be
seen visually in Figure 4 that FLEXC can adequately pre-
dict the high flows during a dry period, while FLEXA misses
most of the peaks.

4.3 Comparison of constrained but uncalibrated and
constrained and calibrated models

The following comparison of the performances of FLEXA,
FLEXB and FLEXC for constrained but uncalibrated, con-
strained and calibrated and their unconstrained benchmarks
is focused on ENS only, for the reason of brevity (Figure 5,
gray box plots indicate the benchmark models). In Figures
5a and 5b the model performances based on the constrained
but un-calibrated parameter sets, that satisfy the full set of
constraints, are shown for the calibration and validation pe-
riods. As discussed in detail above, although un-calibrated,
increasing the number of constraints from FLEXA to FLEXC

increases the overall performance of the models while reduc-
ing uncertainty (Figures 5c and 5d; note that these are zoom-
ins). Further, comparison to the uncalibrated benchmarks,
suggests that improving the model structure based on land-
scape units in itself substantially increases the performance
of the model. However additional constraints will eventually
reduce the uncertainty and improve the performance (Figure
5a and 5b).
Figure 5e compares model performance based on con-
strained and calibrated parameter sets for the calibration pe-
riod. When comparing the individual model performances of
the constrained and calibrated models during the validation
period (Figure 5f), it can be seen that FLEXA not only shows
the strongest performance deterioration compared to the cali-
bration period but also that FLEXA is also the model with the
poorest performance in the validation period. This implies
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that although FLEXC is the most complex model, the realism
constraints together with landscape related structure imposed
on this model generate the most reliable outputs when used
for prediction, i.e. in the validation period. When the calibra-
tion and validation periods are switched, the performance of
FLEXC remains comparable to above, although in this case
FLEXA performs best during validation (see supplementary
material Figure S5). This strongly underlines that the widely
accepted notion of complex models necessarily being subject
to higher predictive uncertainty is not generally valid when
the feasible parameter space can be constrained based on as-
sumptions of realistic functionality of a catchment. As ex-
plained earlier, this also indicates that when the data of the
calibration period are not sufficiently informative, imposing
constraints will force the model to perform better outside the
calibration period.
In addition, a second crucial aspect was revealed by compar-
ing constrained but un-calibrated and constrained and cal-
ibrated models. It can be seen that constrained but uncal-
ibrated FLEXC, shows significant improvement in perfor-
mance approaching the performance of the calibrated lumped
model, FLEXA. Interestingly, it was found that in valida-
tion the constrained but uncalibrated FLEXC can, depend-
ing on the performance measure used and the information
content of the calibration period (i.e. climatic variability
and data quality), reach the performance level of the con-
strained and calibrated FLEXA (Figs.5 and S5). This high-
lights the value of semi- and non-quantitative hydrological
expert knowledge for finding suitable model parameter sets
for ungauged basins.

4.4 Comparison of flow contributions from different
model components

The comparison of the fluxes generated from the individual
model components in the three model set-ups helps to as-
sess to which degree the model internal dynamics reflect the
modeler’s perception of the system and thus to a certain de-
gree the realism of the models.
Fast and slow responses of each tested model set-up have
been visually illustrated in Fig. 6. Predominance of slow re-
sponses of all the three models are indicated by green color;
predominance of fast responses of FLEXA, fast responses of
the remainder of the catchment of FLEXB and fast responses
of hillslope of FLEXC is indicated by red color; wetland fast
responses of FLEXB and FLEXC are indicated by predomi-
nance of blue color.
The colors in Fig. 6 are an illustration using three colors
(red, green and blue) for the models’ responses based on their
weight of contribution to the modeled runoff. As it can be
seen in Fig.6a the fast component of FLEXA is dominant just
during peak flows and even the recession shortly after peak
flows are accounted for mainly by ground water. Analysis
of the individual model components computed by Pareto op-
timal parameter sets (not shown here for brevity), indicates

that some Pareto optimal parameters can generate peak flows
by predominant contributions from slow responses while fast
reaction tends to be inactive during these events.
In accordance with the perception of the system that wet-
lands are predominantly responsible for peak flows during
dry conditions, Fig.6b and c show that wetland fast responses
in FLEXB and FLEXC control the rapid response during wet-
ting up periods (dry to wet transition), before hillslope fast
processes become more important at higher moisture lev-
els. When the system is saturated the hillslope contribution
to modeled runoff becomes significantly higher compared to
the wetland response. Note that the response of the wetland
may not correspond well to individual events, as a conse-
quence of the fact that the corresponding constraint was set
for an aggregated period.

4.5 Wider implications

The results of this study quite clearly indicate that discretiz-
ing the catchment into hydrological response units (HRUs)
and incorporating expert knowledge in model development
and testing is a potentially powerful strategy for runoff pre-
diction, even where insufficient data for model calibration
(e.g. Koren et al., 2003; Duan et al., 2006; Winsemius et al.,
2009) or only comparatively unreliable regionalization tools
are available (e.g. Wagener and Wheater, 2006; Bárdossy,
2007; Parajka et al., 2007; Oudin et al., 2008; Laaha et al.,
2012). It was found that the performance and the predictive
power of a comparatively complex uncalibrated conceptual
model, based on posterior parameter distributions obtained
merely from relational, semi- and non-quantitative realism
constraints inferred from expert knowledge, can approach or
even be as efficient as the calibration of a lumped conceptual
model (Fig. 5, Supplementary material Figure S3).
Typically it is expected that, if not warranted by data, models
with higher complexity suffer from higher predictive uncer-
tainty. As stated by Beven (2001): ”More complexity means
more parameters, more parameters mean more calibration
problems, more calibration problems will often mean more
uncertainty in the predictions, particularly outside the range
of the calibration data”. Thus, more parameters would allow
better fits of the hydrograph but would not necessarily imply
a better and more robust understanding of catchment behav-
ior or more reliable predictions.
A complex model may include many processes, i.e. hypothe-
ses, which can usually not be rigorously tested with the avail-
able data. However, a wide range of previous studies has
demonstrated that hydrologically meaningful constraints can
help to limit the increased uncertainty caused by incorporat-
ing additional processes, i.e. parameters (e.g. Yadav et al.,
2007; Zhang et al., 2008; Kapangaziwiri et al., 2012). These
studies generally include a large set of catchments and try
to relate model parameters to catchment characteristics. Al-
though regional constraints are important, the importance of
expert knowledge on the catchment scale, which leads to bet-
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ter understanding of hydrological behavior is highlighted in
this study.
In a similar attempt, Pokhrel et al. (2008, 2012) demonstrated
use of regularization for model parameters and reduction
of model parameter space dimensionality by linking model
parameters using super-parameters to catchment character-
istics. However, no explicit hydrological reasoning is typ-
ically applied for such ”regularization rules” (e.g. Pokhrel
et al., 2012). On the other hand, Kumar et al. (2010, 2013b)
parameterize and successfully regionalize their models us-
ing empirical transfer functions with global parameters, de-
veloped from extensive literature study and iterative testing
in a large sample of catchments In contrast, the use of re-
lational parameter- and process constraints, as presented in
this study, is based on semi-quantitative, hydrologically ex-
plicit and meaningful reasoning avoiding the need for empir-
ical transfer functions to link catchments characteristics and
model parameters.
Including prior knowledge for parameters of physically-
based models for estimating runoff in ungauged basins was
quite successfully investigated in the past (e.g. Ott and Uh-
lenbrook, 2004; Vinogradov et al., 2011; Fang et al., 2013;
Semenova et al., 2013). These studies specifically indicate
that calibration can be replaced by prior information which is
a significant contribution to Predictions in Ungauged Basins
(PUB). While physically-based models need detailed infor-
mation of catchment behavior for model parameters, the here
proposed semi-distributed conceptual modeling framework,
exploiting relational constraints, can be more efficiently set
up using the least prior information necessary. In this study,
the performances and uncertainties of the three tested model
set-ups for constrained but uncalibrated parameters indicate
the potential of the presented FLEX-TOPO framework for
Predictions in Ungauged Basins (PUB). Hence, this frame-
work can efficiently use expert knowledge for improving
model parameter value selection in complex conceptual hy-
drological models, not only to increase model performance
but also to reduce model predictive uncertainty even in the
absence of calibration.
It should be kept in mind that the conclusions of this study re-
main at this point only valid for the study catchment. To gen-
eralize the findings of this study more rigorous tests should
be set up (Andréassian et al., 2009) which expand this pre-
sented concept for different time series of a catchment and
also a larger set of catchments such as in recent work of
Gao et al. (2014) and Hrachowitz et al. (2014). Some further
challenges that remain, include the need to formulate generic
constraints for any catchment based on available data in an
automated procedure. Likewise it will be necessary to de-
velop a better understanding of model sensitivities to differ-
ent constraints and of the effectiveness and reliability of indi-
vidual constraints. It is also emphasized that the constraints
introduced in this study are based on the authors’ subjective
understanding of catchment behavior and can and should be
discussed further. However, we would like to stress the no-

tion that reaching an agreement on the relations between pa-
rameters and fluxes in different landscape units is potentially
much easier than finding the most adequate parameter values
together with associated uncertainties for a conceptual model
based on field observations or available data on geology or
soil types.

5 Conclusions

This study has tested whether a topography-driven semi-
distributed formulation of a catchment-scale conceptual
model, conditioned by expert knowledge based relational
parameter- and process constraints, can increase the level
of process realism and predictive power while reducing the
need for calibration.
It was found that:

1. The performance of models, although uncalibrated, im-
proves by accounting for different topography-based
hydrological response units, even if this introduces ad-
ditional complexity.

2. Imposing relational parameter and process constraints
improves the performance of uncalibrated models and
reduces their uncertainty. This illustrates the potential
value of the combined use of higher complexity mod-
els and relational constraints for prediction in ungauged
basins, where no time series are available for model cal-
ibration.

3. Due to the reduced feasible parameter space, the search
for behavioral parameter sets focuses on the feasible pa-
rameter space only.

4. Imposing constraints prevents the model from over-
fitting on calibration time series and therefore enables
the model to more reliably perform outside the calibra-
tion period.
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Liu, M., Bárdossy, A., Li, J., and Jiang, Y.: Physically-based mod-
eling of topographic effects on spatial evapotranspiration and soil
moisture patterns through radiation and wind, Hydrology and Earth
System Sciences, 16(2), 357–373, doi:10.5194/hess-16-357-2012,
http://www.hydrol-earth-syst-sci.net/16/357/2012/, 2012.

Madsen, H.: Automatic calibration of a conceptual rainfallrunoff
model using multiple objectives, Journal of Hydrology, 235(3-
4), 276–288, doi:10.1016/S0022-1694(00)00279-1, http://www.
sciencedirect.com/science/article/pii/S0022169400002791, 2000.

Matgen, P., Fenicia, F., Heitz, S., Plaza, D., de Keyser, R., Pauwels,
V. R., Wagner, W., and Savenije, H.: Can ASCAT-derived soil
wetness indices reduce predictive uncertainty in well-gauged ar-
eas? A comparison with in situ observed soil moisture in an as-
similation application, Advances in Water Resources, 44(0), 49–65,
doi:http://dx.doi.org/10.1016/j.advwatres.2012.03.022, http://www.
sciencedirect.com/science/article/pii/S0309170812000772, 2012.

McDonnell, J. J., Sivapalan, M., Vaché, K., Dunn, S., Grant, G., Hag-
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Singh, S. K. and Bárdossy, A.: Calibration of hydrological models
on hydrologically unusual events, Advances in Water Resources,
38(0), 81–91, doi:10.1016/j.advwatres.2011.12.006, http://www.
sciencedirect.com/science/article/pii/S0309170811002351, 2012.

Sivapalan, M.: Pattern, Process and Function: Elements of a Uni-
fied Theory of Hydrology at the Catchment Scale, John Wiley
& Sons, Ltd, doi:10.1002/0470848944.hsa012, http://dx.doi.org/10.
1002/0470848944.hsa012, 2006.
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Fig. 1. (a) Location of the Wark catchment in the Grand Duchy of Luxembourg, (b) digital elevation model (DEM) of the Wark catchment
with cell size of 5 m×5 m, (c) local slopes (%) in the Wark catchment derived from a DEM with resolution of 5 m×5 m [-], (d) HAND of
the Wark Catchment derived from a DEM with resolution of 5 m×5 m [m], (e) the classified landscape units wetland, hillslope and plateau
using the combined HAND and slope thresholds of 5 m and 11%, respectively (from Gharari et al., 2011).
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but un-calibrated parameter sets for the three different model set-ups (a) FLEXA, (b) FLEXB and (c) FLEXC for two years (2002-2003) of
calibration.
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period.
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Fig. 5. Model performance (ENS) based on constrained but uncalibrated (a-d) and constrained and calibrated (e-f) parameter sets for
calibration (2002-2005) and validation (2006-2009) periods for the three different model set-ups FLEXA, FLEXB and FLEXC. Note that (c)
and (d) are zoom-ins of (a) and (b) and the gray box-plots represent the unconstrained benchmark models. The box plots indicate the median
value in red and 25% and 75% quartile. Whiskers represent the 1.5 times the interquartile range (IQR) and the red crosses show outliers.
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Table 1. Uniform prior parameter distributions for the three model
set-ups

FLEXA F LEXB F LEXC

Unit wetland remainder wetland hillslope plateau
2Imax 2mm Interception storage for forest 2-5

Interception storage for grassland and pasture 1-3
SU,max mm Maximum unsaturated storage 0-500 0-100 0-500 0-100 0-500 0-500
β - Soil moisture distribution exponent 0-5 0-5 0-5 0-5 0-5 0-5
LP - Transpiration coefficient 0.5 0.5 0.5 0.5 0.5 0.5
FC - Relative soil moisture at field capacity 0-0.3 0 0-0.3 0 0-0.3 0-0.3
D - Partitioning fast and slow reservoir 0-1 0 0-1 0 0-1 1
C mm(3h)−1 Maximum capillary rise rate 0 0-0.3 - 0-0.3 - -
Pper mm(3h)−1 Maximum percolation rate 0-0.5 0-0.5 0-0.5 0-0.5 0 0-0.5
Nlagf 3h Lag time for flux to fast reservoir 1-7 1-3 1-5 1-3 1-5 -
Nlags 3h Lag time for preferential recharge 1-7 - 1-7 - 1-7 1-7
KF 3h−1 Fast reservoir coefficient 0-1 0-1 0-1 0-1 0-1 -
KS 3h−1 Slow reservoir coefficient 0.005-0.05 0.005-0.05 0.005-0.05

*Inferred from Breuer et al. (2003)
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Table 2. Water balance and constitutive equations used in FLEXA

Reservoir Water balance equations Constitutive relations

Interception reservoir ∆SI
∆t

=P −Pe−I Pe =

{
0

(SI−Imax)/∆t
SI <Imax

SI = Imax

I=
{
Epot

SI/∆t
Epot∆t<SI

Epot∆t≥SI

Unsaturated reservoir ∆SU
∆t

=Ru−T −RP +RC Ru =CrPe Cr =

1−
[

(SU−SU,maxFC)
(SU,max−SU,maxFC)

]
1

β

SU≥SU,maxFC

SU <SU,maxFC

T =KT(Epot−I) KT =

{[
SU

SU,maxLp

]
1

SU <SU,maxLp

SU≥SU,maxLp

Rp = [SU/SU,max]Pper

RC = [1−(SU/SU,max)]C

Fast reservoir ∆SF
∆t

=RF,lag−Qf RF = (1−D)(1−Cr)Pe

RF,lag =RF ∗Nlagf

Qf =KFSF

Slow reservoir ∆SS
∆t

=RS,lag−Qs +RP−RC RS =D(1−Cr)Pe

RS,lag =RS ∗Nlags

Qs =KSSS

* is the convolution operator.
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Table 3. The applicability of different parameter and process con-
straints for the three different model structures, FLEXA, FLEXB

and FLEXC.

Parameter constraints Process constraints

3.3.1.1 3.3.1.2 3.3.1.3 3.3.1.4 3.3.2.1 3.3.3.2 3.3.3.3 3.3.3.4
Interception Lag functions Soil moisture capacity Reservoir coefficients Transpiration Runoff coefficient Preferential recharge Fast component discharge

FLEXA × ×
FLEXB × × × × × ×
FLEXC × × × × × × × ×
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Table 4. The median model performances (in brackets their cor-
responding 95% uncertainty intervals) and the area spanned by the
95% uncertainty interval of hydrograph derived from uncalibrated
parameter sets which satisfy the complete set of constraints for the
three model set-ups FLEXA, FLEXB and FLEXC, for the three
modeling objectives (ENS, ENS,log, ENS,FDC) in the calibration
(2002-2005) and validation (2006-2009) periods. The italic values
indicate performance and 95% uncertainty interval of hydrograph
for the unconstrained benchmark models.

ENS ENS,log ENS,FDC 95% uncertainty area [mm]

FLEXA Calibration 0.18 [0.09 0.29] 0.05 [-0.40 0.49] 0.39 [0.25 0.69] 1325
FLEXA Calibration 0.16 [-0.16 0.30] 0.10 [-1.11 0.51] 0.35 [-0.12 0.67] 1814
FLEXA Validation 0.23 [0.12 0.39] 0.29 [-0.02 0.59] 0.45 [0.28 0.76] 1243
FLEXA Validation 0.18 [-0.37 0.39] 0.29 [-2.53 0.56] 0.38 [-0.35 0.76] 1888
FLEXB Calibration 0.56 [0.00 0.73] 0.33 [-1.36 0.65] 0.87 [0.66 0.95] 1827
FLEXB Calibration 0.44 [-1.03 0.72] 0.07 [-3.06 0.60] 0.77 [0.05 0.93] 2615
FLEXB Validation 0.52 [-0.06 0.77] 0.45 [-1.15 0.73] 0.89 [0.62 0.99] 2042
FLEXB Validation 0.45 [-1.44 0.76] 0.30 [-3.50 0.73] 0.81 [0.08 0.97] 2993
FLEXC Calibration 0.66 [0.22 0.75] 0.36 [-2.37 0.70] 0.93 [0.82 0.96] 1274
FLEXC Calibration 0.54 [-0.24 0.75] 0.34 [-2.30 0.69] 0.86 [0.60 0.94] 2015
FLEXC Validation 0.67 [-0.06 0.80] 0.50 [-0.33 0.74] 0.95 [0.88 0.99] 1294
FLEXC Validation 0.59 [-0.11 0.79] 0.58 [-2.89 0.75] 0.93 [0.65 0.99] 2287
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Table 5. The median model performances (in brackets their cor-
responding Pareto uncertainty intervals) and the area spanned by
the uncertainty interval of the hydrograph derived from the Pareto
optimal solutions of the constrained and calibrated model set-ups
FLEXA, FLEXB and FLEXC for the three modeling objectives
(ENS, ENS,log, ENS,FDC) in the calibration (2002-2005) and vali-
dation (2006-2009) periods. The italic values indicate performance
and 95% uncertainty interval of hydrograph for the benchmark
models (without any constraints).

ENS ENS,log ENS,FDC 95% uncertainty area [mm]

FLEXA Calibration 0.71 [0.51 0.83] 0.80 [0.70 0.85] 0.97 [0.95 0.99] 709
FLEXA Calibration 0.71 [0.51 0.84] 0.79 [0.68 0.85] 0.97 [0.95 0.99] 732
FLEXA Validation 0.63 [0.45 0.78] 0.73 [0.65 0.80] 0.95 [0.93 0.97] 844
FLEXA Validation 0.63 [0.46 0.78] 0.73 [0.63 0.80] 0.95 [0.93 0.97] 870
FLEXB Calibration 0.75 [0.50 0.80] 0.71 [0.40 0.79] 0.96 [0.92 0.98] 790
FLEXB Calibration 0.74 [0.51 0.80] 0.72 [0.46 0.82] 0.96 [0.92 0.98] 826
FLEXB Validation 0.76 [0.32 0.82] 0.79 [0.63 0.85] 0.97 [0.93 1.00] 999
FLEXB Validation 0.72 [0.45 0.82] 0.78 [0.48 0.84] 0.96 [0.94 0.99] 986
FLEXC Calibration 0.74 [0.53 0.82] 0.72 [0.47 0.81] 0.96 [0.92 0.98] 763
FLEXC Calibration 0.74 [0.48 0.82] 0.71 [-0.17 0.83] 0.96 [0.90 0.98] 864
FLEXC Validation 0.78 [0.45 0.82] 0.83 [0.72 0.85] 0.99 [0.98 1.00] 927
FLEXC Validation 0.73 [0.42 0.83] 0.78 [-0.05 0.85] 0.98 [0.95 0.99] 1047


