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Abstract 12 
 13 
Conceptual environmental systems models, such as rainfall runoff models, generally rely on 14 
calibration for parameter identification. Increasing complexity of this type of models for 15 
better representation of hydrological process heterogeneity typically makes parameter 16 
identification more difficult. Although various, potentially valuable,  approaches for better 17 
parameter identification were developed in the past, strategies to impose general conceptual 18 
understanding of how a catchment works into the process of parameter identification of a 19 
conceptual model has still not been fully explored. In this study we assess the effect of 20 
imposing semi-quantitative, relational expert knowledge for model development and 21 
parameter selection, efficiently exploiting the complexity of a semi-distributed model 22 
formulation. Making use of a topography driven rainfall-runoff modeling (FLEX-TOPO) 23 
approach, a catchment was delineated into three functional units, i.e. wetland, hillslope and 24 
plateau. Ranging from simplicity to complexity, three model set-ups, FLEXA, FLEXB and 25 
FLEXC have been developed based on these functional units. While FLEXA is a lumped 26 
representation of the study catchment, the semi-distributed formulations FLEXB and FLEXC 27 
introduce increasingly more complexity by distinguishing 2 and 3 functional units, 28 
respectively. In spite of increased complexity, FLEXB and FLEXC allow modelers to compare 29 
parameters as well as states and fluxes of their different functional units to each other. 30 
Parameter estimation was performed using semi-quantitative, relational constraints imposed 31 
onto three models structures. Increased model complexity allowed the identification of 32 
additional constraints. It was shown that a constrained but uncalibrated semi-distributed 33 
model, FLEXC, can predict runoff with similar performance to a calibrated lumped model, 34 
FLEXA. In addition, when constrained and calibrated, the semi-distributed model FLEXC 35 
exhibits not only higher performance but also lower predictive uncertainty than the calibrated, 36 
lumped FLEXA model. 37 
 38 
1- Introduction: 39 
 40 
Lumped conceptual and distributed physically based models are the two endpoints of the 41 
modeling spectrum, ranging from simplicity to complexity. These two approaches are 42 
characterized by their very own advantages and limitations. In hydrology, physically based 43 
models are typically applied under the assumptions that (a) the spatial resolution and the 44 
complexity of the model are warranted by the available data, and (b) the catchment response 45 
is a mere aggregation of small scale processes. However, these two fundamental assumptions 46 
are violated in many cases. As a result, not only the predictive power but also the hydrological 47 
insights that these models provide is limited  (e.g. Beven, 1989, 2001; Grayason et al., 1992, 48 
Blöschl, 2001; Pomeroy et al., 2007; Sivapalan, 2006; McDonnell et al., 2007; Hrachowitz et 49 
al., 2013b). 50 
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In contrast, lumped conceptual models require less data for identifying model parameters. 1 
This advantage comes at the expense of considerable limitations. Representing system 2 
integrated processes, model structures and parameters are not directly linked to observable 3 
quantities. Their estimation therefore strongly relies on calibration. To limit parameter 4 
identifiability issues arising from calibration, these models are often oversimplified 5 
abstractions of the system. If inadequately tested they may act as “mathematical marionettes” 6 
(Kirchner, 2006), frequently resulting in good calibration performance. They may outperform 7 
more complex distributed models (e.g. Refsgaard and Knudsen 1996; Ajami et al., 2004; 8 
Reed et al., 2004), but they often fail to provide realistic representations of the underlying 9 
processes, leading to limited predictive power (e.g. Freer et al., 2003; Seibert, 2003; Kirchner, 10 
2006; Beven, 2006; Kling and Gupta, 2009; Andréassian et al., 2012; Euser et al., 2013; 11 
Gharari et al., 2013). 12 
Various strategies have been suggested in the past to allow for increased model complexity 13 
and to thereby improve the physical realism of conceptual models. These strategies included 14 
the attempt to incorporate different data sources in the parameter estimation process, such as 15 
ground- and soil water dynamics (e.g. Seibert and McDonnell, 2002; Freer et al., 2004; 16 
Fenicia et al., 2008b; Matgen et al., 2012; Sutanudjaja et al., 2013), remotely sensed 17 
evaporation (e.g. Winsemius et al., 2008), snow dynamics (e.g. Parajka and Blöschl, 2008) or 18 
tracer data (e.g. Vache and McDonnell, 2006; Dunn et al., 2008; Son and Sivapalan, 2007; 19 
Birkel et al., 2011; Hrachowitz et al., 2013a). Alternatively, it was tried to extract more 20 
information from available data, for example through the development of  signatures 21 
representing different aspects of the data (e.g. Gupta et al. 1998, 2008; Boyle et al., 2000, 22 
2001; Madsen 2000; Fenicia et al., 2006; Rouhani et al., 2007; Khu et al., 2008; Winsemius et 23 
al., 2009; Bulygina  and Gupta, 2010; McMillan et al., 2011, Clark et al., 2011; Euser et al., 24 
2013; Hrachowitz et al, 2013b). 25 
Traditionally, parameter estimation of conceptual models relied on the availability of 26 
calibration data, which, however, are frequently not available for the time period or the spatio-27 
temporal resolution of interest. A wide range of regionalization techniques for model 28 
parameters and hydrological signatures were thus developed to avoid calibration in such data 29 
scarce environments (e.g. Bardossy, 2007; Yadav et al., 2007; Perrin et al., 2008; Zhang et al., 30 
2008; Kling and Gupta, 2009; Samaniego et al., 2010; Kumar et al., 2010; Wagener and 31 
Montanari, 2011; Kapangaziwiri et al., 2012, Viglione et al., 2013). However, it was for a 32 
long time considered to be challenging to identify suitable functional relationships between 33 
catchment characteristics and model parameters (e.g. Merz and Blöschl, 2004; Kling and 34 
Gupta, 2009). Only recently, Kumar et al. (2010, 2013a) showed that making use of multi-35 
scale parameter regionalization (MPR) can yield global parameters which perform 36 
consistently over different catchment scales. In a further study they successfully transferred 37 
parameters obtained by the MPR technique to ungauged catchments in Germany and the USA 38 
(Kumar et al., 2013b). Without any further calibration the transferred global parameters were 39 
capable to adequately reproduce runoff as well as other hydrological responses of the 40 
catchments. 41 
Related to the above discussed difficulties with parameterization, the frequent lack of 42 
sufficient processes heterogeneity, i.e. complexity, in conceptual models introduces further 43 
limitations to the degree of realism in these models. The concept of hydrological response 44 
unit (HRU) can be exploited as a strategy for an efficient tradeoff between model simplicity, 45 
required for adequate parameter identifiability, and a more realistic representation of 46 
hydrological processes. HRUs are units within a catchment, characterized by a different 47 
hydrological function. Individual HRUs can be represented by different model structures to 48 
account for hydrologically heterogeneous behavior based on data availability and desired 49 
resolution of process representation. This helps to enhance model realism while keeping the 50 
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necessary complexity and related identifiability issues comparatively low. In most cases 1 
HRUs are defined based on soil types, land cover and similar physical catchment 2 
characteristics (e.g. Knudsen et al., 1986; Flügel, 1995; Grayson and Blöschl, 2000; Krcho, 3 
2001; Winter, 2001; Scherrer and Naef, 2003; Uhlenbrook et al., 2004; Wolock et al., 2004; 4 
Pomeroy et al., 2007; Scherrer et al., 2007; Schmocker-Fackel et al., 2007; Efstratiadis et al., 5 
2008; Lindström et al., 2010; Nalbantis et al., 2011; Kumar et al., 2010).  6 
A wide range of studies also points towards the potential value of using topographical indices, 7 
which are readily available from digital elevation models (DEM)  to account for process 8 
heterogeneity (e.g. McGlynn and McDonnell, 2003; Seibert et al., 2003; McGuire at al., 2005; 9 
Hrachowitz et al., 2009; Jensco et al., 2009; Detty and McGuire, 2010; Gascuel-Odoux et al., 10 
2010). As standard metrics of landscape organization, such as absolute elevation, slope or 11 
curvature, as used in the catena concept (Milne, 1935; Park and Van de Giesen, 2004), are 12 
often not strong enough descriptors to infer hydrological function, alternative concepts were 13 
sought. The development of derived metrics such as the Topographic Wetness Index (Beven 14 
and Kirkby, 1979) facilitated an important step forward, being at the core of TOPMODEL 15 
(e.g. Beven and Kirkby, 1979; Beven and Freer, 2001b), which has proven to be a valuable 16 
approach in specific environmental settings meeting the assumptions of the model. A different 17 
descriptor allowing a potentially more generally applicable and hydrologically meaningful 18 
landscape classification has recently been suggested by Rennó et al. (2008): the Height Above 19 
the Nearest Drainage (HAND). Nobre et al. (2011) showed the hydrological relevance of 20 
HAND by investigating long term groundwater behavior and land use. In a further study, this 21 
metric facilitated the identification of hydrologically similar landscape units, such as 22 
wetlands, hillslopes and plateaus in a Luxembourgish catchment (Gharari et al., 2011). 23 
Explicitly invoking the co-evolution of topography, vegetation and hydrology, Savenije 24 
(2010) argued that catchments, as self-organizing systems, need to fulfill the contrasting 25 
hydrological functions of efficient drainage and sufficient water storage in order to allow, in a 26 
feedback process, topography and vegetation to develop the way they did. These distinct 27 
hydrological functions can then be associated with different landscape elements or HRUs as 28 
defined by HAND and slope, such that each HRU is represented by a model structure best 29 
representing its function in the ecosystem (cf. Savenije, 2010).   30 
While HAND-based landscape classification can potentially show a way forward, it does not 31 
solve the problem arising when moving from lumped to HRU-guided, semi-distributed model 32 
formulations: multiple parallel model structures typically result in an increased number of 33 
parameters, which, when not adequately constrained, may increase equifinality and thereby 34 
predictive uncertainty (e.g. Gupta and Sorooshian, 1983; Beven, 2006; Gupta et al., 2008). In 35 
order to better satisfy the contrasting priorities of model complexity and predictive power, 36 
new strategies are sought to more efficiently utilize the modelers’ understanding of the system 37 
and the frequently scarce available data for constraining the feasible model- and parameter 38 
space (e.g. Gupta et al., 2008; Wagener and Montanari, 2011; Singh and Bárdossy, 2012; 39 
Andréassian et al., 2012; Gharari et al., 2013; Hrachowitz et al., 2013b; Razavi and Tolson, 40 
2013). In contrast to earlier attempts to constrain models using multiple evaluation criteria or 41 
a priori information on catchment properties such as land use or soil type (e.g. Koren et al., 42 
2008), the utility of a different and so far underexploited type of constraints, based on a priori 43 
understanding of the system, has been tested in this study. The concept of topography-driven 44 
conceptual modeling introduced by Savenije (2010) involves the identification of HRUs that 45 
operate in parallel. Linked to the technique of regularization (e.g. Tikhonov, 1963; Engl et al., 46 
1996), this opens the possibility to impose semi-quantitative, expert knowledge based, 47 
relational constraints of catchment behavior on model parameters, similar to what was 48 
suggested by Pokhrel et al. (2008) and Yilmaz et al. (2008). To restrict the posterior 49 
parameter distributions, hydrologically meaningful relations between parallel HRUs are 50 
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introduced. Based on expert knowledge and expressed as relational constraints they ensure 1 
that similar processes between parallel model structures in the semi-distributed model are 2 
represented in an internally consistent way, thereby reducing the parameters’ potential for 3 
compensating for errors. The advantage of this method is that there is only limited need to 4 
precisely quantify the constraints or the prior parameter distributions (e.g. Koren et al., 2000, 5 
2003; Kuzmin et al., 2008; Duan et al., 2006). This could allow for a meaningful and 6 
potentially more realistic representation of the system in which each model component is, 7 
within certain limits, forced to do what it is designed to do, rather than allowing it to 8 
compensate for data and model structural errors. 9 
The objectives of this paper are thus to test the hypothesis if the use of semi-distributed, 10 
conceptual models, representing HRUs defined by hydrologically meaningful, topography-11 
based landscape classification combined with model constraints (1) can increase model 12 
internal consistency and thus the level of process realism as compared to lumped model set-13 
ups, (2) can increase the predictive power compared to lumped model set-ups and (3) can 14 
reduce the need for model calibration by the use of expert knowledge based on relations 15 
between parameters, fluxes and states. 16 
 17 
2- Study area and data: 18 
 19 
The outlined methodology will be illustrated and tested with a case study using data of the 20 
Wark catchment in the Grand Duchy of Luxembourg. The catchment has an area of 82 km2 21 
with the catchment outlet located downstream of the town of Ettelbrück at the confluence 22 
with the Alzette River (49.85o N, 6.10o E, Figure 1). With an annual mean precipitation of 23 
850 mm yr-1 and an annual mean potential evaporation of 650 mm yr-1 the annual mean runoff 24 
is approximately 250 mm yr-1. The geology in the northern part is dominated by schist while 25 
the southern part of the catchment is mostly underlain by sandstone and conglomerate.  26 
Hillslopes are generally characterized by forest, while plateaus and valley bottoms are mostly 27 
used as crop land and pastures, respectively. Drouge et al. (2002) quantified land use in the 28 
catchment as 4.3% urban areas, 52.7% agricultural land and 42.9% forest. In addition they 29 
reported that 61% of catchment is covered by permeable soils while the remainder is 30 
characterized by lower permeability substrate. The elevation varies between 195 to 532 m, 31 
with a mean value of 380 m. The slope of the catchment varies between 0-200%, with a mean 32 
value of 17 % (Gharari et al., 2011). 33 
The hydrological data used in this study include discharge measured at the outlet of the Wark 34 
catchment, potential evaporation estimated by the Hamon equation (Hamon, 1961) with 35 
temperature data measured at Luxembourg airport (Fenicia et al., 2008a); and precipitation 36 
measured by three tipping bucket rain gauges located at Reichlange. The temporal resolution 37 
used in this study is 3 h.  38 
 39 
3- FLEX-TOPO framework: 40 
 41 
Realizing the potential of “reading the landscape” in a systems approach (cf. Sivapalan, 42 
2003), Savenije (2010) argued that due to the co-evolution of topography, soil and vegetation, 43 
all of which define the hydrological function of a given location, an efficient, hydrologically 44 
meaningful descriptor of topography together with land use could be used to distinguish 45 
different HRUs. HAND, which can be loosely interpreted as the hydraulic head at a given 46 
location in a catchment, may be such a descriptor as it potentially allows for meaningful 47 
landscape classification (e.g. Rennó et al., 2008; Gharari et al., 2011). It was argued 48 
previously (Gharari et al., 2011) that, in Central European landscapes, HAND can efficiently 49 
distinguish between wetlands, hillslopes and plateaus. These are landscape elements that may 50 
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also be assumed to fulfill distinct hydrological functions (HRUs) in the study catchment 1 
(Savenije, 2010). Wetlands, located at low elevations above streams, are characterized by 2 
shallow ground water tables with limited fluctuations. Due to reduced storage capacity 3 
between ground water table and soil surface, potentially exacerbated by the relative 4 
importance of the capillary fringe, wetlands tend to be saturated, and thus connected, earlier 5 
during a rainfall event than the two other landscape elements with arguably higher storage 6 
capacity, thus frequently becoming the dominant source of storm flow during comparably dry 7 
periods (e.g. Seibert et al., 2003; McGlynn et al., 2004; Molenat et al., 2005; Blume et al., 8 
2008; Anderson et al., 2010; Kavetski et al., 2011). The dominant runoff process in wetlands 9 
can therefore be assumed to be saturation overland flow. In contrast, forested hillslopes, 10 
landscape elements with steeper slopes than the wetlands or plateaus, require a balance 11 
between sufficient storage capacity and efficient drainage to develop and maintain the 12 
ecosystem (Savenije, 2010). A dual system combining sufficient water storage in the root 13 
zone and efficient lateral drainage through preferential flow networks, controlled by a suite of 14 
activation thresholds as frequently observed on hillslopes (e.g. Hewlett, 1961; Beven and 15 
Germann, 1982; Sidle et al., 2001; Freer et al., 2002; Weiler et al., 2003; McNamara et al., 16 
2005; Tromp van Meerveld and McDonnell, 2006a, 2006b; Zehe and Sivapalan, 2009; 17 
Spence, 2010) can be seen as the dominant mechanism. Finally, plateaus are landforms with 18 
low to moderate slopes and comparably deep ground water tables. In absence of significant 19 
topographic gradients and due to the potentially increased unsaturated storage capacity, it can 20 
be hypothesized that the primary functions of plateaus are sub-surface storage and 21 
groundwater recharge (Savenije, 2010). Although plateaus may experience infiltration excess 22 
overland flow in specific locations, the topographical gradients may not be sufficient to 23 
generate surface runoff connected to the stream network. In the FLEX-TOPO approach the 24 
proportions of the hydrologically distinct landscape units, i.e. HRUs, in a given catchment 25 
need to be determined on the basis of topographical and land cover information. Subsequently 26 
suitable model structures and parameterizations (read constitutive functions) will be assigned 27 
to the different HRUs (Fenicia et al. 2011, Kavetski et al., 2011, Clark et al., 2009). The 28 
integrated catchment output, i.e. runoff and evaporative fluxes, can then be obtained by 29 
combining the computed proportional outputs from the individual HRUs. Note that the three 30 
landscape classes tested for suitability in this study, i.e. wetland, hillslope and plateau 31 
together with their assumed dominant runoff process are designed for the Wark catchment 32 
and are likely to be different for other environmental settings (e.g. Gao et al., 2014).   33 
 34 
3-1- Landscape classification: 35 
 36 
As the objective of FLEX-TOPO is to efficiently extract and use hydrologically relevant 37 
information from worldwide readily available topographic data, i.e. DEMs, the Height Above 38 
the Nearest Drainage (HAND; Rennó et al., 2008; Nobre et al., 2011; Vannametee et al., 39 
2014) is a potentially powerful metric to classify landscapes into HRUs with distinct 40 
hydrological function, as discussed above. Testing a suite of HAND-based classification 41 
methods Gharari et al. (2011) found that results best matching observed landscape types could 42 
be obtained by using HAND together with the local slope. Based on a probabilistic 43 
framework to map the desired HRUs which were then compared with in-situ observations 44 
they obtained a threshold for HAND and slope of approximately 5 m and 11 % for the Wark 45 
catchment. Following that, wetlands were defined to be areas with HAND ≤ 5 m. Areas with 46 
HAND > 5 m and local slopes > 11 % were classified as hillslopes, while areas with HAND > 47 
5 m and slope ≤ 11 % were defined as plateaus. The HAND and slope map of the study 48 
catchment together with the classified landscape entities (wetland, hillslope and plateau) are 49 
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presented in Fig. 1. The proportion of the individual HRUs wetland, hillslope and plateau are 1 
15%, 45% and 40% respectively. 2 
 3 

 4 
 5 
Figure 1- (a) Location of the Wark catchment in the Grand Duchy of Luxembourg, (b) digital 6 
elevation model (DEM) of the Wark catchment with cell size of 5 m × 5 m [m], (c) local 7 
slopes (%) in the Wark catchment derived from a DEM with resolution of 5 m × 5 m [-], (d) 8 
HAND of the Wark Catchment derived from a DEM with resolution of 5 m × 5 m [m], (e) the 9 
classified landscape units wetland, hillslope and plateau using the combined HAND and slope 10 
thresholds of 5 m and 11%, respectively (from Gharari et al., 2011).  11 
 12 
3-2- Model setup: 13 
 14 
In this study a lumped conceptual model of the Wark catchment, hereafter referred to as 15 
FLEXA, is used as a benchmark since similar lumped conceptual models are frequently used 16 
in catchment hydrology, particularly in small- to mesoscale catchments (e.g. Merz and 17 
Blöschl, 2004; Clark et al., 2008; Perrin et al., 2008; Seibert and Beven, 2009; Fenicia et al., 18 
2013). The above discussed concept of FLEX-TOPO (Savenije, 2010) is thereafter tested with 19 
a stepwise increased number of parallel landscape units (FLEXB, FLEXC), thereby increasing 20 
the conceptualized process heterogeneity and thus the model complexity.  The core of the 21 
three model set-ups is loosely based on the FLEX model (Fenicia et al., 2006). 22 
 23 
3-2-1-FLEXA:  This model set-up represents the catchment in a lumped way. The FLEXA 24 
model structure consists of four storage elements representing interception, unsaturated, slow 25 
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(i.e. groundwater) and fast responding reservoirs (i.e. preferential flow and saturation 1 
overland flow). A schematic illustration of FLEXA is shown in Fig. 2a. The water balance and 2 
constitutive equations used are given in Table 2. 3 
 4 
3-2-1-1-Interception reservoir (SI): The interception reservoir is characterized by its 5 
maximum storage capacity (Imax [L]). After precipitation (P [L T-1]) enters this reservoir the 6 
excess precipitation, hereafter referred to as effective precipitation (Pe [L T-1]), is distributed 7 
between the unsaturated (SU), slow (SS) and fast reservoir (SF). 8 
 9 
3-2-1-2-Unsaturated reservoir (SU): The unsaturated reservoir is characterized by a 10 
parameter that loosely reflects the maximum soil moisture capacity in the root zone (SU,max 11 
[L]). Part of the effective precipitation (Pe) enters the unsaturated zone according to the 12 
coefficient Cr, which here is defined by a power function with exponent β [-], reflecting the 13 
spatial heterogeneity of thresholds for activating fast lateral flows from SF. This coefficient Cr 14 
will be 1 when soil moisture (SU) is lower than a specific percentage of maximum soil 15 
moisture capacity (SU,max) defined by relative soil moisture at field capacity  (FC[-]), meaning 16 
that the entire incoming effective precipitation (Pe) at a given time step is stored in the 17 
unsaturated reservoir (SU). The soil moisture reservoir feeds the slow reservoir through matrix 18 
percolation (Rp [LT-1]), expressed as a linear relation of the available moisture in the 19 
unsaturated zone (SU) and the maximum percolation capacity (PPer [LT-1]). The reverse 20 
process, capillary rise (Rc), feeds the unsaturated reservoir from the saturated zone. Capillary 21 
rise (Rc [LT-1]) has an inverse linear relation with the moisture content in the unsaturated zone 22 
and is characterized by the maximum capillary rise capacity (C [LT-1]). Soil moisture is 23 
depleted by plant transpiration. Transpiration is assumed to be moisture constrained when the 24 
soil moisture content is lower than a fraction Lp [-] of the maximum unsaturated capacity 25 
(SU,max). When the soil moisture content in the unsaturated reservoir is higher than this 26 
fraction (Lp) transpiration is assumed to be equal to the potential evaporation (Epot [LT-1]).   27 
 28 
3-2-1-3- Splitter and transfer functions: The proportion of effective rainfall which is not 29 
stored in the unsaturated zone, i.e. 1-Cr, is further regulated by the partitioning coefficient (D 30 
[-]), distributing flows between preferential groundwater recharge (RS [L T-1]) to SS and water 31 
that is routed to the stream by fast lateral processes from SF (e.g. preferential flow or 32 
saturation overland flow, RF). Both fluxes are lagged by rising linear lag functions with 33 
parameters Nlagf and Nlags, respectively (e.g. Fenicia et al., 2008b).  34 
 35 
3-2-1-4-Fast reservoir (SF): The fast reservoir is a linear reservoir characterized by reservoir 36 
coefficient KF. 37 
 38 
3-2-1-5-Slow reservoir (SS): The slow reservoir is a linear reservoir characterized by a 39 
reservoir coefficient KS.  40 
 41 
3-2-2-FLEXB: As discussed above, a range of process studies suggested that wetlands can 42 
frequently exhibit storage-discharge dynamics that are decoupled from other parts of a 43 
catchment, in particular due to their typically reduced storage capacity and closeness to the 44 
stream. FLEXB explicitly distinguishes wetlands from the rest of the catchment, the 45 
“remainder” (i.e. hillslopes and plateaus), which is represented in a lumped way, to account 46 
for this difference. The FLEXB model set-up therefore consists of two parallel model 47 
structures which are connected with a common groundwater reservoir (Figure 2b), similar to 48 
what has been suggested by Knudsen et al. (1986). One major difference between the two 49 
parallel structures is that capillary rise is assumed to be a relevant process only in the wetland, 50 
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while it is considered negligible in the remainder of the catchment due to the deeper 1 
groundwater. Further, since the wetlands are predominantly ex-filtration zones of potentially 2 
low permeability, preferential recharge is considered negligible in wetlands. The areal 3 
proportions of wetland and the remainder (i.e. hillslope and plateau) of the catchment are 15% 4 
and 85%, respectively (Gharari et al., 2011).  5 
 6 
3-2-3-FLEXC: This model set-up offers a complete representation of the three HRUs in the 7 
study catchment: wetland, hillslope and plateau (Figure 2c). The formulation of the wetland 8 
module in FLEXC is identical to the one suggested above for FLEXB. The hillslope HRU is 9 
represented by a model structure resembling the FLEXA set-up. Plateaus are assumed to be 10 
dominated by vertical fluxes, while direct lateral movement in the form of Hortonian overland 11 
flow is considered negligible compared to those generated from hillslope and wetland HRUs. 12 
Therefore the plateau model structure does not account for these fast fluxes. Analogous to 13 
FLEXB, the FLEXC set-up is characterized by one single groundwater reservoir linking the 14 
three dominant HRUs in this catchment. The individual proportions of wetland, hillslope and 15 
plateau are 15%, 45% and 40%, respectively (Gharari et al., 2011). The proportions of these 16 
HRUs are used to compute the total discharge based on the contribution of each landscape 17 
unit.  18 
The connection between the parallel structures of FLEXB and FLEXC is through the surface 19 
drainage network (the stream network) and through the slow (groundwater) reservoir.  20 

 21 
 22 

 23 
 24 

 25 
Figure 2- The model structures for (a) FLEXA, (b) FLEXB and (c) FLEXC. 26 
 27 
Table 1- Uniform prior parameter distributions for the three model set-ups 28 
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   FLEXA FLEXB FLEXC 
 Unit   wetland remainder wetland hillslope plateau 

Imax* mm Interception storage for forest 2-5 
Interception storage for grassland and 

pasture 1-3 

SU,max mm Maximum unsaturated storage 0-500 0-100 0-500 0-100 0-500 0-500 
β - Soil moisture distribution exponent 0-5 0-5 0-5 0-5 0-5 0-5 
LP - Transpiration coefficient 0.5 0.5 0.5 0.5 0.5 0.5 
FC - Relative soil moisture at field capacity 0-0.3 0 0-0.3 0 0-0.3 0-0.3 
D - Partitioning fast and slow reservoir 0-1 0 0-1 0 0-1 1 
C mm(3h)-1 Maximum capillary rise rate 0 0-0.3 - 0-0.3 - - 

Pper mm(3h)-1 Maximum percolation rate 0-0.5 0-0.5 0-0.5 0-20.5 0 0-0.5 
Nlagf 3h Lag time for flux to fast reservoir 1-7 1-3 1-5 1-3 1-5 - 
Nlags 3h Lag time for preferential recharge 1-7 - 1-7 - 1-7 1-7 
KF (3h)-1 Fast reservoir coefficient 0-1 0-1 0-1 0-1 0-1 - 
KS (3h)-1 Slow reservoir coefficient 0.005-0.05 0.005-0.05 0.005-0.05 

*Inferred from Breuer et al., 2003 1 

 2 
Table 2- Water balance and constitutive equations used in FLEXA 3 
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= −       (11) (1 )(1 )F r eR D C P= − −      (12) 

F,lag F * lagfR R N=       (13) 

F F FQ K S=         (14) 
Slow reservoir S

S,lag S
d
d P C
S R Q R R
t
= − + −

(16) 

(1 )S r eR D C P= −        (17) 

S,lag S * lagsR R N=      (18) 

S S SQ K S=       (19) 
* is the convolution operator. 4 
 5 
3-3- Introducing realism constraints in selecting behavioral parameter sets: 6 
 7 
With increasing process heterogeneity from FLEXA over FLEXB to FLEXC, the respective 8 
model complexities and therefore the number of calibration parameters also increase. This, in 9 
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the frequent absence of sufficient suitable data to efficiently constrain a model, typically leads 1 
to a situation where parameters have increased freedom to compensate for errors in data and 2 
model structures, as recently reiterated by Gupta et al. (2008). As a consequence, the resulting 3 
higher level of equifinality can substantially reduce a model’s predictive power. In this study, 4 
two fundamentally different types of model constraints were applied to test their value for 5 
reducing equifinality in complex model set-ups. Firstly, conditions between parameters of 6 
parallel model units, hereafter referred to as parameter constraints, were imposed before each 7 
model evaluation run. These a priori constraints ensure that the individual parameter values 8 
for the same process in the parallel units, reflect the modeler’s perception of the system. For 9 
example, it can be argued that the maximum interception capacity (Imax) of a forested HRU 10 
needs to be higher than the one in a not forested HRU. In the absence of more detailed 11 
information this does not only allow overlapping prior distributions but it also avoids the need 12 
for quantification of the constraints themselves. The second type of constraints is process 13 
constraints, which can only be applied after each evaluation run during the calibration phase. 14 
These a posteriori constraints compare the modeled output of the individual HRUs and ensure 15 
that these outputs follow the modeler’s perception of the system’s internal dynamics. For 16 
example, it can be argued that the modeled evaporation in forested HRUs needs to be higher 17 
than in not forested HRUs. The parameter and process constraints imposed on the models in 18 
this study are described in detail below. Note that the choice of constraints to impose is the 19 
modeler’s choice and that with increasing number of different HRUs an increasing number of 20 
constraints can be applied. While here FLEXA only allows for two constraints, i.e. one 21 
parameter- and one process constraint, all constraints suggested below can be applied to 22 
FLEXC. 23 
 24 
3-3-1-Parameter constraints: 25 
 26 
A number of a priori constraints is imposed on different model parameters in order to exclude 27 
unrealistic parameter combinations. The constraints are guided by considerations on what the 28 
model components are designed to reproduce. The number of constraints that can be imposed 29 
increases with increasing model complexity. The full set of parameter constraints detailed 30 
below were applied to FLEXC and when applicable also to FLEXB. In contrast, only one 31 
parameter constraint could be used for FLEXA, as for this model no more obvious 32 
relationships between parameters could be identified. In the following, the subscripts w, h and 33 
p indicate parameters for wetland, hillslope and plateau, respectively. 34 
 35 
3-3-1-1-Interception: 36 
 37 
The different land cover proportions of each landscape unit, here wetlands, hillslopes and 38 
plateaus, can be used to define the relation between interception thresholds (Imax) of these 39 
individual units. The land uses are defined as two general classes for this case study, forested 40 
areas and grass or pasture-land areas. The maximum interception capacity (Imax) for each 41 
landscape entity can be estimated from the proportion of land-use classes and their maximum 42 
interception capacities, selected from their respective prior distributions as given in Table 1:  43 
 max,w w max,forest w max,croplandI a I b I= +  (20) 44 

 max,h h max,forest h max,croplandI a I b I= +  (21) 45 

 max,p p max,forest p max,croplandI a I b I= +  (22) 46 

The proportions of forested area are indicated with aw, ah and ap for wetland, hillslope and 47 
plateau and are fixed at 42%, 60% and 29%, respectively. The proportions of cropland and 48 
grass land areas are indicated by bw, bh and bp for wetland, hillslope and plateau and are fixed 49 
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at 58%, 40% and 71%, respectively. Moreover the parameter sets which are selected for 1 
maximum interception capacity of forest are expected to be higher than crop- or grassland: 2 
 max,cropland max,forestI I<   (23) 3 

 4 
 5 
 6 
3-3-1-2- Lag functions: 7 
 8 
Preferential recharge (Rs) is routed to the slow reservoir by a lag function. Due to a deeper 9 
groundwater table on plateaus it can be assumed that the lag time for RS is longer for plateaus 10 
than for hillslopes. It can also be assumed that the lag function used for fast reservoir for 11 
hillslopes is longer than for wetlands due to the on average higher distance of and therefore 12 
longer travel times from hillslopes to the stream. 13 
 lags,w lags,h lags,pN N N≤ ≤  (24) 14 

  15 
 16 
3-3-1-3-Soil moisture capacity: 17 
 18 
Many experimental studies support the assumption that wetlands have shallower groundwater 19 
tables than the other two landscape entities in this study. Therefore the unsaturated zone of 20 
wetland should be shallower, i.e. the maximum soil moisture capacity (SU,max) of hillslopes 21 
and plateaus can be assumed to be higher. Moreover, as hillslopes in the study catchment are 22 
predominantly covered with forest, it can, due to the deeper root zone of forests, be expected 23 
that the maximum unsaturated soil moisture capacity (SU,max) in the root zone of hillslopes is 24 
deeper than the other two landscape entities. 25 
 U,max,w U,max,p U,max,hS S S< <  (25) 26 

  27 
 28 
3-3-1-4-Reservoir coefficients: 29 
 30 
The reservoir coefficient of the wetland fast reservoir (KF) is assumed to be lower than  31 
reservoir coefficient of the hillslope fast reservoir as, once connectivity is established, the 32 
flow velocities of saturation overland flow in wetlands are assumed to exceed the integrated 33 
flow velocities of preferential flow networks (cf. Anderson et al., 2009). Likewise, the 34 
retention time of the slow reservoir should be higher than both wetland and hillslope fast 35 
reservoirs. 36 

S F,h F,wK K K< <  (26) 37 

The reservoir constraints can be applied to all models while the other constraints can only be 38 
applied to FLEXB and FLEXC. 39 

 40 
 41 
3-3-2-Process constraints: 42 
 43 
In contrast to the parameter constraints discussed above, which are set a priori, process 44 
constraints are applied a posteriori. Only parameters which generate model internal flux 45 
dynamics in agreement with the modeler’s perception of these dynamics are retained as 46 
feasible. Hence, while with the use of parameter constraints there is no need to run the model 47 
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for rejected parameter sets, here it is necessary to run the model to evaluate it with respect to 1 
the process constraints. 2 
Process constraints are defined for dry and wet periods as well as for peak-, high- and low 3 
flows. Here wet periods were defined to be the months from December to March, while the 4 
dry periods in the study catchment occur between April and November. The thresholds for 5 
distinguishing between high and low flow were chosen to be 0.05 and 0.2 mm(3h)-1 6 
respectively for dry and wet periods. Furthermore, events during which discharge increases 7 
with a rate of more than 0.2 mm(3h)-2 are defined as peak flows. Note that in the following 8 
the subscripts peak, high and low indicate peak-, high- and low flows. 9 
 10 
3-3-2-1-Transpiration: 11 
 12 
Transpiration typically exhibits a clear relationship with the normalized difference vegetation 13 
index (NDVI, Szilagyi et al., 1998). Therefore the ratios between NDVI values of different 14 
landscape units can serve as constraints on modeled transpiration obtained from the individual 15 
parallel model components. A rough estimation of the ratio between transpiration from 16 
plateau and hillslope can be derived from LANDSAT 7 images. For this ratio seven cloud free 17 
images were selected (acquisition dates of 20/4/2000, 6/3/2000, 11/9/2000, 18/2/2001, 18 
6/3/2001, 26/3/2001 and 29/8/2001). The ratio of transpiration between hillslope and plateau 19 
(Rtrans) can be estimated by assuming a linear relation (Szilagyi et al., 1998) with slope of α 20 
and intercept zero between transpiration and mean NDVI for each landscape unit (µNDVI). 21 
 22 

NDVI,h NDVI,h

NDVI,p NDVI,p
transR

αμ μ
αμ μ

= =   (27) 23 

Mean (µRtrans) and standard deviation (σRtrans) of Rtrans can be used to estimate acceptable limits 24 
of the transpiration ratios for hillslope and plateau. 25 
Therefore the annual transpiration can be confined between two values as follows: 26 

trans trans trans trans

h

p

d

dR R R R

T t

T t
μ σ μ σ− < < +∫

∫
  (28) 27 

Based on the mean (
transRμ =1.2) and standard deviation (

transRσ =0.2) of the seven LANDSAT 7 28 

images used the following process constraint on transpiration from hillslope (Th) and plateau 29 
(Tp) was imposed: 30 

h

p

d
1.0 1.4

d

T t

T t
< <∫
∫

 (29) 31 

Similar constraints can be imposed between transpiration fluxes from wetland, hillslope or 32 
plateau; however, the spatial resolution of LANDSAT 7 data with resolution of 30 meters is 33 
coarser than the required 20-meter DEM resolution for distinguishing wetlands from other 34 
landscape entities (Gharari et al., 2011). 35 
 36 
3-3-3-2-Runoff coefficient: 37 
 38 
The runoff coefficient is a frequently used catchment signature (e.g. Sawicz et al., 2011; 39 
Euser et al., 2013) and can be used as a behavioral constraint (e.g. Duan et al., 2006; 40 
Winsemius et al., 2009). In this study the runoff coefficients of dry and wet periods as well as 41 
the annual runoff coefficient were used. Parameters that result in modeled runoff coefficients 42 
that substantially deviate from the observed ones are therefore discarded. In case of absence 43 
of suitable runoff data, the mean annual runoff coefficient can be estimated from the regional 44 
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Budyko curve using for example the Turc-Pike relationship (Turc, 1954; Pike, 1964; Arora, 1 
2002). However in this study the runoff coefficients of each individual year, and their 2 
respective dry and wet periods was used and determined the mean and standard deviation of 3 
the runoff coefficients for these periods. Here, as a conservative assumption, the limits are set 4 
to three times the standard deviation around the mean runoff coefficient. Note that the runoff 5 
coefficient is the only process constraint that is not related to model structure in this study and 6 
can therefore also be applied to the lumped FLEXA set-up. 7 

 
d

0.43
d

mQ t

P t
<∫

∫
  (30) 8 

 
d

0.16
d

mQ t

P t
>∫

∫
  (31) 9 

 m,dry

dry

d
0.36

d

Q t

P t
<∫

∫
  (32) 10 

m,dry

dry

d
0

d

Q t

P t
>∫

∫
   (33) 11 

 m,wet

wet

d
0.71

d

Q t

P t
<∫

∫
  (34) 12 

 m,wet

wet

d
0.40

d

Q t

P t
>∫

∫
  (35) 13 

 14 
3-3-3-3-Preferential recharge: 15 
 16 
The slow reservoir can be recharged by both preferential and matrix percolation from the 17 
unsaturated reservoirs. Here, hillslopes and plateaus contribute to the slow reservoir by 18 
preferential recharge. It can be assumed that in a realistic model setup the long term 19 
contribution volume of preferential recharge ratio between hillslope and plateau should not be 20 
unrealistically high or low. For example, it can be assumed unrealistic that the ratio is zero or 21 
infinity, meaning that one landscape unit is constantly feeding the slow reservoir while 22 
another one is not contributing at all. To avoid such a problem, a loose and very conservative 23 
constraint was imposed on the ratio of contribution of the two fluxes. 24 

 25 

s,h

s,p

d
0.2 5

d

R t

R t
< <∫
∫

  (36) 26 

 27 
3-3-3-4-Fast component discharge: 28 
 29 
During dry periods, hillslopes and plateaus can exhibit significant soil moisture deficits, 30 
limiting the amount of fast runoff generated from these landscape elements. In contrast, due to 31 
their reduced storage capacity, wetlands are likely to generate fast flows at lower moisture 32 
levels, thus dominating event response during dry periods (cf. Beven and Freer, 2001a; 33 
Seibert et al., 2003; Molenat et al., 2005; Anderson et al., 2010; Birkel et al., 2010). It can 34 
thus be assumed that during both, the entire dry periods as well as peak flows in dry periods 35 
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the fast component of wetlands (Qf,w,dry; Qf,w,dry,peaks) contributes to runoff more than the fast 1 
component of hillslopes (Qf,h,dry; Qf,h,dry,peaks). In contrast, high flows during wet periods are 2 
predominantly generated by hillslopes (Qf,h,wet; Qf,h,wet,high). This process constraint is also 3 
applied to FLEXB. 4 

 f,h,dry,peaks

f,w,dry,peaks

d
1

d

Q t

Q t
<∫

∫
   (37) 5 

 f,h,wet,high

f,w,wet,high

d
1

d

Q t

Q t
>∫

∫
    (38) 6 

f,h,wet

f,w,wet

d
1

d

Q t

Q t
>∫

∫
    (39) 7 

 8 
 9 
 10 
3-3-4-Calibration algorithm and objective functions: 11 
 12 
Based on uniform prior parameter distributions as well as on the parameter- and process 13 
constraints the model was calibrated using MOSCEM-UA (Vrugt et al., 2003). As a brief 14 
description, MOSCEM-UA uses a Latin Hypercube sampling strategy for the random 15 
sampling of the entire parameter space. Penalizing the objective function(s) based on the 16 
number of unsatisfied constraints, however, may lead to non-smooth objective functions 17 
which potentially may cause instabilities in the search algorithm or create invalid results. A 18 
recently developed stepwise search algorithm was therefore used for finding parameter sets 19 
which satisfy both parameter- and process constraints (Gharari et al., this issue). These 20 
parameter sets were then used as initial sampling parameter sets for MOSCEM-UA instead of 21 
the traditionally used Latin Hypercube sampling strategy. 22 
The models were evaluated on the basis of three different objective functions to emphasize 23 
different characteristics of the system response: (i) the Nash-Sutcliffe efficiency of the flows 24 
(Nash and Sutcliffe, 1970; ENS), (ii) the Nash-Sutcliffe efficiency of the logarithm of the flows 25 
(ENS,log) and (iii) the Nash-Sutcliffe efficiency of the flow duration curve (ENS,FDC). These 26 
criteria evaluate the models’ ability to simultaneously reproduce high flows, low flows and 27 
flow duration curves respectively. The model set-ups have been constrained and calibrated for 28 
the year 2002-2005 and validated for year 2006-2009. The year 2001 was used as warm up 29 
period. 30 
 31 
3-4-Model validation and parameter evaluation: 32 
 33 
To assess the value of incorporating parameter and process constraints in increasingly 34 
complex models a four-step procedure as outlined below was followed. Note that for each 35 
step the respective model (parameters) was evaluated against the constrained and calibrated 36 
lumped FLEXA benchmark model. 37 
 38 
3-4-1- Evaluating models with “constrained but uncalibrated” parameter sets: 39 
 40 
Firstly, all parameter sets which satisfy all the applied constraints were evaluated based on 41 
their ability to reproduce the observed hydrograph. Hereafter these parameter sets are referred 42 
to as constrained but uncalibrated parameter sets because they were obtained without any 43 
calibration on the observed hydrographs. Based on the retained, feasible parameter sets, the 44 



Page 15 of 33 
 

mean performance of the three constrained but uncalibrated models FLEXA, FLEXB and 1 
FLEXC, for the three objective functions (ENS, ENS,log, ENS,FDC) together with their uncertainty 2 
ranges for both the calibration and the validation periods are compared. FLEXA , FLEXB  and 3 
FLEXC  have an increasing number of constraints. It was thus tested whether the higher 4 
complexity models also result in better model performance and how the predictive uncertainty 5 
is affected by increased complexity and model realism.  6 
To investigate how well the hydrographs generated with parameters satisfying all constraints 7 
match the observed hydrograph, the 95% uncertainty intervals of simulated hydrographs 8 
based on these parameter sets were generated for the three models. The uncertainty was 9 
estimated on the basis of the area indicated by 95% uncertainty intervals based on simulated 10 
hydrographs. 11 
 12 
3-4-2- Evaluating models with “constrained and calibrated” parameter sets: 13 
 14 
In the second step, the three models FLEXA, FLEXB and FLEXC have been calibrated within 15 
the parameter space which satisfied all the imposed parameter and process constraints. The 16 
models were calibrated using a multi-objective strategy (ENS, ENS,log, ENS,FDC). The obtained 17 
Pareto optimal model parameters are in the following referred to as constrained and 18 
calibrated.  19 
Analogous to the previous step uncertainty intervals based on the constrained and calibrated 20 
Pareto optimal parameters, were generated. The uncertainty was estimated on the basis of the 21 
area of the uncertainty bands. 22 
 23 
3-4-3- Comparison of model performance and uncertainty for “constrained but un-24 
calibrated” and “constrained and calibrated” parameter sets: 25 
 26 
To assess the added value of incorporating constraints in higher complexity models, the 27 
performance and uncertainties of the three models FLEXA, FLEXB and FLEXC were 28 
compared for both the “constrained but un-calibrated” and the “constrained and calibrated” 29 
case during calibration (2002-2005) and validation (2006-2009) periods. 30 
 31 
3-4-4- Comparison of modeled hydrograph components for different model structures: 32 
 33 
One of the main reasons for imposing constraints on model parameters is to ensure the 34 
realistic internal dynamic of a model. Comparing different fluxes contributing to the modeled 35 
hydrograph can give an insight into the performance of imposed constrained on the model. 36 
The effect of imposing behavioral constraints on fast and slow components of the three 37 
models structures, FLEXA, FLEXB and FLEXC is compared visually. The fast component of 38 
lumped model, FLEXA, is compared with fast components of FLEXB which are wetland and 39 
remainder of catchment and fast components of FLEXC which are wetland and hillslope. This 40 
visual comparison is based on normalized average contribution of each component for Pareto 41 
optimal parameter sets in every time step.  42 
 43 
 44 
4- Results and discussion 45 
 46 
4-1- Evaluating the performance of constrained but uncalibrated parameter sets: 47 
 48 
The median and the 95% uncertainty intervals of the performance of modeled hydrographs for 49 
constrained but uncalibrated parameter sets is presented in Table 3 for the calibration period. 50 
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The lumped FLEXA model has only one parameter and one process constraint, i.e. the runoff 1 
coefficient. Hence, this model is free within the limits of this apparently relatively weak 2 
condition, resulting in a wide range of possible parameters, many of which cannot adequately 3 
reproduce the system response. As a consequence, the overall performance is poor 4 
(ENS,median=0.19, ENS,log,median=0.13, ENS, FDC,median=0.38) (Table 3, Figure 3).  5 

FLEXB, run with the set of constrained but uncalibrated parameters shows a substantial 6 
improvement in overall performance (ENS,median=0.59, ENS,log,median=0.44, ENS, FDC,median=0.92) 7 
compared to FLEXA, as FLEXB not only allows for more process heterogeneity but, more 8 
importantly, it is conditioned with an increased number of constraints.  9 

The additional process heterogeneity and constraints allowed by FLEXC, results in the highest 10 
overall performance for all three objective functions (ENS,median=0.68, ENS,log,median=0.54, ENS, 11 
FDC,median=0.95) (Table 3, Figure 3).  12 

These results clearly illustrate that the imposed relational constraints force the model and its 13 
parameters towards a more realistic behavior, which significantly improves model 14 
performance. 15 

The 95% uncertainty intervals indicate that FLEXC, which might be expected to produce the 16 
highest uncertainty interval due to its complexity, is providing a lower uncertainty compared 17 
to FLEXB. Although FLEXC cannot outperform FLEXA in terms of a lower uncertainty 18 
interval, overall performance of this model is better than FLEXA as discussed earlier.  19 

Table 3- The median model performances (in brackets their corresponding 95% uncertainty 20 
intervals) and the area spanned by the 95% uncertainty interval of hydrograph derived from 21 
uncalibrated parameter sets which satisfy the complete set of constraints for the three model 22 
set-ups FLEXA, FLEXB and FLEXC, for the three modeling objectives (ENS, ENS,log, ENS,FDC) 23 
in the calibration (2002-2005) and validation (2006-2009) periods. 24 

  ENS ENS,log ENS,FDC  95% uncertainty 
area [mm] 

FLEXA 

Calibration 0.19 
[0.12 0.28] 

0.13 
[-0.13 0.41] 

0.38 
[0.29 0.56] 

801 

Validation 0.20 
[0.10 0.33] 

0.37 
[0.18 0.56] 

0.40 
[0.27 0.61] 

806 

FLEXB 

Calibration 0.59 
[0.25 0.75] 

0.44 
[0.16 0.61] 

0.92 
[0.81 0.95] 

1396 

Validation 0.54 
[0.23 0.76] 

0.59 
[0.31 0.73] 

0.92 
[0.76 0.98] 

1550 

FLEXC 

Calibration 0.68 
[0.46 0.77] 

0.54 
[0.07 0.65] 

0.95 
[0.91 0.96] 

878 

Validation 0.66 
[0.42 0.77] 

0.63 
[0.05 0.77] 

0.97 
[0.94 0.99] 

1025 

 25 
  26 
 27 
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 1 
Figure 3- The observed hydrograph and the 95% uncertainty interval of the modeled 2 
hydrograph derived from the complete set of constrained but un-calibrated parameter sets for 3 
the three different model set-ups (a) FLEXA, (b) FLEXB and (c) FLEXC for two years (2002-4 
2003) of calibration. 5 
 6 
4-2- Evaluating the performance of constrained and calibrated parameter sets: 7 
 8 
The comparison of the constrained and calibrated model set-ups shows that all three models 9 
set-ups can reproduce the hydrograph similarly well (Table 4, Figure 4). FLEXA exhibits a 10 
slightly better calibration performance compared to the other two model set-ups. This can 11 
partly be attributed to the lower number of parameters which leads, with the same number of 12 
samples, to a more exhaustive sampling of the parameter space and a smoother identification 13 
of Pareto optimal solutions. In addition, FLEXA has the lowest number of imposed 14 
constraints, i.e. only the runoff coefficient and one parameter constraints, compared to FLEXB 15 
and FLEXC. This model set-up therefore allows more freedom in exploiting the parameter 16 
space to produce mathematically good fits between observed and modeled system response in 17 
the calibration period. 18 

For the validation period, arguably more important for model evaluation, as in contrast to the 19 
calibration period, it gives information on model consistency (cf. Klemes, 1986; Andréassian 20 
et al., 2009; Euser et al., 2013) and predictive uncertainty, the performances of the three 21 
model set-ups exhibit quite different patterns (Table 4). The simplest model, the lumped 22 
FLEXA, is characterized by the highest performance deterioration from calibration to 23 
validation. FLEXB shows a better validation/calibration performance ratio than FLEXA. 24 
Despite the expectation that increasingly complex models will have increasingly poor 25 
validation/calibration performance ratios, due to higher degrees of freedom, FLEXC exhibited 26 
a more stable performance between calibration and validation.  27 

In addition, the absolute performance of FLEXC in the validation period is in general higher 28 
than the performances of FLEXA and FLEXB (Table 4). Although, strictly speaking, no 29 
meaningful comparison between Nash-Sutcliffe efficiencies from different periods can be 30 
made, these results nevertheless indicate that the most complex model set-up, i.e. FLEXC, is 31 
the most consistent model-set-up with the lowest predictive uncertainty, which has important 32 
implications that will be discussed below. The explanation is that in spite of the high degree 33 
of process heterogeneity, the high number of constraints in FLEXC prevents the calibration 34 
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algorithm to over-fit this complex model set-up, thus reducing the probability of seriously 1 
misrepresenting reality.  2 

 3 
Table 4- The median model performances (in brackets their corresponding Pareto uncertainty 4 
intervals) and the area spanned by the uncertainty interval of the hydrograph derived from the 5 
Pareto optimal solutions of the constrained and calibrated model set-ups FLEXA, FLEXB and 6 
FLEXC for the three modeling objectives (ENS, ENS,log, ENS,FDC) in the calibration  and 7 
validation periods. 8 

  ENS ENS,log ENS,FDC  95% uncertainty 
area [mm] 

FLEXA 

Calibration 0.74 
[0.51 0.82] 

0.74 
[0.66 0.80] 

0.96 
[0.95 0.98] 

696 

Validation 0.66 
[0.48 0.78] 

0.75 
[0.70 0.81] 

0.97 
[0.94 0.98] 

           826 

FLEXB 

Calibration 0.74 
[0.60 0.80] 

0.73 
[0.59 0.79] 

0.96 
[0.94 0.98] 

627 

Validation 0.72 
[0.57 0.79] 

0.78 
[0.64 0.82] 

0.96 
[0.94 0.98] 

719 

FLEXC 

Calibration 0.69 
[0.60 0.79] 

0.66 
[0.60 0.67] 

0.96 
[0.94 0.96] 

 508

Validation 0.68 
[0.57 0.78] 

0.74 
[0.66 0.79] 

0.98 
[0.95 0.98] 

593 

 9 
 10 

 11 
Figure 4- The observed hydrograph and the 95% Pareto uncertainty interval of the modeled 12 
hydrograph for constrained and calibrated parameter sets for the three different model set-ups 13 
(a) FLEXA, (b) FLEXB and (c) FLEXC for the two years (2008-2009) of validation period. 14 
 15 
4-3- Comparison of “constrained but uncalibrated” and “constrained and calibrated” 16 
models: 17 
 18 
The following comparison of the performances of FLEXA, FLEXB and FLEXC for 19 
“constrained but uncalibrated” and “constrained and calibrated” parameter sets focused on 20 
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ENS only, for the reason of brevity (Figure 5). In Figures 5a and 5b the model performances 1 
based on the “constrained but uncalibrated” parameter sets, that satisfy the full set of 2 
constraints, are shown for the calibration and validation periods. As discussed in detail above, 3 
although uncalibrated, increasing the number of constraints from FLEXA to FLEXC increases 4 
the overall performance of the models while reducing uncertainty (Figures 5c and 5d; note 5 
that these are zoom-ins).  6 

Figure 5e compares model performance based on constrained and calibrated parameter sets 7 
for the calibration period. As discussed earlier, it can be clearly seen that the simple lumped 8 
model, FLEXA, shows the best calibration performance with lowest uncertainty. However, 9 
when comparing the individual model performances of the constrained and calibrated models 10 
during the validation period (Figure 5f), it can be seen that FLEXA not only shows the 11 
strongest performance deterioration compared to the calibration period but also that FLEXA is 12 
also the model with the poorest performance in the validation period. This implies that 13 
although FLEXC is the most complex model, the realism constraints imposed on this model 14 
generate the most reliable outputs when used for prediction, i.e. in the validation period. This 15 
strongly underlines that the widely accepted notion of complex models necessarily being 16 
subject to higher predictive uncertainty is not generally valid when the feasible parameter 17 
space can be well constrained based on assumptions of realistic functionality of a catchment. 18 

In addition a second crucial aspect was revealed by comparing “constrained but un-19 
calibrated” and “constrained and calibrated” models. It can be seen that, for the study 20 
catchment, a calibrated lumped model, FLEXA (Figure 5f, left plot) can on average not 21 
outperform a more complex constrained but uncalibrated model, i.e. FLEXC (Figure 5d, right 22 
plot). This has potentially important implications for selecting suitable parameter values for 23 
models applied in ungauged basins as it highlights the value of semi- and non-quantitative 24 
hydrological expert knowledge, even in the absence of reliable model regionalization tools 25 
and detailed soil or geological information, as discussed in detail below. 26 

 27 
 28 
Figure 5- Model performance (ENS) based on constrained but uncalibrated (a-d) and 29 
constrained and calibrated (e-f) parameter sets for calibration (2002-2005) and validation 30 
(2006-2009) periods for the three different model set-ups FLEXA, FLEXB and FLEXC. Note 31 
that (c) and (d) are zoom-ins of (a) and (b). 32 
 33 
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4-4- Comparison of flow contributions from different model components: 1 
 2 
The comparison of the fluxes generated from the individual model components in the three 3 
model set-ups helps to assess to which degree the model internal dynamics reflect the 4 
modeler’s perception of the system and thus to a certain degree the realism of the models.  5 

Fast and slow responses of each tested model set-up have been visually illustrated in Fig. 6. 6 
Predominance of slow responses of all the three models are indicated by green color; 7 
predominance of fast responses of FLEXA, fast responses of the remainder of the catchment 8 
of FLEXB and fast responses of hillslope of FLEXC is indicated by red color; wetland fast 9 
responses of FLEXB and FLEXC are indicated by predominance of blue color.  10 

The colors in Fig. 6 are an illustration using three colors (red, green and blue) for the models’ 11 
responses based on their weight of contribution to the modeled runoff. As it can be seen in 12 
Fig.6a the fast component of FLEXA is dominant just during peak flows and even the 13 
recession shortly after peak flows are accounted for mainly by ground water. Analysis of the 14 
individual model components computed by Pareto optimal parameter sets (not shown here for 15 
brevity), indicates that some Pareto optimal parameters can generate peak flows by 16 
predominant contributions from slow responses while fast reaction is tend to be inactive 17 
during these events.  18 

In accordance with the perception of the system that wetlands are predominantly responsible 19 
for peak flows during dry conditions, Fig.6b and c show that wetland fast responses in FLEXB 20 
and FLEXC control the rapid response during wetting up periods (dry to wet transition), 21 
before hillslope fast processes become more important at higher moisture levels. When the 22 
system is saturated the hillslope contribution to modeled runoff becomes significantly higher 23 
compared to the wetland response. Note that the response of the wetland may not correspond 24 
well to individual events, as a consequence of the fact that the corresponding constraint was 25 
set for an aggregated period.  26 

 27 



Page 21 of 33 
 

Figure 6- Comparison between mean proportions of Pareto members for model components 1 
of the three model set-ups in part of the calibration periods (August 2002- June 2003) (a) 2 
FLEXA, (b) FLEXB, and (c) FLEXC. The green color indicates the relative contribution of the 3 
slow reservoir for the three different models. Red indicates relative contribution from the fast 4 
components, i.e. fast reservoir in FLEXA, fast reservoir of the remainder of the catchment in 5 
FLEXB and fast reservoir of hillslope of FLEXC. The blue color indicates the relative 6 
contribution of fast wetland component of FLEXB and FLEXC.  7 
 8 
4-5- General discussion: 9 
 10 
The results of this study quite clearly indicate that discretizing the catchment into 11 
hydrological response units (HRUs) and incorporating expert knowledge in model 12 
development and testing is a potentially powerful strategy for runoff prediction, even where 13 
insufficient data for model calibration (e.g. Koren et al., 2003; Duan et al., 2006; Winsemius 14 
et al., 2009) or only comparatively unreliable regionalization tools are available (e.g. Wagener 15 
and Wheater, 2006; Bárdossy, 2007; Parajka et al., 2007; Oudin et al., 2008; Laaha et al., 16 
2013). It was found that the performance and the predictive power of a comparatively 17 
complex uncalibrated conceptual model, based on posterior parameter distributions obtained 18 
merely from relational, semi- and non-quantitative realism constraints inferred from expert 19 
knowledge, can be as efficient as the calibration of a lumped conceptual model (Fig. 5).  20 

Typically it is expected that, if not warranted by data, models with higher complexity suffer 21 
from higher predictive uncertainty. As stated by Beven (2001): “More complexity means 22 
more parameters, more parameters mean more calibration problems, more calibration 23 
problems will often mean more uncertainty in the predictions, particularly outside the range of 24 
the calibration data”. Thus, more parameters would allow better fits of the hydrograph but 25 
would not necessarily imply a better and more robust understanding of catchment behavior or 26 
more reliable predictions.  27 

A complex model may include many processes, i.e. hypotheses, which can usually not be 28 
rigorously tested with the available data. However, a wide range of previous studies has 29 
demonstrated that hydrologically meaningful constraints can help to limit the increased 30 
uncertainty caused by incorporating additional processes, i.e. parameters (e.g. Yadav et al., 31 
2007; Zhang et al., 2008; Kapangaziwiri et al., 2012). These studies generally include a large 32 
set of catchments and try to relate model parameters to catchment characteristics. Although 33 
regional constraints are important, the importance of expert knowledge on the catchment 34 
scale, which leads to better understanding of hydrological behavior is highlighted in this 35 
study. 36 

In a similar attempt, Pokhrel et al. (2008, 2012) demonstrated use of regularization for model 37 
parameters and reduction of model parameter space dimensionality by linking model 38 
parameters using super-parameters to catchment characteristics. However, no explicit 39 
hydrological reasoning is typically applied for such “regularization rules” (e.g. Pokhrel et al., 40 
2012). On the other hand, Kumar et al. (2010, 2013) parameterize and successfully 41 
regionalize their models using empirical transfer functions with global parameters, developed 42 
from extensive literature study and iterative testing in a large sample of catchments In 43 
contrast, the use of relational parameter- and process constraints, as presented in this study, is 44 
based on semi-quantitative, hydrologically explicit and meaningful reasoning avoiding the 45 
need for empirical transfer functions to link catchments characteristics and model parameters.  46 

Including prior knowledge for parameters of physically-based models for estimating runoff in 47 
ungauged basins was quite successfully investigated in the past (e.g. Otte and Uhlenbrook 48 
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2004, Vinegradov et al., 2011, Fang et al., 2013, Semenova et al., 2013). These studies 1 
specifically indicate that calibration can be replaced by prior information which is a 2 
significant contribution to Predictions in Ungauged Basins (PUB). While physically-based 3 
models need detailed information of catchment behavior for model parameters, the here 4 
proposed semi-distributed conceptual modeling framework, exploiting relational constraints, 5 
can be more efficiently set up using the least prior information necessary. In this study, the 6 
performances and uncertainties of the three tested model set-ups for constrained but 7 
uncalibrated parameters indicate the potential of the presented FLEX-TOPO framework for 8 
Predictions in Ungauged Basins (PUB). Hence, this framework can efficiently use expert 9 
knowledge for improving model parameter value selection in complex conceptual 10 
hydrological models, not only to increase model performance but also to reduce model 11 
predictive uncertainty even in the absence of calibration. 12 

It should be noted that the model set-ups suggested within the FLEX-TOPO framework are 13 
hypotheses that still need to undergo further tests, ideally confronting them with additional, 14 
system internal information, such as groundwater dynamics (e.g. Seibert and McDonnell 15 
2003, 2013; Fenicia et al., 2008) or tracer data (e.g. Madsen 2006, Campbell et al., 2012; 16 
Birkel et al., 2011; Hrachowitz et al., 2013a). To make more efficient use of relational 17 
constraints, model sensitivities to these constraints need to be evaluated in the future. It is also 18 
emphasized that the constraints introduced in this study are based on the authors’ subjective 19 
understanding of catchment behavior and can and should be discussed further. However, we 20 
would like to stress the notion that reaching an agreement on the relations between parameters 21 
and fluxes in different landscape units is potentially much easier than finding the most 22 
adequate parameter values together with associated uncertainties for a conceptual model 23 
based on field observations or available data on geology or soil types. 24 

 25 
5- Conclusion: 26 
 27 
In this study it was tested if a topography-driven semi-distributed formulation of a catchment-28 
scale conceptual model, conditioned by expert knowledge based relational parameter- and 29 
process constraints, can increase the level of process realism and predictive power while 30 
reducing the need for calibration compared to a lumped model set-up.   31 
It was found that: 32 
(1) A constrained but uncalibrated semi-distributed model exhibited an equivalent 33 
performance compared  to a constrained and calibrated lumped model when used for 34 
prediction. This illustrates the potential value of the combined use of higher complexity 35 
models and relational constraints for predictions in ungauged basins, where no calibration 36 
data are available. 37 
(2) The use of relational parameter- and process constraints in model calibration ensured a 38 
high degree of process realism. Thus, in spite of the comparatively high complexity, the 39 
overall model performance and uncertainty showed better prediction results than for a lumped 40 
model. It was shown that higher model complexity therefore does not necessarily entail 41 
reduced predictive power. 42 
(3) Semi-distributing a model on the basis of HRUs derived from topographic data can 43 
increase model internal consistency as it better accounts for fundamentally different runoff 44 
generating processes active at different wetness conditions. 45 
 (4) In contrast to constraints based on more detailed and frequently unavailable 46 
regionalization relationships or catchment data, such as geology and soils, hydrologically 47 
meaningful relational constraints can be applied with a minimum amount of information. 48 
  49 
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