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Abstract

In this paper we address the difficult problem of gaining an internal, mechanistic under-
standing of a neural network river forecasting (NNRF) model. Neural network models
in hydrology have long been criticised for their black-box character, which prohibits
adequate understanding of their modelling mechanisms and has limited their broad
acceptance by hydrologists. In response, we here present a new, data-driven mecha-
nistic modelling (DDMM) framework that incorporates an evaluation of the legitimacy
of a neural network’s internal modelling mechanism as a core element in the model de-
velopment process. The framework is exemplified for two NNRF modelling scenarios,
and uses a novel adaptation of first order, partial derivate, relative sensitivity analysis
methods as the means by which each model's mechanistic legitimacy is explored. The
results demonstrate the limitations of standard, goodness-of-fit validation procedures
applied by NNRF modellers, by highlighting how the internal mechanisms of complex
models that produce the best fit scores can have much lower legitimacy than simpler
counterparts whose scores are only slightly inferior. The study emphasises the urgent
need for better mechanistic understanding of neural network-based hydrological mod-
els and the further development of methods for elucidating their mechanisms.

1 Introduction

In this paper we consider the complex question of how to determine the mechanistic
legitimacy of a black-box, data-driven hydrological model. This question is of funda-
mental importance for the validation of data-driven models in hydrology and their wider
acceptance by hydrologists, yet has to date received very little attention by researchers.
In addressing it, we take the relatively simple case of neural network river forecasting
models as a starting point, as these models have become one of the most popular ap-
plication areas for data-driven modelling in hydrology over recent years (Abrahart et al.,
2012a). In common with established, statistical river forecasting approaches (e.g. Hipel
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etal., 1977), each neural network river forecaster (NNRF) is a simple, short-step-ahead
hydrological forecasting model whose predictions are derived from a core set of lagged,
autoregressive model inputs recorded for the point at which the prediction is required
(e.g. Firat, 2008), and/or gauged locations upstream. These inputs are, to a varying
extent, augmented by a range of relevant, lagged hydrometeorologic variables that
act to further refine the model output (e.g. Anctil et al., 2004). Unlike the alternative
approaches, that utilise explicit and widely-accepted statistical methods to define and
constrain the model structure, the definition of an NNRF model is a largely implicit
process in which a neural network (NN) is used to discover the modelling mechanisms
directly from the calibration data that are used to train it. The result is a black box model
that lacks an explicit documentation of its internal mechanisms.

The main benefit of NNRFs over statistical models is that they have been found to
deliver enhanced levels of model fit when assessed against calibration and validation
data sets (e.g. Abrahart and See, 2000). Consequently, it has been suggested that
NNRFs can deliver forecasts with reduced error, and can be used to extend the hori-
zon over which forecasts can reliably be made (de Vos, 2013). However, these claims
should not be taken to mean that NNRF models are more valid than their established,
empirical counterparts. Indeed, determining the validity of a model should include a
requirement for the developer to establish its legitimacy (Oreskes et al., 1994; Sargent,
2011). In hydrology, one way that this has been addressed is by demonstrating that the
behaviour of the internal numerical mechanisms by which the model fit is achieved is
sufficiently real in the context of a given modelling task (e.g. Young and Beven, 1994;
Beven, 2002). This has always been a problem for data-driven models in general, and
NNRFs in particular, because it is not easy to gain an explicit representation of their
internal numerical mechanisms from which the reality can be assessed. Indeed, even
when the explicit governing equations of an NN are examined their complexity prohibits
straightforward interpretation (Aytek et al., 2008; Abrahart et al., 2009). It is, therefore,
difficult to provide a convincing justification that NNRFs behave in a manner that con-
forms to hydrological domain knowledge (Cunge, 2003; de Vos and Rientjes, 2005). It
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also means that NNRFs have little heuristic value because the extent and legitimacy of
hydrological process representation within the model’s response function has not been
sufficiently established. Similarly, generalising NNRFs is difficult as there is no means of
demonstrating whether the modelling mechanisms employed adequately encapsulate
the hydrological processes that influence catchment responses. Consequently, NNRFs
have been criticised as offering hydrological researchers little more than an advanced
method of non-linear curve-fitting (Abrahart et al., 2011), whose high degree of per-
formance in replicating calibration and validation data is an inevitable consequence of
the low numerical complexity of the underlying curve fitting operation required in river
forecasting models (Mount and Abrahart, 2011a).

The inability to legitimise the internal behaviour of an NNRF’s numerical mecha-
nisms also has important methodological implications for the model development pro-
cess. Developing an NNRF is complicated by the wide range of structural and training
parameters that must be configured (e.g. learning function, constraints, number of hid-
den layers, number of hidden units, stopping point, etcetera), and a general lack of
consensus about what the most appropriate configurations are for a given modelling
task (Jayawardena and Fernando, 2001). Consequently, it is necessary for the mod-
eller to determine the best configuration for their model via empirical means (e.g. Kisi,
2004). Standard methods apply a trial-and-error approach in which the parameter con-
figuration is systematically altered to deliver a set of candidate models; each model
containing slightly different internal numerical mechanisms and delivering slightly dif-
ferent outputs (e.g. Kisi, 2008). The “best” model is then selected by quantifying its fit
to calibration and validation data in a process that seeks the optimum combination of
NN components and parameters irrespective of any mechanistic understanding of the
candidate models (Mount and Abrahart, 2011b). The result is that the NNRF model
selection process arguably fails to deliver an adequate assessment of whether mech-
anisms employed by candidate solutions with lower levels of fit might actually be more
valid or legitimate from the perspective of relevant domain knowledge.
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In response to this issue, a limited number of attempts to provide a hydrologic expla-
nation of NNRF numerical mechanisms can be identified in the literature. The majority
have focussed on isolating and interpreting the outputs associated with different struc-
tural elements of the NN; specifically weights (e.g. Prada-Sarmiento and Obregon-
Neira, 2009) and hidden units. Evaluation of hidden units has arguably delivered the
greatest insights, with studies by Wilby et al. (1993), Jain et al. (2004), See et al. (2008),
Fernando and Shamseldin (2009) and Jain and Kumar (2009) all indicating that differ-
ent hidden units are responsible for modelling different components of the flood hydro-
graph (i.e. rapid overland flow, interflow and baseflow). Similar results were reported
by Sudheer and Jain (2004), who found that their NNRF mapped a function that ap-
proximated a flow duration curve, with the different hidden units capturing low, medium
and high magnitude flows. These studies offer important insights into the ways in which
NNRFs partition their overall response function into defined components within the NN
structure. However, the primary focus in these studies is the delivery of a structural
assessment and the extent to which they focus on the numerical mechanisms that the
structures deliver is limited.

If the criticisms surrounding NNRF model legitimacy are to be fully addressed it is
necessary to move beyond investigations of NN structure, and towards the develop-
ment of techniques that can elucidate the behaviour of the NN response function in a
more mechanistic sense. In this context, previous papers on the development of data-
based mechanistic (DBM) approaches to hydrological model development are of par-
ticular relevance (Young and Beven, 1994) as they offer a recognised means by which
mechanistic legitimacy can be delivered to black-box hydrological models. The term
mechanistic simply refers to the structure and interactions of the internal mechanisms
that control a model’s behaviour. In the DBM approach, these are examined using a
formal process of statistical inference through which the modelling mechanisms are
identified prior to building the model, and interpreted according to the extent to which
they conform to the nature of the system under study (Young et al., 2004) (Fig. 1,
A1-A4). The model is then accepted, or rejected, on the basis of its conformance.

149

HESSD
10, 145-187, 2013

Legitimising neural
network river
forecasting models

N. J. Mount et al.

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/145/2013/hessd-10-145-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/145/2013/hessd-10-145-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

The application of the DBM approach in data-driven modelling in general, and NNRF
modelling in particular, is prevented due to the means by which the model learns from
the data; limiting the a priori application of statistical inference from which a mecha-
nistic interpretation can be made. The DBM process can, however, be reordered to
address this issue by examining modelling mechanisms and assessing their legitimacy
immediately after model development (Fig. 1, B1-B4). This results in a new, generic,
data-driven mechanistic modelling (DDMM) framework that includes a specific require-
ment for mechanistic analysis and assessment as a post model building activity. In this
adaptation, the DDMM framework is more loosely defined and need not necessarily
be constrained to a demonstration of adequate representation of a natural system by a
model, which is a key feature of the DBM approaches. Indeed, it may also be used as a
tool to direct broader mechanistic investigations, including the complexity and function-
ality of the internal workings of a model, and the extent to which these can be justified
by the modelling task.

In this study we show how our DDMM framework can be applied to NNRF models
so that the evaluation of different candidate models includes an appraisal of both their
performance and mechanistic legitimacy. In contrast to previous studies (e.g. Coulibaly
et al., 2000; Huang et al., 2004; Kisi and Cigizoglu, 2007; Kisi, 2008), the primary
objective of this paper not to demonstrate the best possible river forecast that can
be achieved using NNRF techniques. Indeed, we restrict our modelling to only simple
examples that we accept may not be optimal. Instead, its objective is to exemplify
how the application of input sensitivity analysis, delivered within the DDMM framework,
provides an important new means by which NNRF modellers can identify the most
legitimate model mechanisms in a set of candidate models. Thus, we here apply two
of the most commonly used, and simple, NNRF input scenarios for short step-ahead
discharge forecasting on the River Ouse, Yorkshire, UK: antecedent, at-gauge inputs
and antecedent upstream inputs. The candidate NNRF models that are developed are
then evaluated within the DDMM framework according to their external fit metrics and
internal mechanisms.
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2 Elucidating NNRF model mechanisms

The DDMM framework potentially offers both NNRF modellers, and data-driven mod-
ellers more generally, a more rigorous and defensible approach to model development.
However, its successful application is reliant on the availability of techniques by which
data-driven model mechanisms can be elucidated and interpreted. These are not gen-
erally well developed or widely applied at present. Nonetheless, recent developments
in techniques for delivering sensitivity analyses for NN models (Yeung et al., 2010)
have provided new opportunities for exploring their internal mechanisms. In this con-
text, parameter sensitivity analysis (Hamby, 1994) is of particular interest as it offers an
important and established approach for elucidating numerical modelling mechanisms,
as well as delivering improved model verification (Howes and Anderson, 1988) and vali-
dation (e.g. Kleijnen, 1995; Kleijnen and Sargent, 2000; Fraedrich and Goldberg, 2000;
Smith et al., 2008; Mishra, 2009). Indeed, it is recognised as an important means by
which model validation can be extended beyond fit, to include deeper insights into a
model’s mechanistic behaviours (e.g. Sun et al., 2009).

Existing attempts to explore the internal numerical mechanisms of NNRFs via sen-
sitivity analysis are restricted to a single study by Sudheer (2005). This study applied
an indirect, perturbation analysis in which each input series to the NNRF was sys-
tematically varied by a pre-determined proportion, with all other input series remain-
ing unaltered. The impact of the input variation on the output magnitude was used to
identify those inputs that had the greatest influence on the model. However, tempo-
ral dependencies in the data that drive river forecasting models should act to limit the
perturbation ranges that can realistically be applied (Abrahart et al., 2012b), resulting
in very small perturbations that limit the appropriateness of the perturbation method.
Input sensitivity analysis approaches that are based on the quantification of a model’s
partial derivatives offer an alternative and more direct means of mechanistic examina-
tion. These express the ratio of change between a model’s inputs and outputs directly
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internal modelling mechanisms can be inferred.

Computational techniques for determining first order partial derivatives of certain
NNs have been developed. One such technique, outlined by Hashem (1992), involves
the application of a simple backward chaining partial differentiation rule. His general
rule is adapted in Eq. (1) for NNs with sigmoid activation functions, a single hidden
layer, / input units, n hidden units and one output unit (O), so that the partial derivative
of the network’s output can be calculated with respect to each of its inputs:

00 <
1 _/=1

where, w;; is the weight from input unit / to hidden unit j; w;q is the weight from hidden
unit j to the output unit O; h; is the output of hidden unit /; and O is the output from the
network.

The relative sensitivity of each input, /, is thus calculated as:

00 I, < /. n
Jj=1 Jj=1

However, simply using first order partial derivative approaches does not overcome the
challenges presented by temporal-dependence in the input data that drive NNRFs.
Standard, local scale sensitivity analysis techniques (e.g. Turanayi and Rabitz, 2000;
Spruill et al., 2000; Holvoet et al., 2005; Hill and Tiedeman, 2007) require the establish-
ment of a representative base case (Krieger et al., 1997) for all inputs. This is usually
defined according to their mean or median values on the assumption that all inputs
are independent of one another. However, in NNRF modelling this assumption is not
valid and the identification of a representative base case is very difficult. Moreover, lo-
cal scale analyses can only provide mechanistic insights for the specific location in the
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input hyperspace to which the base case corresponds, and it should not be assumed
that mechanistic insights can be generalised beyond it (Helton, 1993).

The application of a global (Muleta and Nicklow, 2005; Salteli et al., 2008) or re-
gional (e.g. Spear and Hornberger, 1980; Beven and Binley, 1992) sensitivity analysis
can overcome this issue by delivering a generalised sensitivity index, which incorpo-
rates input probability distributions that describe all of the input hyperspace, or specific
regions within it. However, these methods are very dependent on the particular method
used to sample and compute the distributions (Pappenberger et al., 2008), and strong
temporal dependence in NNRF inputs makes the determination of an appropriate sam-
pling strategy problematic. In addition, the summary, lumped indices output by global
and regional techniques mask the detailed, local patterns of input-output sensitivity that
must be understood in order to fully characterise a model’s mechanistic behaviour.

One solution for overcoming these difficulties is to adopt a brute-force approach in
which relative first order, partial derivatives for all model inputs are computed separately
for every data point in a given time series, using the specific input values recorded at
each point as a datum-specific base case. In this way, a “global-local” parameter sen-
sitivity analysis is developed in which local scale input sensitivity analysis is performed
across the global set of available data points. Issues associated with temporal depen-
dence in river forecasting data are overcome because every datum in the analysis ef-
fectively becomes its own, specific base case. NNRF modelling mechanisms can then
be characterised and interpreted across the full forecast range by plotting the relative
sensitivity of each input (y-axis) against the forecast values delivered by the model
(x-axis), and interpreting the patterns that can be observed in the plots.

These patterns can be interpreted mechanistically, by considering the magnitude,
stability, continuity and coherency of the model’s sensitivity to each input, the relative
differences in these patterns for different inputs, and how they vary across the model’s
forecast range (Fig. 2). The magnitude of a model’s sensitivity to its inputs charac-
terises the relative extent to which each model forecast is sensitive to variation in each
of its inputs. It can therefore reveal the relative importance of each input as a driver of
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the model output at any given point in the forecast range. The stability of the input sen-
sitivity characterises the consistency with which each input influences the model out-
put across different forecast ranges. Invariance in an input’s relative sensitivity across
the entire range (the most stable case) indicates that it is being used as a constant
multiplier by the model’s internal mechanism. Lower levels of stability will indicate in-
creasingly non-linear influences. The existence of local discontinuities in the model’'s
sensitivity to an input indicates the existence of thresholds in the model’s mechanisms
that may result in distinctly different internal mechanistic behaviour at neighbouring
locations in the forecast range. Coherency reflects the extent to which the model’s sen-
sitivity to its inputs varies from point to point. Low coherence is indicative of a model
that applies a distinctly different modelling mechanism to each local data point and is a
means by which data overfitting may be detected.

3 Exemplifying the DDMM framework: study area, datasets and modelling
scenarios

In the following sections we present a simple example study to show how global-local
parameter sensitivity analysis can be used, in the context of the DDMM framework,
to assess the legitimacy of two simple NNRF models, developed for the River Ouse
at Skelton, Yorkshire, UK. The complexity of the modelling tasks is purposefully min-
imised to ensure that the parameter sensitivity patterns delivered are relatively straight-
forward, and the characterisation and interpretation of modelling mechanisms can be
clearly understood. Therefore, we restrict our model input parameters to temporally-
lagged instances of the model output; accepting that alternative input configurations
may be able to deliver models with a higher degree of fit. The first NNRF model (Sce-
nario A) represents the most simplistic, autoregressive river forecasting case, in which
at-a-gauge discharge is forecast from lagged discharge inputs recorded at the same
location. The second, more complex, NNRF model (Scenario B) predicts at-a-gauge

154

HESSD
10, 145-187, 2013

Legitimising neural
network river
forecasting models

N. J. Mount et al.

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/145/2013/hessd-10-145-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/145/2013/hessd-10-145-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

discharge from a set of three lagged discharge inputs recorded at gauges located in
tributary rivers immediately upstream.

The catchment upstream of the Skelton gauge (Fig. 3) covers a catchment of
3315 km? with a maximum drainage path length of 149.96 km, and an annual rainfall of
900 mm. The catchment contains mainly rural land uses with <2 % urban land cover.
It exhibits significant areas of steep, mountainous uplands that extend over 12 % of the
catchment, and includes the three sub-catchments of the rivers Swale, Ure and Nidd.
Each of these tributaries is gauged in its lowland reaches, upstream of its confluence
with the Ouse. Details of these gauges and contributing catchments are provided in
Table 1.

All NNRF models were developed using daily mean discharge records, downloaded
from the Centre for Ecology and Hydrology National River Flow Archive (www.ceh.ac.
uk/data/nrfa). The data extend over a period of 30 yr, from 1 January 1980 to 31 Decem-
ber 2010 (Fig. 4). Several short gaps exist in the observed records at irregular periods
across the different stations; necessitating approximately 8 % of the 30-yr record to be
omitted due to missing records at one or more gauges.

The data were partitioned so that the first 75 % of the available record (7762 data
points) was used for model calibration, leaving 25 % (2588 data points) for use as an
independent validation data set. The split places the three unusually high-magnitude
flood peaks observed at Skelton (identified by the arrows in Fig. 4) in the calibration
data. This is important in the context of this study, as it ensures that the internal mech-
anisms of the calibrated models have been developed to accommodate the largest
observed floods in the record. Therefore, any mechanistic interpretation is informative
across the full forecast range for each model. Nonetheless, we also recognise that the
simplicity of this splitting procedure contrasts with more complex approaches that have
been used by NN modellers (e.g. Snee, 1977; Baxter et al., 2000; Wu et al., 2012)
to deliver improved validation consistency (LeBaron and Weigend, 1998) by ensuring
representative subsetting procedures. Therefore, exceedence curves for the calibration
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and validation data (Fig. 5), were checked to ensure high conformance in the discharge
probability distributions for calibration and validation data subsets at all gauges.

Input selection and model development

Scenario A is a straightforward, autoregressive NNRF for Skelton that predicts instan-
taneous discharge (S;) from the three most recently gauged discharges (S;_1; S;_o;
S;_3). The modelling is developed directly from the daily mean discharge record for
Skelton, with no pre-processing having been applied. Three antecedent predictors
were used, such lags having the strongest correlation with observed flow at Skelton
at time t (Fig. 6) over the entire 30-yr record. Scenario B predicts S; on the basis of
antecedent discharges recorded for the three tributary gauges at Crakehill (C), Skip
Bridge (SB) and Westwick (W). The strength of the correlation between each tributary
gauge and Skelton over a range of lags was used to determine the lag time at each
tributary that represented the strongest predictor for S;. The three inputs to Scenario B
are thus C;_4; SB;_4; and W, _j.

The proportion of the discharge at S; that is accounted for by discharge at C;_;,
SB;_; and W,_; is summarised as a box plot in Fig. 7. The plot shows that, sum-
marised over the whole record, lagged discharge at Crakehill and Westwick accounts
for a similar proportion of the instantaneous discharge at Skelton, with comparable
median values (~ 40 %) and interquartile ranges. Skip Bridge is proportionally less im-
portant with a median value of 18 %. This highlights its relative weakness as a physical
driver of S;, which is in contrast to its relative strength as a statistical driver (i.e. it
has the second highest correlation coefficient at t — 1). It should be noted that, due to
timing effects and the use of summary, daily mean data, the maximum proportional
contributions values in Fig. 7 exceed 100 %.

In order to reflect the lack of consensus surrounding NNRF parameterisation, and
the empirical process that underpins model selection in the majority of previous studies
(see introduction), four candidate single-hidden-unit NNs were developed for Scenar-
ios A and B. Each candidate was structurally-distinct, incorporating either 2, 3, 4 or
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5 hidden units. In this way, a range of alternative candidate models of varying complex-
ity were developed in each NNRF scenario for subsequent mechanistic comparison.
All candidate models used the back-propagation of error learning algorithm (Rummel-
hart et al., 1986) and root mean squared error (RMSE) as the objective function. The
training rate was fixed at 0.1 and a momentum term of 0.9 was used. Each of the
candidate models was trained for epochs ranging from 100 to 20000 iterations, and
tested at 100 epoch intervals, with the optimum number of epochs identified by means
of cross-validation with the independent dataset, according to the lowest RMSE value
obtained. The preferred number of epochs for each hidden unit configuration for the
different scenarios is shown in Table 2, with the relative strength of the autoregressive
relationship in Scenario A reflected in its lower number of training epochs. Similarly, the
relative simplicity of the NN configurations comprising fewer hidden units is reflected in
their generally lower number of training epochs. For a simple, linear benchmark (Abra-
hart and See, 2007; Mount and Abrahart, 2011a), multiple linear regressions models
(MLR) were also developed on the calibration data for both scenarios. Their equations
are:

ScenarioA: S; = 6.014 +1.12-S;_{ + 0.455- 5, , + 0.216 - S;_5 (3)
ScenarioB: S; = 5.715 + 0.424 - C;_4 + 1.556 - SB;_; + 1.055 - W,_;. (4)

4 Scenario A: performance, mechanistic interpretation and model choice
4.1 Candidate model fit

The calibration and validation performance of each candidate NNRF model, driven by

autoregressive inputs, are presented in Tables 3 and 4. A wide range of metrics have

been proposed for assessing hydrological model performance (Dawson et al., 2007,

2010), along with a range of mechanisms for their integration (e.g. Dawson et al., 2012).

Nonetheless, consensus has still to be achieved on the metrics that should be used in

assessing NNRF model performance. Here we restrict our metrics to three simple and
157

HESSD
10, 145-187, 2013

Legitimising neural
network river
forecasting models

N. J. Mount et al.

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/145/2013/hessd-10-145-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/145/2013/hessd-10-145-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

widely used examples that cover key aspects of model fit. This restriction is justified on
the basis that the mechanistic exploration delivered by the DDMM framework reduces
the overall reliance on metric-based assessment and the importance of arguments that
surround the subtleties of metric choice in model assessment. Pearson’s product mo-
ment correlation coefficient, squared (R-squared) is included as a general, dimension-
less measure of model fit that indicates the proportion of overall variance in the data
that is explained by each candidate model. RMSE is included because it is a metric that
is disproportionately influenced by the extent to which each candidate model forecasts
high-magnitude discharges. In contrast, the relative metric mean squared relative error
(MSRE) is included because its scores emphasises the extent to which low-magnitude
discharges are correctly forecast by the candidates. The formula for each metric can
be found in Dawson et al. (2007).

The metric scores highlight almost identical levels of performance across the can-
didates, irrespective of the metric against which fit is assessed, or whether the fit is
assessed relative to the calibration or validation data. Metric scores for the validation
data are slightly better than those for the calibration data in all metrics, with the great-
est differences observed in RMSE scores. This reflects the fact that the three high-
est magnitude floods are within the calibration data and, in common with most other
autoregressive river forecasting models, there is a general underestimation of flood
peaks. These two aspects combine to produce the observed improvement in RMSE
in the validation data. Importantly, the MLR benchmark performs well, with RMSE and
R-squared scores that are comparable with the NNRF model candidates for the cali-
bration data and better for the validation data. This serves to highlight the near-linear
nature of the modelling problem. Despite there being no clear winner on the basis of
metrics alone, the 5-hidden-unit model does achieve the best NNRF candidate metric
scores in three out of six cases.
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4.2 Candidate model mechanisms

For each of the four candidate solutions, relative first order partial derivatives were
computed according to the global-local approach outlined in Sect. 2. Equation (2) was
used to compute local first order partial derivatives for all 7762 data points, on which
the candidate models were calibrated. Values of Wij, W0, h/- were determined for each
forecast, according to its specific input value set at each point. This resulted in a set
of 7762 separate relative parameter sensitivity values for each of the three inputs in
each candidate model. These values are plotted against their respective forecasted
discharge values in Fig. 8.

Figure 8 highlights the fact that, mechanistically, all four candidate models behave
in very similar ways. In all cases, the relative sensitivity of the model forecast to vari-
ation in S;_; is substantially greater than to either S;_, or S;_s; indicating its primary
importance as the driver of the model forecasts. This result is entirely in line with ex-
pectations of a simple autoregressive model. Indeed, the overriding importance of S;_;
is further highlighted by the opposing directionality in the generally low-magnitude, rel-
ative sensitivities associated with S;_, and S;_s. This pattern indicates the existence
of internal NN mechanisms that largely cancel out the influence of these variables;
resulting in a modelling mechanism with redundant complexity. This mechanism can
be observed, to varying extents, in all candidate models, suggesting a mis-match be-
tween the scope of the modelling problem and the complexity of technique by which
is has been solved. The MLR equations and performance metrics further support this
view, with the coefficients for S;_, and S;_5 being substantially smaller than for S;_
and the good metric scores for the calibration and validation data (Table 4) highlight-
ing the near-linear nature of the modelling problem. Nonetheless, moderate instability
in the relative sensitivity of all candidate models to S;_; is evident, with a consistent
pattern that approximates a third order polynomial. This indicates some non-linearity
in the modelling mechanism associated with S;_;, although this non-linearity results in
little if any performance gain over the linear, MLR benchmark.
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One characteristic by which the candidate modelling mechanisms can be more
clearly discerned from one another is their coherency, with different candidates display-
ing varying degrees of scatter in their relative sensitivity plots. Of particular note is a
moderate reduction in the coherency of the relative sensitivity plots for S;_y and S;_, as
the number of hidden units in the candidate models increases; with lower coherency in-
dicating an internal modelling mechanism that is increasingly data point specific (i.e. is
tending towards overfitting the data). As S;_, is the main driver of the forecast dis-
charge across all candidates, high coherency in the relative sensitivity of the model to
this input is desirable; suggesting that the highest level of mechanistic legitimacy can
be argued for the 2-hidden-unit candidate model.

4.3 Model selection

The simplistic, near-linear forecasting challenge presented by this scenario has, un-
surprisingly, resulted in similarity across the candidate models, in terms of both their
performance and internal mechanisms. Indeed, the lack of clear differentiation between
each candidate model's metric score performance would suggest that any of the can-
didates might be reasonably chosen. However, the selection of the most parsimonious
model is usually preferable (Dawson et al., 2006), especially for simple modelling prob-
lems. Therefore, in the absence of conclusive metrics-based evidence, selection of
the 2-hidden-unit NNRF model could be argued as the most appropriate. Examination
of the internal mechanisms adds additional evidence to support this choice. Although
there is little evidence by which the candidates can be distinguished with respect to
mechanistic stability or consistency, the 2-hidden-unit model displays a greater de-
gree of coherency in its key driver (S;_4) than its counterparts. This delivers additional,
mechanistic support for its preferential selection. However, the high degree of redun-
dancy observed in all candidate model mechanisms raises important questions about
the appropriateness of using a NNRF model for such a simple modelling task at all
and the number of inputs included. Indeed, the mechanistic evidence corresponds with
previous criticisms (e.g. Mount and Abrahart, 2011a), which argue that, in most cases,
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standard MLR-based methods can offer a more appropriate means for simple step-
ahead river forecasting tasks.

5 Scenario B: performance, mechanistic interpretation and model choice
5.1 Candidate model fit

Calibration and validation performance for the four candidate NNRF models, driven by
upstream inputs, are presented in Tables 5 and 6. The metric scores for Scenario B
provide limited evidence by which to discern the relative validity of the candidate mod-
els, with all candidates again delivering similar metric scores. However, in contrast to
Scenario A, one candidate consistently achieves the best metric scores. The 5-hidden-
unit candidate achieves the best metric scores for two of the three calibration metrics,
and all validation metrics. On this basis, its preferential selection could be argued, and
this selection would be in line with previously-published data-driven modelling studies
in which candidate model preference has been determined on the basis of consistent,
best metric scores that represent relatively small overall performance gains (Kisi and
Cigizoglu, 2007). It should also be noted that, in this scenario, the performance of all
NNRF candidates exceed that of the MLR benchmark; highlighting the importance of
non-linearity associated with river forecasting based on upstream inputs.

5.2 Candidate model mechanisms

Global-local relative sensitivity plots for each upstream input used in each candidate
model are presented in Fig. 9. W;_; is the strongest driver of S;, particularly at low fore-
cast ranges, with moderate sensitivity to SB;_; also being evident. A clear mechanistic
distinction between the 2 and 3-hidden-unit candidates and their 4 and 5-hidden-unit
counterparts can be observed based on the coherency of their mechanisms. The 4 and
5-hidden-unit candidates display low coherency, particularly at moderate to high fore-
cast ranges, and this is particularly evident for inputs C;_; and W;_4. This suggests
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that modelling mechanisms in the more complex candidates may be overfitting the
upper-range data; a tendency that is well known when NN-based hydrological models
are used to fit heteroscedastic data (Mount and Abrahart, 2011b). The importance of
avoiding overfitting in NN models is well known (Guistolisi and Lauocelli, 2005), and
the lack of coherency in the 4 and 5-hidden-unit candidates thus raises concerns over
their mechanistic legitimacy.

Low sensitivity to variation in the discharge at C;_, is a particular feature of the 2 and
3-hidden-unit candidates. This pattern contrasts with the MLR coefficients (Equation 4)
that highlight SB;_, as the strongest model driver in the regression model. It also con-
trasts with the proportional contribution that each lagged, upstream discharge makes to
overall discharge at S; (Fig. 7). Indeed, the significant proportional contribution made
by C;_; is minimised by the candidates — a factor that highlights the signal-based,
rather than physically-based nature of their modelling mechanisms. Reduction in the
relative sensitivity to SB;_; and W;_; as the forecast range increases is evident in both
the 2 and 3-hidden-unit candidates, and highlights the presence of non-linearity in the
modelling mechanism. The high degree of stability in these plots is indicative of relative
low-complexity in the non-linearity mechanism.

In differentiating the mechanistic legitimacy of these two candidates, however, the
relative sensitivity plots for C;_; and SB;_; are of particular interest. The increase from
2 to 3-hidden-units is accompanied by a moderate reduction in the coherency of the
relative sensitivity to SB;_; at medium forecast ranges, and the existence of some neg-
ative values. To some extent, these negative sensitivity values are counteracted by
slightly higher positive sensitivity to C;_; at similar forecast ranges. Nonetheless, in the
context of an upstream river forecasting model, it is difficult to justify a modelling mech-
anism that acts to reduce downstream discharge forecasts as discharge increases
upstream. Consequently, the legitimacy of the 3-hidden-unit candidate is difficult to
argue. Indeed, the 2-hidden-unit candidate appears to have the greatest mechanistic
legitimacy of the candidates; combining high coherency and appropriate stability in its
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relative sensitivity to its inputs; albeit with the predictive power of C;_; minimised to
near-zero.

5.3 Model selection

Scenario B represents a situation in which the fit metrics associated with different can-
didate models provide only limited evidence to inform model selection. On the basis
of fit metrics alone, the 5-hidden-unit model appears to offer the best modelling solu-
tion as it consistently has the best scores. However, the actual performance gains are
small, questioning whether a simpler model with only marginally lower performance
might actually be preferable. Indeed, examination of the 5-hidden-unit candidate’s in-
ternal mechanism reveals low coherency that is very difficult to legitimise over its more
coherent counterparts. Taking into account both fit metric scores and the legitimacy
of internal mechanisms, the 2-hidden-unit candidate offers the best overall modelling
solution. It combines high coherency and an appropriate degree of stability in its mod-
elling mechanisms, with fit metric scores that are only fractionally lower than the best
performing 5-hidden-unit candidate.

6 Summary

The analysis presented demonstrates that fit metric scores alone are an insufficient
basis by which to assess and discriminate between different NNRF models. The high
degree of equifinality in the metric scores for the candidate models masks important
differences in their complexity, mechanistic behaviour and legitimacy, which is only ex-
posed when internal modelling mechanisms are explored. The importance of a mech-
anistic evaluation is particularly evident for Scenario B, where small improvements in
metrics are associated with a substantial reduction in mechanistic legitimacy. Thus, the
study responds to the issue of whether the end point of a model (i.e. its fit) is a suf-
ficient basis by which to justify its means (i.e. the numerical basis by which the fit is
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achieved). This question remains a vital one for all hydrological modellers. To a large
extent, the scope and objectives of a hydrological model will determine the relative em-
phasis that should be placed on its mechanistic and performance validation (Jakeman
et al., 2006). However, if these are to exceed basic data-specific curve-fitting tasks,
some assessment of the mechanistic-legitimacy of the model is required. In the last
two decades of NN-based hydrological modelling, relatively little research effort has
been directed towards the development of methods for their mechanistic interpretation,
explanation and/or evaluation. This is despite recognition that the lack of availability of
such methods has been a fundamental constraint to progress in the field over the last
20yr (Abrahart el al., 2012).

This lack of progress is in stark contrast to the advances made by physical and
conceptual modellers that have centred on the development of new model evaluation
methods that incorporate mechanistic insights into model behaviour and uncertainty
(e.g. Beven and Binley, 1992). As a result, NN modelling in particular, and data-driven
modelling more generally, has remained a niche area of hydrological research that has
had only limited success in convincing the wider hydrological research community of
its potential value beyond optimised curve fitting tasks. The DDMM framework and
methodological approach that has been developed in this study represents an impor-
tant early step in redressing this problem. The inclusion of a requirement for the elu-
cidation and assessment of modelling mechanisms within the NN model development
process ensures that the validation of any NN model makes explicit both the perfor-
mance of the model, and the legitimacy of the means by which it is achieved. This
opens up the possibility of developing NN hydrological models with greater heuristic
value and transferability. By adapting a partial derivative sensitivity analysis method
as the means by which this is done, we parallel existing approaches for mechanistic
model exploration that are long-standing and well-established within hydrology (cf. Mc-
Cuen, 1973). In so doing we increase the alignment between NN model development
methodologies and those applied during the development of their conceptual and phys-
ical counterparts: an outcome that should lead to their wider acceptance.
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The input scenarios that we have used to exemplify the DDMM approach in this
paper are more simplistic than those used in many NNRF models that include an ad-
ditional array of hydro-meteorological inputs with varying degrees of temporal depen-
dence (cf. Zealand et al., 1999; Dibike and Solomatine, 2001). Similarly, the application
of a standard, back-propagation algorithm is not fully representative of the wide range
of NN variants that have been explored in NNRF modelling studies (cf. Hu et al., 2001;
Shamseldin and O’Connor, 2001). Consequently, the relative ease with which we have
been able to quantify and interpret input relative sensitivity in this study may not be
mirrored in more complex studies that use an increased number and diversity of inputs
and/or variants of the standard back-propagation algorithm. Thus, developing tech-
niques that can deliver clear mechanistic interpretation of input relative sensitivity pat-
terns in more complex NN modelling scenarios repesents an important consideration
for future research. Nonetheless, the results we present serve as a clear demonstration
of the dangers associated with evaluating NN models on the basis of performance val-
idation approaches alone. Indeed, in our examples we are able to show that, in order
to achieve moderate performance gains, the mechanistic legitimacy of the candidate
NNRF models may be substantially reduced. This finding is particularly clear in Sce-
nario B. This finding has important implications for previous river forecasting studies
that have concluded that NNRF models offer benefits over other, established tech-
niques based on limited performance gains. Indeed, an argument could be made for
revisiting both previous NNRF studies and NN-based hydrological models more gen-
erally, to determine the extent to which their enhanced levels of performance validation
are matched by their levels of mechanistic legitimacy.

7 Conclusions

This paper has argued that gaining an understanding of the internal mechanisms by
which a hydrological model generates its forecasts is an important element of the model
development process. It has also argued that the development of methods for delivering
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mechanistic insights into NNRF models in particular, and data-driven hydrological mod-
els more generally, have not been afforded sufficient attention by researchers. As a
result, “black-box” criticisms associated with NNRF models persist, and they remain a
dataset-specific, non-transferrable curve-fitting optimisation technique that is delivering
only limited heuristic knowledge to the hydrological community. This limitation is one
of several problems that must be overcome if wider acceptance of NNRF models by
hydrologists is to be achieved (for a discussion see Tsai et al., 2013).

This study represents an important step in addressing these limitations by shifting
the focus of an NNRF model from its performance to its internal mechanisms. We have
presented a generalised framework that explicitly includes a mechanistic evaluation of
NNRF models as a part of the model development process. The framework comprises
a set of high-level model development and evaluation procedures into which specific
NN model development methodologies can be positioned. Through the development
and application of a brute-force, global-local relative sensitivity analysis, we have over-
come difficulties associated with quantifying relative sensitivity across a model’s full
forecast range, when the model inputs are temporally-dependent. Our adaptation of
partial derivative input sensitivity analyses as a means of examining the mechanistic
behaviour of a model during its construction, is reflective of long-established uses of
sensitivity analyses for the mechanistic examination of hydrological models during their
development (e.g. McCuen, 1973). To an extent, this contrasts with current advances
in hydrological modelling that use sensitivity analyses as a means of examining the
causes and impacts of uncertainty in the outputs of existing models (e.g. Pappen-
berger et al., 2008). Nonetheless, it serves as a useful reminder of its importance as
an established and proven tool during hydrological model construction.
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Table 1. Description of the River Ouse catchment and its primary sub-catchments.

Gauge ID Catchment physiography Land cover
Ouse at 27009 Area 3315km? Woodland 7 %
Skelton Max elevation 714 m AOD Arable/horticultural 31 %
Min elevation 4.6 m AOD Grassland 44 %
Majority high to moderate Mountain/heath/bog 12 %
permeability bedrock Urban 2%
Other 4%
Swale at 27071 Area 1363km? Woodland 6 %
Crakehill Max Elevation 714.3m AOD  Arable/horticultural 35 %
Min elevation 12m AOD Grassland 41 %
Majority high to moderate Mountain/heath/bog 12 %
permeability bedrock Urban 1%
Other 5%
Nidd at 27062 Area 516 km? Woodland 8 %
Skip Bridge Max elevation 702.6m AOD  Arable/horticultural 22 %
Min elevation 8.2m AOD Grassland 49 %
Majority high to moderate Mountain/heath/bog 13 %
permeability bedrock Urban 3%
Other 5%
Ure at 27007 Area 915km? Woodland 8 %
Westwick Max elevation 710.0m AOD  Arable/horticultural 14 %

Min elevation 14.2m AOD
Majority moderate
permeability bedrock

Grassland 56 %
Mountain/heath/bog 19 %
Urban 1%

Other 2%
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Table 2. Epochs for preferred NNRF models based on validation data.

Model scenario

Hidden units

2 3 4 5

700 1100 3000 800
1000 7000 20000 20000
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Table 3. Calibration performance of candidate models for Scenario A.

Hidden RMSE MSRE R-squared
units m3s™’

2 27.19 0.0934 0.7977

3 27.10 0.0900 0.7992

4 27.07 0.0875 0.7998
5 27.21 0.0833 0.7987
MLR 27.61  0.1969 0.7909
benchmark

Best performing NN models for each metric are in bold.
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Table 4. Validation performance of candidate models for Scenario A.

Hidden RMSE MSRE R-squared
units m3s™’

2 26.25 0.0825 0.8034
3 26.26 0.0809 0.8035
4 26.28 0.0794 0.8034
5 26.32 0.0752 0.8042
MLR 21.69 0.1151 0.8657
benchmark

Best performing NN models for each metric are in bold.
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Table 5. Calibration performance of candidate models for Scenario B.

Hidden RMSE MSRE R-squared
units m3s™’

2 22.32 0.0694 0.8665

3 22.04 0.0841 0.8674
4 21.85 0.0718 0.8710
5 21.83 0.0732 0.8710
MLR 23.10 0.2151 0.8537
benchmark

Best performing NN models for each metric are in bold.
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Table 6. Validation performance of candidate models for Scenario B.

Hidden RMSE MSRE R-squared
units m3s™’

2 21.94 0.0653 0.8697
3 21.63 0.0599 0.8708
4 21.62 0.0567 0.8712
5 21.58 0.0564 0.8714
MLR 23.6 0.1043 0.8513
benchmark

Best performing NN models for each metric are in bold.
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Fig. 1. Reordering of the DBM framework to generate the DDMM framework.
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© Gauging stations

Fig. 3. River Ouse catchment in North Yorkshire, UK.
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Fig. 6. Lag analysis for the four gauging stations.
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Fig. 7. Proportional contributions of lagged upstream inputs to discharge forecast at Skelton.
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Fig. 9. Global-local relative sensitivity plots for all candidate models in Scenario B.
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