
Author`s Response 

 

Dear Sir or Madam,  

 

Thank you very much for reviewing our manuscript. We are thankful to the reviewers for their 

valuable comments. We have revised the manuscript based on their comments and herewith submit 

the revised manuscript.  

Here we address all their comments and point out, highlighted in blue color, what we have changed 

in the revised manuscript. 

 

Thank you very much for your time and effort. 

 

With best regards 

 

Claudia Hahn  

Corresponding author 

------------------------------------------ 

ETH Zürich 

Institute of Terrestrial Ecosystems 

Universitätsstrasse 16 / CHN F 27 

8092 Zürich 

claudia.hahn@env.ethz.ch 

----------------------------------------- 

 

Manuscript: 

Hahn, C., Prasuhn, V., Stamm, Milledge, D.G., and Schulin, R.: A comparison of three simple 

approaches to identify critical areas for runoff and phosphorus losses.  

MS No.: hess-2013-475 

 

Response to comments from Reviewer #1 
 
1. Page 2, line 43: Also bank erosion has recently been shown to be an important P- 
source in lowland streams (cf. Kronvang, B., Audet, J., Baattrup-Pedersen, A., Jensen, 
H.S. and Larsen, S.E. 2012. Phosphorus loss via bank erosion in a Danish lowland 
river basin. Journal of Environmental Quality 41, 304-313).  
The study of Kronvang et al. 2012 is important for catchment managers trying to reduce total P losses 

to surface waters. While the focus of our manuscript lies on the prediction of dissolved reactive 

phosphorus losses, we included the findings of Kronvang et al. 2012 in the discussion section 4.2.2 

“sources and types of P”: 

L 527-528: “Particulate P losses can be high, especially on arable land (Doody et al., 2012) or due to 

bank erosion (Kronvang et al., 2012).” 

 

 

 

 
 



2. In Table 2 you are using different numbers of decimals for the two catchments - why? and can 
you argue that the uncertainty of the estimate is lower in one of the catchments? 
There was no specific reason why we used different numbers of decimals in Table 2. We made it 

uniform and now state integers.  

Table 2:  

 STO1 STO2 STO3 DP 

 ------------------------------------------------ % ----------------------------------------------- 
LIP 14 69 9 8 
Stäg  6 61 11 23 

 

3. The same problem with number of decimals goes for Table 3 and 4 where you have shown the 
percentages with one decimal - are you sure that this can be given with this precision? 
We have chosen to display the data with one decimal because it shows that 1) there are not zero but 
very few high to very high RRP risk class pixel within the DoRP storage class “deep drainage” (Table 
3), and because like this the sum amounts to a 100. Using integers would not necessarily sum to 100 
(e.g. Table 3, Stägbach catchment, medium RRP risk class) and thus might have caused confusion. 
Since in Table 3 and 4 we compare the outcome of two different models, it is possible to present the 
result with this precision.   
 
 
Response to comments from Reviewer #2 
 
The conclusions of the paper (section 5) unfortunately do not go much beyond what was already 
known prior to model application (the same is true for section 4.2 on model limitations) 
We only partially agree with this critique. We do think that this study resulted in interesting findings 
that give new insight and have not been fully outlined before. On the other hand, we agree that 
sections like the Abstract or the Conclusions convey this information only to a limited degree 
because they contain (in their current form) too many generalities for which the assessment above 
holds true. Below we list explicitly the main points we consider the relevant findings. Upon revision 
of the manuscript, we will point out these issues more clearly. 
  

1) The three approaches represent (partially) different influencing factors: soil type, 
topography and connectivity. It is known from the literature that each of these three factors 
may play a crucial role for diffuse P losses to surface waters. However, comparisons of 
approaches based on them in different ways are not wide-spread. Accordingly, the outcome 
of the comparison is not evident before the analysis.  
2) The comparison of the RRP and the SCIMAP model shows how the risk predicted by 
SCIMAP may vary as a function of event size (change in time) and of soil type (spatial 
heterogeneity) (see Fig. 7). Such analyses have been lacking so far. SCIMAP identifies similar 
critical areas for DRP without using time series data. Hence, this information can be used to 
extend SCIMAP as a valuable screening tool.  
3) While Lane et al. 2009 also evaluated the Network Index using a dynamic model they 
suggest that it is necessary to further investigate the index’s potential with regards to the 
duration of integration (monthly, yearly, decadally). Our finding that the stepwise linear 
relationship with zero risk up to the 5 % NI quantile and a maximum risk level with no further 
change at the 95 % Network Index (NI) quantile was appropriate for storm events, is in 
contrast to previous expectations (Lane et al., 2006; Lane et al. 2009): To delineate the 
connection risk from the network index we used the approach suggested by Reaney et al. 
2011. A connection of 0 was assigned to places with NI values below their 5 % quantile and a 
connection of 1 to places with NI values above the 95 % quantile. Between the 5 and 95% 



quantiles a linear relationship between NI and the connection risk was assumed. Our study 
showed that this approach produces model results similar to results from the RRP model for 
storm events. It has previously been assumed that SCIMAP predicts the average risk over 
years rather than over an individual storm event. For average risk predictions we suggest a 
modification of the relationship between NI and connection risk.  
4) Furthermore, we point out that SCIMAP needs some rescaling if it is used for comparative 
purposes across catchments.   

 
We rephrased the final statements of the abstract and parts of the introduction to better point out 
the novelty of the paper:  
 
Abstract:  
L13-14:  “Based on the results, we suggest improvements of SCIMAP to enable average risk 
predictions and the comparison of risk predictions between catchments.” 
 
Introduction:  
L74-76: “While the three models represent very different approaches, their performance has never 
been tested in direct comparison. Our hypothesis here was that we can get useful information from 
such a comparison not just about the specific models, but also on the underlying general 
approaches.” 
…. 
L81-84: “While Lane et al. (2009) also evaluated the Network Index using a dynamic model they 
suggest that it is necessary to further investigate the index’s potential with regards to the duration of 
integration (monthly, yearly). We therefore focus on that aspect during our assessment of SCIMAP.” 
… 
L91-93: “In addition, we assess the performance of SCIMAP regarding the duration of integration 
(storm event, yearly) and the comparability of SCIMAP results between catchments. “  
 
The study is further limited methodologically by using the RRP model as a benchmark 
to compare the other models against. The authors justify this based on their calibration/validated 

of the model as reported in Hahn et al., 2013). However, the calibration timeseries was extremely 

short (7-17 July 2000, P14504, L5) and I doubt that all important modes of behaviour of the system 

are reflected in the calibration information and hence the model parameters. The validation 

periods used in the present paper are equally short (Mar-Nov 1999 and May-Aug 2010 for the 2 

catchments, respectively). So RRP is, in my opinion, not a robust benchmark. 

The Reviewer raises a very important issue: what is a meaningful benchmark for method 

comparison? Obviously, direct, spatially distributed flux measurements of DRP (reaching the stream!) 

would be optimal. However, there is no such data that can be used as a benchmark. This is a 

fundamental limitation of most studies on distributed hydrological model and we cannot solve this 

problem here. As a substitute, we argue that the predictions from the RRP model are a useful 

benchmark for our purpose because i) the RRP model is the most complete of the three approaches 

accounting for most of the factors included in the others, and ii) because the RRP model was 

validated using not only data from the catchment outlet but also spatial data (see p. 14499, L. 56 -7). 

Furthermore, we consider that the calibration procedure performs better than the reviewer 

suggests: 

Short calibration time series:  

- The observation is correct that the calibration period was short. However, the crucial 
question is whether the calibration period covered a sufficient range of the relevant system 
states during this period. As mentioned earlier (Lazzarotto et al., 2006) and restated in our 
recent publication on the RRP model (Hahn et al., 2013) this calibration period covered a 



wide range of streamflow conditions. This aspect is more important than the length of the 
calibration period (Gupta and Sorooshian, 1985; Lazzarotto et al., 2006; Yapo et al., 1996).  
We now mention that in the manuscript. 
 
 

Validation time series: 

- The main DRP losses occur during the growing season. Accordingly, the model includes 

processes relevant during this period but neglects for example snow cover and snow melt. 

Thus the model should only be used for periods between March and November. The first 

validation period covers this time span, while the validation period in 2010 is indeed 

relatively short. Still it is about eight times longer than the calibration period and covers a 

wide range of soil moisture and hydrological conditions (see (Hahn et al., 2013)).  

 

Based on these arguments we consider that the calibrated RRP is a reasonable benchmark.  
 
In the introduction we added an argument explaining why we have used the RRP as a benchmark:  
L84-88: “We used the RRP model as reference because it is the most comprehensive of the three 
models and it had already been validated against data from the catchment outlets as well as from 
within the experimental catchments, including observations on soil moisture, runoff generation and 
groundwater levels. For a detailed presentation and discussion of the validation of RRP readers are 
referred to (Hahn et al., 2013; Lazzarotto, 2005).” 
 
In the section 2.2.1 we furthermore added not only an explanation of the calibration method (as was 
requested) but also point out, that the calibration period covered a wide range of stream flow 
conditions:  
L117-120: “While not being very long, the calibration period covered a wide range of stream flow 
conditions, which is more important than its actual length for obtaining reliable results (Gupta and 
Sorooshian, 1985; Lazzarotto et al., 2006; Yapo et al., 1996).” 
 
The authors state regarding the validation of the DoRP model that “no reliable statement for the 
Stägbach catchment is possible due to the limited number of observations” (P14505, L17-18), and I 
believe the same is true for the other catchment and for RRP. 
We cannot follow the argument why the limitation that we state for the Stägbach is generalized by 
the reviewer to the catchment and RRP in general: 

- This statement refers to the fact, that only three runoff events were used to assess the 

performance of DoRP in the Stägbach catchment. Thus, it is not clear whether we see a trend 

or whether the one data point with high discharge in Fig. 3 is an outlier.  

- For the Lippenrütibach catchment more information was available 

- The RRP model can simulate the whole time series, not only the discharge for certain events. 

Thus, enough data points for validation are available.  

 

We added the following sentences in the manuscript (section 3.1.2) to clarify that this statement 

holds true only for the Stägbach catchment and the DoRP predictions:  

L257-260: “In contrast to the RRP model, DoRP predicts discharge only in direct response to rainfall 

events, and thus, due to the small number of events, no reliable comparison with discharge 

measurements was possible for the Stägbach catchment. For the Lippenrütibach catchments more 

runoff events were available to compare DoRP predictions with measurements.” 

 
 
 



In addition, I had the following comments: 
P14498, L28-29: Is this not pre-empting the results? What about DoRP? 
No, here we just wanted to point out that: DoRP itself only comprises the hydrological part. RRP and 

SCIMAP on the other hand already include a hydrological and a source (or phosphorus) part. We 

modified the manuscript to make this clear. In addition, the three approaches account for different 

influencing factors (see above) and it is not clear from the beginning what the outcome of this 

comparison will be.  

We added the following sentence in the introduction to clarify that:  

L71-73: “DoRP on the other hand solely comprises the hydrological part and does not originally 

provide a structure to combine the hydrological predictions with pollutant source data.” 

 

P14500, L7: Please explain uniform MC method. 

P14500, L7:  “The model was simultaneously calibrated (uniform Mote Carlo method) on discharge 

data from four catchments draining into Lake Sempach.”  

We inserted the following sentences to explain the uniform MC method:  

L114-117: “The four catchments varied in soil composition and hydrological responses. The model 

parameters were determined by repeated random sampling from a uniform prior distribution within 

the range of each parameter. The performance of each parameter combination was assessed by 

comparing simulated discharge with measured discharge in the four catchments.”    

P14500, L9: “Using the modified Nash-Sutcliffe criterion NSC as defined by Lazzarotto et al. (2006) 

and a NSC threshold of 0,6 724 parameter sets out of 5 million were judged behavioural and used for 

model application” 

 

P14500, L9-12: Is this not the classic GLUE method? What is the justification of the 
choice of performance measure (NSC) and behavioural threshold (0.6), particularly 
in relation to more sophisticated methods such as formal Bayesian methods and ex- 
tended GLUE (e.g. Romanowicz & Beven, 2003; Rankinen et al., 2006; Winsemius et 
al., 2009; Krueger et al., 2012)? This is not discussed in in the original modelling study 
(Hahn et al, 2013) 
This argument is not clear to us: Based on the references given, several quite different issues could 

be raised. Accordingly, our response addresses several issues: 

i) Is it a classical GLUE method? The answer is a partial YES. As in GLUE, we define (in a 

subjective manner) a threshold for behavioral results. However, we avoid interpreting 

the relative frequency of behavioral parameter sets causing for example fast flow in a 

probabilistic sense (see (Hahn et al., 2013)).  

ii) Justification for NSC: This critique is a bit surprising given the fact that the reviewer 

refers for example to (Rankinen et al., 2006). These authors actually rely on NSC for their 

distinction between behavioral and non-behavioral parameter sets (complemented 

partially by soft data, see below). Accordingly,  

iii) Implicitly, the question by the reviewer suggests that the classical GLUE method is not 

appropriate for the task described in this manuscript and refers to formal Bayesian 

methods and to extensions of GLUE. Because, the reviewer only refers to articles on 

extensions of GLUE we briefly discuss issues emerging from the cited articles that might 

be relevant in our context. One aspect that is raised by these articles is the inclusion of 

soft data into the evaluation of parameter sets (Rankinen et al., 2006; Winsemius et al., 

2009). In our case, one could have thought about integrating “soft data” like the 

observation of surface runoff at different locations into the evaluation. However, 



formulating a well-founded quantitative expression is not straight forward. It seems at 

least questionable whether a formal inclusion of these data had improved our analysis as 

compared to our approach to consider these observations for the discussion. 

In summary, we consider the approach appropriate to the objective of this paper. We do not see 

which of the findings is expected to change significantly if one had chosen a different method. 

 

In section 2.1.1 we added the following sentences to address this issue:  

L123-125: “This GLUE approach produced parameter values that gave very good predictions of the 

discharge for validation time periods as well as for a different catchment and thus was considered 

satisfactory.” 

 

We did not include a more detailed discussion in the manuscript because it could not be fully 

addressed without extending the manuscript substantially.   

 

P14506, L23: Homogeneous rather that heterogeneous? 

Yes, thanks for pointing out this error. 

Corrected in the revised manuscript (L288). 

 

P14507, L12-14: I wonder whether the lambda/NI comparison can be given more 
prominence, perhaps as a new focus of the paper? 
As suggested by the reviewer, we expanded the comparison between SCIMAP results and RRP with 

respect to the duration of integration and include kappa calculation (see Table 5 and sections 3.2.1 

and 3.2.2; L356-358 and L393-395) to put more weight on this issue. The comparison of lambda and 

NI however shows only minor differences for our catchments (Figure SI-1), and we think that it is 

more interesting to focus on the relationship between the RRP risk to generate fast flow and the NI, 

as we have done in sections 3.1.4 and 3.2:  

 

P14507, L21; P14515, L16: Re tile drains, how significant are they in the 2 catch- 
ments? If important then topography might not be a good predictor of runoff generation. 
The same would apply for NI in terms of pollution risk. 
The drained area in our catchments amount to approximately 10 % of the agricultural area in the 

Lippenrütibach catchment and to around 15 % in the Stägbach catchment. For the Cantone Lucerne 

the drained area is around 11 % of the agricultural area (Unpublished data). 

Tile drains draw down the water table, leading to drier soils around the drains than expected based 

on topography. That means the surface runoff pathway becomes disconnected, but runoff still 

reaches the stream via the drainage system. In SCIMAP tile drains could be represented directly. 

Thus, SCIMAP can account for modified soil moisture regimes. The RRP model does not explicitly 

account for tile drains as a separate flow mechanism, but the model includes fast transport to tile 

drains as one component of fast flow as defined in the RRP model. A major reason why these 

processes are merged is that flow processes like surface runoff and macropore flow are often closely 

linked and the actual transport may consist of a sequence of surface runoff subsequently captured by 

macropore flow to tile drains (Stamm et al., 2002, Doppler et al., 2012). Therefore, the effects of tile 

drains are accounted for during the calibration procedure.  

In catchments with a moderate amount of drained area, like our study catchments, topography still 

provides a good basis for the estimation of runoff generation. Areas where runoff - including tile 

drain flow - is generated are probably similar, because tile drains were usually installed in very wet 

places.  



Field visits and measurements in the Stägbach catchment showed, that areas predicted to be wet 

were indeed very wet and surface runoff from some of those areas was registered (even though in 

one place a tile drain was not very far away). Thus, despite the drainage systems, topography still 

provides important information about the generation of runoff. The upslope surface area and the 

slope still determine flow direction and the potential wetness of an area in our study catchments.  

 

We now address this issue in the discussion section 4.2.1:  

L508-518: “However, in these kind of landscapes, surface runoff and tile drain flow are often not 

separate flow processes but they may occur in sequence: flow may start as surface runoff and gets 

intercepted by e.g. macropores connected to tile drains (Stamm et al., 2002; Doppler et al., 

2012).The drained area amounts to approximately 10 % of the agricultural area in the Lippenrütibach 

catchment and to around 15 % in the Stägbach catchment. Field inspections and measurements in 

the Stägbach catchment revealed that locations predicted to be wet were indeed wet and that 

surface runoff from some of these locations occurred although they were in close proximity to 

drains. Thus, our results show that even in presence of drainage systems, topography may still 

provide crucial information on runoff generation risks and CSA delineation. Because the combination 

of surface runoff and macropore flow to tile drains is part of the fast flow component of RRP, the 

influence of tile drains is accounted for during the calibration process.” 

 
P14509, L14-17: Here I’m missing a formal spatial comparison, e.g. via Cohen’s 
kappa. 
We had based our comparison on Fig. 6 and Fig. 7. 

Following the suggestion of the reviewer we now include a formal comparison based on Cohen’s 

weighted kappa (J. Cohen, 1968). For rescaling we divided the results by the respective maximum 

value. We then grouped the data as follows:  

0 - 0.2  low risk  

0.2 - 0.5  medium risk  

0.5 - 0.8  high risk  

0.8 - 1  very high risk  

The results of the kappa calculation support our statements made on page 14509, L14-17 as well as 

our findings in section 3.2.2 (see Table 5):   

- The SCIMAP risk predictions are in better agreement with RRP model predictions for a high 

runoff event (kappa Stäg: 0.54, kappa Lip: 0.68) than for the average DRP load during the 

simulation period (kappa Stäg: 0.26, kappa Lip: 0.3).  

- For average DRP load predictions with the RRP model, kappa is higher if RRP results were 

compared to the global locational risk (kappa Stäg: 0.29, kappa Lip: 0.45) instead of the 

original SCIMAP locational risk (kappa Stäg: 0.26, kappa Lip: 0.30).  

We will include the results in the manuscript. 

 

The calculation of kappa is described in an additional “Materials and Method” section: 

L197-204: 2.2 Spatial comparison of model results 

Weighted kappa (Cohen, 1968) was used to compare spatial risk predictions. To calculate kappa the 

model results of SCIMAP and RRP were rescaled and grouped. For this purpose, the results obtained 

with each of the two models were divided by the respective maximum value and then grouped as 

follows: Locations with values ranging between 0 and 0.2 were considered to be at low risk, with 

values between 0.2 and 0.5 to be at medium risk, with values between 0.5 and 0.8 to be at high risk, 



and with values between 0.8 and 1 to be at very high risk. Weighted kappa was calculated using R 

(RDevelopmentCoreTeam, 2007) and the psy package.” 

 

In sections 3.2.1 and 3.2.2 we refer to the table with kappa value (Table 5), that we now included, 

and we mention the kappa results in the text (L356-358 and L393-395) to support our statements.  

 

P14509, L24-25: I do not think this is a problem since these are the risky times, no? 

It is indeed not a problem, but interesting to point out, because so far it was assumed that SCIMAP 

represents average values  

 

P14510: It is not very clear what was done here – please try and revise. 

We changed section 3.2.2 as follows in the revised manuscript:  
 
L361-396: “The original SCIMAP model prescribes a static linear relationship between NI and the 
connection risk pc

x from 0 at the 5% NI quantile to 1 at the 95% quantile. This relationship is 
considered time invariant and it is based on the assumption that the least connected 5% fraction of a 
catchment never connects, while the most connected 5% fraction always connects to a stream. This 
approach has three major limitations. Firstly, the comparison with the RRP model shown above 
suggests that the relationship between NI and connection risk is not time invariant but that SCIMAP 
predictions mainly reflect larger events in our study areas. 
Secondly, the assumption that 5 % of the catchment is always connected and 5 % is never connected 
makes the method insensitive to these parts of the catchment. Assuming that areas with very low NI 
values never connect is reasonable for single runoff events and probably also for most monitoring 
periods. Assuming that areas with the highest 5% of NI values always connect is appropriate for large 
events, but not necessarily for aggregated risks over a period of time or for small events (Fig. 5b). 
This can be seen in Figures 7a and c, which show a considerable scatter for SCIMAP locational risks. 
The scatter was much less when the 5% assumption was relaxed and the connection risk assumed to 
scale linearly with NI up to its maximum value (Fig. 8), accounting for the fact that there were 
significant differences in connectivity even within the most connected 5% fraction of our catchment. 
While areas close to the catchment outlet characterized by very high λ and NI values frequently 
contributed to runoff according to the RRP model, even during very small events, areas further 
upstream, where the λ and NI values were lower but still within the top 5%, contributed runoff much 
less frequently. Extending the linear NI/risk scaling up to the maximum NI enabled differentiation 
between these areas. A third major limitation of the original SCIMAP approach is that by normalizing 
the generation risk and NI values between zero and one the model can predict risks at a given 
location only relative to the risks at other locations within the same catchment. To enable 
comparisons between different catchments, we normalized the generation risk (source factor) and 
delivery risk (transport factor) by setting a common upper limit for all catchments. For the source 
factor we simply used the maximum value of all catchments for this purpose. For the transport factor 
it was less straightforward. The highest NI value (NImax) of the two catchments studied here was 20 
and the lowest (NImin) was 4.7.The 5 % quantile of all NI values was 6 and based on our RRP model 
predictions the runoff risk of cells with NI values lower than 6 can be neglected. Thus, we set the 
transport factor to 0 at NI ≤ 5 % quantile and to 1 at NI ≥ NImax and to vary linearly with NI between 
these limits. The locational risk calculated with these ‘globally’ scaled source and transport factors 
ranged between 0 and 0.4. Using the RRP results as a reference, the global locational risk was in 
better agreement with the average DRP loads over the whole monitoring period (kappa Stäg: 0.29; 
kappa LIP: 0.45; Fig. 8) than the original locational risks with catchment-specific normalization  
(kappa Stäg: 0.26; kappa LIP: 0.30; Fig. 7). Since the catchments had similar soil P status, this 
improvement can be attributed to the modified relationship between NI and delivery risk.” 
 
 
 



Tab1/Fig2a: How was the spatial information aggregated over the event timesteps? 

For every time step there were 724 model realizations. For each pixel we counted how many model 

realizations resulted in fast flow generation. If more than 80 % of the model realizations predicted 

fast flow generation from that pixel, this pixel was assigned to the very high risk class.  

 

We added a sentence in section 3.1.1 to clarify that:  

L240-241: “Thus, if for example more than 80 % of the model realizations predicted fast flow 

generation for a pixel, that pixel was assigned to the very high risk class.”  

 

Fig4: Here, too, I’m missing a formal significance test, e.g. via ANOVA. 

Fig. 4 was included to show that “location with low soil water storage capacity tended to have large 

lambda values”. The Kruskal-Wallis test (used because of outliers and non-normal distribution) shows 

that the mean TI values of the storage classes are significantly different.  

In section 3.1.3 we included the information:  

L294-296: “In line with this observation, the Kruskal-Wallis test, which was used here because of 

outliers and non-normal distribution, revealed that the mean TI values of the storage classes were 

significantly different.” 
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