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Abstract

Previous studies on the non-Darcian flow into a pumping well assumed that critical
radius (RCD) was a constant or infinity, where RCD represents the location of the in-
terface between the non-Darcian flow region and Darcian flow region. In this study,
a two-region model considering time-dependent RCD was established, where the non-5

Darcian flow was described by the Forchheimer equation. A new iteration method was
proposed to estimate RCD based on the finite-difference method. The results showed
that RCD increased with time until reaching the quasi-steady state flow, and the asymp-
totic value of RCD only depended on the critical specific discharge beyond which flow
became non-Darcian. A larger inertial force would reduce the change rate of RCD with10

time, and resulted in a smaller RCD at a specific time during the transient flow. The
difference between the new solution and previous solutions were obvious in the early
pumping stage. The new solution agreed very well with the solution of previous two-
region model with a constant RCD under quasi-steady flow. It agreed with the solution
of the fully Darcian flow model in the Darcian flow region, and with the solution of the15

fully non-Darcian flow model in the non-Darcian flow region near the well.

1 Introduction

Darcy’s law indicates a linear relationship between the fluid velocity and the hydraulic
gradient (Bear, 1972), which is a basic assumption used to handle a great deal of
problems related to flow in porous and fractured media. However, many evidences20

from the laboratory and field experiments show that this linear law may be invalid in
some situations, especially when the groundwater flow velocity is sufficiently high or
sufficiently low, where non-Darcian flow prevails (Basak, 1977; Bordier and Zimmer,
2000; Engelund, 1953; Forchheimer, 1901; Izbash, 1931; Liu et al., 2012; Soni et al.,
1978).25
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Darcy’s law considers kinematic forces but excludes inertial forces of flow. How-
ever, the inertia forces become significant in respect to the kinematic forces when the
velocity is great, leading to non-Darcian flow (Engelund, 1953; Forchheimer, 1901;
Irmay, 1959; Izbash, 1931). Forchheimer (1901) proposed a heuristic Forchheimer
law describing the non-Darcian flow, which is an extension of Darcy’s law by adding5

a second-order velocity term, representing the inertial effect. To verify the applicabil-
ity of the Forchheimer law, many approaches were introduced, such as the dimen-
sional analysis (Ward, 1964), the capillary model (Dullien and Azzam, 1973), the hy-
brid mixture theory (Hassanizadeh and Gray, 1987), and the volume averaging method
(Whitaker, 1996). Recently, Giorgi (1997) and Chen et al. (2001) analytically derived10

the Forchheimer law from the Navier–Stokes equation. Another widely used model de-
scribing the non-Darcian flow is the Izbash equation (Izbash, 1931). This equation is
a fully empirical power-law function obtained through analyzing experimental data. The
Izbash equation is preferred for modeling purpose, since the power index in the Izbash
equation can be parameterized depending on flow conditions (Basak, 1977). Some re-15

searches demonstrated that the Forchheimer and Izbash equations were identical for
some cases (George and Hansen, 1992).

Due to the high velocities, non-Darcian flow is likely to occur near pumping/injecting
wells(Yeh and Chang, 2013; Wen et al., 2008b). Several studies showed that the non-
Darcian effect had significant influence on hydraulic parameter estimations. For in-20

stance, Theis solution cannot be used to explain the pumping test data in the Chaj-
Doab area near Gujrat water distributory in Pakistan (Ahmad, 1998), while Birpinar
and Sen (2004) and Wen et al. (2011) found that the Forchheimer law worked very
well. Quinn et al. (2013) demonstrated that non-Darcian flow effect increased as the
initial applied head differential increased in a series of slug tests. Specifically, Quinn25

et al. (2013) showed that the hydraulic conductivity was underestimated by Darcy’s law
when the initial applied head differentials were greater than 0.2 m. They pointed out that
Darcian flow conditions can be maintained in fractured dolostone and sandstone when
the initial applied head differentials were less than 0.2 m (Quinn et al., 2013). Mathias
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and Todman (2010) showed that the Jacob method, based on Darcy’s law, cannot fit
the step-drawdown tests of van Tonder et al. (2001) when the pumping rate is greater
10 m3 h−1. However, the Forchheimer law fitted the step-drawdown tests data very well
(Mathias and Todman, 2010). In this study, we will focus on the non-Darcian flow into
a pumping well by the Forchheimer law.5

Although many efforts have been devoted to study the non-Darcian flow around the
well, the exact solutions have not been obtained due to the non-linearity of the problem
(Mathias et al., 2008; Yeh and Chang, 2013). For example, Sen (1990, 2000) employed
the Boltzmann transform to analytically solve the problems related to the non-Darcian
flow. This method was showed to be problematic, since both initial and boundary con-10

ditions cannot be simultaneously transformed into a form only containing the Boltz-
mann variable (Camacho and Vasquez, 1992; Wen et al., 2008a). Wen et al. (2008a,
b) obtained the semi-analytical solutions of the non-Darcian flow model by combining
the linearization procedure and the Laplace transform method (LL method). This LL
method assumed that transient flow in the non-Darcian flow region can be taken as15

a quasi-steady state flow. Wen et al. (2008a, 2008b) pointed out that solutions by the
Boltzmann transform and the LL method coincided at late time. To test the accuracy of
the semi-analytical solutions (Wen et al., 2008a; Sen, 2000), Mathias et al. (2008) and
Wen et al. (2009) employed the finite-difference method to study the non-Darcian flow
problems, and their results showed that the semi-analytical solution only agreed very20

well with the numerical solution at late pumping stage.
All above-mentioned investigations assume that the non-Darcian flow occurs over the

entire domain, which is called a fully non-Darcian flow (F-ND) model hereinafter. In fact,
the regime of the flow to the pumping well can be divided into two regions: non-Darcian
flow occurs within a narrow region around well, due to the relatively high velocity of25

flow there, and Darcian flow prevails over the rest domain. One may think that such
two-region flow could be described by the Forchheimer law, which would automatically
reduce to the Darcy’s law at the location far from the well (because the second-order
velocity term in the Forchheimer law will be negligible if velocity approaches zero).
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However, Mackie (1983) demonstrated that the two-region model could fit the exper-
imental data in the laboratory better than the F-ND model. Huyakorn and Dudgeon
(1976) employed a two-region model to study flow near a pumping well. Basak (1978)
presented analytical solutions of the two-region model for steady-state flow to a fully
penetrating well. Sen (1988) and Wen et al. (2008b) derived the analytical solutions of5

the two-region model for transient flow to a pumping well.
All researches mentioned above implied that the critical radius is a constant, where

the critical radius represents the location separating the non-Darcian and Darcian flows
(Sen, 1988; Wen et al., 2008b). For example, the critical radius is infinity for the F-ND
model and is zero for the fully Darcian flow model, while it is a finite constant for the10

two-region model, and its value is computed under the quasi-steady state flow condi-
tion (Sen, 1988; Wen et al., 2008b). Actually, the critical radius changes continuously
with time for the transient flow, and cannot be determined straightforwardly. This is par-
ticularly true for the variable-rate pumping tests (Bear, 1972; Mishra et al., 2012), slug
tests (Quinn et al., 2013) or the step-drawdown tests (Louwyck et al., 2010; Mathias15

and Todman, 2010), since the regime of the flow around the well drastically changes
with time.

In this study, we will investigate non-Darcian flow into a fully penetrating pumping well
considering a time-dependent critical radius using the finite-difference method. A new
iteration procedure will be proposed to estimate the moving critical radius. This new20

model reduces to the F-ND model when the critical radius is infinite and it becomes the
fully Darcian flow model when the critical radius is 0.

2 Problem statement and mathematic model

2.1 Location of the critical radius of the two-region model

Previous researches showed that the porous media flow may be divided into four25

regimes, such as (A) non-Darcy pre-linear laminar flow, (B) Darcy flow, (C) non-Darcy
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post-linear laminar flow, and (D) non-Darcy post-linear turbulent flow (Basak, 1977;
Bear, 1972). For radial flow to a pumping well, the velocity in the aquifer decreases
with the distance from the well. Therefore, the radial flow might experience all four-flow
regimes. To simply the problem, we use a two-region model that considers a non-
Darcian flow region near the well and a Darcian flow region away from the well.5

A unique feature of the two-region model used in this study is that the critical radius is
allowed to vary with time whereas it was assumed to be constant in previous studies
(Dudgeon et al., 1972a, b; Huyakorn and Dudgeon, 1976, 1978; Mackie, 1983; Sen,
1988; Wen et al., 2008b).

Generally, the start of the non-Darcian flow can be determined by the critical10

Reynolds number (ReC), where the Reynolds number is defined as

Re(r ,t) = Dpq(r ,t)/ν, (1)

where ν is the kinematic viscosity of the fluid (L2T−1); Dp is the characteristic grain

diameter (L); q(r ,t) is specific discharge (LT−1) at distance r (L) and time t (T); Re
is Reynolds number which depends on time and space (dimensionless). The critical15

Reynolds number (ReC) refers to Re at the start of non-Darcian flow. Up to present,
there is still considerable debate on ReC for the initiation of non-Darcian flow in porous
media. Bear (1972) pointed out that ReC varied between 3 to 10; Scheidegger (1974)
gave ReC to be 0.1 to 75; Zeng and Grigg (2006) suggested the range of ReC as 1
to 100. ReC will be set as 10 in this study. According to Eq. (1), one can see that20

the specific discharge has a linear relationship with Re. Therefore, the critical specific
discharge (qC) can also be used to determine the start of the non-Darcian flow, since
one can calculateqCfor a given ReC. When the specific discharge is less than or equal
to qC (or Re ≤ ReC), the flow is considered as Darcian. When the specific discharge is
greater than qC (or Re > ReC), the flow is taken as non-Darcian. Denoting RC(t) as the25

critical radius at which q = qC (or Re = ReC), then it is non-Darcian flow when r ≤ RC(t)
and Darcian flow when r > RC(t), as shown in Fig. 1.

14100

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/14095/2013/hessd-10-14095-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/14095/2013/hessd-10-14095-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 14095–14129, 2013

Forchheimer flow to
a well considering

time-dependent
critical radius

Q. Wang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

For the quasi-steady state flow, one has

RC =Q/(2πBqC), (2)

where B is the thickness of the aquifer (L); Q is the well discharge (L3T−1). For the case
with a constant pumping rate, RC is also a constant for a specific ReC. This constant
RC was used in previous two-region models of transient non-Darcian flow (Sen, 1988;5

Wen et al., 2008b). Actually, RC is not a constant for transient flow, and it cannot be
determined directly since the velocity distribution changes with time. In this study, a new
iteration method will be proposed to determine RC as described below.

2.2 Mathematic model

Figure 1 shows the physical model investigated in this study, where a pumping well10

fully penetrates a confined aquifer. The origin of the cylindrical coordinate system is at
the center of the well. The r axis is horizontal and outward from the well, and the z axis
is upward vertical. Two assumptions are made in this study. First, the non-Darcian and
Darcian flow may coexist and the critical radius is time-dependent, and the non-Darcian
flow is governed by the Forchheimer law. Second, the system is hydrostatic before the15

pumping starts, so RC(t = 0) = 0. These assumptions, although quite idealized, are
standard in well hydraulic study (Papadopulos and Cooper, 1967; Sen, 1988; Wen
et al., 2008b). Based on these assumptions, the governing equations of the two-region
flow model can be described as follows

∂qN (r ,t)
∂r

+
qN (r ,t)

r
=

S
B
∂sN (r ,t)

∂t
, if r ≤ RC(t), (3)20

∂qY (r ,t)
∂r

+
qY (r ,t)

r
=

S
B
∂sY (r ,t)

∂t
, if r > RC(t), (4)

where sY (r ,t) and sN (r ,t) are drawdowns (L) at distance r and time t in Darcian flow
and non-Darcian flow regions, respectively; S is the aquifer storage coefficient (dimen-
sionless).25

14101

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/14095/2013/hessd-10-14095-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/14095/2013/hessd-10-14095-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 14095–14129, 2013

Forchheimer flow to
a well considering

time-dependent
critical radius

Q. Wang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Initial condition is

sY (r ,0) = sN (r ,0) = 0. (5)

The outer boundary condition is

sY (∞,t) = 0. (6)

Assume that the pumping rate is large enough to induce non-Darcian flow near the5

well. Here we will consider the wellbore storage with a finite diameter well and the
boundary condition at the wellbore can be written as

2πrBqN (r ,t)|r→rw
−πr2

w
dsw(t)

dt
= −Q, (7)

where Q is positive for the pumping rate; rw is the radius of the well (L); sw is the
drawdown inside the well (L). Notice that well loss is not considered so the drawdown10

is continuous across the well screen

sw(t) = sN (rw,t). (8)

The drawdown and the discharge from the Darcian flow region into the non-Darcian
flow region are continuous at the critical radius

sN [RC(t),t] = sY [RC(t),t], (9)15

qN [RC(t),t] = qY [RC(t),t]. (10)

In the non-Darcian flow region, we use the Forchheimer law to describe the flow (Forch-
heimer, 1901)

qN +βqN |qN | = Kβ
∂sN
∂r

, (11)20
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in which β (TL−1) and Kβ (LT−1)are empirical constants depending on the properties
of the medium (Sidiropoulou et al., 2007). β is called the inertial force coefficient. Kβ is
called the apparent hydraulic conductivity and it reduces to the hydraulic conductivity
when β = 0 (Chen et al., 2001; Sidiropoulou et al., 2007).

In the Darcian flow region, one has5

qY (r ,t) = K
∂sY (r ,t)

∂r
, r > Rc. (12)

Equations (3–12) compose of the mathematical model of the two-region model with
a time-dependent critical radius RC(t). This new model is an extension of the previous
model by Sen (1988). When RC(t) →∞, this model becomes the F-ND model. When
RC(t) = 0, it reduces to the fully Darcian flow model.10

2.3 Dimensionless transformation

Defining the dimensionless variables in Table 1, Eqs. (3–12) can be rewritten as

∂qND

∂rD
+
qND

rD
= −

∂sND

∂tD
, rD ≤ RCD, (13)

∂qYD

∂rD
+
qYD

rD
= −

∂sYD

∂tD
, rD > RCD, (14)

sND(rD,0) = sYD(rD,0) = 0, (15)15

sYD(∞,tD) = 0, (16)

sND
[
RCD(tD),tD

]
= sYD

[
RCD(tD),tD

]
, (17)

qND
[
RCD(tD),tD

]
= qYD

[
RCD(tD),tD

]
. (18)

Notice that a negative sign has been used for defining qD in Table 1. The subscript D20

means the dimensionless variables. The boundary condition with the wellbore storage
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(Eq. 7) in the dimensionless form is

(rDqND)|rD→rwD
+
r2
wD

2S
dswD(tD)

dtD
= 1. (19)

The dimensionless Forchheimer law becomes

qND +βDqND |qND| = −
∂sND

∂rD
, rD ≤ RCD, (20)

where βD is the dimensionless inertial force coefficient. When rD > RCD, groundwater5

flow follows the Darcy’s law in the dimensionless format as

qYD(r ,t) = −λ
∂sYD

∂rD
, rD > RCD, (21)

where λ is the ratio of the hydraulic conductivity and apparent hydraulic conductivity,
and it is usually taken as unity (Sidiropoulou et al., 2007).

3 Numerical solution10

Because of the non-linearity of the problem, it is not easy to obtain the analytical so-
lution of drawdown even if RCD(tD) is constant. In this study, we will employ the finite-
difference method to investigate the problem considering a time-dependent RCD(tD).
Due to the axisymmetric nature of the problem, the numerical simulation will be con-
ducted with a non-uniform grid system, where the radial steps are smaller near the15

well and become progressively greater away from the well. Similar to previous stud-
ies (Mathias et al., 2008; Wen et al., 2009), we discretize the dimensionless space rD
logarithmically. The dimensionless space domain [rwD,reD] is discretized into N nodes
excluding the two boundary nodes rwD and reD, where reD is a relatively large dimen-
sionless distance used to approximate the infinite boundary (Mathias et al., 2008; Wen20
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et al., 2009). For any node of ri , rwD < ri < reD, i = 1,2, . . .,N, one has

ri = (ri−1/2 + ri+1/2)/2, i = 1,2, . . .,N, (22)

where ri+1/2 is calculated as follows

log10(ri+1/2) = log10(rwD)+ i
[

log10(reD)− log10(rwD)

N

]
, i = 0,1, . . .,N. (23)

After the spatial discretization, Eqs. (13) and (14) become5

dsYD,i

dtD
≈

ri−1/2qY D,i−1/2 − ri+1/2qYD,i+1/2

ri (ri+1/2 − ri−1/2)
, i = 2,3, . . .,Ns −1, rD ≤ RCD, (24)

dsND,i

dtD
≈

ri−1/2qND,i−1/2 − ri+1/2qND,i+1/2

ri (ri+1/2 − ri−1/2)
, i = Ns,3, . . .,N −1, rD > RCD, (25)

where qYD,i and sYD,i are the dimensionless specific discharge qYD and dimensionless
drawdown sYD at node i for the Darcian flow, respectively; qND,i and sND,i are the di-10

mensionless specific discharge qND and dimensionless drawdown sND at node i for the
non-Darcian flow, respectively. In terms of the Forchheimer equation of Eq. (20), one
can obtain

qND,i−1/2 ≈
1

2βD

{
−1+

[
1+4βD

(sND,i−1 − sND,i

ri − ri−1

)] 1
2

}
, i = 2,3, . . .,Ns −1, (26)

and15

qND,i+1/2 ≈
1

2βD

{
−1+

[
1+4βD

(sND,i − sND,i+1

ri+1 − ri

)] 1
2

}
, i = 2,3, . . .,Ns −1, (27)
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where node Ns means the location of RCD(tD). At the well-aquifer boundary, one has

qND,1−1/2 ≈
1

2βD

{
−1+

[
1+4βD

(swD − sND,1

r1 − rwD

)] 1
2

}
, (28)

where swD is the dimensionless drawdown inside the well. Considering Eq. (19), swD
can be approximated as follows

dswD

dtD
≈ 2S

r2
wD

(1− rwDqND,1−1/2). (29)5

When rD > RCD, the finite-difference scheme of the specific discharge can be obtained
from Eq. (21):

qYD,i−1/2 ≈ λ
sYD,i−1 − sYD,i

ri − ri−1
, i = Ns,Ns +1, . . .,N −1, (30)

qYD,i+1/2 ≈ λ
sYD,i − sYD,i+1

ri+1 − ri
, i = Ns,Ns +1, . . .,N −1. (31)

10

As for the boundary at the infinity, the finite-difference scheme is

qYD,N+1/2 ≈ λ
sYD,N

reD − rN
. (32)

Now one obtains a set of ordinary differential equations. It is notable that RCD or Ns
which is related to the index i in Eqs. (26) and (27) and Eqs. (30) and (31) is time-
dependent. In the following section, a new iteration method will be proposed to deter-15

mine the values of RCD or Ns.
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4 Iteration method to determine RCD or Ns

Before introducing the new iteration method, the relationship between RCD and the
velocity distribution will be investigated first, based on the two-region model with a con-
stant RCD. The values of the constant RCDare set as 0, 0.02, 0.04, 0.08 and 0.50,
respectively. The other parameters are rwD = 1×10−5, βD = 20, λ = 1. The mathematic5

model with a constant RCDwill be solved by the finite-difference method.
Figure 2a shows the specific discharge distributions with different RCD of 0, 0.02,

0.04, 0.08 and 0.50. The curve of RCD = 0 represents the fully Darcian flow model.
One can find that the specific discharge decreases with increasing RCD at a given rD,
starting from its maximum at RCD = 0 (Darcian flow). This observation is understand-10

able. The increasing RCD implies a stronger contribution of the inertial effect, which
also means a larger resistance to flow, thus it leads to a smaller specific discharge.
After trying many different sets of aquifer parameters, numerical simulation indicates
that this observation is universally valid. This observation will serve as the basis for the
new iteration method to seek the location of RCD(tD).15

Similar to the use of ReC to determine the start of the non-Darcian flow, one can use
qCD for the initiation of the non-Darcian flow, where qCD is the dimensionless critical
specific discharge defined in Table 1. We denote rjCD as the newly computed critical
radius at the j th step of the new iteration method, where j = 1,2,3, . . . Since the aquifer
system is initially hydrostatic, the initial critical radius r0CD is set as 0. For a given20

dimensionless time t1D, the detailed procedures of the iteration method for searching
RCD(t1D) will be introduced as follows. Firstly, the specific discharge distribution in the
aquifer can be calculated using Eqs. (24–32) with RCD(t1D) = r0CD, as shown in Fig. 2b.
Based on the computed specific discharge distribution, one can find the new critical
radius r1CD according to a given constant qCD. Secondly, the new specific discharge25

distribution can be similarly calculated using Eqs. (24–32) with RCD(t1D) = r1CD, and
the new critical radius r2CD can be obtained according to qCD. It is notable that r1CD
and r2CD serve as the upper and lower limits for searching RCD(t1D), as illustrated in
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Fig. 2b. Similarly, one can estimate the new critical radius r3CD using r2CD, where r3CD
is located somewhere between r1CD and r2CD. Following the same procedures, a new
critical radius r4CD can be calculated based on r3CD, and r4CD is between r2CD and r3CD.
One can repeat above computations until the new critical radius finally converges. For

the actual problems, we define a convergence criterion
∣∣∣Rold

CD −Rnew
CD

∣∣∣ ≤ ξ, where Rold
CD5

and Rnew
CD are the critical radius for the previous step and present step, respectively; ξ is

a small positive value such as 0.001. If this criterion is satisfied, the new critical radius
rjCD is thought as the estimation ofRCD(t1D). We develop a MATLAB program named
as Two-Region Model with Moving critical radius (MTRM) to facilitate the computation.
Figure 3 represents the flow chart of the MTRM algorithm, where tk is the time at time10

step k; kmax is the total number of the time steps; dtD is the dimensionless time step;
sD,i and qD,i are the dimensionless drawdown and dimensionless specific discharge at
node i in the aquifer respectively.

5 Results and discussions

5.1 Comparison with the previous solutions15

To test the new solution, the fully Darcian flow solution of Papadopoulos and Cooper
(1967), the fully non-Darcian flow solution of Mathias et al. (2008) and the two-region
model of Sen (1988) will be introduced. Using the notations of this study, the original
solutions of Sen (1988) in the Darcian flow region (rD ≥ RCD) become

sYD(rD,tD) =
1
λ
F (rcD,tD)exp

[
r2
cD(1− λ)

4λtD

] ∞∫
rD

exp
(
− ζ2

4tDλ

)
ζ

dζ , (33)20
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qYD(rD,tD) = F (rcD,tD)exp

[
r2
cD(1− λ)

4λtD

] exp
(
− r2

D
4tDλ

)
rD

, (34)

where F (rD,tD) = 1

1+
√
πβD
2

(
1
tD

)1/2
erf

( r2
D

4tD

)1/2
 , and erf is the error function sign.

In the non-Darcian flow region (rD < RCD),5

sND(rD,tD) = sYD(rcD,tD)+

rcD∫
rD

F (ζ ,tD)
exp(− ζ2

4tD
)

ζ
dζ (35)

+βD

rcD∫
rD

F 2(ζ ,tD)
exp(− ζ2

2tD
)

ζ2
dζ ,

qND(rD,tD) = F (rD,tD)

exp
(
− r2

D
4tD

)
rD

. (36)

Figures 4a and b show the distance-drawdown curves in the early and late pumping10

stages, respectively. In these two figures, Papadopoulos and Cooper (1967) represents
the analytical solution of the fully Darcian flow model, Sen (1988) is the analytical
solution of the two-region model by the Boltzmann transform method, and Mathias
et al. (2008) represents the numerical solution of the fully non-Darcian flow model. The
deflection point of the curve is the location of the critical radius.15

In the early stage, the differences among three previous solutions and the new solu-
tion of this study are obvious, as shown in Fig. 4a. Firstly, the solution of Papadopoulos
and Cooper (1967) is smaller than the others near the well. This is because the inertial
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forces of the non-Darcian flow increase the resistance for flow, thus resulting in draw-
down greater than those for the Darcian flow near the well. The second is that the F-ND
solution agrees with the new solution near the well. The third is that the solution of Sen
(1988) does not agree with the new solution at the early time. This is probably because
of the Boltzmann transform method used by Sen (1988) to deal with the non-Darcian5

flow at the early time, which has been discussed in several previous studies (Camacho
and Vasquez, 1992; Wen et al., 2008b).

In the late pumping stage, the transient flow approaches the quasi-steady state,
and the specific discharge distribution is invariant with time according to Eqs. (3) and
(4) or Eqs. (13) and (14), regardless of the Darcian flow or non-Darcian flow. Under10

the quasi-steady state flow condition, the critical radius obtained by this new solution
becomes a constant which is the same as the one used by previous two-region models
such as Sen (1988) and Wen et al. (2009). Therefore, it is not surprise to see that
the new solution agrees with that of Sen (1988) very well at late time (see Fig. 4b).
Another observation is that the new solution agrees with the solution of Papadopoulos15

and Cooper (1967) in the Darcian flow region, and with the solution of the F-ND model
in the non-Darcian flow region near the well.

5.2 Effect of the inertial force coefficient to the critical radius

For the non-Darcian radial flow near the pumping well investigated here, the dimen-
sionless inertial force coefficient (βD) is of primary concern. To test the effect of βD to20

the groundwater flow, the representative parameters are chosen as follows: the value of
ν is 1.004×10−6 m2 s−1 at 20 ◦C, ReC =10, Dp = 0.0012 m, Q = 0.628 m3 s−1, B = 5 m.
According to Eqs. (1)–(2) and the definition of the dimensionless critical specific dis-
charge, one has qCD = 2 and RC = 2.4 m. The values of βD of this study are the same
as the ones used by Wen et al. (2011), and they are 1, 10, and 50. Dimensionless25

radius of the well is rwD = 1×10−4.
Figure 5 shows the critical radius (RCD) changes with time for different dimensionless

inertial force coefficients. Several observations can be seen. Firstly, RCD increases with
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time until the flow approaching the quasi-steady state condition. In the early pumping
stage, the specific discharge is very large near the well and decreases quickly with the
distance from the well, so RCD is very small. With time going, the cone of depression
will expand along the radial direction and the slope of the cone of depression becomes
flatter, so RCD becomes greater. Secondly, a larger βD would reduce the rate of change5

RCD vs. time, thus result in longer time to approach its asymptotic value, and conse-
quently leads to a smaller RCD at a specific time in the transient state (see Fig. 5). This
is because that a larger βD implies a stronger inertial force, which increases the resis-
tance of flow. The third interesting observation is that the asymptotic value of RCD is
the same for differentβD. This can be explained using Eq. (2). Based on the definition10

of the dimensionless parameters defined in Table 1, Eq. (2) becomes

qCD = 1/RCD. (37)

Therefore, the value of RCD has no relationship with βD under the quasi-state state flow
condition, while it only reciprocally depends on the critical specific discharge.

5.3 Effect of the critical specific discharge to the critical radius15

The criterion to judge the initiation of the non-Darcian flow is an important factor of
concern. Up to now, there is still considerable debate on what value of ReC to use
for the start of non-Darcian low. The recommended values of ReC range from 0.1 to
100 for porous media flow (Bear, 1972; Scheidegger, 1974; Zeng and Grigg, 2006).
To check the influence of ReC on RCD during the transient flow, the values of qCD are20

chosen as 1, 2 and 5 considering the direct relationship of qCD and RCD in Eq. (2). The
other parameters are βD = 1, and rwD = 1×10−4.

Figure 6 represents the effect of qCD on RCD. It is obvious that the asymptotic value
of RCD is equal to 1/qCD, as reflected in Eq. (37). Another interesting observation is
that RCD decreases with increasing qCD, and it takes shorter time for RCD to approach25

its asymptotic value. The reason can be also explained using Eq. (37).
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5.4 Type curves in the non-Darcian flow region and Darcian flow region

Type curves are a series of curves that reveal the functional relationship between the
well functions (or drawdown) and the dimensionless time factors (Sen, 1988; Wen et al.,
2011). Type curve is one of the common approaches to identify the aquifer parameters
or to predict the drawdown (Sen, 1988; Wen et al., 2011). Sen (1988) presented dif-5

ferent type curves in the Darcian flow region and non-Darcian flow region based on
a two-region model. In that model (Sen, 1988), RCD was a fixed value which only de-
pends on the rate of pumping but independent of time. In this study, RCD changes with
time, and the type curves might be different from the ones generated by Sen (1988). To
investigate the behaviors of the type curves of the new solution, the value of qCD is set10

to be 2, and the two observation locations will be chosen, rD = 0.1 and 1.0. According
to Eq. (37), the maximum of RCD is 0.5 at the quasi-steady state, so the flow at rD = 0.1
will experience both Darcian flow (at the early time) and non-Darcian flow (at late time),
while the flow at rD = 1.0 is always Darcian.

Figure 7 shows the time-drawdown at rD = 0.1 for different dimensionless inertial15

force coefficients in the log-log scale. Two interesting observations can be seen from
this figure. The first observation is that there is a deflection point in the curve, and the
time of this deflection point becomes longer with increasing βD. This is because a larger
βD implies a stronger inertial effect, which leads to a larger drawdown and longer time
to approach the quasi-steady state condition. This observation is not found in the F-20

ND model (Wen et al., 2011) and in the two-region model (Sen, 1988). The second
observation is that the drawdown in the quasi-steady state increases with increasing
βD, and the reason for this has been explained in previous studies (Wen et al., 2011).

Figure 8 represents the time-drawdown at rD = 1 in the semi-log scale. One notable
point is that flow at rD = 1 is always Darcian, so there is no deflection point in the25

type curves. The differences among the curves with different βD are very small at the
beginning, then they become larger with time going, and finally approach the same
value at the quasi-steady state. This is because the specific discharge far from the well
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is very small at the beginning, so the drawdown approaches 0. With time going, the
inertial force affects the groundwater flow at rD = 0.1. At the quasi-steady state, the
drawdown in the Darcian flow region does not change with βD, where the reason has
been explained in Sect. 5.1, as shown in Fig. 4b.

6 Summary and conclusions5

In this study, a new two-region flow model considering the time-dependent critical ra-
dius (RCD) is established to investigate the groundwater flow into a pumping well, and
a new iteration method is proposed to estimate RCD, based on the finite-difference
method. The convergence of this iteration method has been verified. In the non-Darcian
flow region, the flow is governed by the Forchheimer equation, and the start of the non-10

Darcian flow is determined by the critical specific discharge, which is calculated by the
critical Reynolds number. The new solution is compared with previous solutions, such
as the fully Darcian flow model, the two-region model with a constant critical radius,
and the fully non-Darcian flow model. The impacts of the dimensionless inertial force
coefficient (βD) and dimensionless critical specific discharge (qCD) on the critical radius15

and flow field have been analyzed. Several findings can be drawn from this study:

1. In the early stage, the new solution agrees with the fully non-Darcian flow solu-
tion near the well, differs with the fully Darcian flow model of Papadopoulos and
Cooper (1967) and the two-region model of Sen (1988).

2. In the quasi-steady flow stage, the new solution agrees with the solution of Sen20

(1988) very well. It agrees very well with the solution of the fully Darcian flow
model (Papadopulos and Cooper, 1967) in the Darcian flow region, and with the
solution of the fully non-Darcian flow model (Mathias et al., 2008) in the non-
Darcian flow region near the well.

3. RCD increases with time until reaching the quasi-steady state flow, and the asymp-25

totic value of RCD only depends on qCD. A larger βD would reduce the rate of
14113

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/14095/2013/hessd-10-14095-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/14095/2013/hessd-10-14095-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 14095–14129, 2013

Forchheimer flow to
a well considering

time-dependent
critical radius

Q. Wang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

change of RCDwith time, and result in a smaller RCD at a specific time during the
transient flow state.

4. There is a deflection point in the type curve when the observation well location is
within the non-Darcian flow region in the quasi-steady state, and the time associ-
ated with this deflection point becomes longer with a larger βD.5
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Table 1. Dimensionless variables used in this study.

rD = r
B rwD = rw

B

RCD = RC

B tD =
Kβt
SB

βD = Qβ
2πB2 λ = K

Kβ

swD =
2πKβB

Q sw sYD =
2πKβB

Q sY (r ,t)

sND =
2πKβB

Q sN (r ,t) qND = − 2πB2

Q qN (r ,t)

qYD = − 2πB2

Q qY (r ,t) qCD = − 2πB2

Q qC

14118

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/14095/2013/hessd-10-14095-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/14095/2013/hessd-10-14095-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 14095–14129, 2013

Forchheimer flow to
a well considering

time-dependent
critical radius

Q. Wang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 2. Nomenclature.

B aquifer thickness (L)
Dp characteristic grain diameter (L)
K hydraulic conductivity of the aquifer (LT−1)
Kβ apparent hydraulic conductivity, an empirical constant in the

Forchheimer law (LT−1)
q specific discharge in the aquifer (LT−1)
qC critical specific discharge (LT−1)
qY, qN specific discharges for Darcian flow and

non-Darcian flow (LT−1), respectively
Q well discharge (L3 T−1)
s drawdown for aquifer (L)
sY, sN drawdowns for Darcian flow and non-Darcian

flow (L), respectively
sw drawdown inside well (L)
S storage coefficient of the aquifer (dimensionless)
r distance from the center of the well (L)
rw radius of the well screen (L)
RC critical radius for non-Darcian flow (L)
Re Reynolds number (dimensionless)
ReC critical Reynolds number (dimensionless)
t pumping time (T)
β an empirical constant in the Forchheimer law (TL−1), named

as inertial force coefficient in this study
ν kinematic viscosity of the fluid (L2 T−1)
qND, qYD dimensionless specific discharges defined in Table 1

in the non-Darcian flow and Darcian flow regions, respectively
qCD dimensionless critical specific discharge defined in Table 1
rD dimensionless distance defined in Table 1
rwD dimensionless radius of the well screen defined in Table 1
RCD dimensionless critical radius defined in Table 1
sND, sYD dimensionless drawdown s defined in Table 1 in the

non-Darcian flow and Darcian flow regions, respectively
swD dimensionless drawdown inside the well defined in Table 1
tD dimensionless time defined in Table 1
βD dimensionless inertial force coefficient defined in Table 1
λ ratio of the hydraulic conductivity and apparent hydraulic conductivity

defined in Table 1
The subscript D refers to terms in dimensionless form.
The subscripts N and Y refer to terms related to non-Darcian flow and Darcian flow regions, respectively.
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Fig. 1. The schematic diagram of the non-Darcian flow into a fully penetrating pumping well
considering the time-dependent critical radius.
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Fig. 2a. Specific discharge distributions with different critical radii RCD.
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Fig. 2b. The schematic diagram showing the iterative process of seeking RCD.
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Fig. 3. Flow chat of the MTRM algorithm.
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Fig. 4a. Comparison of the distance-drawdowns by the fully Darcian flow model, the fully non-
Darcian flow model, the two-region flow model, and the new model in early pumping stage.
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Fig. 4b. Comparison of the distance-drawdowns by the fully Darcian flow model, the fully non-
Darcian flow model, the two-region model flow model, and the new model in late pumping
stage.
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Fig. 5. Critical radius changes with time for different inertial force coefficients.
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Fig. 6. Critical radius changes with time for different critical specific discharges.
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Fig. 7. Time-drawdown at rD = 0.1 for different inertial force coefficients in a log–log scale.
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Fig. 8. Time-drawdown at rD = 1 for different inertial force coefficients in a semi-log scale.
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