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Abstract:  1 

Previous studies on the non-Darcian flow into a pumping well assumed that critical radius (RCD) 2 

was a constant or infinity, where RCD represents the location of the interface between the 3 

non-Darcian flow region and Darcian flow region. In this study, a two-region model considering 4 

time-dependent RCD was established, where the non-Darcian flow was described by the 5 

Forchheimer equation. A new iteration method was proposed to estimate RCD based on the 6 

finite-difference method. The results showed that RCD increased with time until reaching the 7 

quasi-steady state flow, and the asymptotic value of RCD only depended on the critical specific 8 

discharge beyond which flow became non-Darcian. A larger inertial force would reduce the 9 

change rate of RCD with time, and resulted in a smaller RCD at a specific time during the transient 10 

flow. The difference between the new solution and previous solutions were obvious in the early 11 

pumping stage. The new solution agreed very well with the solution of previous two-region 12 

model with a constant RCD under quasi-steady flow. It agreed with the solution of the fully 13 

Darcian flow model in the Darcian flow region. 14 

Key words: Confined aquifer; Finite-difference method; Iteration method; Two-region model15 
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Nomenclature 1 

B   aquifer thickness (L) 2 

Dp   characteristic grain diameter (L) 3 

K    hydraulic conductivity of the aquifer (LT
-1

) 4 

K   apparent hydraulic conductivity, an empirical constant in the Forchheimer law 5 

(LT
-1

) 6 

q  specific discharge in the aquifer (LT
-1

) 7 

Cq    critical specific discharge (LT
-1

) 8 

Yq , Nq  specific discharges for Darcian flow and non-Darcian flow (LT
-1

), respectively 9 

Q   well discharge (L
3
T

-1
) 10 

s  drawdown (L) for aquifer 11 

Ys , Ns  drawdowns (L) for Darcian flow and non-Darcian flow, respectively 12 

ws    drawdown (L) inside well 13 

S   storage coefficient of the aquifer (dimensionless) 14 

r     distance from the center of the well (L) 15 

wr    radius of the well screen (L) 16 

CR    critical radius for non-Darcian flow (L) 17 

Re   Reynolds number (dimensionless) 18 

ReC   critical Reynolds number (dimensionless) 19 

t   pumping time (T) 20 

  an empirical constant in the Forchheimer law (TL
-1

), named as inertial force 21 
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coefficient in this study 1 

    kinematic viscosity of the fluid (L
2
T

-1
) 2 

NDq , YDq  dimensionless specific discharges defined in Table 1 in the non-Darcian flow and 3 

Darcian flow regions, respectively 4 

CDq    dimensionless critical specific discharge defined in Table 1 5 

Dr    dimensionless distance defined in Table 1 6 

wDr    dimensionless radius of the well screen defined in Table 1 7 

CDR   dimensionless critical radius defined in Table 1 8 

NDs , YDs  dimensionless drawdown s defined in Table 1 in the non-Darcian flow and Darcian 9 

flow regions, respectively 10 

wDs     dimensionless drawdown inside the well defined in Table 1 11 

Dt    dimensionless time defined in Table 1 12 

D     dimensionless inertial force coefficient defined in Table 1 13 

  ratio of the hydraulic conductivity and apparent hydraulic conductivity defined in 14 

Table 1 15 

 16 

The subscript D refers to terms in dimensionless form. 17 

The subscripts N and Y refer to terms related to non-Darcian flow and Darcian flow regions, 18 

respectively. 19 

 20 

 21 
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 1 

1. Introduction 2 

Darcy’s law indicates a linear relationship between the fluid velocity and the hydraulic 3 

gradient (Bear, 1972), which is a basic assumption used to handle a great deal of problems 4 

related to flow in porous and fractured media. However, many evidences from the laboratory and 5 

field experiments show that this linear law may be invalid in some situations, especially when 6 

the groundwater flow velocity is sufficiently high or sufficiently low, where non-Darcian flow 7 

prevails (Basak, 1977;Bordier and Zimmer, 2000;Engelund, 1953;Forchheimer, 1901;Izbash, 8 

1931;Liu et al., 2012;Soni et al., 1978).  9 

Darcy’s law considers kinematic forces but excludes inertial forces of flow. However, the 10 

inertia forces become significant with respect to the kinematic forces when the velocity is great, 11 

leading to non-Darcian flow (Engelund, 1953;Forchheimer, 1901;Irmay, 1959;Izbash, 1931). 12 

Forchheimer (1901) proposed a heuristic Forchheimer law describing the non-Darcian flow, 13 

which was an extension of Darcy’s law by adding a second-order velocity term, representing the 14 

inertial effect. To verify the applicability of the Forchheimer law, many approaches were 15 

introduced, such as the dimensional analysis (Ward, 1964), the capillary model (Dullien and 16 

Azzam, 1973), the hybrid mixture theory (Hassanizadeh and Gray, 1987), and the volume 17 

averaging method (Whitaker, 1996). Recently, Giorgi (1997) and Chen et al. (2001) analytically 18 

derived the Forchheimer law from the Navier-Stokes equation. Another widely used model 19 

describing the non-Darcian flow was the Izbash equation (Izbash, 1931). This equation was a 20 
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fully empirical power-law function obtained through analyzing experimental data. The Izbash 1 

equation was preferred for modeling purpose, since the power index in the Izbash equation can 2 

be parameterized depending on flow conditions (Basak, 1977). George and Hansen (1992) 3 

demonstrated that the Forchheimer and Izbash equations were identical for some cases.  4 

Due to the high velocities, non-Darcian flow is likely to occur near pumping/injecting wells 5 

(Yeh and Chang, 2013; Wen et al., 2008b). Several studies showed that the non-Darcian effect 6 

had significant influence on hydraulic parameter estimations. For instance, Theis solution cannot 7 

be used to explain the pumping test data in the Chaj-Doab area near Gujrat water distributory in 8 

Pakistan (Ahmad, 1998), while Birpinar and Sen (2004) and Wen et al. (2011) found that the 9 

Forchheimer law worked very well. Quinn et al. (2013) demonstrated that non-Darcian flow 10 

effect increased as the initial applied head differential increased in a series of slug tests. 11 

Specifically, Quinn et al. (2013) showed that the hydraulic conductivity was underestimated by 12 

Darcy’s law when the initial applied head differentials were greater than 0.2 m. They pointed out 13 

that Darcian flow conditions can be maintained in the sandstone when the initial applied head 14 

differentials were less than 0.2 m (Quinn et al., 2013). Mathias and Todman (2010) showed that 15 

the Jacob method, based on Darcy’s law, cannot fit the step-drawdown tests of van Tonder et al. 16 

(2001) when the pumping rate was greater than 10 m
3
hour

-1
. However, the Forchheimer law 17 

fitted the step-drawdown tests data very well (Mathias and Todman, 2010). In this study, we will 18 

focus on the non-Darcian flow into a pumping well by the Forchheimer law.    19 

Although many efforts have been devoted to study the non-Darcian flow around the well, 20 
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the exact solutions have not been obtained due to the non-linearity of the problem (Mathias et al., 1 

2008;Yeh and Chang, 2013). For example, Sen (1990, 2000) employed the Boltzmann transform 2 

method to analytically solve the problems related to the non-Darcian flow. This method was 3 

showed to be problematic, since both initial and boundary conditions cannot be simultaneously 4 

transformed into a form only containing the Boltzmann variable (Camacho and Vasquez, 5 

1992;Wen et al., 2008a). Wen el al. (2008a;2008b) derived the semi-analytical solutions of the 6 

non-Darcian flow model by combining the Linearization procedure and the Laplace transform 7 

method (LL method), assuming that the flow in the non-Darcian flow region was in quasi-steady 8 

state flow. Wen et al. (2008a;2008b) pointed out that solutions by the Boltzmann transform and 9 

the LL method coincided at late time. To test the accuracy of the semi-analytical solutions (Wen 10 

et al., 2008a;Sen, 2000), Mathias et al. (2008) and Wen et al. (2009) employed the 11 

finite-difference method to study the non-Darcian flow problems, and their results showed that 12 

the semi-analytical solution only agreed very well with the numerical solution at late pumping 13 

stage.  14 

All above-mentioned investigations assume that the non-Darcian flow occurs over the entire 15 

domain, which is called a fully non-Darcian flow (F-ND) model hereinafter. In fact, the regime 16 

of the flow to the pumping well can be divided into two regions: non-Darcian flow occurs within 17 

a narrow region around well, due to the relatively high velocity of flow there, and Darcian flow 18 

prevails over the rest domain. One may think that such two-region flow could be described by 19 

the Forchheimer law, which would automatically reduce to the Darcy’s law at the location far 20 
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from the well (because the second-order velocity term in the Forchheimer law will be negligible 1 

if velocity approaches zero). However, Forchheimer law (or F-ND model) may not work very 2 

well for moderate velocity under which that Darcian flow prevails. Mackie (1983) demonstrated 3 

that the two-region model could fit the experimental data in the laboratory better than the F-ND 4 

model. Huyakorn and Dudgeon (1976) employed a two-region model to study flow near a 5 

pumping well. Basak (1978) presented analytical solutions of the two-region model for 6 

steady-state flow to a fully penetrating well. Sen (1988) and Wen et al. (2008b) derived the 7 

analytical solutions of the two-region model for transient flow to a pumping well, and both 8 

solutions were valid for the groundwater flow in the quasi-steady state. 9 

All researches mentioned above implied that the critical radius is a constant, where the 10 

critical radius represents the location separating the non-Darcian and Darcian flows (Sen, 11 

1988;Wen et al., 2008b). For example, the critical radius is infinity for the F-ND model and is 12 

zero for the fully Darcian flow model, while it is a finite constant for the two-region model in 13 

which the critical radius is determined under the quasi-steady state flow condition (Sen, 14 

1988;Wen et al., 2008b). Actually, the critical radius changes continuously with time for the 15 

transient flow, and cannot be determined straightforwardly. For example, the initial critical 16 

radius is zero for an initially hydrostatic aquifer, and it gradually increases with time until the 17 

system becomes quasi-steady state near a constant-rate pumping well. The movement of critical 18 

radius may be more complex for the variable-rate pumping tests (Bear, 1972;Mishra et al., 2012), 19 

the slug tests (Quinn et al., 2013) or the step-drawdown tests (Louwyck et al., 2010;Mathias and 20 
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Todman, 2010). Therefore, the two-region model with time-dependent critical radius is more 1 

reasonable for transient flow near a pumping well, and it is particularly true when the pumping 2 

rate changes greatly. 3 

In this study, we will investigate non-Darcian flow into a fully penetrating pumping well 4 

considering a time-dependent critical radius using the finite-difference method. A new iteration 5 

procedure will be proposed to estimate the moving critical radius. This new model reduces to the 6 

F-ND model when the critical radius is infinite and it becomes the fully Darcian flow model 7 

when the critical radius is 0. 8 

2. Problem statement and mathematic model 9 

2.1. Location of the critical radius of the two-region model 10 

Previous researches showed that the porous media flow may be divided into four regimes, 11 

such as A) non-Darcy pre-linear laminar flow, B) Darcy flow, C) non-Darcy post-linear laminar 12 

flow, and D) non-Darcy post-linear turbulent flow (Basak, 1977;Bear, 1972). For radial flow to a 13 

pumping well, the velocity in the aquifer decreases with the distance from the well. Therefore, 14 

the radial flow might experience all four-flow regimes. To simplify the problem, we use a 15 

two-region model that considers a non-Darcian flow region near the well and a Darcian flow 16 

region away from the well. A unique feature of the two-region model used in this study is that 17 

the critical radius is allowed to vary with time whereas it was assumed to be constant in previous 18 

studies (Dudgeon et al., 1972b, a;Huyakorn and Dudgeon, 1976;Mackie, 1983;Sen, 1988;Wen et 19 

al., 2008b).  20 
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Generally, the start of the non-Darcian flow can be determined by the critical Reynolds 1 

number (ReC), where the Reynolds number is defined as 2 

    /,,Re trqDtr p ,     (1) 3 

where   is the kinematic viscosity of the fluid (L
2
T

-1
); Dp is the characteristic grain diameter 4 

(L);  trq ,  is specific discharge (LT
-1

) at distance r (L) and time t (T); Re is Reynolds number 5 

which depends on time and space (dimensionless). The critical Reynolds number (ReC) refers to 6 

Re at the start of non-Darcian flow. Up to present, there is still considerable debate on ReC for 7 

the initiation of non-Darcian flow in porous media. Scheidegger (1974) gave ReC to be 0.1 to 75; 8 

Zeng and Grigg (2006) suggested the range of ReC from 1 to 100. ReC will be set to 100 to make 9 

sure non-Darcian flow happen in this study. According to Eq. (1), one can see that the specific 10 

discharge is in linear relation to Re. Therefore, the critical specific discharge ( Cq ) can also be 11 

used to determine the start of the non-Darcian flow, since one can calculate Cq for a given ReC. 12 

When the specific discharge is less than or equal to Cq  (or Re≤ReC), the flow is considered as 13 

Darcian. When the specific discharge is greater than Cq  (or Re>ReC), the flow is taken as 14 

non-Darcian. Denoting  tRC  as the critical radius at which Cqq   (or Re=ReC), then it is 15 

non-Darcian flow when  tRr C and Darcian flow when  tRr C , as shown in Fig. 1.  16 

For the quasi-steady state flow around a fully penetrating well in a homogeneous and 17 

isotropic formation, one has (Sen, 1988;Wen et al., 2008b)  18 

 CC BqQR 2/ ,     (2) 19 

where B is the thickness of the aquifer (L); Q is the well discharge (L
3
T

-1
). In the case of a 20 
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constant pumping rate, 
CR  is also a constant for a specific ReC. This constant 

CR  was used in 1 

previous two-region models of transient non-Darcian flow (Sen, 1988;Wen et al., 2008b). 2 

Actually, 
CR  is not a constant for transient flow, and it cannot be determined directly since the 3 

velocity distribution changes with time. In this study, a new iteration method will be proposed to 4 

determine 
CR  as described below.  5 

2.2. Mathematic model  6 

Fig. 1 shows the physical model investigated in this study, where a pumping well fully 7 

penetrates a confined aquifer. The origin of the cylindrical coordinate system is at the center of 8 

the well. The r-axis is horizontal and outward from the well, and the z-axis is upward vertical. 9 

Three assumptions are made in this study. First, the non-Darcian and Darcian flow may coexist 10 

and the critical radius is time-dependent, and the non-Darcian flow is governed by the 11 

Forchheimer law. Second, the system is hydrostatic before the pumping starts, so  0tRC =0. 12 

Third, the aquifer is homogeneous, isotropic, infinitely extensive and with a constant thickness. 13 

These assumptions, although quite idealized, are standard in well hydraulic study (Papadopulos 14 

and Cooper, 1967;Sen, 1988;Wen et al., 2008b). Based on these assumptions, the governing 15 

equations of the two-region flow model can be described as follows 16 

t

trs

B

S

r

trq

r

trq NNN








 ),(),(),(
, if  tRr C ,   (3) 17 

t

trs

B

S

r

trq

r

trq YYY








 ),(),(),(
, if  tRr C ,   (4) 18 

where ),( trsY  and ),( trsN  are drawdowns (L) at distance r and time t in Darcian flow and 19 

non-Darcian flow regions, respectively; S is the aquifer storage coefficient (dimensionless).  20 
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Initial condition is 1 

0)0,()0,(  rsrs NY .     (5) 2 

The outer boundary condition is  3 

0),(  tsY .      (6) 4 

Assuming that the pumping rate is large enough to induce non-Darcian flow near the well, 5 

the boundary condition at the wellbore, considering the wellbore storage with a finite diameter 6 

well, can be written as  7 

Q
dt

tds
rtrrBq w

wrrN w


)(
),(2 2 ,                               (7) 8 

where Q is positive for the pumping rate; wr  is the radius of the well (L); sw is the drawdown 9 

inside the well (L). Notice that well loss is not considered so the drawdown is continuous across 10 

the well screen 11 

),()( trsts wNw  .      (8) 12 

The drawdown and the discharge from the Darcian flow region into the non-Darcian flow 13 

region are continuous at the critical radius 14 

     ttRsttRs CYCN ,,  ,     (9) 15 

     ttRqttRq CYCN ,,  .     (10) 16 

In the non-Darcian flow region, we use the Forchheimer law to describe the flow 17 

(Forchheimer, 1901) 18 
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r

s
Kqqq N

NNN



  ,                                       (11) 1 

in which   (TL
-1

) and K  (LT
-1

) are empirical constants depending on the properties of the 2 

medium (Sidiropoulou et al., 2007). K  is called the apparent hydraulic conductivity and it 3 

reduces to the hydraulic conductivity when 0  (Chen et al., 2001;Sidiropoulou et al., 4 

2007).   is called the inertial force coefficient. Many studies demonstrated that the value of   5 

was related to the porous media and the fluid properties (Scheidegger, 1958;Moutsopoulos et al., 6 

2009). For example, Ergun equation (Ergun, 1952) was widely used to estimate   7 

 





1150

75.1 pD
,      (12) 8 

where   is porosity. When the kinematic viscosity of water ( ) at 20 °C is 10
−6

m
2
·s

−1
, 9 

pD =0.001m,  =0.3, one has  2.0×10
-4

m
2
/day. 10 

In the Darcian flow region, one has 11 

r

trs
Ktrq Y

Y





),(
),( , cRr  .    (13) 12 

Eqs. (3) - (13) can be used to describe the groundwater flow in the aquifer with a 13 

time-dependent critical radius  tRC . This new model is an extension of the previous model by 14 

Sen (1988). When   tRC , this model becomes the F-ND model. When   0tRC , it 15 

reduces to the fully Darcian flow model. 16 

2.3. Dimensionless transformation 17 

Defining the dimensionless variables in Table 1, Eqs. (3) - (13) can be rewritten as 18 
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D

ND

D

ND

D

ND

t

s

r

q

r

q









, CDD Rr  ,    (14) 1 

D

YD

D

YD

D

YD

t

s

r

q

r

q









, CDD Rr  ,    (15) 2 

    00,0,  DYDDND rsrs ,     (16) 3 

0),(  DYD ts ,      (17) 4 

     DDCDYDDDCDND ttRsttRs ,,  ,    (18) 5 

     DDCDYDDDCDND ttRqttRq ,,  .    (19) 6 

Notice that a negative sign has been used for defining qD in Table 1. The subscript “D” means 7 

the dimensionless variables. The boundary condition with the wellbore storage (Eq. (7)) in the 8 

dimensionless form is 9 

  1
)(

2

2



D

DwDwD
rrNDD

dt

tds

S

r
qr

wDD
.    (20) 10 

The dimensionless Forchheimer law becomes 11 

D

ND
NDNDDND

r

s
qqq




  , CDD Rr  ,     (21) 12 

where D  is the dimensionless inertial force coefficient. When the pumping rate is 0.628 m
3
·s

−1
, 13 

aquifer thickness is 10 m, and  2.0×10
-4

m
2
/day, one has D =0.02 according to the definition 14 

of D , as shown in Table 1.  15 

When CDD Rr  , groundwater flow follows the Darcy’s law in the dimensionless format as 16 
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D

YD
YD

r

s
trq




 ),( , CDD Rr  ,    (22) 1 

where   is the ratio of the hydraulic conductivity and apparent hydraulic conductivity, and it is 2 

usually taken as unity (Sidiropoulou et al., 2007).  3 

3. Numerical solution 4 

Because of the non-linearity of the problem, it is not easy to obtain the analytical solution of 5 

drawdown even if  DCD tR  is constant. In this study, we will employ the finite-difference 6 

method to investigate the problem considering a time-dependent  DCD tR . Due to the 7 

axisymmetric nature of the problem, the numerical simulation will be conducted with a 8 

non-uniform grid system, where the spatial steps are smaller near the well and become 9 

progressively greater away from the well. Similar to previous studies (Mathias et al., 2008;Wen 10 

et al., 2009), we discretize the dimensionless space rD logarithmically. The dimensionless space 11 

domain [rwD, reD] is discretized into N nodes excluding the two boundary nodes rwD and reD, 12 

where reD is a relatively large dimensionless distance used to approximate the infinite boundary 13 

(Mathias et al., 2008;Wen et al., 2009). For any node of ri, rwD<ri<reD, i=1, 2…N, one has  14 

2/)( 2/12/1   iii rrr ,    i=1, 2…N,    (23) 15 

where 2/1ir is calculated as follows 16 








 


N

rr
irr wDeD

wDi

)(log)(log
)(log)(log 1010

102/110 , i=0, 1…N. (24) 17 

After spatial discretization, Eqs. (14) - (15) become 18 
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 2/12/1

2/1,2/12/1,2/1,










iii

iYDiiYDi

D

iYD

rrr

qrqr

dt

ds
, i=2, 3…Ns-1, CDD Rr  ,  (25) 1 

 2/12/1

2/1,2/12/1,2/1,










iii

iNDiiNDi

D

iND

rrr

qrqr

dt

ds
, i= Ns, 3…N-1, CDD Rr  , (26) 2 

where iYDq , and iYDs ,  are the dimensionless specific discharge qYD and dimensionless drawdown 3 

sYD at node i for the Darcian flow, respectively; iNDq ,  and iNDs ,  are the dimensionless specific 4 

discharge qND and dimensionless drawdown sND at node i for the non-Darcian flow, respectively. 5 

In terms of the Forchheimer equation of Eq. (21), one can obtain  6 


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

2

1

1

,1,

2/1, 411
2

1
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iNDiND

D

D

iND
rr

ss
q 


，i=2, 3…Ns-1, (27) 7 

and 8 






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
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






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
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2

1

1
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2/1, 411
2

1
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iNDiND

D

D

iND
rr

ss
q 


，i=2, 3…Ns -1, (28) 9 

where node Ns means the location of  DCD tR . At the well-aquifer boundary, one has 10 

























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


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






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2

1

1

1,

2/11, 411
2

1

wD

NDwD

D

D

ND
rr

ss
q 


,   (29) 11 

where swD is the dimensionless drawdown inside the well. Considering Eq. (20), swD can be 12 

approximated as follows  13 

 2/11,2
1

2
 NDwD

wDD

wD qr
r

S

dt

ds
.     (30) 14 
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When CDD Rr  , the finite-difference scheme of the specific discharge can be obtained from 1 

Eq. (22) 2 

1

,1,

2/1,











ii

iYDiYD

iYD
rr

ss
q  , i= Ns, Ns+1…N-1,   (31) 3 

ii
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

1

1,,

2/1,  , i= Ns, Ns+1…N-1.   (32) 4 

As for the boundary at the infinity, the finite-difference scheme is 5 

NeD

NYD

NYD
rr

s
q




,

2/1,  .     (33) 6 

Now one obtains a set of ordinary differential equations. It is notable that CDR  or Ns which is 7 

related to the index i in Eqs. (27) - (28) and Eqs. (31) - (32) is time-dependent. In the following 8 

section, a new iteration method will be proposed to determine the values of CDR  or Ns. 9 

4. Iteration method to determine CDR or Ns 10 

Before introducing the new iteration method, the relationship between CDR  and the 11 

velocity distribution will be investigated first, based on the two-region model with a constant 12 

CDR . The values of the constant CDR  are set to 0, 0.02, 0.04, 0.08 and 0.50, respectively. The 13 

other parameters are 4101 wDr , 20D , 1 . The mathematic model with a constant 14 

CDR  will be solved by the finite-difference method.  15 

Fig. 2a shows the specific discharge distributions with different CDR of 0, 0.02, 0.04, 0.08 16 

and 0.50. The curve of CDR =0 represents the fully Darcian flow model. One can find that the 17 
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specific discharge decreases with increasing
CDR at a given Dr , starting from its maximum at 1 

CDR =0 (Darcian flow). This observation is understandable. The increasing 
CDR  implies a 2 

stronger contribution of the inertial effect, which also means a larger resistance to flow, thus it 3 

leads to a smaller specific discharge. After trying many different sets of aquifer parameters, such 4 

as D =0.002, 0.02, 0.2, and 
CDR = 0.01, 0.03, 0.1, numerical simulation indicates that this 5 

observation is universally valid. This observation will serve as the basis for the new iteration 6 

method to seek the location of  DCD tR . 7 

Similar to the use of ReC to determine the start of the non-Darcian flow, one can use CDq  8 

for the initiation of the non-Darcian flow, where CDq  is the dimensionless critical specific 9 

discharge defined in Table 1. We denote jCDr  as the newly computed critical radius at the j
th

 10 

step of the new iteration method, where 3,2,1j . Since the aquifer system is initially 11 

hydrostatic, the initial critical radius CDr0  is set to 0. For a given dimensionless time t1D, the 12 

detailed procedures of the iteration method for searching  DCD tR 1  will be introduced as follows. 13 

Firstly, the specific discharge distribution in the aquifer can be calculated using Eqs. (25) - (33) 14 

with  DCD tR 1 CDr0 , as shown in Fig. 2b. Based on the computed specific discharge distribution, 15 

one can find the new critical radius CDr1  according to a given constant CDq . Secondly, the new 16 

specific discharge distribution can be similarly calculated using Eqs. (25) - (33) with 17 

 DCD tR 1 = CDr1 , and the new critical radius CDr2  can be obtained according to CDq . It is notable 18 

that CDr1  and CDr2  serve as the upper and lower limits for searching  DCD tR 1 , as illustrated in 19 

Fig. 2b. Similarly, one can estimate the new critical radius CDr3  using CDr2 , where CDr3  is 20 
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located somewhere between 
CDr1  and 

CDr2
. Following the same procedures, a new critical 1 

radius 
CDr4

 can be calculated based on 
CDr3

, and 
CDr4

 is between 
CDr2

 and 
CDr3

. One can 2 

repeat above computations until the new critical radius finally converges. For the actual 3 

problems, we define a convergence criterion  new

CD

old

CD RR , where old

CDR  and new

CDR  are the 4 

critical radius for the previous step and present step, respectively;   is a small positive value 5 

such as 0.001. If this criterion is satisfied, the new critical radius jCDr  is thought as the 6 

estimation of  DCD tR 1 . We develop a MATLAB program named as Two-Region Model with 7 

Moving critical radius (MTRM) to facilitate the computation. By the way, this iteration method 8 

is convergent. Fig. 3 represents the flow chart of the MTRM algorithm, where tk is the time at 9 

time step k; kmax is the total number of the time steps; dtD is the dimensionless time step; sD,i and 10 

qD,i are the dimensionless specific drawdown and dimensionless discharge at node i in the aquifer 11 

respectively.  12 

5. Results and discussions 13 

5.1. Comparison with the previous solutions 14 

To test the new solution, the fully Darcian flow solution of Papadopoulos and Cooper 15 

(1967), the fully non-Darcian flow solution of Mathias et al. (2008) and the two-region model of 16 

Sen (1988) will be introduced. Figs. 4a and 4b show the distance-drawdown curves of the four 17 

mentioned-above models in the early and late pumping stages, respectively. In these two figures, 18 

“Papadopoulos and Cooper (1967)” represents the analytical solution of the fully Darcian flow 19 

model, “Sen (1988)” is the analytical solution of the two-region model by the Boltzmann 20 
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transform method, and “Mathias et al. (2008)” represents the numerical solution of the fully 1 

non-Darcian flow model. The deflection point of the curve is the location of the critical radius. 2 

In the early stage, the differences among three previous solutions and the new solution of 3 

this study are obvious, as shown in Fig. 4a. Firstly, the solution of Papadopoulos and Cooper 4 

(1967) is smaller than the others near the well. This is because the inertial forces of the 5 

non-Darcian flow increase the resistance for flow, thus resulting in drawdown greater than those 6 

for the Darcian flow near the well. The second is that the F-ND solution agrees with the new 7 

solution near the well. The third is that the solution of Sen (1988) does not agree with the new 8 

solution near the well at the early time. This is probably because of the Boltzmann transform 9 

method used by Sen (1988) to deal with the non-Darcian flow at the early time, which has been 10 

discussed in several previous studies (Camacho and Vasquez, 1992;Wen et al., 2008b). The 11 

fourth is that there is a deflection point on the new solution, leading to discontinuity of the 12 

drawdown slope. This observation may be reasonable, as also reported by Moutsopoulos et al. 13 

(2009), who named it non-uniform hydraulic behavior.  14 

In the late pumping stage, the transient flow approaches the quasi-steady state, and the 15 

specific discharge distribution is invariant with time according to Eqs. (3) - (4) or Eqs. (14) - (15), 16 

regardless of the Darcian flow or non-Darcian flow. Under the quasi-steady state flow condition, 17 

the critical radius obtained by this new solution becomes a constant which is the same as the one 18 

used by previous two-region models such as Sen (1988) and Wen et al. (2009). Therefore, the 19 

new solution agrees with that of Sen (1988) very well at late time (see Fig. 4b). Another fact that 20 
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can be seen in Fig. 4b is that the new solution agrees with the solution of Papadopoulos and 1 

Cooper (1967) in the Darcian flow region.  2 

5.2 Effect of the inertial force coefficient to the critical radius  3 

The inertial force coefficient (  ) is of primary concern for the non-Darcian flow described 4 

by the Forchheimer equation, and the values of D  are chosen as 0.001, 0.01, and 0.1. Fig. 5 5 

shows the critical radius ( CDR ) changes with time for different dimensionless inertial force 6 

coefficients. Several observations can be seen. Firstly, CDR  increases with time until the flow 7 

approaching the quasi-steady state condition. In the early pumping stage, the specific discharge 8 

is very large near the well and decreases quickly with the distance from the well, so CDR  is very 9 

small. With time going, the cone of depression will expand along the radial direction and the 10 

slope of the cone of depression becomes flatter, so CDR  becomes greater. Secondly, a larger D  11 

would reduce the rate of change CDR  versus time, thus result in longer time to approach its 12 

asymptotic value, and consequently leads to a smaller CDR  at a specific time in the transient 13 

state (see Fig. 5). This is because a larger D  implies a stronger inertial force, which increases 14 

the resistance of flow. The third interesting observation is that the asymptotic value of CDR  is 15 

the same for different D . This can be explained using Eq. (2). Based on the definition of the 16 

dimensionless parameters defined in Table 1, Eq. (2) becomes 17 

CDCD Rq /1 .      (34) 18 

Therefore, the value of CDR  does not depend on D  under the quasi-state state flow condition, 19 

while it only reciprocally depends on the critical specific discharge.   20 
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5.3 Effect of the critical specific discharge to the critical radius  1 

The criterion to judge the initiation of the non-Darcian flow is an important factor of 2 

concern. Up to now, there is still considerable debate on what value of 
CRe  to use for the start 3 

of non-Darcian low. The recommended values of 
CRe  range from 0.1 to 100 for porous media 4 

flow (Bear, 1972;Scheidegger, 1974;Zeng and Grigg, 2006). To check the influence of 
CRe  on 5 

CDR  during the transient flow, the values of CDq  are chosen as 100, 50 and 10 considering the 6 

direct relationship of CDq  and CDR  in Eq. (2). The other parameters are D =0.01, 7 

and 4101 wDr .  8 

Fig. 6 shows the effect of CDq  on CDR . It is obvious that the asymptotic value of CDR  is 9 

equal to CDq/1 , as reflected in Eq. (34). Another interesting observation is that CDR  decreases 10 

with increasing CDq , and it takes shorter time for CDR  to approach its asymptotic value.   11 

5.4. Type curves in the non-Darcian flow region and Darcian flow region 12 

Type curves are a series of curves that reveal the functional relationship between the well 13 

functions (or drawdown) and the dimensionless time factors (Sen, 1988;Wen et al., 2011). Type 14 

curve is one of the common approaches to identify the aquifer parameters or to predict the 15 

drawdown(Sen, 1988;Wen et al., 2011). Sen (1988) presented different type curves in the 16 

Darcian flow region and non-Darcian flow region based on a two-region model. In that model 17 

(Sen, 1988), CDR  was a fixed value which only depends on the rate of pumping but independent 18 

of time. In this study, CDR  changes with time, and the type curves might be different from the 19 

ones generated by Sen (1988). To investigate the behaviors of the type curves of the new 20 
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solution, the two observation locations will be chosen, rD=0.005 and 0.02. According to Eq. (34), 1 

the maximum of 
CDR  is 0.001 at the quasi-steady state, so the flow at rD=0.005 will experience 2 

both Darcian flow (at the early time) and non-Darcian flow (at late time), while the flow at 3 

rD=0.02 is always Darcian.  4 

Fig. 7 shows the time-drawdown at rD=0.005 for different dimensionless inertial force 5 

coefficients in the log-log scale. Two interesting observations can be seen from this figure. The 6 

first observation is that there is a deflection point in the curve of D =0.1 or 1, that becomes 7 

larger in time with increasing D . This is because a larger D  implies a stronger inertial effect, 8 

which leads to a larger drawdown and longer time to approach the quasi-steady state condition. 9 

This observation is not found in the F-ND model (Wen et al., 2011) and in the two-region model 10 

(Sen, 1988). The second observation is that the drawdown in the quasi-steady state increases 11 

with increasing D , and the reason for this has been explained in previous studies (Wen et al., 12 

2011). 13 

Fig. 8 represents the time-drawdown at rD=0.02 in the log-log scale. One notable point is 14 

that flow at rD=0.02 is always Darcian, so there is no deflection point in the type curves. The 15 

differences among the curves with different D  are obvious at the beginning, and then they 16 

approach the same value at the quasi-steady state.  17 

6. Summary and conclusions 18 

In this study, a new two-region flow model considering the time-dependent critical radius 19 

( CDR ) is established to investigate the groundwater flow into a pumping well, and a new iteration 20 
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method is proposed to estimate 
CDR , based on the finite-difference method. Results show that 1 

this iteration method is convergence although it has not been analytical verified using rigorous 2 

mathematic model. In the non-Darcian flow region, the flow is governed by the Forchheimer 3 

equation, and the start of the non-Darcian flow is determined by the critical specific discharge, 4 

which is calculated by the critical Reynolds number. The new solution is compared with 5 

previous solutions, such as the fully Darcian flow model, the two-region model with a constant 6 

critical radius, and the fully non-Darcian flow model. The impacts of the dimensionless inertial 7 

force coefficient ( D ) and dimensionless critical specific discharge ( CDq ) on the critical radius 8 

and flow field have been analyzed. Several findings can be drawn from this study: 9 

(1) In the early stage, the new solution agrees with the fully non-Darcian flow solution near 10 

the well, differs with the fully Darcian flow model of Papadopoulos and Cooper (1967) and the 11 

two-region model of Sen (1988). 12 

(2) In the quasi-steady flow stage, the new solution agrees with the solution of Sen (1988) 13 

very well. It agrees very well with the solution of the fully Darcian flow model (Papadopulos and 14 

Cooper, 1967) in the Darcian flow region. 15 

(3) CDR  increases with time until reaching the quasi-steady state flow, and the asymptotic 16 

value of CDR  only depends on CDq . A larger D  would reduce the rate of change of CDR  17 

with time, and result in a smaller CDR  at a specific time during the transient flow state.  18 

(4) There is a deflection point in the type curve when the observation well location is within 19 

the non-Darcian flow region in the quasi-steady state when D 0.1, and the time associated 20 
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with this deflection point becomes larger with a larger D . 1 
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Figure captions 1 

Fig. 1. The schematic diagram of the non-Darcian flow into a fully penetrating pumping well 2 

considering the time-dependent critical radius. 3 

Fig. 2a. Specific discharge distributions with different critical radius RCD. 4 

Fig. 2b. The schematic diagram showing the iterative process of seeking RCD. 5 

Fig. 3. Flow chat of the MTRM algorithm. 6 

Fig. 4a. Comparison of the distance-drawdowns by the fully Darcian flow model (Papadopoulos 7 

and Cooper, 1967), the fully non-Darcian flow model (Mathias et al., 2008), the two-region 8 

flow model (Sen, 1988), and the new model in early pumping stage. 9 

Fig. 4b. Comparison of the distance-drawdowns by the fully Darcian flow model (Papadopoulos 10 

and Cooper, 1967), the fully non-Darcian flow model (Mathias et al., 2008), the two-region 11 

flow model (Sen, 1988), and the new model in late pumping stage. 12 

Fig. 5. Time-dependent critical radius (RCD) for different values of the inertial force 13 

coefficient D . 14 

Fig. 6. Time-dependent critical radius (RCD) for different values of the critical specific discharge. 15 

Fig. 7. Time-drawdown at rD=0.005 for different inertial force coefficients in a log-log scale. 16 

Fig. 8. Time-drawdown at rD=0.02 for different inertial force coefficients in a log-log scale. 17 
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