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------------------------------------------------------------------------------------------------------------------------------------- 

Reply to the Associate Editor 

 

 

 5 

Associate Editor’s comment (AEC): Thank you indeed for resubmitting 

the paper and for the detailed reply letter, where you addressed the 

points raised by the Referees and by myself.I report below some 

observations on the revised manuscript, which I invite you to 

address in the final manuscript. 10 

Authors reply (AR): We thank the Associate Editor for her new evaluation of our paper and 

for her useful comments on our manuscript. We provide here detailed answers to all the 

comments. The line number corresponds to the manuscript version with track changes. 

 

AEC: 1) ll. 79-99 this part is still a bit long and the close 15 

connection with the applied models is not so clear 

AR: The review comments indeed asked in the previous review round to remove this part. 

We had shortened it in the revised version but had kept a significant part of it because we do 

think that it is important for the paper. Indeed, it explains the context of the research on low 

flows in France starting from the 1970s and the origins of most of the models used in this 20 

study (e.g. the Gardenia model originates from the work done at BRGM by Thiéry, the 

MORDOR model originates from the work done by Garçon, etc.). So we would like to keep 

these lines in the manuscript and we hope the Associate Editor will understand our point of 

view. Since the concerns on this part may originate from the fact that it is not well placed in 

the introduction, we decided to move it to the section presenting models (section 2.2) and we 25 

added an introductory sentence to explain that we shortly present here the background of the 

selected models. We hope that this answers the concerns raised by the Associate Editor.  

 

AEC: 2) ll. 309-310: the part referring to teleconnections is still 

not necessary (nor very clear…) 30 

AR: ll. 342-343: the part referring to teleconnections has been removed 

 

AEC: 3) l. 379: rephrase the English 

AR: l. 412-417: the sentence has been rewritten. 

“When looking at the integrated criterion, PRES performs best on average on all criteria, followed by 35 

GR6J, GARD and MORD. However these four models are quite similar compared to SIM which 

obtained comparatively lower performance” 

 

AEC: 4) ll 399-401: the graph (Figure 6) does not show what happens 

for the criterion C2M since it does not identify the single 40 

criteria. 
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AR: ll. 429-446: We agree that the graph was not clear enough. We made it clearer (new 

figure 6) and also tried to clarify the text accordingly. 

 

AEC: 5) ll. 429-431: add that the quantile-quantile post-correction 45 

method is used only in the SIM model and explain why for SIM the 

performances (especially the POD) not only do not improve but 

actually deteriorate. 

AR: ll. 475-482: We now say that quantile/quantile post-correction is only used in the SIM 

model and explain why performances in POD and Sharpness deteriorate. 50 

 

AEC: 6) l. 460: I would repeat/specify that ‘lower’ refers to the 

increasing lead-time. 

AR: l.511: We added the term “when the lead time increases”, as suggested 

 55 

AEC: 7) l. 463: I would repeat/specify ‘lower than 1 IN FORECASTING 

MODE’ 

AR: l. 515: We specified “lower than 1 in forecasting mode”, as suggested 

 

AEC: 8) l 497: specify that Figure 13 refers to 7-days ahead lead-60 

time. 

AR: l. 548: We now specify that performance refers to 7-day forecast, as suggested. 

 

AEC: 9) ll. 637-641: this sentence is not clear (and, accordingly, 

also ll. 65-74 might be rephrased): it does not exist a distinct 65 

class of ‘low-flow forecasting models’ nor a class of ‘hydrological 

models’ separate from the first one (all models used to obtain 

simulation/forecast of any hydrological variable are hydrological 

models). And even referring, correctly, to ‘rainfall-runoff’ models, 

the models proposed by Demirel and Booij and some of the models 70 

listed as ‘simple modelling approaches’ in Section 1.2 (e.g Campolo 

et al., 1999) are models that are fed by rainfall and 

evapotranspiration estimates, that is the same input variables used 

to fed your models and they represent therefore just a different 

type of rainfall-runoff models. The difference is in the structure 75 

of the rainfall-runoff model, either data-driven/systemic (see 

neural networks) or conceptual, but also a neural network model is a 

rainfall-runoff model that may be used in real-time forecasting as 

an alternative to a conceptual model (see, for example, the 

comparisons in Coulibaly et al., 2000, or Toth and Brath, 2007) and 80 

they may of course be fed by meteorological forecasts and not 

necessarily by no-rainfall scenarios, as, for example, in Coulibaly 

(2003) or in the recent paper by Demirel et al., 2014. I would 

suggest rephrasing (or removing since it is not strictly needed) ll 

637-641 and I would rephrase ll. 65-74. 85 
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Coulibaly P, Anctil F, and Bobee B (2000) Daily reservoir inflow forecasting using artificial 

neural networks with stopped training approach. Journal of Hydrology 230: 244–257. 

Coulibaly P., Impact of meteorological predictions on real-time spring flow forecasting, 

Hydrological Processes, 17 (18) (2003), pp. 3791–3801. 

Demirel, M. C. and Booij, M. J. and Hoekstra, A. Y. The skill of seasonal ensemble low flow 90 
forecasts for four different hydrological models, Hydrol. Earth Syst. Sci. Discuss., 11, 5377–

5420, 2014. 

Toth E and Brath A (2007) Multistep ahead streamflow forecasting: Role of calibration data in 

conceptual and neural network modelling. Water Resources Research 43: W11405. 

AR: ll. 689-693: We fully agree with the AE and acknowledge that the terminology we used 95 

may be confusing. The sentence has been removed, and the paragraph ll.66-80 has been 

rephrased to be more general. 

 

AEC: 10) In most of the captions of figures/tables it would be 

useful to add if they refer to ‘simulation’ or ‘forecasting’ mode. 100 

AR: We now make it explicit if the figures/tables refer to simulation or forecasting mode in 

Table 6, Figure 4, 5, 7, 10 and 11.  

 

 

 105 

Miscellaneous 

 

When re-reading the text, we also made a number of minor modifications (addition of a few 

references, correction of a few sentences, improvement of illustrations, etc.). All these 

modifications appear in track-changes mode in the revised version of the manuscript. 110 
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Abstract 

Low-flow simulation and forecasting remains a difficult issue for hydrological modellers, and 

intercomparisons can be extremely instructive to assess existing low-flow prediction models and to 

develop more efficient operational tools. This research presents the results of a collaborative 130 

experiment conducted to compare low-flow simulation and forecasting models on 21 unregulated 

catchments in France. Five hydrological models (four lumped storage-type models – Gardenia, GR6J, 

Mordor and Presages – and one distributed physically-oriented model – SIM) were applied within a 

common evaluation framework and assessed using a common set of criteria. Two simple benchmarks 

describing the average streamflow variability were used to set minimum levels of acceptability for 135 

model performance in simulation and forecasting modes. Results showed that, in simulation as well 

as in forecasting modes, all hydrological models performed almost systematically better than the 

benchmarks. Although no single model outperformed all the others for all catchments and criteria, a 

mailto:pierre.nicolle@irstea.fr
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few models appeared more satisfactory than the others on average. In simulation mode, all attempts 

to relate model efficiency to catchment or streamflow characteristics remained inconclusive. In 140 

forecasting mode, we defined maximum useful forecasting lead times beyond which the model does 

not bring useful information compared to the benchmark. This maximum useful lead time logically 

varies between catchments, but also depends on the model used. Simple multi-model approaches 

that combine the outputs of the five hydrological models were tested to improve simulation and 

forecasting efficiency. We fouind that the multi-model approach was more robust and couldan 145 

provide better performance than individual models on average. 

Keywords 

Hydrological modelling, Low flow, Long-term forecast, Evaluation criteria, Comparison 
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1 INTRODUCTION 150 

1.1 Why anticipate low flows? 

In many countries, rivers are the primary supply of water. In France, where this research was 

conducted, 81% of the 33 km3 of total water withdrawals in 2009 came from rivers (CGDD, 2012). 

Municipal water supply, irrigation, navigation, hydropower and thermal power plant cooling are 

highly dependent on streamflow and can be strongly affected by water shortages in rivers (Bousquet 155 

et al., 2003). Increasing efforts to maintain minimum environmental flows in rivers make the issue 

even more acute (García de Jalón, 2003; Saunders and Lewis, 2003).  

Early anticipation of low-flow periods is needed to improve water management and take more timely 

measures to mitigate the socio-economic and ecological impacts of water shortages (Chiew and 

McMahon, 2002; Hamlet et al., 2002; Karamouz and Araghinejad, 2008). Extreme droughts, which 160 

occurred in Western Europe in 1921 (Duband et al., 2004), 1949 (Duband, 2010), 1976 (Brochet, 

1978; Gazelle, 1979) and more recently in 2003 (Moreau, 2004; Vidal et al., 2010b), underline the 

need for anticipation systems. In addition, the current trend and/or perspective of more severe 

summer low flows in the context of climate change further highlights the need for appropriate 

management tools for low flows (Svensson et al., 2005; Manoha et al., 2008; Feyen and Dankers, 165 

2009). Operational tools to forecast river low flows are still limited in many basins and much less 

developed than those dedicated to flood forecasting. 

In spite of early attempts to develop models for applications on low flows (Riggs, 1953; Bernier, 

1964; Popov, 1964; Singh and Stall, 1971; Larras, 1972; Oberlin and Michel, 1978), low-flow 

forecasting has received only limited attention in the literature compared to flood forecasting (see 170 

e.g. reviews by Cloke and Pappenberger, 2009; Hapuarachchi et al., 2011). Although quite similar in 

essence, the two exercises have marked differences, essentially due to the different dynamics of 

floods and low flows. Indeed, low flows are long-lasting phenomena with slow dynamics, contrary to 

floods. Besides, expectations are different in terms of forecast lead times, which are longer in the 
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case of low flows, typically ranging from a few days to a few weeks. Therefore there is a need to 175 

assess the ability of existing forecasting tools to anticipate low-flow situations both in terms of 

magnitude and lead time. 

1.2 Hydrological models for low-flow forecasting 

Most Several modelsling approaches have been proposed for low-flow forecasting can be considered 

as hydrological models, in the sense that they try to simulate the catchment response to given 180 

meteorological conditions. A few of them also try to incorporate upstream information, e.g. dam 

operations. Early modelling attempts, include linear ARMA-type models, propagation models and 

recession curves  (Lefèvre, 1974; Yates and Snyder, 1975; Avalos Lingan, 1976; Guilbot et al., 1976; 

Girard, 1977; Oberlin and Michel, 1978; Miquel and Roche, 1985; Rivera-Ramirez et al., 2002).. Data-

driven approaches like neural networks and conceptual rainfall-runoff models are also more and 185 

more widely used Campolo et al. (1999) also proposed a neural network modelling approach 

(Campolo et al., 1999; Garçon et al., 1999; Stravs and Brilly, 2007). Some of these models make 

simplifying assumptions, e.g. hypothesizing These methods generally make the assumption of no-

rainfall future conditions in the case of recession models. This, which is the most pessimistic case in a 

low-flow forecasting context, but often a not entirely realistic one when lead times of a few weeks 190 

are considered.  

To make more reliable forecasts and extend to longer lead times, it is necessary to account for future 

meteorological conditions (e.g. Coulibaly, 2003) and rainfall-runoff models are thus much relevant 

for low-flow forecasting. To account for the uncertainty in the future conditions (mainly in terms of 

temperature and precipitation), the typical methodology consists in simulating an ensemble of low-195 

flow forecasts (similar to ensemble flood forecasts), using a hydrological model fed by an ensemble 

of meteorological scenarios. These forecasts are then statistically analysed for the target time period 

(see e.g. Garçon et al., 1999; Perrin et al., 2001; Demirel et al., 2013a).  



8 
 

In France, among the first attempts to use conceptual models for low-flow forecasting, CTGREF 

(1977) developed a simple storage-type model on the Durance basin to improve irrigation water 200 

management in low-flow conditions. Then a few hydrological models were developed to better take 

into account low-flow dynamics and are now used in operational conditions. The French Geological 

Survey (BRGM) first worked on aquifer level forecasts (Thiéry, 1982, 1988b). Subsequently, Thiéry 

(1988a) reported the application of a conceptual model to forecast low flows on four catchments 

with various characteristics in France. These studies yielded the hydrological model GARDENIA, which 205 

is now used in operational conditions (Thiéry, 2013). EDF, the French national electricity company, 

was also active in the development of operational tools and they implemented a forecasting system 

based on a hydrological model (MORDOR) in the 1990s to better manage the reservoirs in the 

Durance River basin (Garçon, 1996; Garçon et al., 1999). This system was later extended to other 

river basins in the mountainous regions where EDF manages reservoirs, including the Loire River 210 

basin (Mathevet et al., 2010). Using similar methods, Perrin et al. (2001), Staub (2008) and 

Pushpalatha (2013) evaluated the performance of the GR4J model (or modified version of this model, 

see Pushpalatha et al., 2011) for low-flow forecasting on a large set of French catchments. Lang et al. 

(2006a; 2006b) also developed a platform for low-flow analysis and forecasting based on a 

conceptual hydrological model and implemented it in north-eastern France (Meuse, Moselle and 215 

Rhine basins). Last, Soubeyroux et al. (2010) discussed the implementation of tools developed by 

Météo-France for long-term forecasting, especially using the Safran-Isba-Modcou modelling suite 

running throughout France in operational conditions. One objective of this research will be to 

evaluate the strengths and weaknesses of these existing models. 

1.3 Limits of existing tools 220 

Low-flow forecasting with hydrological models is actually a difficult task since processes conditioning 

low flows may depend on the region, season or lead time. For example, Demirel et al. (2013b) 

investigated the role of five indicators (precipitation, potential evapotranspiration, groundwater 

storage, snow storage and lake storage) on the Rhine basin low flows and found that their relative 

Mis en forme : Vérifier l'orthographe
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magnitude varies with the forecast lead time. Singla et al. (2012) also showed that the predictability 225 

of flows in the spring season strongly depends on snow cover in the mountainous regions. The 

relation between surface water and groundwater in low-flow conditions was also investigated by 

many authors, showing the need to account for this in low-flow forecasting models (Tajjar, 1993; 

Pointet et al., 2003; Rassam, 2011). Clearly, the applicability of hydrological models for low-flow 

forecasting depends on the way these various processes are accounted for in the model. For 230 

example, the work of Staudinger et al. (2011) illustrates the sensitivity of summer low-flow 

simulation to the formulation of the model structure. A number of techniques can be used in 

conjunction with a hydrological model to improve its forecasting efficiency and decrease modelling 

uncertainty. Assimilation of observed data (e.g. observed streamflow or soil moisture) available at 

the time the forecast is issued may be one option. Using post-processing techniques to correct the 235 

bias or the spread of model outputs may also prove useful (see e.g. the discussion by Demirel et al., 

2013a), as well as multi-model approaches (Georgakakos et al., 2004; Velazquez et al., 2011).  

Our literature review showed that there are very few studies comparing the performance of existing 

hydrological models so that is difficult to know their respective strengths and weaknesses in a low-

flow forecasting perspective. A noteworthy exception is the study by Demirel et al. (2013a), who 240 

compared the HBV and GR4J models and found that the former provides better forecasts than the 

latter. These authors also indicate that parameter estimation is a major source of uncertainty for 

medium-range (10 days ahead) low-flow forecasts. 

1.4 Scope of the paper 

Given this lack of common evaluation of low-flow forecasting models and the need to provide end-245 

users with advanced forecasting tools, the French national agency for water and aquatic 

environments (ONEMA), and the Ministry for Ecology (MEDDE) jointly launched in 2010 a 

comparative study for evaluating existing operational (or pre-operational) low-flow forecasting 

models on basins covering a variety of French hydroclimatic contexts. The project, called PREMHYCE, 
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was designed as an open experiment: each participant was invited to follow a single testing protocol 250 

to run his own model on a common database set up for the project. Since the experience of the 

modeller may play a role in the quality of the model’s implementation, this placed the models in the 

best conditions for obtaining optimal results. The test set intentionally included a wide variety of 

conditions to draw more general conclusions (Andréassian et al., 2009; Gupta et al., 2013). Although 

the project was restricted to the French context and limited to French participants for practical 255 

reasons, the results are likely to be of wider interest for the community of researchers and managers 

working on these issues. The project mainly intended to identify the respective advantages of the 

models on the selected catchments for low-flow simulation and forecasting objectives. Here, 

following the definitions given by Beven and Young (2013), simulation is understood as the 

quantitative reproduction of the catchment behaviour, given defined inputs but without reference to 260 

any observed outputs, whereas forecasting is the quantitative reproduction of the catchment 

behaviour ahead of time, but given observations of the inputs, state variables (where applicable), and 

outputs up to the present time (the forecasting starting point). As forecast inputs are likely the most 

important source of uncertainties in streamflow forecasting, it seems important to first analyse 

hydrological models in simulation mode to better understand their performance differences. 265 

The aim of this paper is to present the main outcomes of the PREMHYCE project. In the next section, 

we present the catchments and data used for this research, the tested models and an overview of 

the testing protocol, including evaluation criteria. Section 3 details the main results obtained on the 

catchment set in simulation and forecasting modes and analyses the differences between models. 

Section 4 opens the discussion on three questions, namely: (1) Within a set of models, is a better 270 

low-flow simulation model also a better forecasting model? (2) Which maximum lead time can be 

expected in low-flow forecasting? (3) Can models be efficiently combined in a multi-model 

approach? The last section provides a discussion of the main lessons and perspectives of this work. 
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2 MATERIAL AND METHODS 

The approach followed in the PREMHYCE project was largely inspired by modelling experiments 275 

carried out in the past few years, in which participants had been invited to run their models on a 

common data set. WMO (1975, 1986, 1992) was among the first to organize such experiments to 

evaluate model running for simulation, snowmelt or flood forecasting purposes. More recently, the 

DMIP experiments (Smith et al., 2004; Smith et al., 2012) carried out by the NOAA in the USA to 

evaluate distributed simulation models provide excellent examples of testing protocols. However, to 280 

our knowledge, none of these experiments were designed to evaluate models for a low-flow 

forecasting objective. Therefore, we built our own common testing protocol to evaluate the relative 

efficiency of several models currently used in France in operational or pre-operational conditions. 

2.1 Catchment set and data 

2.1.1 Selection of catchments 285 

A set of 21 catchments distributed over continental France was built to serve as the test bed. The 

catchments were selected based on several criteria. We intended to have (1) a wide diversity of 

physical and climate conditions representative of the diversity of conditions found in France; (2) 

sufficiently long time series from gauging stations that include a variety of low-flow events, with data 

deemed to be good quality by the operational hydrometric services and with human influences 290 

considered negligible in low-flow conditions; (3) a sufficient number of stations to reach general 

conclusions, but not too many to keep tests feasible for all participants. Fourteen of these 

catchments are part of the national low-flow reference network of near-natural catchments 

established by Giuntoli et al. (2013). 

The catchment set is well distributed over France (see Figure 1), with hydrological regimes ranging 295 

from oceanic to Mediterranean. Table 1 lists the set of 21 catchments, showing catchment sizes 

ranging from 379 km² to 4316 km², median elevations ranging from 70 m to 1020 m and streamflow 

data covering periods ranging from 36 to 97 years. 
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2.1.2 Data 

Daily streamflow records were retrieved from the French HYDRO database 300 

(www.hydro.eaufrance.fr). Daily precipitation, temperature and potential evapotranspiration (PE) 

data originate from the gridded (8  8 km) SAFRAN climate reanalysis developed by Météo-France 

(Vidal et al., 2010a). PE was computed using the Penman-Monteith formula (Penman, 1948; 

Monteith, 1965). The climatic series are continuously available on the 1959–2010 period over France. 

To treat all catchments as uniformly as possible in the tests, the common 1974–2009 period was 305 

selected for model testing. This period includes severe low-flow conditions (e.g. in summers 1976, 

1989, 2003 and 2005). 

Table 2 displays the ranges of climate and flow characteristics of the catchment set. Climate 

Hydroclimatic conditions in France are quite variable in terms of mean annual precipitation, PE and 

streamflow. Variations in rainfall, PE and streamflow can also be significant between years, as shown 310 

by interannual variability, especially for streamflow. On average, 36% of rainfall becomes runoff for 

the catchment set, but this ratio varies between 21% and 76%. 

2.1.3 Characteristics of low flows 

In France, low flows mostly occur in summer and at the beginning of autumn (except in snow-

influenced conditions). However, the duration and intensity of low flows as well as the beginning and 315 

ending dates of low-flow periods vary substantially between years and catchments.  

For the operational purposes, low-flow periods are often defined using a streamflow threshold, 

under which specific management measures must be taken to face water shortages. In this study, it 

was difficult to choose operational low-flow thresholds, because they do not represent the same 

level of severity in all catchments since managers did not use the same methods to define these 320 

thresholds in all catchments. We thus considered low flows as periods when observed streamflow 

falls below the threshold defined by the 80th percentiles of the flow duration curve, noted Q80, i.e. 

the flow exceeded 80% of the time. This was chosen as a compromise between focusing on specific 

http://www.hydro.eaufrance.fr/
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low-flow periods and having a sufficient number of low-flow situations to obtain robust and 

significant model evaluations (see also Giuntoli et al., 2013, for a discussion on low-flow thresholds). 325 

Table 2 illustrates the range of low-flow thresholds and low-flow conditions on the catchment set, 

using two descriptors, namely the base-flow index (BFI) and the Q90/Q50 ratio (where Q90 and Q50 are 

the 90th and 50th percentiles of the flow duration curve, respectively). BFI represents the part of base- 

flow in the total flow volume (Lvovitch, 1972). Low BFI values indicate a catchment with a flashy flow 

regime and limited groundwater contribution, while high values are an indication of large storage 330 

capacity and groundwater-fed rivers (Gustard and Demuth, 2009). The catchment set examined 

provides a wide range of BFI values, ranging from 11.7 to 93.5%. The Q90/Q50 ratio represents the 

difference between low flows and medium flows, thus indicating the severity of low flows. It shows a 

similar variability, with values between 7% and 67% and half of the catchments set between 18% and 

38%. 335 

2.2 Models 

 Before presenting in details the models used in this work, we found it useful to remind here 

the context of their developments in France, to show that these models are the results of an already 

quite long experience on low-flow simulation and forecasting within the hydrological modelling 

community. 340 

2.2.1 Modelling background 

 AIn France, among the first attempts to use conceptual hydrological models in France for 

low-flow forecasting, CTGREF (1977) developed a simple storage-type model on the Durance basin to 

improve irrigation water management in low-flow conditions. Then a few hydrological models were 

developed to better take into account low-flow dynamics and are now used in operational 345 

conditions. The French Geological Survey (BRGM) first worked on aquifer level forecasts (Thiéry, 

1982, 1988b). Subsequently, Thiéry (1988a) reported the application of a conceptual model to 

forecast low flows on four catchments with various characteristics in France. These studies yielded 

Mis en forme : Normal
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the hydrological model GARDENIA, which is now used in operational conditions (Thiéry, 2013). EDF, 

the French national electricity company, was also active in the development of operational tools and 350 

they implemented a forecasting system based on a hydrological model (MORDOR) in the 1990s to 

better manage the reservoirs in the Durance River basin (Garçon, 1996; Garçon et al., 1999). This 

system was later extended to other river basins in the mountainous regions where EDF manages 

reservoirs, including the Loire River basin (Mathevet et al., 2010). Using similar methods, Perrin et al. 

(2001), Staub (2008) and Pushpalatha (2013) evaluated the performance of the GR4J model (or 355 

modified version of this model, see Pushpalatha et al., 2011) for low-flow forecasting on a large set 

of French catchments. Lang et al. (2006a; 2006b) also developed a platform for low-flow analysis and 

forecasting based on a conceptual hydrological model and implemented it in north-eastern France 

(Meuse, Moselle and Rhine basins). Last, Soubeyroux et al. (2010) discussed the implementation of 

tools developed by Météo-France for long-term forecasting, especially using the Safran-Isba-Modcou 360 

(SIM) modelling suite running throughout France in operational conditions. One objective of this 

research will be to evaluate the strengths and weaknesses of these existing models. 

2.22.2.2 Selected models 

Table 3 shows the five models used in this study. Four of them (called here GARD, GR6J, MORD and 

PRES) are lumped storage-type models, with various conceptualizations of the rainfall-runoff 365 

transformation. The fifth model (SIM) is distributed and more physically-oriented. These models have 

all already been applied in various conditions in France. SIM is implemented throughout France, and 

the other models were tested in various basins or regions for different purposes (e.g. low-flow or 

flood simulation and forecasting). The simulation of low flows in these models is governed by 

different stores and functions. In forecasting mode, the models use assimilation schemes and/or 370 

statistical correction procedures (see Table 3). 

The models include different numbers of free parameters (Table 3). Participant were free to choose 

the optimization method best suited to parameter estimation, but all opted for automatic 

Code de champ modifié
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calibration, using either global (SCE-UA method for MORD, multistart simplex method for PRES) or 

local (gradient-type “step-by-step” method for GR6J, Rosenbrock method for GARD) optimisation 375 

algorithms (Table 3). The objective functions were generally chosen to put more weight on low flows 

(e.g. Nash-Sutcliffe (NS) criterion calculated on transformed streamflow (Q0.2) for PRES, Root Mean 

Square Error (RMSE) calculated with ln(Q) for GARD, or mean of Kling-Gupta efficiency (KGE) criteria 

calculated on Q and 1/Q for MORD and GR6J, see Table 3). Even though this variety of choices may 

make the comparison of results less straightforward, this was a mean to account for the variety of 380 

modelling approaches and for the experience of model developers. Note that SIM was the only 

model for which no calibration against observed flow data at the catchment outlet was performed. 

The spatially distributed parameters used in this model were estimated regionally. This should be 

kept in mind when interpreting the results. Moreover, this version of SIM includes a detailed 

simulation of the aquifers only on a few parts of France (Seine and Rhône catchments). This may 385 

impact the efficiency of the model outside these zones. Moreover, the larger computing 

requirements of SIM only allowed a limited number of tests (see section 2.3.3). 

The models were fed with the same meteorological inputs derived from SAFRAN. For the lumped 

models, the SAFRAN variables were first aggregated at the catchment scale by simple averaging. 

2.3 Testing protocol and evaluation methodology 390 

A common testing and evaluation framework was set up to make the results comparable. It was 

jointly elaborated by all project participants in the first phase of the project, so that most of the 

models’ requirements and constraints could be accounted for.  

2.3.1 Testing scheme 

Model evaluation was based on a classical split-sample test approach (Klemeš, 1986). Streamflow 395 

records were divided into two approximately equal sub-periods. Each period was alternately used for 

calibration and validation, i.e. calibration on period 1 (noted C1) with validation on period 2 (V2), and 

then calibration on period 2 (C2) with validation on period 1 (V1). Thus the models could be 
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evaluated in validation on all available data. The 1974–1991 and 1992–2009 periods based on 

calendar years were chosen for periods 1 and 2, respectively. A 3-year warm-up period was used at 400 

the beginning of each test period (1971–1973 and 1989–1991 for periods 1 and 2, respectively) to 

initialize the internal states of the models.  

2.3.2 Differences between forecast and simulation tests 

As underlined above, the simulation and forecasting exercises differ, which has clear implications in 

the way models were tested here (see illustration in Figure 2). 405 

In simulation mode, models are expected to simulate streamflow at time step t, knowing observed 

meteorological inputs until this time step. Observed streamflow values remain unknown at all time 

steps. The simulation mode shows the models’ ability to reproduce the catchments’ hydrological 

behaviour without uncertainties due to unknown future conditions (input scenarios) and without the 

information contributed by external data (typically observed flows) that could be assimilated to 410 

adjust the model. 

In forecasting mode, models are expected to forecast streamflow from time steps t+1 to t+L (with L 

the lead time), knowing both observed meteorological inputs and streamflow until time step t and 

making assumptions (i.e. choosing scenarios) for the future meteorological inputs from t+1 to t+L. 

Streamflow data can be used within an assimilation scheme and/or a statistical correction procedure. 415 

Models were actually tested in hindcasting mode, i.e. retrospectively running the models at each 

time step of the available test periods and making forecasts as if they were used in real time.  

2.3.3 Choice of scenarios in forecasting mode 

An ensemble of scenarios of future meteorological inputs must be chosen for the forecasting mode. 

Usually, real-time ensemble forecasts from meteorological models are used to forecast streamflow. 420 

Here, since no long-term archive of actual forecasts was available over the test period, the 

meteorological archive was used as possible scenarios for P, PE and T. The following procedure was 

applied. For a given catchment, let us consider that N years of meteorological inputs are available. 
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One wishes to make a forecast on a calendar day t of a year Y within the test period, i.e. to forecast 

flows between calendar days t+1 and t+L. The observed meteorological data available between days 425 

t+1 and t+L in the years 1,…,Y−1,Y+1,…,N (i.e. N−1 scenarios) were used as input scenarios to the 

model, considering that they are likely meteorological conditions for this period of the year. Here, 51 

years (1959–2009) of daily climate data from the SAFRAN reanalysis were available, thus 50 scenarios 

(for rainfall, temperature and PE) could be used each time. The observed meteorological inputs of 

year Y were used as a control forecast, to estimate forecasting efficiency in the idealized case of 430 

perfect foreknowledge of future meteorological conditions. 

Following this procedure, models were run to issue an ensemble of 50 streamflow forecasts for each 

day t, over a time window of 90 days (from t+1 to t+90). Due to computing time constraints, SIM only 

provided forecasts every 5 days, from t+1 to t+30 (and t+90 for each first day of the month), over a 

period limited to May 1st to October 26th (the low-flow period) and on the second validation period 435 

only (1992–2009).  

In this study, we assumed that this number of scenarios (50) was sufficient for a good representation 

of the variability of possible future climate conditions. Obviously, historical scenarios are likely to be 

less accurate than actual ensemble forecasts from meteorological models, at least for short to 

medium lead times, since the spread of these scenarios may be too large for short lead-times. 440 

However, the catchment response to meteorological inputs is much more smoothed in low-flow than 

in high-flow conditions, which makes the catchment less sensitive to the spread of the ensemble. 

This approach may also find some limitations for forecasting the most extreme low-flow events, since 

most scenarios from the historical archive are likely to be wetter than the conditions actually 

observed for these extreme events. This can result in an overestimation of low flows forecasted by 445 

the models. In operational conditions, adding a “no-rainfall” scenario to the historical ones, i.e. 

running the model in pure recession, may be a way to overcome this problem and have an estimate 

of the “worst” low-flow forecast. 
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Since long archives of ensemble meteorological forecasts from an ensemble prediction system (EPS) 

were not available for this study, using long archives of observed meteorological data gave the 450 

advantage to get general results and also included severe drought conditions observed in the past 

decades. Moreover, the targeted lead time in the study is up to a few weeks, i.e. longer than 

medium-range forecasts of about two weeks which are currently available. Extending medium-range 

forecasts with other information (i.e. climatic series) was out of the scope of this study. Note that we 

did not investigate here seasonal forecasting, with typical forecast horizons of several months (see 455 

e.g. Céron et al., 2010; Singla et al., 2012) and the possible role played by teleconnections (Mosley, 

2000; Chiew and McMahon, 2002; Rutten et al., 2008; Céron et al., 2010).  

2.3.4 Benchmarks and evaluation criteria 

Although models provided streamflow simulations or forecasts at a daily time step, we chose to 

evaluate models on the streamflow averaged over a 3-day sliding window. This aimed at smoothing 460 

the low-flow series and avoiding putting too much emphasis on isolated streamflow variations 

(Henny, 2010). Note that this target variable is quite commonly used in France for regulation 

purposes. 

Since the use of benchmarks is important to evaluate the relative advantages of model predictions 

(Seibert, 2001; Perrin et al., 2006), results in simulation mode were compared to the daily average 465 

streamflow curve (noted DAQ). This benchmark was advocated by Martinec and Rango (1989). In 

forecasting mode, the probabilistic forecasts were compared to a benchmark describing the 

streamflow natural variability (noted NVQ). NVQ is defined for a given calendar day d of year Y as the 

distribution of available streamflows in the other years for this day. Obviously, more demanding 

benchmarks could have been chosen to raise the level of expected performance. For example, in 470 

forecasting mode, one may use a constrained version of NVQ by selecting the years for which flow at 

the day of forecast lie in similar ranges as the observed flow for the current year. Here NVQ 

benchmark has been chosen to keep a more uniform evaluation among years. Note that the choice 
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of the benchmark may change interpretations when comparing the models with the benchmark (see 

e.g. section 4.2) but it will not impact the evaluation of their respective merits when placed in a 475 

comparative framework.  

We used two sets of evaluation criteria for model evaluation in simulation (see list in Table 4) and 

forecasting (see Table 5) modes. They were chosen to assess various modelling skills expected in low-

flow conditions for different objectives, after discussions with stakeholders. The detailed 

mathematical formulation of the criteria is given in the Appendix.  480 

In forecasting mode, the models were expected to produce forecasts over a future time window of 

90 days. Therefore, model forecasting performance could be investigated for all lead times between 

1 and 90 days. To simplify the presentation of results, we choose to focus on two specific lead times: 

a short one (7 days) and a longer one (30 days). This choice was made in agreement with 

stakeholders since those are the typical horizons useful for water managers. The longer lead time 485 

was limited to 30 days given the computation constraints of the SIM model. 

In some cases, the mathematical form of the criteria was changed to have all of them vary within the  

interval ]- ;1] interval (1 being the optimum value) to ease interpretation.  

Note that the forecasting results presented hereafter were limited in order to adapt to the 

availability ofanalysed only on the time steps where streamflow forecasts from SIM were available.  490 

2.3.5 Presentation of results 

The project produced a very large number of results, and it is obviously not possible to detail them all 

here. Instead, we chose to present summary evaluations using tables and graphical representations. 

Radial plots, as exemplified in Figure 3, were used to present mean model performance on the set of 

21  catchments for all selected criteria. Visually, the larger the polygon linking the performance 495 

values, the better the model. On these graphs, criteria focusing on similar aspects were grouped 

together (the groups are those defined in Tables 4 and 5). We also used performance maps to 
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investigate the possible regional trend in results. These maps were drawn for three criteria only 

(C2Mi, CSI and Vdef in simulation; RMSEut, BSvig and Vdef in forecasting). They were found to be 

complementary, thus providing an overall picture of model performance in low-flow conditions. 500 

3 RESULTS 

3.1 Simulation mode 

Figure 4 summarizes the mean performance obtained by the five models tested in validation on the 

21 catchments and the two test periods. Quite similar results can be observed for four lumped 

models on average. The performance of the SIM model was lower for a few criteria (C2Mi, C2M, POD, 505 

FAR and CSI). However, no model seemed able to outperform all the other models for all criteria. 

Performance on some criteria can vary substantially between catchments. Figure 5 presents the 

maps of mean performance on the two validation periods for three criteria (C2Mi, Vdef and CSI). A 

few catchments (e.g. the Meuse at St-Mihiel) are properly simulated by more or less all models. H: 

however, performance can be much more variable between models on other catchments: e.g. the 510 

PRES model performs well on the Gapeau at Hyères for the C2Mi and Vdef criteria, while the 

performance of the other models is significantly lower. The relative advantages of one model may 

also depend on the criteria selected. For the Gapeau at Hyères, PRES performs better than GARD in 

terms of C2Mi, while the reverse is true for Vdef. Although it achieves lower performance than the 

other models on average, SIM can prove better on some catchments, e.g. the Orge at Morsang-sur-515 

Orge for the C2Mi criterion. Interestingly, most models tend to underestimate the volume deficit 

(Vdef < 1), i.e. they tend to overestimate low flows below the Q80 threshold. GR6J is the only model 

which tends to underestimate low flows. The models clearly outperform the benchmark (DAQ) for all 

criteria. Note that the DAQ model is by definition perfect for the DatSt and DatEn criteria (see the 

Appendix), so comparison with the other models on these criteria is pointless. 520 
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Table 6 presents the results based on the mean performance in validation on the 21 catchments. An 

integrated criterion provides an overview of the overall performances. It is based on the transformed 

values of the nine criteria directly related to low flows (i.e. not considering C2M and KGE) with 

transformed values ranging between 0 and 1 (where 1 is the best performance). It, and represents 

the blue area in the radial plots of shown in Figure 4. It can be observed that GARD performs best for 525 

four criteria, PRES and MORD for three and GR6J with one. When looking at thePRES performs best 

the most consistently among the best models on the integrated criterion, followed by GR6J, GARD 

and MORD, even if these four models are quite similar, and then SIMThe integrated criterion, shows 

that PRES performs best on average on all criteria, followed by GR6J, GARD and MORD. However 

these four models are quite similar compared to SIM which obtained comparatively lower 530 

performances less. DAQ performs poorly for most criteria. Mean performances and performance 

variability (standard deviation) on all catchments for GARD, GR6J, PRES and MORD are quite similar: 

the models provide good performance (e.g. at least 0.79 for KGE, and 0.7 for POD, which indicates an 

event under the Q80 threshold well simulated seven times out of ten). SIM performs less satisfactorily 

than the four other models for 9 out of 11 criteria, but all the models obtained greatly improve 535 

performances relative to the benchmark NVQ DAQ (except SIM for false alarm rate FAR). 

Interestingly, PRES performs a bit less well than the three other conceptual models on the two 

criteria focusing on high flows (C2M and KGE): the way PRES was implemented within this study 

makes it more low-flow-oriented than the other models.  

These results indicate that differences are quite limited between the lumped conceptual models for 540 

low-flow simulations. A more detailed analysis (not shown here) indicated that performance can vary 

considerably between validation periods. Overall, obtaining satisfactory streamflow simulation 

seems to depend more on catchment than on the model itself. Figure 6 compares presents the  

mean variability (standard deviation) of performance variability between models (y-axis) against the 

performance mean variability of performance between catchments (x-axis) for each of the 11 545 

selected criteria. The standard deviationvariability between models was calculated by first computing 
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the mean performancestandard deviation of performances ofn the 21five catchmentsmodels for 

each modelcatchment and then computing the standard deviationmean of these meanstandard 

deviation values. The standard deviationvariability between catchments was calculated by first 

computing the meanstandard deviation of performances onf the five21 tested modelscatchments for 550 

each catchmentmodel and then computing the standard deviation of these mean of these standard 

deviation values. For each criterion, standard deviation of performances for a model is calculated for 

all catchments, the average standard deviation for the five models represents the variability of 

performances between models. For each criterion, standard deviation of performances for a 

catchment is calculated for all models, the average standard deviation for the 21 catchments 555 

represents the variability of performances between catchments. The graph shows that performance 

varies more between catchments than between models for all criteria (except for C2Mi, for which the 

where performance mean variability between of models is greater than performance meanthe 

variability ofbetween catchments), which supports that streamflow simulation depends more on 

catchments than on models. 560 

Given this result, we analysed the relation between model performance and low-flow indices (BFI or 

Q90/Q50 ratio) or catchment characteristic (drainage density here), as they are closely related to low-

flow dynamic and could explain in which case models show more difficulties to simulate low flows: 

BFI values indicate the level of groundwater contribution, the Q90/Q50 ratio represents the severity of 

low flows and drainage density informs on soil permeability. Unfortunately, as illustrated in Figure 7, 565 

the relation did not show significant trends. 

3.2 Forecasting mode 

Figure 8 and Figure 9 present the radial plots of all criteria for each model, for 7-day and 30-day lead 

times, respectively. Here, red lines represent the radial plot in forecasting mode when no observed 

streamflow is used (i.e. without using assimilation or output correction methods). The performance 570 

of the benchmark model, NVQ, was also included. Here, the differences between models seem more 
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significant than in simulation mode for a few criteria (e.g. containing ratio (Cont_ratio), sharpness 

(Sharp), Vdef or low-flow duration (LFD)), especially for the 7-day lead time. However, it is still 

difficult to identify a single best model. We can only confirm that SIM performs a bit less well, even if 

the differences with the other models appear to be more limited for the 30-day lead time. One of the 575 

expected results is the loss of performance with increasing lead time for all models (and all 

catchments). This loss is significant for all criteria, except for the containing ratio, which is better: 

members of the ensemble forecast are more dispersed. Containing ratio (Cont_ratio) and sharpness 

(Sharp) are two complementary scores that should be evaluated together: a model should first be as 

reliable as possible and then provide as narrow a forecast intervals as possible (excessively spaced 580 

forecasts do not contribute information). Performance even becomes close to the benchmark 

performance NVQ for the 30-day lead time, but still remains better. The comparison with 

performance when no observed streamflow is used shows that assimilation or output correction 

methods improve performances for all the models (average improvement of 14.2% for GARD, 10.7% 

for GR6J, 12.0% for MORD, 11.3% for PRES and 7.3% for SIM for the 7-day lead-time). The 585 

aAssimilation method of GARD (reservoir updating) seems to be the most efficient. However PRES 

assimilation method (similar to GARD) provides similar improvement compared to GR6J and MORD, 

which use a correction method based on the error made correction at previous time-step. The 

quantile/quantile post-correction method, only used in the SIM model, seems less efficient than 

streamflow assimilation methods, asince performances are not improveddeteriorated for a few 590 

criteria (RMSEut, POD, CSI and sharpness (Sharp)). Here, SIM tends to underestimate low-flows when 

the method is not used. Effect ofThe quantile/quantile method for SIM in low-flows tends to overall 

increase each forecast member in low -flows. Sharpness decreases (Q10/Q90 interval of ensemble 

forecast is larger) because the method is multiplicative. POD decreases when the quantile/quantile 

method is used because the decrease in the number of hits is larger decreases more than the 595 

increase in the number of correct misses increases. 
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As in simulation mode, model performance based on several criteria strongly varies among the 

catchments. Figure 10 and Figure 11 show the performance maps on validation period 2 for RMSEut 

(normalized by mean flow under the Q80 threshold), BSvig and Vdef, and for each model on the 21 

catchments, for forecasting 7-day (Figure 10) and 30-day (Figure 11) lead times, respectively. We 600 

reach the same conclusions as in simulation mode: even if for some catchments the models 

satisfactorily forecast low flows (e.g. the Andelle at Vascoeuil and the Oise at Sempigny in RMSEut, 

whatever the forecast lead time), performance is quite variable in other catchments: (e.g. the Petite 

Creuse at Fresselines in RMSEut is properly modelled by GARD but less satisfactorily by the other 

models). Performance also depends on the criteria considered: for the Orge at Morsang-sur-Orge, 605 

model performance is quite good in RMSEut for the two forecasting lead times but decreases 

significantly in BSvig or Vdef, compared to the other catchments. 

The fact that models remain better than the benchmark model indicates that they contribute 

information, even for a long forecasting lead time. An analysis on the two validation periods has 

shown that performance can vary greatly between periods. Overall, it appears that a satisfactory 610 

streamflow forecast depends more on the catchments and their specificities than on the model, as 

already noted in the case of simulation results. The analyses to link model performance to low-flow 

indices (BFI or Q90/Q50 ratio) did not show significant trends, as had already be shown in simulation 

mode in Figure 7. 

Table 7 presents the results of the models on each criterion for the two selected lead times, based on 615 

the mean performance and standard deviation on the 21 catchments for validation period 2, and the 

mean rank on all criteria. For the short lead time (7 days), GARD and GR6J perform best on four 

criteria and MORD and PRES on one. GR6J and GARD are perform best the most consistently often 

among the best models on average, as shown by the integrated criterion. Then come PRES and 

MORD, followed by SIM. The benchmark remains the poorest model, which shows that all models 620 

contribute information compared to this reference. The ranking is a bit different for the longer lead 
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time (30 days). It changes for some criteria, which modifies the mean ranks: GARD appears to be the 

most highly ranked model, followed by GR6J, PRES and MORD, which are similar. SIM does not seem 

to contribute information on average compared to the benchmark for this lead time. Interestingly, 

SIM shows a lower performance loss than the four other models on the integrated criterion when the 625 

lead -time increases (only 10% against 21 to 23% for the other models). We observe that models 

tend to underestimate low-flow characteristics, as shown by Vdef and LFD values: while the models 

are well balanced in simulation (Vdef and LFD around 1), all models obtain Vdef and LFD values lower 

than 1 in forecasting mode, indicating that they forecast lower deficit of volume and low-flow 

duration, i.e. they overestimate low flows. This may be partly related to the use of historical input 630 

scenarios, since only a few of them allow representing the climatic situations that resulted in severe 

drought situation. The use of other scenarios based on meteorological forecast may help limiting this 

problem, but further test would be needed to check this point.  

This overestimation is more important for all models when the lead time increases. This is due to the 

attenuation of the effect of post-correction or streamflow assimilation methods. These methods 635 

should be improved to better take into account this attenuation with increasing lead-time, especially 

in the case of low-flow forecasting where long forecast lead-time is expected.  

4 DISCUSSION 

This intercomparison experiment shows that hydrological models can provide useful information for 

low-flow simulation and forecasting. Here, we wished to further discuss three main issues raised in 640 

the introduction, relative to (1) the relation between simulation and forecasting performance, (2) the 

lead times achievable on the test catchments for low-flow forecasting and (3) whether models can 

collaborate to enhance overall performance. In each case, a few additional tests/analyses are 

presented. Here our intention is solely to provide complementary insights on these results to open 

clear perspectives based on this work, rather than propose new methodologies. 645 
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4.1 Within a set of models, is a better low-flow simulation model also a 

better forecasting model? 

Section 3 showed the results of the comparison between hydrological models in simulation and 

forecasting modes. The mean model rankshierarchy based on the integrated criterion show several 

differences between simulation (Table 6) and forecasting (Table 7) modes. This is further illustrated 650 

in Figure 12. It, which presents the mean rank of each model in forecasting (for the 7-day lead time) 

for the models ranked in 1st, 2nd,.., 5th position in simulation for the 21 catchments. The hierarchy of 

the models between simulation and forecasting differs: the best model in simulation (mean rank in 

simulation equal to 1) is also the best model in forecasting for only nine catchments. Overall for all 

the ranks, the hierarchy between models is the same in only 33% of cases. Therefore, a better model 655 

in simulation does not systematically mean a better model in forecasting, which strengthens the 

need for an evaluation relative to specific modelling objectives. By modelling objective, we mean 

simulation or forecasting, which are used for different operational applications (e.g. low-flow 

estimation for simulation, operational real-time hydrological drought management for forecasting). 

These differences in performance in simulation and forecasting can be explained by the specific tools 660 

used in forecasting (streamflow assimilation and/or output correction methods, see Table 3). Figure 

13 presents, for each model, the performance difference in CSI for each catchment between 7-days 

forecast when observed streamflow assimilation or post-correction is done (FAP) or not (For), versus 

the performance difference between simulation (Sim) and forecast when assimilation or post-

correction is done (FAP). Positive values for the CSI difference between FAP and For indicate that the 665 

model provides better performances when using assimilation or post-correction method in 

forecasting. Positive values for the CSI difference between FAP and Sim indicates that the model 

provides better performances when the model is used in forecasting mode. We observe that CSI 

differences between FAP and For, and FAP and Sim are well correlated: performance differences 

between simulation and forecasting are closely related to the use of assimilation or post-correction 670 

methods. 
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4.2 Which maximum useful lead time can be expected in low-flow 

forecasting? 

The results obtained in forecasting mode were presented for two specific lead times (7 and 30 days). 

As expected, model performance decreased when lead time increased, which means that the added 675 

value of the information provided by the models compared to the benchmark decreases. Therefore, 

there should be a maximum lead time beyond which the model cannot provide useful information 

compared to the benchmark. This lead time will be called “useful forecasting lead time” (noted UFL) 

hereafter, as proposed by Staub (2008). For each catchment and each model, the UFL can be 

determined by comparing the performance of the model tested and the benchmark (NVQ) when lead 680 

time increases. Note that the definition of UFL strongly depends of the benchmark used: a more 

demanding benchmark would tend to yield lower UFL values. Here UFL was arbitrarily chosen as the 

lead time beyond which model performance is not at least 20% better than benchmark performance. 

We considered that beyond this limit, the operational added value would be too small. Obviously, 

UFL depends on the criteria chosen and benchmark. The variability of UFL values when considering a 685 

given criteria will be an indication of model capacity to represent the corresponding low-flow 

characteristics, and the more demanding the benchmark, the shorter the UFL. 

Figure 14 presents maps of mean UFL values obtained using three efficiency criteria (RMSEut, CSI and 

Vdef) for the 21 catchments. The symbol indicates the model which provides the best UFL. Note that 

SIM was not considered here because it was run to issue 90-day forecasts on too few time steps to 690 

allow robust conclusions. The results logically depend on the catchments. For some of them, it is not 

possible to usefully anticipate low flows beyond 1 week, while others seem to have longer inertia and 

hydrological memory, with forecasts still dependent on initial conditions after several weeks. 

However, we could not link UFL to low-flow characteristics (BFI or Q90/Q50 ratio). It was also noted 

that UFL estimates vary between models and/or test periods. For example, for the Briance River at 695 

Condat-sur-Vienne, the best mean UFL is provided by PRES and reaches 60 days for validation period 
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2 versus only 21 days for period 1 provided by MORD. The variability in model efficiency may partly 

explain these results. 

The UFL estimation is very useful operationally when adapted to specific criteria/objectives defined 

by the water manager. The level of improvement over the benchmark, here set to 20%, could be 700 

raised if one wishes to reach a higher level of reliability or could even replace an absolute criterion 

under specific circumstances. 

4.3 Could models be efficiently combined in a multi-model approach? 

Since it was not possible to identify a single model which would outperform the others for all 

catchments, validation periods or evaluation criteria, we attempted to investigate the possible 705 

complementarity between models via model output combinations in simulation and forecasting 

modes. Many multi-model approaches exist to combine the outputs of several models (see e.g. 

Abrahart and See, 2002; Palmer et al., 2004; Velazquez et al., 2011). Here we chose to focus on three 

simple methods:  

1. Average multi-model forecast (noted AMM): This is the simplest method and consists in 710 

averaging the outputs of the five hydrological models at each time step. In ensemble 

forecasting mode, each multi-model member corresponds to the mean of the forecasts 

issued by the models using the same scenario. This multi-model approach is applicable in 

simulation and forecasting modes. 

2. Fixed-weight average multi-model forecast (noted FMM): This consists in averaging model 715 

outputs using weights based on model performance. The model weight Wm given to each 

model is: 

 Eq. (1) 

where m is the hydrological model, M the number of hydrological models, Crit the value of 

the criterion on the calibration period. Better performing models obtain higher weights. In 720 

ensemble forecasting mode, each member of the multi-model corresponds to the weighted 
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mean of the forecasts issued by the five models using the same scenario. This multi-model 

approach is applicable in simulation and forecasting modes. 

3. Variable-weight average forecast (noted VMM): The third method tested is inspired from 

Loumagne et al. (1995) and is applicable in forecasting mode only. It is equivalent to the 725 

previous method, but here weights are time-dependent and are based on the mean of model 

errors on the last p time steps. This error is calculated using the control run. For each time 

step, the weight given to a model is: 

  Eq. (2) 

where m is the hydrological model, M the number of hydrological models, d the day when 730 

the forecast is issued, Qform,s the streamflow forecasted by model m at date s−1 for s, Qobss 

the observed streamflow at date s, p the length of the time window over which previous 

forecasting errors are considered. This approach could not be applied to the SIM model given 

limited availability of streamflow forecasts. 

Figure 15 presents the maps of the best ranked models in simulation (mean of the models’ ranks by 735 

criteria for each catchment) for each evaluation period. The comparison between AMM and FMM 

(not detailed here) showed very similar results for each catchment and test period and we kept only 

the FMM approach in the rest of the analysis, since it is slightly better. The multi-model presented in 

Figure 15 is FMM, weighted using the POD criteria. It provides better results than individual models 

on 13 and 12 catchments out of 21 for validation periods 1 and 2, respectively. For a few catchments, 740 

the multi-model performs best on one validation period but not on the other. Moreover, since a 

model that performs best on the calibration period compared to the other models does not 

systematically perform best on the validation period, the weight given to this model in the FMM 

approach may not be optimal. The performance of the multi-model seems not to be impacted by this 

robustness effect. The multi-model does not drastically change performance compared to the single 745 

best models: if all models perform poorly, the multi-model does not produce satisfactory results 
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either, which is not surprising. Interestingly however, the multi-model seems more robust than the 

individual models in the sense that it limits severe model failures, since it allows compensations 

between poor and good models. FMM provides overall better performance than the other models 

(integrated criterion of 0.769 against 0.747 for the best model in simulation). Here, we reach the 750 

same conclusion as Georgakakos et al. (2004) where using several distributed models with a variety 

of structures benefits to mean flow simulation compared to a best single distributed one. Combining 

several lumped and distributed models overall improve low-flow simulation here. 

In forecasting mode, SIM was excluded from the three combination methods since it was not 

possible to use it in the VMM option. For VMM, the mean error to weight the model was calculated 755 

over the six last time steps, which appeared to be a good compromise between performance and 

length of this backtracking period. Here, as in simulation, the results (not detailed here) are similar 

between the three options, but VMM is slightly better. Therefore, we kept only the VMM model in 

the rest of the analysis. Figure 16 presents the maps of the best ranked model in forecasting for a 7-

day lead time (mean of the ranks of models by criteria for each catchment) for each evaluation 760 

period. The multi-model provides the best results only on six and five catchments out of 21 for 

validation periods 1 and 2, respectively. GARD and GR6J are also often the best models. The limited 

efficiency of the multi-model may be due to the overly crude combination approach: even if it proved 

useful in a flood forecasting context in the study reported by Loumagne et al. (1995), other 

approaches accounting better for the slow dynamics of low flows may be more efficient and should 765 

be further investigated. 

5 CONCLUSION AND PERSPECTIVES 

In this paper, we presented a comparison between five hydrological models for low-flow simulation 

and forecasting on 21 French catchments representing a variety of physical and hydro-climatic 

characteristics. A general evaluation of models was made using several criteria which represent 770 
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different qualities expected of models. Moreover, the use of benchmarks contributed comparative 

information on the actual operational utility of these models. 

In simulation mode, the comparison showed that calibrated models perform better (GARD, MORD, 

GR6J and PRES). SIM, the only uncalibrated model included in the comparison, nonetheless performs 

as well as the other models on a few catchments. It was difficult to define a clear hierarchy between 775 

these calibrated models, since the results vary according to the selected criteria, the catchment 

considered or even the test period. Tests to relate performance to catchment or streamflow 

characteristics proved unsuccessful, but this is a key aspect to improve low-flow simulation as results 

depends more on the catchments than on models. Models are much better than the benchmark 

(daily average streamflow) and showed the usefulness of hydrological simulation for low flows. 780 

In forecasting mode, we reached the same conclusions, with better results for calibrated models. 

Here, establishing a hierarchy between the models is also difficult, since performance varies 

according to the criteria, catchment, validation period and lead time. The results are quite good for 

short lead times, especially compared to the benchmark. As can be expected, this gain decreases as 

lead time increases, and performance remain modest, especially for longer lead times: there is an 785 

important need for further investigation to improve low-flow forecasting. It is difficult to conclude on 

the actual usefulness of such models for operational management, as performance can vary much 

between catchments. But forecast might be improved by using alternative input scenarios (e.g. 

actual meteorological ensemble). Although models perform differently from one period to another, 

overall they tend to present the same ability to forecast low flows on a catchment. The rainfall 790 

scenarios (historical archive) used here to test models were quite crude and it is likely that using the 

ensemble forecast from meteorological models would improve results, at least for short lead times, 

but this would require further investigation. 

In forecasting, we presented a simple approach to determine the maximum lead time beyond which 

models do not add significant information compared to the benchmark. This maximum lead time was 795 



32 
 

variable because models behaved differently with increasing lead time and the results differed 

according to the criteria and the validation period.  

Combining the single models into a multi-model was successful even with simple combination 

methods, but the performance of the multi-model strongly depends on the performance of 

individual models: where all the models present difficulties in simulating or forecasting low flows, a 800 

model combination cannot compensate for model errors. The main advantage in building a multi-

model lies in its robustness: where only one model presents difficulties on a catchment, a multi-

model corrects this weakness. Here, the five tested models are runoff-rainfall models. Demirel and 

Booij (2009) compared three low-flow forecast models (a multivariate ARMAX model, a linear 

regression model and an Artificial Neural Network (ANN) model) for the Meuse River. Results are 805 

difficult to compare but comparing ANN and hydrological rainfall-runoff models should be interesting 

in low-flow forecasting. 

As far as perspectives are concerned, we would like to mention (i) that tests were made on two other 

catchments in a very different climatic context on Reunion Island (Indian Ocean). They were not 

detailed here for the sake of brevity but yielded similar conclusions. (ii) This study used catchments 810 

where human influence was considered negligible, but the use of catchments where anthropogenic 

pressure on water resources is significant constitutes the second part of the PREMHYCE project, and 

the results will be reported in due course.  
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APPENDIX 

Formulation of the numerical criteria selected for simulation evaluation 

● KGE 1095 

This criterion was proposed by Gupta et al. (2009) as a modification of the Nash-Sutcliffe (1970) 

efficiency index: 

222 )1()1()1(1 rKGE  
Eq. (A1) 

with r the correlation coefficient between observed and simulated flows, the ratio of simulated and 

observed flow standard deviations and  the model bias. 

● C2M 1100 

C2M is a bounded version of the Nash-Sutcliffe efficiency index calculated on streamflow Q (NSEQ), as 

proposed by Mathevet et al. (2006)  

Q

Q

NSE

NSE
MC

2
2  Eq. (A2) 

● C2Mi 

This is similar to the previous criterion, but NSE is calculated on inverse flows to more strongly 

emphasize low flows, as proposed by Pushpalatha et al. (2012) 1105 

● RMSEut 

RMSEut is the root mean square error for flows under the low-flow threshold, normalized by the mean 

observed flow. 
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  Eq. (A3) 

where Qobsi is the observed streamflow for day i, Qsimi the simulated streamflow for day i, and n the 

number of time steps on the validation period where Qobsi is less than the Q80 threshold. 1110 

● Vdef  

Vdef is the ratio of simulated and observed flow deficits under the low-flow threshold: 

n
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1

1
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 Eq. (A4) 

● LFD 

This is the ratio of simulated and observed low-flow durations: 

obs

sim

Duration

Duration
LFD  Eq. (A5) 

where Durationsim is the number of days where the Qsimi is less than the Q80 threshold on the 1115 

validation period and Durationobs is the number of days where the Qobsi is less than the Q80 threshold 

on the validation period. 

● DatSt and DatEn 

This is a comparison of observed and simulated dates when low flows start (St) or end (En).  

obsDatesimDateDat __  Eq. (A6) 

where Date_obs is the Julian day of daily average streamflow when 10% (resp. 90%) of the observed 1120 

volume deficit is exceeded for DatSt (resp. DatEn). The threshold for the observed volume deficit 
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calculation is the observed Q80 calculated of the daily average streamflow. Date_sim is the Julian day 

of the daily average streamflow where 10% (resp. 90%) of the simulated volume deficit is exceeded for 

DatSt (resp. DatEn). The threshold for the simulated volume deficit calculation is the simulated Q80 

calculated of the daily average streamflow. 1125 

Vdef, LFD, and DatSt and DatEn have been adapted from the concept of "centre of mass" proposed by 

Stewart et al. (2005).  

● False alarm ratio (FAR), probability of detection (POD) and critical success index (CSI) 

These are criteria based on the contingency table for low flows considering the Q80 threshold (Schäfer, 

1990): 1130 

ba

b
FAR

 
Eq. (A7) 

ca

a
POD

 
Eq. (A8) 

cba

a
CSI

 
Eq. (A9) 

where a is the number of hits, b the number of false alarms, c the number of correct misses and d 

the number of correct rejects. 

Numerical criteria for forecasting evaluation 

● RMSEut, Vdef, LFD 

These criteria have the same definition as in the simulation but are calculated using the mean of the 1135 

ensemble forecasts for the horizon considered. 

● Sharp 

This criterion measures the width of the ensemble forecast (Franz and Hogue, 2011):  

Mis en forme : Police :Italique

Mis en forme : Police :Italique

Mis en forme : Police :Italique

Mis en forme : Police :Italique



42 
 

n

i

ii QQ
n

Sharp
1

1090
1

 
Eq. (A10) 

where n is the number of time steps on the validation period where the Qobsi is less than the Q80 

threshold, and Q90 (resp. Q10) the 90% (resp. 10%) percentile of the distribution of forecasts for day i. 1140 

● Cont_ratio 

The containing ratio measures how often the observation lies within the ensemble forecast (Franz 

and Hogue, 2011):  

N

n
ratioCont _  Eq. (A11) 

where n is the number of observed streamflows in the 80% forecasted confidence interval when the 

Qobsi is less than the Q80 threshold, and N the number of time steps where the Qobsi is less than the 1145 

Q80 threshold. 

● FAR, POD and CSI 

The same definition as in the simulation is used. Here an event is forecasted if more than 50% of 

members are below the low-flow threshold. 

● BS 1150 

The Brier Score (BS) (Brier, 1950) compared the observed and forecast probabilities relative to a 

threshold: 

2

1

1 n

i

ii oy
n

BS  Eq. (A12) 

where oi is the observation probability, yi the forecast probability. An event is observed/forecasted if 

the observed/forecasted streamflow is less than the vigilance threshold (Q80 for BSvig) or the crisis 
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threshold (Q95 for BScri). n is the number of time steps where Qobsi is less than the Q50 threshold 1155 

(BSvig) or the Q80 threshold (BScri). 

● DRPS  

The Discrete Ranked Probability Score (DRPS) (Toth et al., 2003): 

Nthreshold

k

kBS
Nthreshold

DRPS
1

1
 

Eq. (A13) 

where Nthreshold is the number of thresholds chosen (ten percentiles here, k=Q80, Q82, Q84, … , Q96, 

Q98). 1160 
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Table 1: Summary of the main characteristics of the 21 selected catchments’ characteristics. 

N° 
HYDRO 

Code 
River at Station Area (km²) 

Median 
elevation (m) 

Starting date 
for flow series 

Ending 
date for 

flow series 

Flow 
availability 

(years) 

1 A1080330 Ill at Didenheim 657 390 01/11/1973 02/03/2010 36 
2 B2220010 Meuse at Saint-Mihiel 2542 350 01/07/1968 03/01/2010 42 
3 H2342020 Serein at Chablis 1121 309 01/08/1954 03/03/2010 56 
4 H4252010 Orge at Morsang-sur-Orge 927 133 01/10/1967 07/03/2010 43 
5 H7401010 Oise at Sempigny 4316 137 01/01/1955 02/03/2010 55 
6 H8212010 Andelle at Vascoeuil 379 159 01/01/1973 27/02/2010 36 
7 I5221010 Vire at Saint-Lô 868 159 01/01/1971 03/02/2010 39 
8 J7483010 Seiche at Bruz 811 70 01/12/1967 11/03/2010 42 
9 K1321810 Arroux at Etang-sur-Arroux 1798 431 01/11/1971 27/03/2010 39 

10 K6402520 Sauldres at Salbris 1200 220 01/01/1971 28/03/2010 39 
11 L0563010 Briance at Condat-sur-Vienne 597 386 01/01/1966 28/03/2010 44 
12 L4411710 Petite Creuse at Fresselines 850 393 01/01/1958 28/03/2010 52 
13 M0243010 Orne Saosnoise at Montbizot 510 103 01/12/1967 04/03/2010 43 
14 M7112410 Sèvre Nantaise at Tiffauges 817 170 01/11/1967 04/03/2010 43 
15 O0592510 Salat at Roquefort-sur-Garonne 1570 986 01/01/1913 22/03/2010 97 
16 O3121010 Tarn at Montbrun 588 1020 01/01/1961 31/12/2009 38 
17 Q5501010 Gave de Pau at Berenx 2575 916 01/07/1923 28/03/2010 87 
18 S2242510 Eyre at Salle 1650 78 01/01/1967 19/03/2010 43 
19 U4644010 Azergues at Lozanne 798 517 01/01/1965 28/03/2010 43 
20 V4264010 Drôme at Saillans 936 936 01/01/1910 28/03/2010 46 
21 Y4624010 Gapeau at Hyères 517 316 01/02/1961 01/03/2010 49 
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Table 2: Percentiles of the distribution of certaina few climatice and hydrological catchment characteristics of the 21 
selected catchments. Interannual variability values correspond to coefficients of variation calculated on the 1974–2009 1165 
period. Q50, Q80 and Q90 are respectively the 50

th
, 80

th
 and 90

th
 exceedance percentiles of the flow duration curve 

 Min 25% Median 75% Max 

Mean annual precipitation PA (mm) 656 842 931 1039 1400 

Interannual variability of PA 0.13 0.15 0.17 0.17 0.26 

Mean annual potential evapotranspiration PEA (mm) 606 683 698 717 1031 

Interannual variability of PEA 0.05 0.06 0.08 0.09 0.11 

Mean annual streamflow QA (mm/year) 135 255 325 437 1033 

Interannual variability of QA 0.23 0.28 0.33 0.38 0.62 

Runoff ratio QA/PA (%) 21 31 37 41 76 

Base-flow index (BFI) (%) 11.7 35 45.3 51.1 93.5 

Q90*/Q50* (%) 7 18 28 38 67 

Q80* (mm/day) 0.03 0.13 0.19 0.31 1.21 
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Table 3: Overview of the characteristics of the five models tested 

Short name used 
here 

GARD GR6J MORD PRES SIM 

Full name GARDENIA GR6J MORDOR PRESAGES SIM 

Reference on 
model structure 

Thiéry (2013) Pushpalatha (2011, 
2013) 

Garçon et al. (1999) ; 
Andréassian et al. 
(2006)  

Lang et al. (2006a , 
2006b) 

Habets et al. (2008) 

Type Conceptual Conceptual Conceptual Conceptual Physically-based 

Spatial 
distribution 

Semi-distributed Lumped Lumped Lumped Distributed 

Number of free-
parameters 

4 to 9 (+2 to 4 for 
snowmelt) 

6 (+2 : snow 
routine) 

11 (+4: snow routine) 7 (+3 : snow routine) 0 

Calibration 
method 

Automatic 
calibration: 
Rosenbrock 
method 

Automatic 
calibration: local 
research method 
(step by step) 

Automatic 
calibration: Shuffled 
Complex Evolution 
Method and Pareto 
Front Exploitation 

Automatic 
calibration: simplex 
method with 
multistart 

No calibration 

Calibration 
criteria 

RMSE with ln(Q) (KGE + KGEi)/2 (KGE + KGEi)/2 Nash–Sutcliffe with 
Q0.2 

 

Post-correction 
method 
(simulation) 

Not used Not used Not used Empirical method 
(Berthier, 2005) 

Quantile/quantile 
post-treatment 

Assimilation 
method (forecast) 

When a flow 
discrepancy 
appears, the 
model tanks are 
updated 
proportionally to 
their variance 

Correction based 
on error at first 
time step before 
forecast, with 
decreasing effect 
when lead time 
increases 

Correction based on 
errors at previous 
time steps before 
forecast, with 
decreasing effect 
when lead time 
increases. No update 
of model stores. 

Update of gravitary 
routing store 

No assimilation 
method but a 
quantile/quantile 
post-treatment  

Structure 
overview: 
production 

Actual 
evapotranspiration 
is computed using 
a non-linear soil 
capacity. GW 
exchange is a 
proportion of the 
GW flow 

A rainfall 
interception by PE, 
a non-linear SMA 
store, an 
intercatchment 
GW exchange 
function 

A rainfall excess/soil 
moisture accounting 
store ;  
an evaporating 
reservoir ; an 
intermediate store 
and a deep store 

A soil store, rainfall 
interception by PE 

 

Structure 
overview: transfer 

A non lineau tank 
distributes the 
effective rainfall 
into runoff and 
GW recharge. 

The aquifer is 
represented by a 
linear tank. 

Two unit 
hydrograph, two 
parallel nonlinear 
routing stores 

Direct, indirect and 
baseflow components 
are routed using a 
unit hydrograph 
(Weibull law) 

Two unit 
hydrographs, 
two linear routing 
stores : one for 
streamflow recession, 
one for interflow 

 

References on 
simulation 
applications in 
France 

800 to 1000 rivers 
simulated in 
France 

 Garavaglia (2011);  
Paquet et al. (2013) 

Lang et al. (2006a, 
2006b) 

Vidal et al. (2010b) 
Habets et al. (2008) 

References on 
low-flow 
forecasting 
applications in 
France 

 Pushpalatha (2011, 
2013) 

Mathevet et al. 
(2010) 

Lang et al. (2006a, 
2006b) 

Céron et al. (2010) 
Soubeyroux et al. 
(2010) 
Singla et al. (2012) 
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Table 4: List of efficiency criteria used for model evaluation in simulation mode (see details in Appendix) 1170 

Name Description 

Quadratic criteria 

KGE Kling-Gupta Efficiency 

C2M Nash-Sutcliffe Efficiency bounded in ]-1 ; 1] 

Low-flow quadratic criteria 

C2Mi Nash-Sutcliffe Efficiency calculated with 1/Q and bounded in ]-1 ; 1] 

RMSEut Root mean square error calculated when observed streamflow is less than Q80 threshold 

Volume- based and temporal criteria 

Vdef Ratio of observed and simulated cumulative annual volume deficits 

Temporal criteria 

LFD Ratio of observed and simulated cumulative low-flow duration 

DatSt Relative difference between observed and simulated start of annual low-flow period 

DatEn Relative difference between observed and simulated end of annual low-flow period 

Threshold criteria 

POD Probability of detection, based on contingency table 

FAR False alarm rate, based on contingency table 

CSI Critical success index, based on contingency table 

  

Tableau mis en forme
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Table 5: List of efficiency criteria used for model evaluation in forecasting mode (see details in Appendix) 

Name Description 

Continuous lLow-flow quadratic and probabilistic criteria 

RMSEut Root mean square error calculated when observed streamflow is less than Q80 threshold 

DRPS Discrete Ranked Probability Score 

Volume- based and temporal criteria 

Vdef Ratio of observed and simulated cumulative annual volume deficits 

Temporal criteria 

LFD Ratio of observed and simulated cumulative low-flow duration 

Sharpness/reliability 

Sharp Mean width of interval defined by 10% and 90% percentiles of forecast distribution when observed streamflow 

is less than Q80 threshold 

Cont_ratio Percentage of observation in the 80% forecasted confidence interval when observed streamflow is less than Q80 

threshold (80% of observed streamflow should be included in the interval) 

Threshold criteria 

POD Probability of detection, based on contingency table 

FAR False alarm rate, based on contingency table 

CSI Critical success index, based on contingency table 

BSvig, BScri Brier Score with vigilance threshold (Q80) or crisis threshold (Q95) 

DRPS Discrete Ranked Probability Score 

  

Tableau mis en forme

Tableau mis en forme
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Table 6: Models’ mean performances (with standard deviation in brackets) in validation on the 21 catchments for the 
simulation mode. The integrated criterion is calculated with using the nine low-flow criteria (i.e. not considering C2MQ 1175 
and KGEQ) and on transformed values of criteria. Bold values indicate the best model. 

 
Model’s  mean performances (standard deviation) 

Criterion GARD GR6J MORD PRES SIM DAQ 

C2M 0.73 (0.09) 0.69 (0.10) 0.69 (0.11) 0.67 (0.11) 0.53 (0.13) 0.13 (0.05) 

KGE 0.81 (0.09) 0.83 (0.09) 0.86 (0.06) 0.79 (0.10) 0.80 (0.07) 0.27 (0.11) 

C2Mi 0.57 (0.12) 0.53 (0.14) 0.48 (0.22) 0.56 (0.13) 0.23 (0.19) 0.11 (0.06) 

RMSEut 0.52 (0.29) 0.61 (0.52) 0.81 (0.80) 0.55 (0.35) 1.23 (1.06) 3.48 (2.66) 

FAR 0.21 (0.12) 0.25 (0.13) 0.24 (0.12) 0.22 (0.12) 0.37 (0.12) 0.34 (0.12) 

CSI 0.58 (0.15) 0.60 (0.11) 0.58 (0.14) 0.61 (0.11) 0.42 (0.10) 0.18 (0.12) 

POD 0.70 (0.19) 0.78 (0.14) 0.72 (0.17) 0.75 (0.14) 0.57 (0.13) 0.21 (0.14) 

Vdef 0.89 (0.50) 1.21 (0.64) 0.99 (0.44) 0.95 (0.46) 0.90 (0.38) 0.13 (0.14) 

LFD 0.92 (0.33) 1.10 (0.35) 0.98 (0.26) 0.99 (0.29) 0.92 (0.24) 0.32 (0.21) 

DatSt 4.67 (5.64) -0.55 (8.83) 0.14 (9.88) 2.43 (5.71) -13.31 (12.07) NA (7.20) 

DatEn 1.57 (4.00) -1.93 (6.38) 1.31 (15.31) 0.40 (4.08) -7.83 (8.73) NA (6.47) 

Integrated 
criterion (rank) 

0.734 (3) 0.735 (2) 0.721 (4) 0.747 (1) 0.617 (5) 0.422 (6) 

  

Mis en forme : Anglais (Royaume-Uni)
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Table 7: Models’ mean performances (with standard deviation in brackets) on the 21 catchments for validation period 2 
and for the two selected forecasting lead times selected. 

 
Model’s mean performances  

(standard deviation) 

 
7-day lead time 30-day lead time 

Criterion GARD GR6J MORD PRES SIM NVQ GARD GR6J MORD PRES SIM NVQ 

RMSEut 
0.72 1.22 1.16 0.99 1.25 2.33 1.88 2.81 2.16 2.02 2.06 2.57 

(0.43) (1.13) (0.91) (0.52) (0.83) (1.54) (1.17) (2.13) (1.59) (1.15) (1.41) (1.75) 

DRPS 
0.13 0.12 0.13 0.12 0.18 0.19 0.18 0.18 0.19 0.17 0.20 0.21 

(0.07) (0.05) (0.05) (0.04) (0.03) (0.02) (0.06) (0.03) (0.04) (0.03) (0.03) (0.02) 

POD 
0.82 0.85 0.87 0.8 0.55 0.58 0.65 0.68 0.72 0.59 0.52 0.55 

(0.16) (0.06) (0.08) (0.11) (0.21) (0.16) (0.17) (0.09) (0.10) (0.18) (0.17) (0.16) 

FAR 
0.23 0.22 0.27 0.22 0.32 0.38 0.31 0.32 0.35 0.29 0.36 0.38 

(0.08) (0.06) (0.07) (0.06) (0.11) (0.11) (0.08) (0.08) (0.08) (0.07) (0.11) (0.11) 

CSI 
0.67 0.69 0.66 0.65 0.42 0.41 0.51 0.52 0.52 0.47 0.38 0.40 

(0.14) (0.08) (0.08) (0.10) (0.14) (0.12) (0.13) (0.07) (0.08) (0.14) (0.10) (0.12) 

BSvig 
0.09 0.08 0.1 0.09 0.13 0.13 0.12 0.12 0.14 0.12 0.14 0.14 

(0.05) (0.04) (0.03) (0.03) (0.03) (0.02) (0.04) (0.03) (0.03) (0.03) (0.03) (0.02) 

BScri 
0.06 0.06 0.07 0.07 0.09 0.09 0.08 0.08 0.10 0.09 0.10 0.09 

(0.03) (0.03) (0.03) (0.03) (0.03) (0.02) (0.03) (0.03) (0.04) (0.03) (0.03) (0.03) 

Cont_ratio 
0.34 0.45 0.52 0.64 0.68 0.84 0.59 0.65 0.63 0.82 0.69 0.84 

(0.13) (0.20) (0.20) (0.08) (0.18) (0.07) (0.16) (0.16) (0.20) (0.08) (0.19) (0.08) 

Sharp 
0.95 1.58 1.95 1.92 2.96 4.69 3.29 4.88 4.06 4.30 4.12 5.06 

(0.53) (1.30) (1.45) (0.98) (1.92) (2.95) (1.89) (3.48) (2.43) (2.11) (2.43) (3.12) 

Vdef 
0.73 0.7 0.55 0.62 0.18 0.12 0.41 0.38 0.37 0.39 0.15 0.12 

(0.22) (0.16) (0.23) (0.21) (0.21) (0.12) (0.19) (0.16) (0.20) (0.23) (0.23) (0.13) 

LFD 
0.79 0.77 0.69 0.67 0.35 0.33 0.53 0.49 0.50 0.45 0.30 0.34 

(0.19) (0.15) (0.23) (0.20) (0.22) (0.23) (0.20) (0.16) (0.21) (0.22) (0.25) (0.22) 

Integrated 
criterion (rank) 

0.673 
(2) 

0.674 
(1) 

0.636 
(4) 

0.652 
(3) 

0.473 
(5) 

0.448 
(6) 

0.527 
(1) 

0.516 
(2) 

0.504 
(4) 

0.514 
(3) 

0.425 
(6) 

0.436 
(5) 

  1180 
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Figure 1: Location of the 21 selected catchments in France. Each outlet is shown by a dot and referred to with the HYDRO 
code (see details in Table 1) 
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 1185 

Figure 2: Schematic representation of the difference between (a) simulation and (b) forecasting modes (L: lead time) 
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Figure 3: Example of radial plot showing mean model results on the set of 21 catchments for the selected evaluation 1190 
criteria. The larger the blue surface, the better the model. Background colours link criteria focusing on similar aspects 

  

Mis en forme : Centré
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Figure 4: Radial plots showing the mean validation results obtained by the five tested models and the benchmark (DAQ) 1195 
for the selected criteria in validation forover the 21 catchments and the two test periods, in simulation mode. Results of 
the five models tested and the benchmark (DAQ) are shown. 
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 1200 

Figure 5: Maps of mean performance on the two validation periods in for the C2Mi, Vdef and CSI criteria, obtained by for 
the five tested models tested and the benchmark (DAQ) on the 21 catchments, in simulation mode. The letters on the 
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top right map show the catchments (first two letters of the HYDRO code, see Table 1) whose results are commented in 
more details in the text (B2: Meuse; H4: Orge; Y4: Gapeau) 

  1205 Mis en forme : Légende, Pas de
paragraphes solidaires
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Figure 6: Comparison of the variability (expressed by the standard deviation) in mean pPerformance on all models per 
catchment (x axis) and the variability in mean performance on all catchments per model (y axis), s mean variability of 
models versus performances mean variability of catchments in simulation for the 11 selected performance criteria 1210 

   

Mis en forme : Centré
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Figure 7: Relation between mean performance in simulation on the two validation periods in terms of C2Mi (lefta) and 
Vdef (rightb), and catchment or streamflow characteristics (topleft: Base-Flow Index, centremiddle: Q90/Q50 ratio; 
rightbottom: drainage density) for the 21 catchments and the models tested. 1215 
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Figure 8: Radial plot of the results in forecasting of the mean model results selected criteria in validation for the 21 
catchments for the selected criteria in validation period 2, for a d+7 forecasting lead time. Red lines represent the results 1220 
when no assimilation or post correction method is used. 
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Figure 9: Radial plot of the results in forecasting of the mean model results selected criteria in validation for the 21 1225 
catchments for the selected criteria in validation period 2, for a d+30 forecasting lead time. Red lines represent the 
results when no assimilation or post correction method is used. 
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 1230 

Figure 10: Model pPerformance in forecasting mode on validation period 2 for thein RMSEut, BSvig and Vdef criteria for 
each model on the 21 catchments for a 7-day forecasting lead time. The letters on the top right map show the 
catchments (first two letters of the HYDRO code, see Table 1) whose results are commented in more details in the text 
(H4: Orge; H7: Oise; H8: Andelle; L4: Petite Creuse) 
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Figure 11: Mode pPerformance in forecasting mode on validation period 2 for thein RMSEut, BSvig and Vdef criteria for 
each model on the 21 catchments for a 30-day forecasting lead time 

1240 
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Figure 12: Mean model ranks for the 7-day in forecasting at the 7-day lead time for the 21 catchments for the models 
ranked 1

st
, 2

nd
,… 5

th
 in simulation. 

  



71 
 

 1245 

Figure 13: CSI difference for each model in forecasting mode when streamflow assimilation or output correction method 
is used (FAP) or not (For), versus CSI difference for each model in forecasting mode when streamflow assimilation or 
output correction method is used (FAP) and in simulation mode. 
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1250 

 

 

Figure 14: Map of useful forecasting lead time (UFL) for the 21 catchments, for validation periods 1 (left) and 2 (right). 
Symbols indicate the model which provides the best UFL and the colour scale indicates the value of this UFL. L0 indicates 
the Briance catchment (first two letters of the HYDRO code, see Table 1) whose results are commented in more details in 1255 
the text.  

  

Mis en forme : Normal
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Figure 15: Maps of the model ranked best in simulation for the mean of all criteria and for validation periods 1 (left) and 
2 (right), including the multi-model (fixed-weight average approach, FMM) 1260 
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Figure 16: Maps of the model best ranked in forecasting for the mean of all criteria and for validation periods 1 (left) and 
2 (right), for a d+7 forecasting lead time. 


