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------------------------------------------------------------------------------------------------------------------------------------- 
Reply to the Associate Editor 
 
Dear Authors, 
your replies address all the points raised by the t hree referees 5 
(who did indeed an excellent and very constructive job!) and you 
propose to implement modifications that should adeq uately solve 
their main concerns, and therefore I warmly invite you to submit a 
revised version, amending the paper as you already suggest in your 
Replies. 10 
 
AR: We thank the Associate Editor for having accepted to evaluate this paper and for his 
positive feedbacks and useful comments on our manuscript. 
 
AEC: 1) The major issue is certainly that of the fairness o f the 15 
comparison in forecasting mode as far as data assim ilation/updating 
is concerned. As the Authors themselves propose, in  their reply to 
Ref1, it is indeed necessary to replace the current  forecasting 
experiment with one where the actual observed outpu ts are not used 
in any way. 20 
 
AR: We added results when no assimilation/updating method is used as requested. Analysis 
can be found at:  
Lines 423 to 431 and figure 8 and 9 (results when no assimilation/post-processing methods 
have been added). 25 
Lines 496 to 505 and figure 13 
 
AEC: 2) Secondly, the calibration procedures should be bett er 
described, with details in the text, in addition to  Table 3), with 
particular attention paid to the use of different O bjective 30 
Functions, especially in order to guarantee a fairn ess in the models 
comparison: the use of the same Obj Function(s) wou ld be strongly 
preferable. 
 
AR: We agree that using the same objective function would guarantee fairness in the models 35 
comparison. Here, the spirit of the project was to benefit of the experience of each modellers 
concerning his model to provide the best performances. This has been better explain, as 
calibration procedures (optimization method and objective function), in the text at lines 225 to 
235.  
 40 
AEC: 3) Also the proposed deeper analysis/interpretation of  the 
performances (maybe using the integrated criterion you suggest in 
reply to Ref3) between catchments and between model s (and in 
particular putting them in relation to model struct ure), even if 
certainly not easy, would further improve the paper  significance. 45 
 
AR: An integrated criterion has been added in Table 6 and 7, and a short paragraph better 
supports the interpretation of the performances between catchments and models in the text 
at lines 393 to 401 (with figure 6). 
 50 
 
Additional remarks: 
- I agree with you that it is not necessary here to  make new 
analyses with actual forecast ensembles and extendi ng your 
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justification (as already described in your reply t o Ref1, RC1-2) 55 
should be enough. 
 
AR: No tests with actual forecast ensemble were done. We extended the justification by 
adding a short paragraph at lines 292 to 295. 
 60 
- I agree with Ref2 that section 1.3 should be remo ved and replaced 
by a shorter paragraph citing only the papers that are closely 
related to your work (same models or/and same catch ments) and 
relating their results to yours in the final discus sion (when, as 
you propose in the reply to Ref2-RC1, you will refe r to literature 65 
results for corroborating your findings. 
 
AR: Section 1.3 has been removed and a short paragraph citing the works related to the 
models has been kept in section 1.2 (lines 79 to 98). Our results have been replaced in the 
literature when possible (sentence line 584, paragraph lines 637 to 641). 70 
 
- The reply to Ref3-RC2 is incomplete. 
 
AR: We wonder if this comment is not about Ref3-RC3 (instead of RC2). In this case, we 
added additional reply elements (see response to Ref3-RC3). But the case study illustration 75 
has been removed.  
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------------------------------------------------------------------------------------------------------------------------------------- 
Reply to the Anonymous Reviewer #1 
 
We thank Reviewer #1 for his careful reading and evaluation of our manuscript and his detailed 80 
suggestions, which will help improving the manuscript. 
In the following, we explain how we will account for his comments. Each time, the comment is 
repeated and our reply is given.  
 
Reviewer’s comment (RC): The authors present the re sults of a large 85 
experiment on low flow simulation and forecast. The y compare 
different hydrological models (with different compl exities) for 
their performance and try to answer interesting res earch questions. 
The very recent low flow literature is included and  referred in an 
appropriate way. Overall the article is well writte n and quite clear 90 
for the reader although there is room for some impr ovements. 
 
Authors’ reply (AR): We thank Reviewer #1 for his positive feedbacks and useful comments 
on our manuscript. 
 95 
RC: 1) Section 2.3.3: Instead of using real forecast input s, long 
term meteorological archive was used. The justifica tion of long-term 
archieve is somewhat surprising. Was long term data  necessary? It 
would be nice to have a short test period but with real forecast 
meteorological ensemble forcings (e.g. the period o f 2002-2005 as in 100 
Demirel 2013b) to see the effect of input uncertain ty due to the 
different ensembles.  
Could you explain/justify (a bit more) the link bet ween possible 
future conditions based on the historical dataset? 
 105 
AR: We agree with the reviewer that testing the models with actual series of past 
meteorological ensemble forecasts would have been better to account for the actual 
uncertainty linked to meteorological forecasts, especially for short lead times. However, there 
were several reasons for running the models using archives of past observations instead of 
actual ensemble meteorological forecasts in the context of the PREMHYCE project: 110 

• First we wanted to test models on long series to get general results, i.e. including a 
few key drought events that occurred in France in the past decades, that date back to 
the 1970s. Such long archives of past forecasts do not exist to our knowledge.  

• Second, the lead times targeted in the project were up to a few weeks, i.e. much 
longer than the medium-range forecasts of about two weeks that are available today. 115 
Running models up to a few weeks therefore means that medium-range ensemble 
forecasts should have been extended with other information, basically based on 
climatic series. Since the objective of the project was not to build scenarios but rather 
to concentrate on hydrological models, this was not an option we considered. We 
think that using past observed series provides a representative ensemble of likely 120 
conditions for the period of the year, even though the ensemble is probably too large 
for the short lead times. However, since the target is on low flows, the catchment 
response to meteorological inputs is much more smoothed than in high flow 
conditions, which makes this problem probably less essential.  

• Third, the use of past observed series is one option that was chosen to run one of the 125 
tested models in operational conditions, and which provides interesting results. 

For these reasons, it was chosen not to use actual meteorological forecasts.  
It will be difficult to include results with actual forecasts in the article. Indeed, we think that 
building scenarios combining medium-range forecasts and climatic archives to reach the 
targeted lead times may correspond to various options that should be considered. Actually, in 130 
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a separate ongoing work at Irstea (PhD of Louise Crochemore), we are doing tests to 
investigate this issue and we intend to report it shortly.  
So, to answer the reviewer’s comment, we added a short paragraph line 302 to 307. 
 
RC: 2) Section 2.3.3: Using historical SAFRAN data is more  135 
straightforward than downscaling the ECMWF forecast  data. I find it 
an interesting, pragmatic and sound approach. This approach also 
avoids different errors due to downscaling. But rep resentativeness 
of historical data for future scenarios should be b etter described. 
This can be in a subbasin for a short period of dat a, just to see if 140 
the two input dataset (51/39 ECMWF ensembles and 51  SAFRAN ensemble) 
are compatible. 
 
AR: As explained above, this aspect was a bit out of the scope of the PREMHYCE project. 
The preliminary tests we did in a separate work to compare the use of ECMWF forecasts 145 
with the SAFRAN archive option or even combined versions of these two sources of 
information showed that very little information is brought by the medium-range forecast in 
terms of reduction of uncertainty for low-flow forecasts. Our interpretation is that the 
smoothing effect of the catchment is much stronger than in high flow conditions. We plan to 
finalize these analyses and publish this work in due course. We also added a short 150 
paragraph at lines 292 to 295. 
 
RC: 3) Section 4.1 concludes as “a better model in simulat ion does 
not systematically mean a better model in forecasti ng“. The reader 
can be curious why? May be it is the model sophisti cation handling 155 
the input uncertainty (behavior during wetter or dr yer inputs)? Is 
there a similar situation in Demirel 2013b to suppo rt this result? 
For example, in Demirel 2013b while GR4J (NSlow: 0. 65) outperforms 
HBV (NSlow: 0.52) for calibration period, the model  output 
uncertainty of the HBV (the grey range in Fig 3) wa s lower than 160 
GR4J. 
 
AR: The differences in relative performance between simulation and forecasting modes can 
have several origins. We think that one key aspect is the way models assimilate observed 
flows and/or use post-processing techniques in forecasting mode. Tests have been done 165 
without assimilation and/or post-processing techniques. Results are presented in figure 13 
and detailed at lines 496 to 505. 
 
RC: 4) The second part of the sentence “... which strength ens the 
need for an evaluation relative to specific modelin g objectives.“ is 170 
unclear to me. What do you mean? There was a specif ic modelling 
objective in this study i.e. low flows. What else?  
 
AR: This is indeed not fully clear. By specific modeling objectives, we meant simulation or 
forecasting, which are used for different operational applications (e.g. low-flow estimation for 175 
simulation, operational real-time hydrological drought management for forecasting). We 
added the following sentence: 
Line 492: By modelling objective, we mean simulation or forecasting, which are used for different 
operational applications (e.g. low-flow estimation for simulation, operational real-time hydrological 
drought management for forecasting). 180 
 
RC: 5) Another unclear sentence: “These differences in performance 
in simulation and forecasting can be explained by t he specific tools 
used in forecasting, which assimilate streamflow an d/or correct 
model outputs (see Table 3).“ 185 
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What kind of specific tools? 
 
AR: By specific tools, we mean the different methods used by modelers to improve the 
forecasts quality, i.e. streamflow assimilation or post-processing methods. A better model 
performance in forecasting mode can result from these methods instead of the model 190 
himself. As mentioned in our answer to reviewer’s comment #3, we added additional insights 
on this aspect at lines 496 to 505 and lines 423 to 431 (with figure 8 and 9 which have been 
modified):  
 
RC: 6) Another unclear sentence: “However, given the va riety of 195 
assimilation and correction methods applied in this  study, it is 
difficult to conclude on the relative advantages of  each of them and 
more systematic tests would be needed.“ 
..the relative advantages of each of them (of What? ) Please can you 
explain? 200 
 
AR: Linked to comments #3 and 5 above, this has been be clarified at lines 423 to 431 and 
496 to 505. Here, we refer to the assimilation and correction methods and meant that testing 
the reliability of these methods would require systematically applying them to each 
hydrological model and comparing the performance. Here the spirit of the project was to 205 
consider modelling tools, i.e. hydrological models and the associated assimilation and/or 
post-processing methods selected by the modellers. Therefore, we did not distinguish the 
two aspects and did not investigate the sensitivity of results to each of them. This sentence 
has been removed. 
 210 
RC: 7) Section 4.3: variable-weight average forecast mo del seems 
similar to Bayesian model averaging. If so I would recommend the 
authors to include relevant references from bayesia n model averaging 
literature e.g.  
Parrish, M., H. Moradkhani, C.M. DeChant (2012), To ward Reduction of 215 
Model Uncertainty: Integration of Bayesian Model Av eraging and Data 
Assimilation, Water Resources Research,48, W03519, 
doi:10.1029/2011WR011116. 
 
AR: Here, the method’s principle looks similar to the BMA from Parrish et al., but is different 220 
because we do not use the probability density of forecast for each model to combine them. 
As for the other methods, each member of the multi-model corresponds to the weighted 
mean of the forecasts issued by the five models using the same meteorological scenario. 
 
RC: 8) The authors’ effort on presenting the catchment 225 
characteristics to explain the relations to model p erformance is 
very much appreciated although the strength of rela tions was not 
significant to reveal a pattern. 
 
AR: We thank the Reviewer for this comment since the choice to include or not these results 230 
was a bit difficult, given the lack of clear relationship. But we agree that it is something 
important since such relationships could be expected. The sentence has been rephrased: 
Line 611: Tests to relate performance to catchment or streamflow characteristics proved 
unsuccessful, but this is a key aspect to improve low-flow simulation as results depends more on the 
catchments than on models. 235 
 
RC: 9) Page 14004, line 4 “The relative gain compared t o the 
benchmark (daily average streamflow) is very high a nd showed the 
usefulness of hydrological simulation for low flows .“ 
What do you mean by relative gain? 240 
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AR: The term relative may be confusing here. Actually, we meant the performance gain 
relatively to the benchmark. The term relative has been removed and the sentence has been 
rephrased: 
Line 613: Models are much better than the benchmark (daily average streamflow) and showed the 245 
usefulness of hydrological simulation for low flows. 
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-------------------------------------------------------------------------------------------------------------------------------------- 
Reply to the Anonymous Reviewer #2 250 
 
We thank Reviewer #2 for his careful reading and evaluation of our manuscript and his detailed 

suggestions, which will help improving the manuscript. 

In the following, we explain how we will account for his comments. Each time, the comment is 
repeated and our reply is given.  255 
 
Reviewer’s comment (RC):  The manuscript reports on a model 
intercomparison project (MIP) on low flow simulatio n and forecasting 
in a number of rivers in France. It is well written , and methods are 
generally clear, with some exceptions (see below). The study is 260 
certainly relevant and could fill a niche as no suc h experiments 
have yet focused on low flows. Reading a paper with  this topic I 
expected more specific conclusions on what needs to  be done to 
better simulate low flow though – this information,  i.e. the 
relation to of the results back to the actual model  differences with 265 
respect to low flow modelling are still a bit weak.  In order for the 
paper to make a convincing and useful contribution to wider 
hydrological sciences, therefore, it needs to be mo re focused, 
preferably shifted from a wide reporting of the (pr ovocatively put: 
rather boring and not directly transferrable) very detailed results 270 
on all individual models and score measures to e.g.  the 
(commendably: really interesting and useful) questi ons already now 
addressed in the discussion section. The manuscript  would then have 
the potential for a much wider impact. 
 275 
Authors’ reply (AR): We thank Reviewer #2 for this positive general comment and for his 
proposal to extend the discussion section. As mentioned in our answer to Reviewer #1, we 
added the results of model testing in forecasting mode without assimilation/post-processing 
methods, which give useful insights on the added value of this key aspect of the forecasting 
methodology: 280 
Line 423 to 431 and figure 8 and 9 (results when no assimilation/post-processing methods 
have been added) 
Line 496 to 505 and figure 13 
Figure 8 and 9: results when no assimilation/post-processing methods have been added 
Since the article is already quite long and we do not wish to make it much longer, we made 285 
the result section a bit shorter, even though we think that this section is essential and 
represent a valuable output of our work. We removed the case study illustrative applications 
(section 3.3), which are probably less essential to understand results. 
 
Major comments: 290 
 
RC: 1) As said above, the interesting aspects are curre ntly hidden 
in the discussion section. On the other hand a prop er discussion 
relating the results to the literature is missing. The analysis done 
is largely sufficient for example to make these dis cussion questions 295 
into the main objectives of the manuscript and thus  make it visibly 
more useful to a wider community than the French pa rticipants of 
this specific MIP. 
 
AR: To answer the Reviewer’s comment and better stress the key aspects in the discussion, 300 
we propose to (1) better emphasize these questions in the introduction section (sentences 
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line 62, 98, 143), (2) increase the discussion by referring to results already published in the 
literature to explain how our results corroborate or not past findings (sentence line 584, 
paragraph lines 637 to 641) and (3) better stress in the conclusion the key directions we think 
useful to investigate in the future (sentences line 612, lines 619 to 623). 305 
 
 
RC: 2) The frequently repeated conclusion that “model p erformance 
depends more on the catchment than on the choice of  model”, which is 
presented as the main outcome of the results as the y are presented 310 
now, needs to be better supported. The analysis doe sn’t prove this 
consistently e.g. by testing the degree of systemat ic ranking of 
models versus the degree of systematic ranking of c atchments with 
the same approach. 
 315 
AR: This aspect is indeed not clearly shown in the article. We added a short paragraph 
where performances mean variability of models is compared to performances mean 
variability of catchments, at lines 393 to 401 and figure 6.  
 
RC: 3) Related to the previous point is the highlighted  but 320 
unsupported not-found link to catchment characteris tics. For 
example: p13995 lines 18/19 What is the basis of th is statement 
“satisfactory streamflow simulation seems to depend  more on 
catchment characteristics than on the model”? It co ntradicts the 
next sentence and the sentence in the abstract that  “all attempts to 325 
relate model efficiency to catchment characteristic s remained 
inconclusive”. Two of the three predictors tested a re not catchment 
characteristics, but streamflow characteristics. On ly drainage 
density is a catchment characteristic. In any case what are the 
hypotheses that these three should be influencing m odel performance? 330 
If influences are tested statistically there should  be a hypothesis. 
Besides characteristics, also processes not represe nted by the 
models will hopefully influence the performance. Wh at these might be 
could also be the basis for such tests and lead to more 
transferrable results. Here the approach needs to b e clearer and 335 
more focussed. 
 
AR: We agree that this is confusing. To avoid confusion, the term “characteristics” has been 
removed: 
Line 392: Overall, obtaining satisfactory streamflow simulation seems to depend more on 340 
catchment than on the model itself.  
This sentence is supported by the added paragraph line 393 to 401 with figure 6 as 
explained in comments #2.  
The hypotheses that the low-flow indices or drainage density influence model performances 
are given by a short paragraph at lines 402 to 406. 345 
 
RC: 4) One methodological aspect the functioning of whi ch and the 
relevance for the results needs to be better explai ned and 
elucidated are the post-correction methods and the assimilation 
methods. As these are related to model application rather than to 350 
the models themselves they can distort results. It would have been 
useful to test these somehow separately. But at lea st their effect 
needs to be discussed in detail with reference to l iterature (see 
comment on lacking discussion in general). 
 355 
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AR: We agree with the Reviewer that this is a key aspect to interpret results and differences 
between models in forecasting mode. As explained in our answer to Reviewer #1, we added 
results showing model performance in forecasting mode without assimilation/post-
processing, to better emphasize the role of these methods on differences between models 
(lines 423 to 431 with figure 8 and 9, and lines 496 to 505 with figure 13, see reviewer #1, 360 
RC 3, 5 and 6). 
 
RC: 5) The approach of constructing scenarios appears n ot well 
suited to look at the two very severe events in for ecasting mode, as 
this results in most ‘spaghettis’ above the actual low flow. The 365 
value of this sub-analysis should be reconsidered o r it should be 
assessed more in terms of the models themselves. Wh at do those that 
can model these extreme events well have that other s don’t? 
 
We agree that the approach of scenario selection has limitations, as acknowledged in our 370 
answer to Reviewer #1 RC2 (lines 292 to 295). One scenario that could have been added is 
the “no rainfall” scenario, although it is very pessimistic and corresponds to very rare events. 
Actually, the year 1976 in our record is close to this scenario, which is therefore accounted 
for to some extent. The illustration case studies we had introduced on severe low-flow events 
partly intended to illustrate the differences between models in such conditions. But the 375 
Reviewer is right in stressing that the differences in model performance could be related to 
model structures. Although it is difficult to draw conclusions on this aspect without a close 
investigation of model behavior and internal states, which was a bit beyond the objectives of 
the project, we removed the case study part as proposed earlier, which is a less essential 
part to understand results and added a short paragraph to explain limits of using such 380 
scenarios at lines 296 to 301. 
 
Specific and technical comments: 
 
RC: 6) The abbreviations and variable names of the skil l scores are 385 
very variable with some being words, some three or four letter 
abbreviations, some one letter variables. This make s the manuscript 
difficult to read. Perhaps they could be homogenize d in their 
presentation or less could be selected (see comment  above on “too 
detailed”) 390 
 
AR: We homogenized all notations to clarify the text as suggested (see Table 4 and 5 and 
appendix for the names of scores). 
 
RC: 7) Catchment yield (Table 2), Runoff Yield p. 13994 , line 4. 395 
Choose one term. “Runoff Ratio” may be the more com mon term, anyway.  
 
AR: We replaced the term catchment yield in table 2 and the term runoff yield lines 192 by 
runoff ratio as suggested. 
 400 
RC: 8) Last sentence of the abstract was unclear to me without 
having read the paper. 
 
AR: We agree and the sentence has been rephrased/extended to improve clarity (lines 31 to 
34). 405 
 
RC: 9) Last sentence of 1.1 is a bit disconnected and s urprising and 
would require some further information of why this is mentioned at 
all. 
 410 
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AR: We had written this sentence to avoid confusion on the actual focus of the article. But we 
agree that it is not well placed here. We moved it to the method section when discussing lead 
times (lines 307 to 310). 
 
RC: 10) p. 13983 line 8ff This sound a bit complicated.  Why can it 415 
not be called ensemble low flow forecasting (simila r to ensemble 
flood forecasting)? 
 
AR: The sentence has been rephrased as suggested (lines 72 to 78). 
 420 
RC: 11) 1.3 The list of models or forecasting systems i n France is 
of little use to the paper 
 
AR: We think it is useful to explain the context of this research in France and acknowledge 
the previous efforts to develop forecasting tools since these efforts lead to the development 425 
of most of the models that were tested in the project. However, this link may be unclear and 
we removed section 1.3. Presentation of the development of the five models has been 
keeping in section 1.2 (line 79 to 99). 
 
  430 
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-------------------------------------------------------------------------------------------------------------------------------------- 
Reply to the Anonymous Reviewer #3 
 
We thank Reviewer #3 for his careful reading and evaluation of our manuscript and his detailed 

suggestions, which will help improving the manuscript. 435 

In the following, we explain how we will account for his comments. Each time, the comment is 
repeated and our reply is given.  
 
Reviewer’s comment (RC):  The manuscript compares the performances of 
5 different hydrological models used to forecast lo w flows of 21 440 
French watersheds based on a large variety of crite ria. The text is 
well written and structured, clear, referring to th e recent 
literature on low flow forecasting and will certain ly be of interest 
for the readers of HESS. The work could nevertheles s benefit from a 
more in-depth analysis of the obtained low-flow for ecasts and their 445 
limits. The whole approach remains a little too emp irical and 
descriptive at this stage with no clear conclusion or open 
perspectives for future improvements. Important que stions, some 
mentioned in the manuscript, could be discussed in more detail: 
 450 
Authors’ reply (AR): We thank the Reviewer for his constructive comments. We tried to 
account for his suggestions as detailed below. 
 
RC: 1) Most of the tested models have not been specific ally 
developed for the purpose of simulating low-flows. Have their 455 
calibration procedures been adapted to better simul ate the low-flow 
periods? Some information on the calibration proced ures of the 
model, the possible influence on their parameter va lues, recession 
dynamics, would be useful here as well as some sugg estions. 
 460 
AR: The calibration method adopted by each modeller was indeed adapted to better simulate 
low flows: the objective functions used are generally specifically adapted to low-flow 
simulation (e.g. Nash-Sutcliffe Criteria calculated with Q0.2 for PRESAGES, or mean of the 
Kling-Gupta criteria calculated both on Q and 1/Q for Mordor and GR6J). The calibration 
method and criteria are described in Table 3. We better explained these aspects in the text 465 
(short paragraph lines 225 to 235). 
 
RC: 2) Beyond the quantitative criteria, the analysis o f the 
simulated discharge series could be a little more d eveloped. Are for 
instance the forecasts in fig. 11 realistic? Is it really likely 470 
that the discharge increases within a few days to e xceed the Q80 
during a marked low-flow period in mid-August for a  significant 
number of rainfall scenarios as suggested by some t ested models? I 
have some doubts. Most of the tested models seem to o sensitive to 
rainfall during low flows for the Meuse river. 475 
 
AR: The models were tested using an ensemble of likely rainfall scenarios, some of which 
are quite wet, explaining the sudden reaction of models. Actually, the spaghetti 
representation visually emphasizes outlier scenarios, while the 80% confidence intervals 
would be more narrow. What is reassuring on the actual capacity of models to represent 480 
catchment behaviour is that the control run (with the observed meteorological scenario) is 
close to the observed values. We removed the case study illustrative applications (section 
3.3), which are probably less essential to understand results as proposed to reviewer #2. 
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But this aspect has been better explained, in link with the choice of meteorological scenarios 
(lines 296 to 301). 485 
 
RC: 3) It appears that the discharge lies significantly  under the 
average inter-annual discharge already in May for t he 3 selected 
severe low-flow periods and the 2 selected watershe ds in figures 10 
to 12. This leads to a question: what is the relati ve importance of 490 
the initial conditions and of the summer rainfall s cenarios in the 
determination of the discharge evolution during low -flows? Is this 
relative weight the same in the observed and simula ted series? In 
other words, are the models representing the correc t low-flow 
dynamics? This is a tricky question that cannot be answered based on 495 
aggregated criteria only. By the way, the selected NVQ benchmark 
could have been improved: distribution of available  streamflows in 
the other years for the considered day, but selecti ng only the years 
where the baseflow at the date of the forecast lie in similar ranges 
as in the considered year. This would probably be l ess in favor of 500 
the tested models. Could the authors test this? 
 
AR: This is indeed a tricky question, and it is difficult to provide an answer as the relative 
importance of the initial conditions and of rainfall scenarios probably depends on catchment 
reactivity, which differ from a catchment to another in this study. We think that models are 505 
overall able to well reproduce low-flow dynamics in most cases. Moreover, the case study 
illustration part (section 3.3) has been removed as proposed to reviewer #2.  
We thank the Reviewer for this interesting suggestion about the choice of benchmark. We 
agree that using more demanding benchmarks helps better emphasizing the limits of the 
tested models.  We did not investigate the added value of such a benchmark to better 510 
analyse the behaviour of the tested models as model performances will not change, but we 
added a sentence explaining how useful lead-time could be affected by the selected 
benchmark (line 515).  
 
RC: 4) The differences between simulation and forecasti ng 515 
performances deserve some more explanation. 
 
AR: We agree that this is a key aspect that deserves clear explanation. We think that 
performance differences between forecasting and simulation are relying to the use of 
assimilation/post-processing methods.  We better explained the differences by adding short 520 
paragraphs at line 423 to 431 and figure 8 and 9 (results when no assimilation/post-
processing methods have been added), and lines 496 to 505 and figure 13. Moreover, we 
introduced a schematic diagram (figure 2) which explains the difference between simulation 
and forecasting. 
 525 
RC: 5) Beyond the relative performances of the models, could the 
authors comment on the absolute values obtained for  the various 
tested criteria? Are the performances of the models  really 
sufficient for decision making (what decisions) on the tested 
rivers? 530 
 
AR: Given the feedbacks from operational forecasters on the use of such models, we think 
they are indeed useful, even though some of their performance criteria remain modest 
compared to the benchmarks. There is clearly a significant margin of progress. This has 
been better commented conclusion section (lines 619 to 623). 535 
 
RC: 6) The figures and tables could also be improved. I  am not 
convinced that the rankings are the most useful pea ce of 
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information. I would prefer to see the average valu es of the 
criterions in tables 6 and 7. Comments on the ranks  in the text are 540 
sufficient. 
 
AR: The objective of the ranking was to give some index of relative reliability of the tested 
models. However, we acknowledge the limitations of ranks. We provided average 
performances in table 6 and 7, and added an integrated criterion based on the mean of the 545 
non-dimensional criteria we used. 
 
RC: 7) Many figures and legends are too small. Figures 4 and 8 are 
for instance attractive, but difficult to read and interpret. They 
have moreover little added value if compared to tab les 6 and 7 (with 550 
values of criteria) and figures 14 to 16. Fig 10 is  impossible to 
read because the contrast between the different cur ves is not 
sufficiently marked. Colours but also line types sh ould be varied. 
 
AR: We agree that some figures should be improved. 555 
Figure 5, 7, 10, 11 have been modified 
Performances in forecasting mode when no assimilation/post-processing method is used 
have been added in figure 8 and 9. 
Hydrograph have been removed due to the suppression of case study section (see reviewer 
#2 comment).  560 
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Abstract 

Low-flow simulation and forecasting remains a difficult issue for hydrological modellers, and 

intercomparisons can be extremely instructive are needed to assess existing low-flow prediction 

models and to develop more efficient operational tools. This research study presents the results of a 

collaborative experiment conducted to compare low-flow simulation and forecasting models on 21 605 

unregulated catchments in France. Five hydrological models (four lumped storage-type models and 

one distributed physically-oriented model) with different characteristics and conceptualizations were 

applied within following a common evaluation framework and assessed using a common set of 

criteria. Two simple benchmarks describing the average streamflow variability were used to set 

minimum levels of acceptability for model performance in simulation and forecasting modes. Results 610 

showed that, in simulation as well as in forecasting modes, all hydrological models performed almost 

systematically better than the benchmarks. Although no single model outperformed all the others for 

Mis en forme

Automatique,
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all catchments and criteriain all circumstances, a few models appeared more satisfactory than the 

others on average. In simulation mode, all attempts to relate model efficiency to catchment or 

streamflow characteristics remained inconclusive. In forecasting mode, we defined maximum useful 615 

forecasting lead times beyond which the model does not bring contribute useful information 

compared to the benchmark. This maximum useful lead time logically varies between catchments, 

but also depends on the model used. Preliminary attempts to implement simpleSimple multi-model 

approaches that combine the outputs of the five hydrological models were tested to improve 

simulation and forecasting efficiency. We find showed that additional efficiency gainsthe multi-model 620 

approach was more robust and can be expected from such approachesprovide better performance 

than individual models on average. 

Keywords 

Hydrological modelling, Low flow, Long-term forecast, Evaluation criteria, Comparison 
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1 INTRODUCTION 

1.1 Why anticipate low flows? 

In many countries, rivers are the primary supply of water. In France, where this research was 

conductedstudy was carried out, 81% of the 33 km3 of total water withdrawals in 2009 came from 

rivers (CGDD, 2012)(CGDD, 2012). Municipal water supply, irrigation, navigation, hydropower and 630 

nuclear thermal power plant cooling are highly dependent on streamflowsurface water resources 

and can be strongly affected by water shortages in rivers (Bousquet et al., 2003)(Bousquet et al., 

2003). Increasing efforts to maintain minimum environmental flows in rivers make the issue even 

more acute (Saunders and Lewis, 2003; García de Jalón, 2003)(García de Jalón, 2003; Saunders and 

Lewis, 2003).  635 

Early anticipation of low-flow periods is needed to improve water management and take more timely 

measures to mitigate the socio-economic and ecological impacts of water shortages (Chiew and 

McMahon, 2002; Hamlet et al., 2002; Karamouz and Araghinejad, 2008)(Chiew and McMahon, 2002; 

Hamlet et al., 2002; Karamouz and Araghinejad, 2008). Extreme droughts, which occurred in Western 

Europe in 1921 (Duband et al., 2004)(Duband et al., 2004), 1949 (Duband, 2010)(Duband, 2010), 640 

1976 (Gazelle, 1979)(Gazelle, 1979) and more recently in 2003 (Moreau, 2004), underline the need 

for anticipation systems. In addition, the current trend and/or perspective of more severe summer 

low flows in the context of climate change further highlights the need for appropriate management 

tools for low flows  and more recently in 2003 (Moreau, 2004; Vidal et al., 2010b), underline the 

need for anticipation systems. In addition, the current trend and/or perspective of more severe 645 

summer low flows in the context of climate change further highlights the need for appropriate 

management tools for low flows (Feyen and Dankers, 2009; Manoha et al., 2008; Svensson et al., 

2005)(Svensson et al., 2005; Manoha et al., 2008; Feyen and Dankers, 2009). Operational tools to 

forecast river low flows are still quite limited in many basins and much less developed than those 

dedicated to flood forecasting. 650 
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In spite of early attempts to develop models (Singh and Stall, 1971; Riggs, 1953; Popov, 1964)(Riggs, 

1953; Bernier, 1964; Popov, 1964; Singh and Stall, 1971; Larras, 1972; Oberlin and Michel 1978), low-

flow forecasting has received only limited attention in the literature compared to flood forecasting. 

Although quite similar in essence, the two exercises have marked differences, essentially due to the 

different dynamics of floods and low flows. Indeed, low flows are long-lasting phenomena with slow 655 

dynamics, contrary to floods. Besides, expectations are different in terms of forecast lead times, 

which are longer in the case of low flows, typically ranging from a few days to a few weeks. Note that 

we will not investigate here seasonal forecasting with typical forecast horizons of several months 

(Singla et al., 2012) and the possible role played by teleconnections (Chiew and McMahon, 2002; 

Rutten et al., 2008; Céron et al., 2010; Mosley, 2000).Therefore there is a need to assess the ability of 660 

existing forecasting tools to anticipate low-flow situations both in terms of magnitude and lead time. 

1.2 Hydrological models for low-flow forecasting 

Hydrological models are essential toolsSeveral simple modelling approaches have been proposed for 

low-flow forecasting. The first models to be used for low-flow forecasting included, including linear 

ARMA-type models, propagation models and recession curves (Stravs and Brilly, 2007; Rivera-665 

Ramirez et al., 2002; Girard, 1977; Yates and Snyder, 1975)(Lefèvre, 1974; Yates and Snyder, 1975; 

Avalos Lingan, 1976; Guilbot et al., 1976; Girard, 1977; Miquel and Roche, 1985; Rivera-Ramirez et 

al., 2002; Stravs and Brilly, 2007). Campolo et al. (1999)Campolo et al. (1999) also proposed a neural 

network modelling approach.  

However, tThese methods generally make the assumption of no-rainfall future conditions, which is 670 

the most pessimistic case, but often a not entirely realistic one when lead times of a few weeks are 

considered. To make more informed reliable forecasts and extend to longer lead times, it is 

necessary to account for future meteorological conditions. Due to  and rainfall-runoff models are 

thus much relevant for low-flow forecasting. To account for the uncertainty in thesethe future 

conditions (mainly in terms of temperature and precipitation), the typical methodology used to issue 675 
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consists in simulating an ensemble of low-flow forecasts is to feed(similar to ensemble flood 

forecasts), using a hydrological model withfed by an ensemble of meteorological scenarios describing 

the range of likely future conditions, and to. These forecasts are then statistically analyse model 

outputsanalysed for the target time period (see e.g. Demirel et al., 2013b; Perrin et al., 2001; Garçon 

et al., 1999)(see e.g. Garçon et al., 1999; Perrin et al., 2001; Demirel et al., 2013b). Rainfall-runoff 680 

models are therefore relevant for low-flow forecasting..  

1.3 Experience in low-flow forecasting in France 

In France, the first initiatives to develop models for operational low-flow forecasting date back to the 

1960s and 1970s, with the use of simple methods based on the statistical analysis of flow 

characteristics and recession curves (Bernier, 1964; Oberlin and Michel 1978; Larras, 1972). This 685 

coincided with the increase in hydroelectricity production capacities in mountainous regions and the 

development of a dense network of nuclear power plants in lowland areas, which needed reliable 

cooling water. In this perspective, investigations on low flows were made to develop strategies for 

the management of artificial reservoirs for low-flow augmentation (Lefèvre, 1974; Miquel and Roche, 

1985). These authors applied linear models based on upstream information on the Loire and Seine 690 

basins. Avalos Lingan (1976) and Guilbot et al. (1976) compared several simple linear or recession-

curve methods on the Oise basin (a tributary of the Seine) and also mentioned the possible use of 

conceptual rainfall-runoff models to overcome the limitations of the simple regression-based 

methods.  

Among the first attempts to use conceptual models for river low-flow forecasting, CTGREF (1977) 695 

developed a simple storage-type model on the Durance basin to improve irrigation water 

management in low-flow conditions. This model accounted for snow influence on this basin. The 

French Geological Survey (BRGM) first worked on aquifer level forecasts (Thiéry, 1988b, 1982). 

Subsequently, Thiéry (1988a) reported the application of a conceptual model to forecast low flows 

on four catchments with various characteristics in France. These studies yielded the hydrological 700 
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model GARDENIA, which is now used in operational conditions (Thiéry, 2013). Moreover, EDF, the 

French national electricity company, was also active in the development of operational tools and 

they implemented a forecasting system based on a hydrological model (MORDOR) in the 1990s to 

better manage the reservoirs in the Durance River basin (Garçon, 1996; Garçon et al., 1999). This 

system was later extended to other river basins in the mountainous regions where EDF manages 705 

reservoirs, including the Loire River basin (Mathevet et al., 2010). Using similar methods, Perrin et al. 

(2001), Staub (2008) and Pushpalatha (2013) evaluated the performance of the GR4J model (or 

modified version of this model, see Pushpalatha et al., 2011) for low-flow forecasting on a large set 

of French catchments. Lang et al. (2006a, 2006b)  also developed a platform for low-flow analysis and 

forecasting based on a conceptual hydrological model and implemented it on north-eastern France 710 

(Meuse, Moselle and Rhine basins). Last, Soubeyroux et al. (2010) discussed the implementation of 

tools developed by Météo-France for long-term forecasting, especially using the Safran-Isba-Modcou 

modelling suite running throughout France in operational conditions. 

In France, among the first attempts to use conceptual models for low-flow forecasting, CTGREF 

(1977) developed a simple storage-type model on the Durance basin to improve irrigation water 715 

management in low-flow conditions. Then a few hydrological models were developed to better take 

into account low-flow dynamics and are now used in operational conditions. The French Geological 

Survey (BRGM) first worked on aquifer level forecasts (Thiéry, 1982, 1988b). Subsequently, Thiéry 

(1988a) reported the application of a conceptual model to forecast low flows on four catchments 

with various characteristics in France. These studies yielded the hydrological model GARDENIA, which 720 

is now used in operational conditions (Thiéry, 2013). EDF, the French national electricity company, 

was also active in the development of operational tools and they implemented a forecasting system 

based on a hydrological model (MORDOR) in the 1990s to better manage the reservoirs in the 

Durance River basin (Garçon, 1996; Garçon et al., 1999). This system was later extended to other 

river basins in the mountainous regions where EDF manages reservoirs, including the Loire River 725 

basin (Mathevet et al., 2010). Using similar methods, Perrin et al. (2001), Staub (2008) and 
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Pushpalatha (2013) evaluated the performance of the GR4J model (or modified version of this model, 

see Pushpalatha et al., 2011) for low-flow forecasting on a large set of French catchments. Lang et al. 

(2006a; 2006b) also developed a platform for low-flow analysis and forecasting based on a 

conceptual hydrological model and implemented it in north-eastern France (Meuse, Moselle and 730 

Rhine basins). Last, Soubeyroux et al. (2010) discussed the implementation of tools developed by 

Météo-France for long-term forecasting, especially using the Safran-Isba-Modcou modelling suite 

running throughout France in operational conditions. One objective of this research will be to 

evaluate the strengths and weaknesses of these existing models. 

1.41.3 Limits of existing tools 735 

Low-flow forecasting with hydrological models is actually a difficult task since processes conditioning 

low flows may depend on the region, season or lead time. For example, Demirel et al. 

(2013a)Demirel et al. (2013a) investigated the role of five indicators (precipitation, potential 

evapotranspiration, groundwater storage, snow storage and lake storage) on the Rhine basin low 

flows and found that their relative magnitude varies with the forecast lead time. Singla et al. 740 

(2012)Singla et al. (2012) also showed that the predictability of flows in the spring season strongly 

depends on snow cover in the mountainous regions. The relation between surface water and 

groundwater in low-flow conditions was also investigated by many authors, showing the need to 

account for this in low-flow forecasting models (Tajjar, 1993; Pointet et al., 2003; Rassam, 

2011)(Tajjar, 1993; Pointet et al., 2003; Rassam, 2011). Clearly, the applicability of hydrological 745 

models for low-flow forecasting depends on the way these various processes are accounted for in 

the model. For example, the work of Staudinger et al. (2011)Staudinger et al. (2011) illustrates the 

sensitivity of summer low-flow simulation to the formulation of the model structure. A number of 

techniques can be used in conjunction with a hydrological model to improve its forecasting efficiency 

and decrease modelling uncertainty. Assimilation of observed data (e.g. observed streamflow or soil 750 

moisture) available at the time the forecast is issued may be one option. Using post-processing 

techniques to correct the bias or the spread of model outputs may also prove useful (see e.g. the 
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discussion by Demirel et al., 2013b)(see e.g. the discussion by Demirel et al., 2013b)., as well as multi-

model approaches (Georgakakos et al., 2004; Velazquez et al., 2011).  

Our literature review showed that there are very few studies comparing the performance of existing 755 

hydrological models so that is difficult to know their respective strengths and weaknesses in a low-

flow forecasting perspective. A noteworthy exception is the study by Demirel et al. (2013b)Demirel et 

al. (2013b), who compared the HBV and GR4J models and found that the former provides better 

forecasts than the latter. These authors also indicate that parameter estimation is a major source of 

uncertainty for medium-range (10 days ahead) low-flow forecasts. 760 

1.51.4 Scope of the paper 

Given this lack of common evaluation of low-flow forecasting models and the need to provide end-

users with advanced forecasting tools, the French national agency for water and aquatic 

environments (ONEMA), and the Ministry for Ecology (MEDDE) jointly decided in 2010 to launched in 

2010 a comparative study for evaluating existing operational (or pre-operational) low-flow 765 

forecasting models on basins within covering a variety of French hydroclimatic contexts. The project, 

called PREMHYCE, was designed as an open experiment: each participant was invited to follow a 

single testing protocol to run his own model on a common database set up for the project. Since the 

experience of the modeller may play a role in the quality of the model’s implementation, this placed 

the models in the best conditions for obtaining optimal results. The test set intentionally included a 770 

wide variety of conditions to draw more general conclusions (Andréassian et al., 2009; Gupta et al., 

2013)(Andréassian et al., 2009; Gupta et al., 2013). Although the project was restricted to the French 

context and limited to French participants for practical reasons, the results are likely to be of wider 

interest for the community of researchers and managers working on these issues. The project mainly 

intended to identify the respective advantages of the models on the selected catchments for low-775 

flow simulation and forecasting objectives. Here, following the definitions given by Beven and Young 

(2013)Beven and Young (2013), simulation is understood as the quantitative reproduction of the 
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catchment behaviour, given defined inputs but without reference to any observed outputs, whereas 

forecasting is the quantitative reproduction of the catchment behaviour ahead of time, but given 

observations of the inputs, state variables (where applicable), and outputs up to the present time (the 780 

forecasting starting point). As forecast inputs are likely the most important source of uncertainties in 

streamflow forecasting, it seems important to first analyse hydrological models in simulation mode 

to better understand their performance differences. 

The aim of this paper is to present the main outcomes of the PREMHYCE project. In the next section, 

we present the catchments and data used for this studyresearch, the tested models and an overview 785 

of the testing protocol, including evaluation criteria. Section 3 details the main results obtained on 

the catchment set in simulation and forecasting modes and analyses the differences between 

models. Section 4 opens the discussion on three questions, namely: (1) Within a set of models, is a 

better low-flow simulation model also a better forecasting model? (2) Which maximum lead time can 

be expected in low-flow forecasting? (3) Can models be efficiently combined in a multi-model 790 

approach? The last section provides a discussion of the main lessons and perspectives of this work. 

2 MATERIAL AND METHODS 

The approach followed in the PREMHYCE project was largely inspired by modelling experiments 

carried out in the past few years, in which participants had been invited to run their models on a 

common data set. WMO (1975, 1986, 1992)(1975, 1986, 1992) was among the first to organize such 795 

experiments to evaluate model running for simulation, snowmelt or flood forecasting purposes. 

More recently, the DMIP experiments (Smith et al., 2012; Smith et al., 2004)(Smith et al., 2004; Smith 

et al., 2012) carried out by the NOAA in the USA to evaluate distributed simulation models provide 

excellent examples of testing protocols. However, to our knowledge, none of these experiments 

were designed to evaluate models for a low-flow forecasting objective. Therefore, we built our own 800 

common testing protocol to evaluate the relative efficiency of several models currently used in 

France in operational or pre-operational conditions. 
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2.1 Catchment set and data 

2.1.1 Selection of catchments 

A set of 21 catchments distributed spread over continental France was built to serve as the test bed. 805 

The catchments were selected based on several criteria. We intended to have (1) a wide diversity of 

physical and climate conditions representative of the diversity of conditions found in France; (2) 

sufficiently long time series from gauging stations that include a variety of low-flow events, with data 

deemed to be good quality by the operational hydrometric services and with human influences 

considered negligible in low-flow conditions; (3) a sufficient number of stations to reach general 810 

conclusions, but not too many to keep tests feasible for all participants. Fourteen of these 

catchments are part of the national low-flow reference network of near-natural catchments 

established by Giuntoli et al. (2013). 

The catchment set is well distributed over France (see Figure 1), with hydrological regimes ranging 

from oceanic to Mediterranean. Table 1 lists the set of 21 catchments, showing catchment sizes 815 

ranging from 379 km² to 4316 km², median elevations ranging from 70 m to 1020 m and streamflow 

data covering periods ranging from 36 to 97 years. 

2.1.2 Data 

Daily streamflow records were retrieved from the French HYDRO database 

(www.hydro.eaufrance.fr). Daily precipitation, temperature and potential evapotranspiration (PE) 820 

data originate from the gridded (8 × 8 -km) SAFRAN climate reanalysis developed by Météo-France 

(Vidal et al., 2010).(Vidal et al., 2010a). PE was computed using the Penman-Monteith formula 

(Monteith, 1965; Penman, 1948).(Penman, 1948; Monteith, 1965). The climatic series are 

continuously available on the 1959–2010 period over France. To treat all catchments as uniformly as 

possible in the tests, the common 1974–2009 period was selected for model testing. This period 825 

includes severe low-flow conditions (e.g. in summers 1976, 1989, 2003 and 2005). 



 

24 
 

Table 2 displays the ranges of climate characteristics of the catchment set. Climate conditions in 

France are quite variable in terms of mean annual precipitation, PE and streamflow. Variations in 

rainfall, PE and streamflow can also be significant between years, as shown by interannual variability, 

especially for streamflow. On average, 36% of rainfall becomes runoff for the catchment set, but this 830 

ratio varies yield can vary between 21% and 76%. 

2.1.3 Characteristics of low flows 

In France, low flows mostly occur in summer and at the beginning of autumn (except in snow-

influenced conditions). However, the duration and intensity of low flows as well as the beginning and 

ending dates of low-flow periods vary substantially between years and catchments.  835 

For the operational purposes, low-flow periods are often defined using a streamflow threshold, 

under which specific management measures must be taken to face water shortages. In this study, it 

was difficult to choose operational low-flow thresholds, because they do not represent the same 

level of severity in all catchments since managers did not use the same methods to define these 

thresholds in all catchments. So weWe thus considered low flows as periods when observed 840 

streamflow falls below the threshold defined by the 80th percentiles of the flow duration curve, 

noted Q80, i.e. the flow exceeded 80% of the time. This was chosen as a compromise between 

focusing on specific low-flow periods and having a sufficient number of low-flow situations to obtain 

robust and significant model evaluations.This was chosen as a compromise between focusing on 

specific low-flow periods and having a sufficient number of low-flow situations to obtain robust and 845 

significant model evaluations (see also Giuntoli et al., 2013, for a discussion on low-flow thresholds). 

Table 2 illustrates the range of low-flow thresholds and low-flow conditions on the catchment set, 

using two descriptors, namely the base-flow index (BFI) and the Q90/Q50 ratio (where Q90 and Q50 are 

the 90th and 50th percentiles of the flow duration curve, respectively). BFI represents the part of base 

flow in the total flow volume (Lvovitch, 1972)(Lvovitch, 1972). Low BFI values indicate a catchment 850 

with a flashy flow regime and limited groundwater contribution, while high values are an indication 
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of large storage capacity and groundwater-fed rivers (Gustard and Demuth, 2009)(Gustard and 

Demuth, 2009). The catchment set examined provides a wide range of BFI values, ranging from 11.7 

to 93.5%. The Q90/Q50 ratio represents the difference between low flows and medium flows, thus 

indicating the severity of low flows. It shows a similar variability, with values between 7% and 67% 855 

and half of the catchments set between 18% and 38%. 

2.2 Models 

Table 3 shows the five models used in this study. Four of them (GARD, GR6J, MORD and PRES) are 

lumped storage-type models, with various conceptualizations of the rainfall-runoff transformation. 

The fifth model (SIM) is distributed and more physically-oriented. These models have all already been 860 

applied in various conditions in France. SIM is implemented throughout France, and the other 

models were tested in various basins or regions for different purposes (e.g. low-flow or flood 

simulation and forecasting). The simulation of low flows in these models is governed by different 

stores and functions. In forecasting mode, the models use assimilation schemes and/or statistical 

correction procedures (see Table 3). 865 

The models include different numbers of free parameters (Table 3). Each participant was free to 

choose the optimization method best suited to parameter estimation. Note that SIM was the only 

model whereParticipant were free to choose the optimization method best suited to parameter 

estimation, but all opted for automatic calibration, using either global (SCE-UA method for MORD, 

multistart simplex method for PRES) or local (gradient-type “step-by-step” method for GR6J, 870 

Rosenbrock method for GARD) optimisation algorithms (Table 3). The objective functions were 

generally chosen to put more weight on low flows (e.g. Nash-Sutcliffe (NS) criterion calculated on 

transformed streamflow (Q0.2) for PRES, Root Mean Square Error (RMSE) calculated with ln(Q) for 

GARD, or mean of Kling-Gupta efficiency (KGE) criteria calculated on Q and 1/Q for MORD and GR6J, 

see Table 3). Even though this variety of choices may make the comparison of results less 875 

straightforward, this was a mean to account for the variety of modelling approaches and for the 
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experience of model developers. Note that SIM was the only model for which no calibration against 

observed flow data at the catchment outlet was performed. The spatially distributed parameters 

used in this model were estimated regionally. This should be kept in mind when interpreting the 

results. Moreover, this version of SIM includes a detailed simulation of the aquifers only on a few 880 

parts of France (Seine and Rhône catchments). This may impact the efficiency of the model outside 

these zones. Moreover, the larger computing requirements of SIM only allowed a limited number of 

tests (see section 2.3.3). 

The models were fed with the same meteorological inputs derived from SAFRAN. For the lumped 

models, the SAFRAN variables were first aggregated at the catchment scale by simple averaging. 885 

2.3 Testing protocol and evaluation methodology 

A common testing and evaluation framework was set up to make the results comparable. It was 

jointly elaborated by all project participants in the first phase of the project, so that most of the 

models’ requirements and constraints could be accounted for.  

2.3.1 Testing scheme 890 

Model evaluation was based on a classical split-sample test approach (Klemeš, 1986)(Klemeš, 1986). 

Streamflow records were divided into two approximately equal sub-periods. Each period was 

alternately used for calibration and validation, i.e. calibration on period 1 (noted C1) with validation 

on period 2 (V2), and then calibration on period 2 (C2) with validation on period 1 (V1). Thus the 

models could be evaluated in validation on all available data. The 1974–1991 and 1992–2009 periods 895 

based on calendar years were chosen for periods 1 and 2, respectively. A 3-year warm-up period was 

used at the beginning of each test period (1971–1973 and 1989–1991 for periods 1 and 2, 

respectively) to initialize the internal states of the models.  

2.3.2 Differences between forecast and simulation tests 

As underlined above, the simulation and forecasting exercises differ, which has clear implications in 900 

the way models were tested here. (see illustration in Figure 2). 
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In simulation mode, models are expected to simulate streamflow at time step t, knowing observed 

meteorological inputs until this time step. Observed streamflow values remain unknown at all time 

steps. The simulation mode shows the models’ ability to reproduce the catchments’ hydrological 

behaviour without uncertainties due to unknown future conditions (input scenarios) and without the 905 

information contributed by external data (typically observed flows) that could be assimilated to 

adjust the model. 

In forecasting mode, models are expected to forecast streamflow from time steps t+1 to t+L (with L 

the lead time), knowing both observed meteorological inputs and streamflow until time step t and 

making assumptions (i.e. choosing scenarios) for the future meteorological inputs from t+1 to t+L. 910 

Streamflow data can be used within an assimilation scheme and/or a statistical correction procedure. 

Models were actually tested in hindcasting mode, i.e. retrospectively running the models at each 

time step of the available test periods and making forecasts as if they were used in real time.  

2.3.3 Choice of scenarios in forecasting mode 

An ensemble of scenarios of future meteorological inputs must be chosen for the forecasting mode. 915 

Usually, real-time ensemble forecasts from meteorological models are used to forecast streamflow. 

Here, since no long-term archive of actual forecasts was available over the test period, the 

meteorological archive was used as possible scenarios for P, PE and T. The following procedure was 

applied. For a given catchment, let us consider that N years of meteorological inputs are available. 

One wishes to make a forecast on a calendar day t of a year Y within the test period, i.e. to forecast 920 

flows between calendar days t+1 and t+L. The observed meteorological data available between days 

t+1 and t+L in the years 1,…,Y−1,Y+1,…,N (i.e. N−1 scenarios) were used as input scenarios to the 

model, considering that they are likely meteorological conditions for this period of the year. Here, 51 

years (1959–2009) of daily climate data from the SAFRAN reanalysis were available, thus 50 scenarios 

(for rainfall, temperature and PE) could be used each time. We assumed that this number of 925 

scenarios was sufficient for a good representation of the variability of possible future climate 
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conditions. Obviously, such scenarios are likely to be less accurate than actual ensemble forecasts 

from meteorological models, at least for short to medium lead times. The observed meteorological 

inputs of year Y were used as a control forecast, to estimate forecasting efficiency in the idealized 

case of perfect foreknowledge of future meteorological conditions.  930 

Following this procedure, models were run to issue an ensemble of 50 streamflow forecasts for each 

day t, over a time window of 90 days (from t+1 to t+90). Due to computing time constraints, SIM only 

provided forecasts every 5 days, from dt+1 to dt+30 (and dt+90 for each first day of the month), over 

a period limited to May 1st to October 26th (the low-flow period) and on the second validation period 

only (1992–2009).  935 

In this study, we assumed that this number of scenarios (50) was sufficient for a good representation 

of the variability of possible future climate conditions. Obviously, historical scenarios are likely to be 

less accurate than actual ensemble forecasts from meteorological models, at least for short to 

medium lead times, since the spread of these scenarios may be too large for short lead-times. 

However, the catchment response to meteorological inputs is much more smoothed in low-flow than 940 

in high-flow conditions, which makes the catchment less sensitive to the spread of the ensemble. 

This approach may also find some limitations for forecasting the most extreme low-flow events, since 

most scenarios from the historical archive are likely to be wetter than the conditions actually 

observed for these extreme events. This can result in an overestimation of low flows forecasted by 

the models. In operational conditions, adding a “no-rainfall” scenario to the historical ones, i.e. 945 

running the model in pure recession, may be a way to overcome this problem and have an estimate 

of the “worst” low-flow forecast. 

Since long archives of ensemble meteorological forecasts from an ensemble prediction system (EPS) 

were not available for this study, using long archives of observed meteorological data gave the 

advantage to get general results and also included severe drought conditions observed in the past 950 

decades. Moreover, the targeted lead time in the study is up to a few weeks, i.e. longer than 
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medium-range forecasts of about two weeks which are currently available. Extending medium-range 

forecasts with other information (i.e. climatic series) was out of the scope of this study. Note that we 

did not investigate here seasonal forecasting, with typical forecast horizons of several months (Singla 

et al., 2012) and the possible role played by teleconnections (Mosley, 2000; Chiew and McMahon, 955 

2002; Rutten et al., 2008; Céron et al., 2010).  

2.3.4 Benchmarks and evaluation criteria 

Although models provided streamflow simulations or forecasts at a daily time step, we chose to 

evaluate models on the streamflow averaged over a 3-day sliding window. This aimed at smoothing 

the low-flow series and avoiding putting too much emphasis on isolated streamflow variations 960 

(Henny, 2010)(Henny, 2010). Note that this target variable is quite commonly used in France for 

regulation purposes. 

Since the use of benchmarks is important to evaluate the relative advantages of model predictions 

(Perrin et al., 2006; Seibert, 2001)(Seibert, 2001; Perrin et al., 2006), results in simulation mode were 

compared to the daily average streamflow curve (noted DAQ). This benchmark was advocated by 965 

Martinec and Rango (1989)Martinec and Rango (1989). In forecasting mode, the probabilistic 

forecasts were compared to a benchmark describing the streamflow natural variability (noted NVQ). 

NVQ is defined for a given calendar day d of year Y as the distribution of available streamflows in the 

other years for this day. Obviously, more demanding benchmarks could have been chosen to raise 

the level of expected performance. For example, in forecasting mode, one may use a constrained 970 

version of NVQ by selecting the years for which flow at the day of forecast lie in similar ranges as the 

observed flow for the current year. Here NVQ benchmark has been chosen to keep a more uniform 

evaluation among years. Note that the choice of the benchmark may change interpretations when 

comparing the models with the benchmark (see e.g. section 4.2) but it will not impact the evaluation 

of their respective merits when placed in a comparative framework.  975 
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We used two sets of evaluation criteria for model evaluation in simulation (see list in Table 4) and 1000 

forecasting (see Table 5) modes. They were chosen to assess various modelling skills expected in low-

flow conditions for different objectives, after discussions with stakeholders. The detailed 

mathematical formulation of the criteria is given in the Appendix.  

In forecasting mode, the models were expected to produce forecasts over a future time window of 

90 days. Therefore, model forecasting performance could be investigated for all lead times between 1005 

1 and 90 days. To simplify the presentation of results, we choose to focus on two specific lead times: 

a short one (7 days) and a longer one (30 days). This choice was made in agreement with 

stakeholders since those are the typical horizons useful for water managers. The longer lead time 

was limited to 30 days given the computation constraints of the SIM model. 

In some cases, the mathematical form of the criteria was changed to have all of them vary within the 1010 

interval ]-∞;1] (1 being the optimum value) to ease interpretation.  

Note that the forecasting results presented hereafter were limited in order to adapt to the 

availability of streamflow forecasts from SIM.  

2.3.5 Presentation of results 

Since tThe project produced a very large number of results, and it is obviously not possible to detail 1015 

them all here. Instead, we chose to present summary evaluations using tables and graphical 

representations. Radial plots, as exemplified in Figure 3, were used to present mean model 

performance on the set of 21 catchments for all selected criteria. Visually, the larger the polygon 

linking the performance values, the better the model. On these graphs, criteria focusing on similar 

aspects were grouped together. We also used performance maps to investigate the possible regional 1020 

trend in results. These maps were drawn for three criteria only (C2MiQC2Mi, CSI and Vdef in 

simulation; RMSEut, BSutvigBSvig and Vdef in forecasting). They were found to be complementary, 

thus providing an overall picture of model performance in low-flow conditions. 
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Last, two catchments were selected to illustrate the results using hydrographs: the Meuse River at St-

Mihiel (B2220010) and the Orge River at Morsang-sur-Orge (H4252010). These two catchments are 

quite different in terms of mean annual precipitation (937 mm and 656 mm, respectively) and mean 1050 

runoff yield (41% and 21%) and in terms of low-flow conditions described by BFI values (25.5% and 

65.7%) and the Q90/Q50 ratio (0.21 and 0.57). 

3 RESULTS 

3.1 Simulation mode 

Figure 4 summarizes the mean performance obtained by the five models tested in validation on the 1055 

21 catchments and the two test periods. Quite similar results can be observed for four lumped 

models on average. The performance of the SIM model was lower for a few criteria (C2MiQ, 

C2MQC2Mi, C2M, POD, FAR and CSI). However, no model seemed able to outperform all the other 

models for all criteria. 

Performance on some criteria can vary substantially between catchments. Figure 5 presents the 1060 

maps of mean performance on the two validation periods for three criteria (C2MiQC2Mi, Vdef and 

CSI). A few catchments (e.g. the Meuse at St-Mihiel) are properly simulated by more or less all 

models: however, performance can be much more variable between models on other catchments: 

e.g. the PRES model performs well on the Gapeau at Hyères for the C2MiQC2Mi and Vdef criteria, 

while the performance of the other models is significantly lower. The relative advantages of one 1065 

model may also depend on the criteria selected. For the Gapeau at Hyères, PRES performs better 

than GARD in terms of C2MiQC2Mi, while the reverse is true for Vdef. Although it achieves lower 

performance than the other models on average, SIM can prove better on some catchments, e.g. the 

Orge at Morsang-sur-Orge for the C2MiQC2Mi criterion. Interestingly, most models tend to 

underestimate the volume deficit (Vdef < 1), i.e. they tend to overestimate low flows below the Q80 1070 

threshold. GR6J is the only model which tends to underestimate low flows. The models clearly 
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outperform the benchmark (DAQ) for all criteria. Note that the DAQ model is by definition perfect for 

the DatSt and DatEn criteria (see the Appendix), so comparison with the other models on these 

criteria is pointless. 

ForTable 6 presents the results based on the mean performance in validation on the 21 catchments. 1075 

An integrated criterion provides an overall evaluationoverview of the models, we ranked them by 

decreasing performance for eachoverall performances. It is based on the transformed values of the 

11 criteria and computed their mean ranks for the nine criteria directly related to low flows (i.e. not 

considering C2MQC2M and KGE) between 0 and KGEQ). Table 6 presents the results based on the 

mean performance in validation on the 21 catchments. 1 (where 1 is the best performance), and 1080 

represents the blue area of Figure 4. It can be observed that GARD performs best for four criteria, 

PRES for four,and MORD for twothree and GR6J with one. PRES appearsperforms best the most 

consistently ranked among the best models on averagethe integrated criterion, followed by GARD, 

GR6J, GARD and MORD, which even if these four models are quite similar, and then SIM. DAQ 

performs poorly for most criteria. Mean performances and performance variability (standard 1085 

deviation) on all catchments for GARD, GR6J, PRES and MORD are quite similar: the models provide 

good performance (e.g. at least 0.79 for KGE, and 0.7 for POD, which indicates an event under the 

Q80 threshold well simulated seven times out of ten). SIM performs less satisfactorily than the four 

other models for 9 out of 11 criteria, but all the models greatly improve performances relative to the 

benchmark NVQ (except SIM for false alarm rate FAR). Interestingly, PRES performs a bit less well 1090 

than the three other conceptual models on the two criteria focusing on high flows (C2MQC2M and 

KGEQKGE): the way PRES was implemented within this study makes it more low-flow-oriented than 

the other models.  

These results indicate that differences are quite limited between the lumped conceptual models for 

low-flow simulations. A more detailed analysis (not shown here) indicated that performance can vary 1095 

considerably between validation periods. Overall, obtaining satisfactory streamflow simulation 
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seems to depend more on catchment characteristics than on the model itself. Wethan on the model 

itself. Figure 6 presents the performance variability between models against the performance 

variability between catchments for the 11 selected criteria. For each criterion, standard deviation of 

performances for a model is calculated for all catchments, the average standard deviation for the five 1125 

models represents the variability of performances between models. For each criterion, standard 

deviation of performances for a catchment is calculated for all models, the average standard 

deviation for the 21 catchments represents the variability of performances between catchments. The 

graph shows that performance varies more between catchments than between models for all criteria 

(except for C2Mi), which supports that streamflow simulation depends more on catchments than on 1130 

models. 

Given this result, we analysed the relation between model performance and low-flow indices (BFI or 

Q90/Q50 ratio) or catchment characteristic (drainage density here), but it did not show significant 

trends, as illustrated in as they are closely related to low-flow dynamic and could explain in which 

case models show more difficulties to simulate low flows: BFI values indicate the level of 1135 

groundwater contribution, the Q90/Q50 ratio represents the severity of low flows and drainage 

density informs on soil permeability. Unfortunately, as illustrated in Figure 7., the relation did not 

show significant trends. 

3.2 Forecasting mode 

Figure 8 and Figure 9 present the radial plots of all criteria for each model, for 7-day and 30-day lead 1140 

times, respectively. Here, red lines represent the radial plot in forecasting mode when no observed 

streamflow is used (i.e. without using assimilation or output correction methods). The performance 

of the benchmark model, NVQ, was also included. Here, the differences between models seem more 

significant than in simulation mode for a few criteria (e.g. containing ratio, (Cont_ratio), sharpness, 

(Sharp), Vdef or low-flow duration), (LFD)), especially for the 7-day lead time. However, it is still 1145 

difficult to identify a single best model. We can only confirm that SIM performs a bit less well, even if 
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the differences with the other models appear to be more limited for the 30-day lead time. One of the 

expected results is the loss of performance with increasing lead time for all models and all 

catchments. This loss is significant for all criteria, except for the containing ratio, which is better: 

members of the ensemble forecast are more dispersed. Containing ratio (Cont_ratio) and sharpness 1175 

(Sharp) are two complementary scores that should be evaluated together: a model should first be as 

reliable as possible and then provide as narrow a forecast interval as possible (excessively spaced 

forecasts do not contribute information). Performance even becomes close to the benchmark 

performance NVQ, but still remains better. The comparison with performance when no observed 

streamflow is used shows that assimilation or output correction methods improve performances for 1180 

all the models (average improvement of 14.2% for GARD, 10.7% for GR6J, 12.0% for MORD, 11.3% 

for PRES and 7.3% for SIM for the 7-day lead-time). Assimilation method of GARD (reservoir 

updating) seems to be the most efficient. However PRES assimilation method (similar to GARD) 

provides similar improvement compared to GR6J and MORD, which use a correction method based 

on error correction at previous time-step. The quantile/quantile post-correction method seems less 1185 

efficient than streamflow assimilation methods, as performances are not improved for a few criteria 

(RMSEut, POD, CSI and sharpness (Sharp)). 

As in simulation mode, model performance based on several criteria strongly varies among the 

catchments. Figure 10 and Figure 11 show the performance maps on validation period 2 for RMSEut 

(normalized by mean flow under the Q80 threshold), BSutvigBSvig and Vdef, and for each model on the 1190 

21 catchments, for forecasting 7-day (Figure 10) and 30-day (Figure 11) lead times, respectively. We 

reach the same conclusions as in simulation mode: even if for some catchments the models 

satisfactorily forecast low flows (e.g. the Andelle at Vascoeuil and the Oise at Sempigny in RMSEut, 

whatever the forecast lead time), performance is quite variable in other catchments (e.g. the Petite 

Creuse at Fresselines in RMSEut is properly modelled by GARD but less satisfactorily by the other 1195 

models). Performance also depends on the criteria considered: for the Orge at Morsang-sur-Orge, 
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model performance is quite good in RMSEut for the two forecasting lead times but decreases 

significantly in BSutvigBSvig or Vdef, compared to the other catchments. 

The fact that models remain better than the benchmark model indicates that they contribute 

information, even for a long forecasting lead time. An analysis on the two validation periods has 1225 

shown that performance can vary greatly between periods. Overall, it appears that a satisfactory 

streamflow forecast depends more on the catchments and their specificities than on the model, as 

already noted in the case of simulation results. The analyses to link model performance to low-flow 

indices (BFI or Q90/Q50 ratio) did not show significant trends, as had already be shown in simulation 

mode in Figure 7. 1230 

Table 7 presents the rankresults of the models on each criterion for the two selected lead times, 

based on the mean performance and standard deviation on the 21 catchments for validation period 

2, and the mean rank on all criteria. For the short lead time (7 days), GARD and GR6J perform best on 

four criteria and MORD and PRES on one. GR6J is and GARD perform best the most consistently 

ranked among the best models on average, followed as shown by GARDthe integrated criterion. Then 1235 

come PRES and MORD which are quite similar, and , followed by SIM. The benchmark remains the 

poorest model, which shows that all models contribute information compared to this reference. The 

ranking is a bit different for the longer lead time (30 days). It changes for some criteria, which 

modifies the mean ranks: GARD appears to be the most highly ranked model, followed by GR6J, PRES 

and MORD, which are similar. SIM does not seem to contribute information on average compared to 1240 

the benchmark for this lead time. Interestingly, SIM shows a lower performance loss than the four 

other models on the integrated criterion (only 10% against 21 to 23% for the other models). We 

observe that models tend to underestimate low-flow characteristics, as shown by Vdef and LFD 

values: while the models are well balanced in simulation (Vdef and LFD around 1), all models obtain 

Vdef and LFD values lower than 1, indicating that they forecast lower deficit of volume and low-flow 1245 

duration, i.e. they overestimate low flows. This may be partly related to the use of historical input 
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scenarios, since only a few of them allow representing the climatic situations that result in severe 

drought situation. The use of other scenarios based on meteorological forecast may help limiting this 

problem, but further test would be needed to check this point.  

3.3 Illustration of two case studies 1250 

Here, we present the results in simulation and forecasting modes for two catchments: the Meuse 

River at St-Mihiel, where the models perform well, and the Orge River at Morsang-sur-Orge, where 

they perform less satisfactorily.  

Figure 10 shows the observed and simulated hydrographs in the logarithmic scale for two years 

where severe low-flow events occurred: 1976 and 1996. For the Meuse at St-Mihiel, GARD, GR6J, 1255 

MORD and PRES simulated the low flows well, even if they overestimate streamflows from October 

to December in 1976 and in August in 1996. SIM does not adequately reproduce the low-flow 

dynamic with quite erratic streamflow simulations. For the Orge River at Morsang-sur-Orge, the 

models tend to substantially overestimate low flows for the two years, except SIM, which accurately 

simulates the low-flow event in 1996. Interestingly, this catchment benefits from a detailed 1260 

simulation of the aquifer within SIM while most others do not. 

Figure 11 and Figure 12 present the observed and forecasted hydrographs in the logarithmic scale for 

the Meuse River at St-Mihiel in 2003 and the Orge River at-Morsang-sur-Orge in 1996 (the most 

severe low-flow events for validation period 2). Forecast ensembles over the next 15 days are 

represented for a forecast produced every 20 days, together with the control run in red (i.e. 1265 

streamflow forecast obtained with a posteriori observed P, PE and T as the future scenario). For the 

Meuse River, GARD and GR6J tend to be less dispersed than the other models. The control run shows 

that SIM is overly reactive to precipitation, while PRES tends to underestimate streamflow. 

Therefore, the ensemble forecasted by PRES surrounds the observation well, while MORD and SIM 

tend to overestimate streamflow when lead time increases. In these cases of severe low flows, the 1270 

added value of models compared to the benchmark is clear: given its definition, the benchmark 
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consistently overestimates severe low flows, whereas models issue forecast ensembles that are 

better centred on observation and less dispersed.  

For the Orge River, the low-flow event is poorly forecasted by all models, with a general tendency to 

overestimation. This is confirmed by the control run, especially for GARD, GR6J and MORD. SIM and 1275 

PRES surround the observation better and forecast low flows better despite a few missed forecasts 

for PRES (July and August). In this case and for other low-flow events for the Orge River, the added 

value of hydrological models compared to the benchmark is limited. 

This overestimation is more important for all models when the lead time increases. This is due to the 

attenuation of the effect of post-correction or streamflow assimilation methods. These methods 1280 

should be improved to better take into account this attenuation with increasing lead-time, especially 

in the case of low-flow forecasting where long forecast lead-time is expected.  

4 DISCUSSION 

This intercomparison experiment shows that hydrological models can provide useful information for 

low-flow simulation and forecasting. Here, we wished to further discuss three main issues raised in 1285 

the introduction, relative to (1) the relation between simulation and forecasting performance, (2) the 

lead times achievable on the test catchments for low-flow forecasting and (3) whether models can 

collaborate to enhance overall performance. In each case, a few additional tests/analyses are 

presented. Here our intention is solely to provide complementary insights on these results to open 

clear perspectives based on this work, rather than propose new methodologies. 1290 

4.1 Within a set of models, is a better low-flow simulation model also a 

better forecasting model? 

Section 0 showed the results of the comparison between hydrological models in simulation and 

forecasting modes. The mean model ranks show several differences between simulation (Table 6) 

and forecasting (Table 7) modes. This is further illustrated in Figure 12, which presents the mean rank 1295 
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of each model in forecasting (for the 7-day lead time) for the models ranked in 1st, 2nd,.., 5th position 

in simulation for the 21 catchments. The hierarchy of the models between simulation and forecasting 

differs: the best model in simulation (mean rank in simulation equal to 1) is also the best model in 

forecasting for only nine catchments. Overall for all the ranks, the hierarchy between models is the 

same in only 33% of cases. Therefore, a better model in simulation does not systematically mean a 1300 

better model in forecasting, which strengthens the need for an evaluation relative to specific 

modeling objectives.modelling objectives. By modelling objective, we mean simulation or 

forecasting, which are used for different operational applications (e.g. low-flow estimation for 

simulation, operational real-time hydrological drought management for forecasting). These 

differences in performance in simulation and forecasting can be explained by the specific tools used 1305 

in forecasting, which assimilate  (streamflow assimilation and/or correct model outputs (output 

correction methods, see Table 3). However, given the variety of assimilation and correction methods 

applied in this study, it is difficult to conclude on the relative advantages of each of them and more 

systematic tests would be needed. ). Figure 13 presents, for each model, the performance difference 

in CSI for each catchment between forecast when observed streamflow assimilation or post-1310 

correction is done (FAP) or not (For), versus the performance difference between simulation (Sim) 

and forecast when assimilation or post-correction is done (FAP). Positive values for the CSI difference 

between FAP and For indicate that the model provides better performances when using assimilation 

or post-correction method in forecasting. Positive values for the CSI difference between FAP and Sim 

indicates that the model provides better performances when the model is used in forecasting mode. 1315 

We observe that CSI differences between FAP and For, and FAP and Sim are well correlated: 

performance differences between simulation and forecasting are closely related to the use of 

assimilation or post-correction methods. 
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4.2 Which maximum useful lead time can be expected in low-flow 

forecasting? 1345 

The results obtained in forecasting mode were presented for two specific lead times (7 and 30 days). 

As expected, model performance decreased when lead time increased, which means that the added 

value of the information provided by the models compared to the benchmark decreases. Therefore, 

there should be a maximum lead time beyond which the model cannot provide useful information 

compared to the benchmark. This lead time will be called “useful forecasting lead time” (noted UFL) 1350 

hereafter, as proposed by Staub (2008)Staub (2008). For each catchment and each model, the UFL 

can be determined by comparing the performance of the model tested and the benchmark (NVQ) 

when lead time increases. Note that the definition of UFL strongly depends of the benchmark used: a 

more demanding benchmark would tend to yield lower UFL values. Here UFL was arbitrarily chosen 

as the lead time beyond which model performance is not at least 20% better than benchmark 1355 

performance. We considered that beyond this limit, the operational added value would be too 

littlesmall. Obviously, UFL depends on the criteria chosen and benchmark. The variability of UFL 

values when considering a given criteria will be an indication of model capacity to represent the 

corresponding low-flow characteristics, and the more demanding the benchmark, the shorter the 

UFL. 1360 

Figure 14 presents maps of mean UFL values obtained using three efficiency criteria (RMSEut, CSI and 

Vdef) for the 21 catchments. The symbol indicates the model which provides the best UFL. Note that 

SIM was not considered here because it was run to issue 90-day forecasts on too few time steps to 

allow robust conclusions. The results logically depend on the catchments. For some of them, it is not 

possible to usefully anticipate low flows beyond 1 week, while others seem to have longer inertia and 1365 

hydrological memory, with forecasts still dependent on initial conditions after several weeks. 

However, we could not link UFL to low-flow characteristics (BFI or Q90/Q50 ratio). It was also noted 

that UFL estimates vary between models and/or test periods (see Figure 8).. For example, for the 
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Briance River at Condat-sur-Vienne, the best mean UFL is provided by PRES and reaches 60 days for 

validation period 2 versus 21 days for period 1 provided by MORD. The variability in model efficiency 1370 

may partly explain these results. 

The UFL estimation is very useful operationally when adapted to specific criteria/objectives defined 

by the water manager. The level of improvement over the benchmark, here set to 20%, could be 

raised if one wishes to reach a higher level of reliability or could even replace an absolute criterion 

under specific circumstances. 1375 

4.3 Could models be efficiently combined in a multi-model approach? 

Since it was not possible to identify a single model which would outperform the others for all 

catchments, validation periods or evaluation criteria, we attempted to investigate the possible 

complementarity between models via model output combinations in simulation and forecasting 

modes. Many multi-model approaches exist to combine the outputs of several models (see e.g. 1380 

Abrahart and See, 2002; Palmer et al., 2004; Velazquez et al., 2011)Palmer et al., 2004; Velazquez et 

al., 2011). Here we chose to focus on three simple methods:  

1. Average multi-model forecast (noted AMM): This is the simplest method and consists in 

averaging the outputs of the five hydrological models at each time step. In ensemble 

forecasting mode, each multi-model member corresponds to the mean of the forecasts 1385 

issued by the models using the same scenario. This multi-model approach is applicable in 

simulation and forecasting modes. 

2. Fixed-weight average multi-model forecast (noted FMM): This consists in averaging model 

outputs using weights based on model performance. The model weight Wm given to each 

model is: 1390 

�� �	 ����	
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 Eq. (1) 

where m is the hydrological model, M the number of hydrological models, Crit the value of 

the criterion on the calibration period. Better performing models obtain higher weights. In 
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ensemble forecasting mode, each member of the multi-model corresponds to the weighted 

mean of the forecasts issued by the five models using the same scenario. This multi-model 1395 

approach is applicable in simulation and forecasting modes. 

3. Variable-weight average forecast (noted VMM): The third method tested is inspired from 

Loumagne et al. (1995)Loumagne et al. (1995) and is applicable in forecasting mode only. It is 

equivalent to the previous method, but here weights are time-dependent and are based on 

the mean of model errors on the last p time steps. This error is calculated using the control 1400 

run. For each time step, the weight given to a model is: 

��,� �
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  Eq. (2)	

where m is the hydrological model, M the number of hydrological models, d the day when 

the forecast is issued, Qform,s the streamflow forecasted by model m at date s−1 for s, Qobss 

the observed streamflow at date s, p the length of the time window over which previous 1405 

forecasting errors are considered. This approach could not be applied to the SIM model given 

limited availability of streamflow forecasts. 

Figure 15 presents the maps of the best ranked models in simulation (mean of the models’ ranks by 

criteria for each catchment) for each evaluation period. The comparison between AMM and FMM 

(not detailed here) showed very similar results for each catchment and test period and we kept only 1410 

the FMM approach in the rest of the analysis, since it is slightly better. The multi-model presented in 

Figure 16Figure 15 is FMM, weighted using the POD criteria. It provides better results than individual 

models on 13 and 12 catchments out of 21 for validation periods 1 and 2, respectively. For a few 

catchments, the multi-model performs best on one validation period but not on the other. 

Moreover, since a model that performs best on the calibration period compared to the other models 1415 

does not systematically perform best on the validation period, the weight given to this model in the 

FMM approach may not be optimal. The performance of the multi-model seems not to be impacted 

by this robustness effect. The multi-model does not drastically change performance compared to the 
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single best models: if all models perform poorly, the multi-model does not produce satisfactory 

results either, which is not surprising. Interestingly however, the multi-model seems more robust 1420 

than the individual models in the sense that it limits severe model failures, since it allows 

compensations between poor and good models. FMM provides overall better performance than the 

other models (integrated criterion of 0.769 against 0.747 for the best model in simulation). Here, we 

reach the same conclusion as Georgakakos et al. (2004) where using several distributed models with 

a variety of structures benefits to mean flow simulation compared to a best single distributed one. 1425 

Combining several lumped and distributed models overall improve low-flow simulation here. 

In forecasting mode, SIM was excluded from the three combination methods since it was not 

possible to use it in the VMM option. For VMM, the mean error to weight the model was calculated 

over the six last time steps, which appeared to be a good compromise between performance and 

length of this backtracking period. Here, as in simulation, the results (not detailed here) are similar 1430 

between the three options, but VMM is slightly better. Therefore, we kept only the VMM model in 

the rest of the analysis. Figure 16 presents the maps of the best ranked model in forecasting for a 7-

day lead time (mean of the ranks of models by criteria for each catchment) for each evaluation 

period. The multi-model provides the best results only on six and five catchments out of 21 for 

validation periods 1 and 2, respectively. GARD and GR6J are also often the best models. The limited 1435 

efficiency of the multi-model may be due to the overly crude combination approach: even if it proved 

useful in a flood forecasting context in the study reported by Loumagne et al. (1995)Loumagne et al. 

(1995), other approaches accounting better for the slow dynamics of low flows may be more efficient 

and should be further investigated. 

5 CONCLUSION AND PERSPECTIVES 1440 

In this paper, we presented a comparison between five hydrological models for low-flow simulation 

and forecasting on 21 French catchments representing a variety of physical and hydro-climatic 

characteristics. A general evaluation of models was made using several criteria which represent 
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different qualities expected of models. Moreover, the use of benchmarks contributed comparative 

information on the actual operational utility of these models. 1445 

In simulation mode, the comparison showed that calibrated models perform better (GARD, MORD, 

GR6J and PRES). SIM, the only uncalibrated model included in the comparison, nonetheless performs 

as well as the other models on a few catchments. It was difficult to define a clear hierarchy between 

these calibrated models, since the results vary according to the selected criteria, the catchment 

considered or even the test period. Tests to relate performance to catchment or streamflow 1450 

characteristics proved unsuccessful. The relative gain compared to, but this is a key aspect to 

improve low-flow simulation as results depends more on the catchments than on models. Models 

are much better than the benchmark (daily average streamflow) is very high and showed the 

usefulness of hydrological simulation for low flows. 

In forecasting mode, we reached the same conclusions, with better results for calibrated models. 1455 

Here, establishing a hierarchy between the models is also difficult, since performance varies 

according to the criteria, catchment, validation period and lead time. The results are quite good for 

short lead times, especially compared to the benchmark. As can be expected, this gain decreases as 

lead time increases.,and performance remain modest, especially for longer lead times: there is an 

important need for further investigation to improve low-flow forecasting. It is difficult to conclude on 1460 

the actual usefulness of such models for operational management, as performance can vary much 

between catchments. But forecast might be improved by using alternative input scenarios (e.g. 

actual meteorological ensemble). Although models perform differently from one period to another, 

overall they tend to present the same ability to forecast low flows on a catchment. The rainfall 

scenarios (historical archive) used here to test models were quite crude and it is likely that using the 1465 

ensemble forecast from meteorological models would improve results, at least for short lead times, 

but this would require further investigation. 
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In forecasting, we presented a simple approach to determine the maximum lead time beyond which 

models do not add significant information compared to the benchmark. This maximum lead time was 

variable because models behaved differently with increasing lead time and the results differed 1470 

according to the criteria and the validation period.  

Combining the single models into a multi-model was successful even with simple combination 

methods, but the performance of the multi-model strongly depends on the performance of 

individual models: where all the models present difficulties in simulating or forecasting low flows, a 

model combination cannot compensate for model errors. The main advantage in building a multi-1475 

model lies in its robustness: where only one model presents difficulties on a catchment, a multi-

model corrects this weakness. Here, the five tested models are runoff-rainfall models. Demirel and 

Booij (2009) compared three low-flow forecast models (a multivariate ARMAX model, a linear 

regression model and an Artificial Neural Network (ANN) model) for the Meuse River. Results are 

difficult to compare but comparing ANN and hydrological rainfall-runoff models should be interesting 1480 

in low-flow forecasting. 

As far as perspectives are concerned, we would like to mention (i) that tests were made on two other 

catchments in a very different climatic context on Reunion Island (Indian Ocean). They were not 

detailed here for the sake of brevity but yielded similar conclusions. (ii) This study used catchments 

where human influence was considered negligible, but the use of catchments where anthropogenic 1485 

pressure on water resources is significant constitutes the second part of the PREMHYCE project, and 

the results will be reported in due course.  
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APPENDIX 

Formulation of the numerical criteria selected for simulation evaluation 1920 

● KGE 

This criterion was proposed by Gupta et al. (2009)Gupta et al. (2009) as a modification of the Nash-

Sutcliffe (1970) efficiency index: 

222 )1()1()1(1 −+−+−−= βαrKGE 222 )1()1()1(1 −+−+−−= βαrKGE
 Eq. (A1) 

with r the correlation coefficient between observed and simulated flows, the ratio of simulated and 

observed flow standard deviations and β the model bias. 1925 

● C2MQC2M 

C2MQC2M is a bounded version of the Nash-Sutcliffe efficiency index calculated on streamflow Q 

(NSEQ), as proposed by Mathevet et al. (2006)Mathevet et al. (2006)  

Q

Q

NSE

NSE
MQC

−
=

2
2

Q

Q

NSE

NSE
MC

−
=

2
2  Eq. (A2) 

● C2MiQC2Mi 

This is similar to the previous criterion, but NSE is calculated on inverse flows to more 

strongly emphasize low flows, as proposed by Pushpalatha et al. (2012)Pushpalatha et al. 

(2012) 

 

● RMSEut 1930 

RMSEut is the root mean square error for flows under the low-flow threshold, normalized by the mean 

observed flow. 
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  Eq. (A3) 

where Qobsi is the observed streamflow for day i, Qsimi the simulated streamflow for day i, and n the 

number of time steps on the validation period where Qobsi is less than the Q80 threshold. 

● Vdef  

Vdef is the ratio of simulated and observed flow deficits under the low-flow threshold: 
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 Eq. (A4) 

● LFD 1950 

This is the ratio of simulated and observed low-flow durations: 

obs

sim

Duration

Duration
LFD =

obs

sim

Duration

Duration
LFD =  Eq. (A5) 

where Durationsim is the number of days where the Qsimi is less than the Q80 threshold on the 

validation period and Durationobs is the number of days where the Qobsi is less than the Q80 threshold 

on the validation period. 

● DatSt and DatEn 1955 

This is a comparison of observed and simulated dates when low flows start (St) or end (En).  

obsDatesimDateDat __ −= obsDatesimDateDat __ −=  Eq. (A6) 

where Date_obs is the Julian day of daily average streamflow when 10% (resp. 90%) of the observed 

volume deficit is exceeded for DatSt (resp. DatEn). The threshold for the observed volume deficit 
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calculation is the observed Q80 calculated of the daily average streamflow. Date_sim is the Julian day 1975 

of the daily average streamflow where 10% (resp. 90%) of the simulated volume deficit is exceeded for 

DatSt (resp. DatEn). The threshold for the simulated volume deficit calculation is the simulated Q80 

calculated of the daily average streamflow. 

● False alarm ratio (FAR), probability of detection (POD) and critical success index (CSI) 

These are criteria based on the contingency table for low flows considering the Q80 threshold (Schäfer, 1980 

1990): 

Vdef, LFD, and DatSt and DatEn have been adapted from the concept of "centre of mass" proposed by 

Stewart et al. (2005).  

● False alarm ratio (FAR), probability of detection (POD) and critical success index (CSI) 

These are criteria based on the contingency table for low flows considering the Q80 threshold (Schäfer, 1985 

1990): 

ba

b
FAR

+
=

ba

b
FAR

+
=

 
Eq. (A7) 

ca

a
POD

+
=

ca

a
POD

+
=

 
Eq. (A8) 

cba

a
CSI

++
=

cba

a
CSI

++
=

 
Eq. (A9) 

where a is the number of hits, b the number of false alarms, c the number of correct misses and d 

the number of correct rejects. 

Numerical criteria for forecasting evaluation 

● RMSEut, Vdef, LFD 1990 
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These criteria have the same definition as in the simulation but are calculated using the mean of the 2010 

ensemble forecasts for the horizon considered. 

● SharpnessSharp 

This criterion measures the width of the ensemble forecast (Franz and Hogue, 2011)(Franz and 

Hogue, 2011):  

∑
=

−=
n

i
ii QQ

n
Sharp

1

1090
1

∑
=

−=
n

i
ii QQ

n
Sharp

1

1090
1

 
Eq. (A10) 

where n is the number of time steps on the validation period where the Qobsi is less than the Q80 2015 

threshold, and Q90 (resp. Q10) the 90% (resp. 10%) percentile of the distribution of forecasts for day i. 

● ReliabilityCont_ratio 

The containing ratio measures how often the observation lies within the ensemble forecast (Franz 

and Hogue, 2011)(Franz and Hogue, 2011):  

N

n
ratioCont =_

N

n
ratioCont =_  

Eq. (A11) 

where n is the number of observed streamflows in the 80% forecasted confidence interval when the 2020 

Qobsi is less than the Q80 threshold, and N the number of time steps where the Qobsi is less than the 

Q80 threshold. 

● FAR, POD and CSI 

The same definition as in the simulation is used. Here an event is forecasted if more than 50% of 

members are below the low-flow threshold. 2025 

● BS 

The Brier Score (BS) (Brier, 1950) compared the observed and forecast probabilities relative to a 

threshold: 
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Eq. (A12) 

where oi is the observation probability, yi the forecast probability. An event is observed/forecasted if 

the observed/forecasted streamflow is less than the vigilance threshold (Q80 for BSutvigBSvig) or the 

crisis threshold (Q95 thresholdfor BScri). n is the number of time steps where Qobsi is less than the Q50 2040 

threshold (BSutvigBSvig) or the Q80 threshold (BSutcriBScri). 

● DRPS  

The Discrete Ranked Probability Score (DRPS) (Toth et al., 2003)(Toth et al., 2003): 
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Eq. (A13) 

where Nthreshold is the number of thresholds chosen (ten percentiles here, k=Q80, Q82, Q84, … , Q96, 

Q98). 2045 
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Table 1: Summary of the 21 selected catchments’ characteristics. 

N° 
HYDRO 

Code 
River at Station Area (km²) 

Median 

elevation (m) 

Starting date 

for flow series 

Ending 

date for 

flow series 

Flow 

availability 

(years) 

1 A1080330 Ill at Didenheim 657 390 01/11/1973 02/03/2010 36 
2 B2220010 Meuse at Saint-Mihiel 2542 350 01/07/1968 03/01/2010 42 
3 H2342020 Serein at Chablis 1121 309 01/08/1954 03/03/2010 56 
4 H4252010 Orge at Morsang-sur-Orge 927 133 01/10/1967 07/03/2010 43 
5 H7401010 Oise at Sempigny 4316 137 01/01/1955 02/03/2010 55 
6 H8212010 Andelle at Vascoeuil 379 159 01/01/1973 27/02/2010 36 
7 I5221010 Vire at Saint-Lô 868 159 01/01/1971 03/02/2010 39 
8 J7483010 Seiche at Bruz 811 70 01/12/1967 11/03/2010 42 
9 K1321810 Arroux at Etang-sur-Arroux 1798 431 01/11/1971 27/03/2010 39 

10 K6402520 Sauldres at Salbris 1200 220 01/01/1971 28/03/2010 39 
11 L0563010 Briance at Condat-sur-Vienne 597 386 01/01/1966 28/03/2010 44 
12 L4411710 Petite Creuse at Fresselines 850 393 01/01/1958 28/03/2010 52 
13 M0243010 Orne Saosnoise at Montbizot 510 103 01/12/1967 04/03/2010 43 
14 M7112410 Sèvre Nantaise at Tiffauges 817 170 01/11/1967 04/03/2010 43 
15 O0592510 Salat at Roquefort-sur-Garonne 1570 986 01/01/1913 22/03/2010 97 
16 O3121010 Tarn at Montbrun 588 1020 01/01/1961 31/12/2009 38 
17 Q5501010 Gave de Pau at Berenx 2575 916 01/07/1923 28/03/2010 87 
18 S2242510 Eyre at Salle 1650 78 01/01/1967 19/03/2010 43 
19 U4644010 Azergues at Lozanne 798 517 01/01/1965 28/03/2010 43 
20 V4264010 Drôme at Saillans 936 936 01/01/1910 28/03/2010 46 
21 Y4624010 Gapeau at Hyères 517 316 01/02/1961 01/03/2010 49 
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Table 2: Percentiles of the distribution of certain climate and hydrological catchment characteristics of the 21 selected 

catchments. Interannual variability values correspond to coefficients of variation calculated on the 1974–2009 period. 2050 
Q50, Q80 and Q90 are respectively the 50

th
, 80

th
 and 90

th
 exceedance percentiles of the flow duration curve 

 Min 25% Median 75% Max 

Mean annual precipitation PA (mm) 656 842 931 1039 1400 

Interannual variability of PA 0.13 0.15 0.17 0.17 0.26 

Mean annual potential evapotranspiration PEA (mm) 606 683 698 717 1031 

Interannual variability of PEA 0.05 0.06 0.08 0.09 0.11 

Mean annual streamflow QA (mm/year) 135 255 325 437 1033 

Interannual variability of QA 0.23 0.28 0.33 0.38 0.62 

Catchment yieldRunoff ratio QA/PA (%) 21 31 37 41 76 

Base-flow index (BFI) (%) 11.7 35 45.3 51.1 93.5 

Q90*/Q50* (%) 7 18 28 38 67 

Q80* (mm/day) 0.03 0.13 0.19 0.31 1.21 
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Table 3: Overview of the characteristics of the five models tested 

Short name used 
here 

GARD GR6J MORD PRES SIM 

Full name GARDENIA GR6J MORDOR PRESAGES SIM 

Reference on 
model structure 

Thiéry (2013) Pushpalatha (2011, 
2013) 

Garçon (1999) ; 
Andreassian et al. 
(2006) Garçon et al. 
(1999) ; Andréassian 
et al. (2006)  

Lang et al. (2006a , 
2006b) 

 

Type Conceptual Conceptual Conceptual Conceptual Physically-based 

Spatial 
distribution 

Semi-distributed Lumped Lumped Lumped Distributed 

Number of free-
parameters 

4 to 9 (+2 to 4 for 
snowmelt) 

6 (+2 : snow 
routine) 

11 (+4: snow routine) 7 (+3 : snow routine) 0 

Calibration 
method 

Automatic 
calibration on 
observed 
streamflow and 
groundwater 
levels: Rosenbrock 
method 

Automatic 
calibration: local 
research method 
(step by step) 

Automatic 
calibration: Shuffled 
Complex Evolution 
Method and Pareto 
Front Exploitation 

Automatic 
calibration: simplex 
method with 
multistart 

No calibration 

Calibration 
criteria 

User selected : 

Nash, 
Nash(Log(flow)) 

Nash(sqrt(flow)) 

+ weighting on 
biasRMSE with 
ln(Q) 

(KGEQ + KGEiQKGE 
+ KGEi)/2 

(KGEQ + KGEiQKGE + 
KGEi)/2 

Nash–Sutcliffe with 
Q0.2 

 

Post-correction 
method 
(simulation) 

Not used Not used Not used Empirical method 
(Berthier, 
2005)Empirical 
method (Berthier, 
2005) 

Quantile/quantile 
post-treatment 

Assimilation 
method (forecast) 

When a flow 
discrepancy 
appears, the 
model tanks are 
updated 
proportionally to 
their variance 

Correction based 
on error at first 
time step before 
forecast, with 
decreasing effect 
when lead time 
increases 

Correction based on 
errors at previous 
time steps before 
forecast, with 
decreasing effect 
when lead time 
increases. No update 
of model stores. 

Update of gravitary 
routing store 

No assimilation 
method but a 
quantile/quantile 
post-treatment  

Structure 
overview: 
production 

Actual 
evapotranspiration 
is computed using 
a non-linear soil 
capacity. GW 
exchange is a 
proportion of the 
GW flow 

A rainfall 
interception by PE, 
a non-linear SMA 
store, an 
intercatchment 
GW exchange 
function 

A rainfall excess/soil 
moisture accounting 
store ;  
an evaporating 
reservoir ; an 
intermediate store 
and a deep store 

A soil store, rainfall 
interception by PE 

 

Structure 
overview: transfer 

A non lineau tank 
distributes the 
effective rainfall 
into runoff and 
GW recharge. 

The aquifer is 
represented by a 
linear tank. 

Two unit 
hydrograph, two 
parallel nonlinear 
routing stores 

Direct, indirect and 
baseflow components 
are routed using a 
unit hydrograph 
(Weibull law) 

Two unit 
hydrographs, 
two linear routing 
stores : one for 
streamflow recession, 
one for interflow 

 

References on 
simulation 
applications in 
France 

800 to 1000 rivers 
simulated in 
France 

 Garavaglia (2011) ; 
Paquet et al. 
(2013)Garavaglia 
(2011);  
Paquet et al. (2013) 

Lang et al. (2006a , 
2006b) 

Vidal et al. (2010b) 
Habets et al. (2008) 

References on 
low-flow 
forecasting 

 Pushpalatha (2011, 
2013) 

Mathevet et al. 
(2010) 

Lang et al. (2006a , 
2006b) 

Céron et al. (2010) 
Soubeyroux et al. 
(2010) 
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applications in 
France 

Singla et al. (2012) 
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Table 4: List of efficiency criteria used for model evaluation in simulation mode 

Name Description 

Quadratic criteria 

KGEQKGE Kling-Gupta Efficiency 

C2MQC2M Nash-Sutcliffe Efficiency bounded in ]-1 ; 1] 

Low-flow quadratic criteria 

C2MiQC2Mi Nash-Sutcliffe Efficiency calculated with 1/Q and bounded in ]-1 ; 1] 

RMSEut Root mean square error calculated when observed streamflow is less than Q80 threshold 

Volume based criteria 

Vdef Ratio of observed and simulated cumulative annual volume deficits 

Temporal criteria 

LFD Ratio of observed and simulated cumulative low-flow duration 

DatSt Relative difference between observed and simulated start of annual low-flow period 

DatEn Relative difference between observed and simulated end of annual low-flow period 

Threshold criteria 

POD Probability of detection, based on contingency table 

FAR False alarm rate, based on contingency table 

CSI Critical success index, based on contingency table 
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Table 5: List of efficiency criteria used for model evaluation in forecasting mode 

Name Description 

Low-flow quadratic criteria 

RMSEut Root mean square error calculated when observed streamflow is less than Q80 threshold 

Volume based criteria 

Vdef Ratio of observed and simulated cumulative annual volume deficits 

Temporal criteria 

LFD Ratio of observed and simulated cumulative low-flow duration 

Sharpness/reliability 

SharpnessSharp Mean width of interval defined by 10% and 90% percentiles of forecast distribution when observed streamflow 

is less than Q80 threshold 

ReliabilityCont_ratio Percentage of observation in the 80% forecasted confidence interval when observed streamflow is less than Q80 

threshold (80% of observed streamflow should be included in the interval) 

Threshold criteria 

POD Probability of detection, based on contingency table 

FAR False alarm rate, based on contingency table 

CSI Critical success index, based on contingency table 

BSutvig, BSutcriBSvig, 

BScri 

Brier Score with vigilance threshold (Q80) or crisis threshold (Q95) 

DRPS Discrete Ranked Probability Score 
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Table 6: Models ranked based onModels’ mean performanceperformances (standard deviation) in validation on the 21 

catchments. The mean rankintegrated criterion is calculated with the nine low-flow criteria (i.e. not considering C2MQ 

and KGEQ).) and on transformed values of criteria. Bold values indicate the best model. 2070 

 
Model’s  mean performances (standard deviation) 

Criterion GARD GR6J MORD PRES SIM DAQ 

C2M 0.73 (0.09) 0.69 (0.10) 0.69 (0.11) 0.67 (0.11) 0.53 (0.13) 0.13 (0.05) 

KGE 0.81 (0.09) 0.83 (0.09) 0.86 (0.06) 0.79 (0.10) 0.80 (0.07) 0.27 (0.11) 

C2Mi 0.57 (0.12) 0.53 (0.14) 0.48 (0.22) 0.56 (0.13) 0.23 (0.19) 0.11 (0.06) 

RMSEut 0.52 (0.29) 0.61 (0.52) 0.81 (0.80) 0.55 (0.35) 1.23 (1.06) 3.48 (2.66) 

FAR 0.21 (0.12) 0.25 (0.13) 0.24 (0.12) 0.22 (0.12) 0.37 (0.12) 0.34 (0.12) 

CSI 0.58 (0.15) 0.60 (0.11) 0.58 (0.14) 0.61 (0.11) 0.42 (0.10) 0.18 (0.12) 

POD 0.70 (0.19) 0.78 (0.14) 0.72 (0.17) 0.75 (0.14) 0.57 (0.13) 0.21 (0.14) 

Vdef 0.89 (0.50) 1.21 (0.64) 0.99 (0.44) 0.95 (0.46) 0.90 (0.38) 0.13 (0.14) 

LFD 0.92 (0.33) 1.10 (0.35) 0.98 (0.26) 0.99 (0.29) 0.92 (0.24) 0.32 (0.21) 

DatSt 4.67 (5.64) -0.55 (8.83) 0.14 (9.88) 2.43 (5.71) -13.31 (12.07) NA (7.20) 

DatEn 1.57 (4.00) -1.93 (6.38) 1.31 (15.31) 0.40 (4.08) -7.83 (8.73) NA (6.47) 

Integrated 
criterion (rank) 

0.734 (3) 0.735 (2) 0.721 (4) 0.747 (1) 0.617 (5) 0.422 (6) 

 

 Model’s rank 

Criterion GARD GR6J MORD PRES SIM DAQ 

C2MQ 1 2 3 4 5 6 

KGEQ 3 2 1 5 4 6 

C2MiQ 1 3 4 2 5 6 

RMSEut 1 3 4 2 5 6 

FAR 1 4 3 2 6 5 

CSI 4 2 3 1 5 6 

POD 4 1 3 2 5 6 

Vdef 5 3 2 1 4 6 

LFD 5 4 1 3 2 6 

Date Start 2 3 4 1 5 NA 

Date End 2 3 4 1 5 NA 

Mean rank 2.8 2.9 3.1 1.7 4.7 5.9 
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Table 7: Models ranked based onModels’ mean performanceperformances (standard deviation) on the 21 catchments for 

validation period 2 and for the two forecasting lead times selected. 

 
Model’s mean performances  

(standard deviation) 

 
7-day lead time 30-day lead time 

Criterion GARD GR6J MORD PRES SIM NVQ GARD GR6J MORD PRES SIM NVQ 

RMSEut 
0.72 1.22 1.16 0.99 1.25 2.33 1.88 2.81 2.16 2.02 2.06 2.57 

(0.43) (1.13) (0.91) (0.52) (0.83) (1.54) (1.17) (2.13) (1.59) (1.15) (1.41) (1.75) 

DRPS 
0.13 0.12 0.13 0.12 0.18 0.19 0.18 0.18 0.19 0.17 0.20 0.21 

(0.07) (0.05) (0.05) (0.04) (0.03) (0.02) (0.06) (0.03) (0.04) (0.03) (0.03) (0.02) 

POD 
0.82 0.85 0.87 0.8 0.55 0.58 0.65 0.68 0.72 0.59 0.52 0.55 

(0.16) (0.06) (0.08) (0.11) (0.21) (0.16) (0.17) (0.09) (0.10) (0.18) (0.17) (0.16) 

FAR 
0.23 0.22 0.27 0.22 0.32 0.38 0.31 0.32 0.35 0.29 0.36 0.38 

(0.08) (0.06) (0.07) (0.06) (0.11) (0.11) (0.08) (0.08) (0.08) (0.07) (0.11) (0.11) 

CSI 
0.67 0.69 0.66 0.65 0.42 0.41 0.51 0.52 0.52 0.47 0.38 0.40 

(0.14) (0.08) (0.08) (0.10) (0.14) (0.12) (0.13) (0.07) (0.08) (0.14) (0.10) (0.12) 

BSvig 
0.09 0.08 0.1 0.09 0.13 0.13 0.12 0.12 0.14 0.12 0.14 0.14 

(0.05) (0.04) (0.03) (0.03) (0.03) (0.02) (0.04) (0.03) (0.03) (0.03) (0.03) (0.02) 

BScri 
0.06 0.06 0.07 0.07 0.09 0.09 0.08 0.08 0.10 0.09 0.10 0.09 

(0.03) (0.03) (0.03) (0.03) (0.03) (0.02) (0.03) (0.03) (0.04) (0.03) (0.03) (0.03) 

Cont_ratio 
0.34 0.45 0.52 0.64 0.68 0.84 0.59 0.65 0.63 0.82 0.69 0.84 

(0.13) (0.20) (0.20) (0.08) (0.18) (0.07) (0.16) (0.16) (0.20) (0.08) (0.19) (0.08) 

Sharp 
0.95 1.58 1.95 1.92 2.96 4.69 3.29 4.88 4.06 4.30 4.12 5.06 

(0.53) (1.30) (1.45) (0.98) (1.92) (2.95) (1.89) (3.48) (2.43) (2.11) (2.43) (3.12) 

Vdef 
0.73 0.7 0.55 0.62 0.18 0.12 0.41 0.38 0.37 0.39 0.15 0.12 

(0.22) (0.16) (0.23) (0.21) (0.21) (0.12) (0.19) (0.16) (0.20) (0.23) (0.23) (0.13) 

LFD 
0.79 0.77 0.69 0.67 0.35 0.33 0.53 0.49 0.50 0.45 0.30 0.34 

(0.19) (0.15) (0.23) (0.20) (0.22) (0.23) (0.20) (0.16) (0.21) (0.22) (0.25) (0.22) 

Integrated 
criterion (rank) 

0.673 
(2) 

0.674 

(1) 

0.636 
(4) 

0.652 
(3) 

0.473 
(5) 

0.448 
(6) 

0.527 

(1) 

0.516 
(2) 

0.504 
(4) 

0.514 
(3) 

0.425 
(6) 

0.436 
(5) 

 

 Model’s rank 

 7-day lead time 30-day lead time 

Criterion GARD GR6J MORD PRES SIM NVQ GARD GR6J MORD PRES SIM NVQ 

RMSEut 1 2 3 4 5 6 1 5 2 4 3 6 

DRPS 3 1 4 2 5 6 3 1 4 2 6 5 

POD 3 2 1 4 6 5 3 2 1 4 6 5 

FAR 3 2 4 1 5 6 2 3 4 1 5 6 

CSI 2 1 3 4 5 6 3 2 1 4 6 5 

BSutvig 3 1 4 2 5 6 3 2 4 1 5 6 

BSutcri 2 1 4 3 6 5 1 2 5 3 6 4 

Cont_ratio 6 5 4 2 3 1 6 4 5 2 3 1 

Sharp 1 2 3 4 5 6 1 3 2 5 4 6 

Vdef 1 2 4 3 5 6 1 3 4 2 5 6 

LFD 1 2 3 4 5 6 1 3 2 4 6 5 

Mean rank 2.4 1.9 3.4 3.0 5.0 5.4 2.3 2.7 3.1 2.9 5.0 5.0 
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 2080 

Figure 1: Location of the 21 selected catchments in France 
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Figure 2: Schematic representation of the difference between (a) simulation and (b) forecasting modes (L: lead time) 2085 
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Figure 3: Example of radial plot showing mean model results on the set of 21 catchments for the selected evaluation 

criteria. The larger the blue surface, the better the model. Background colours link criteria focusing on similar aspects 
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Figure 4: Radial plot showing the mean results for the selected criteria in validation for the 21 catchments and the two 

periods. Results of the five models tested and the benchmark (DAQ) are shown. 
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Figure 5: Maps of mean performance on the two validation periods in C2MiQC2Mi, Vdef and CSI for the five models 

tested and the benchmark (DAQ) on the 21 catchments Mis en forme
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Figure 6: : Performances mean variability of models versus performances mean variability of catchments in simulation 

for the 11 selected criteria 
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Figure 7: Relation between mean performance on the two validation periods in terms of C2MiQC2Mi (a) and Vdef (b), 

and catchment or streamflow characteristics (left: Base-Flow Index, centre: Q90/Q50 ratio; right: drainage density) for the 

21 catchments and the models tested. 
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Figure 8: Radial plot of the results of the mean selected criteria in validation for the 21 catchments in validation period 2, 

for a d+7 forecasting lead time. Red lines represent the results when no assimilation or post correction method is used. 

 

  2125 



 

76 
 

 

 



 

77 
 

Figure 9: Radial plot of the results of the mean selected criteria in validation for the 21 catchments in validation period 2, 

for a d+30 forecasting lead time. Red lines represent the results when no assimilation or post correction method is used. 
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Figure 10: Performance on validation period 2 in RMSEut, BSutvigBSvig and Vdef for each model on the 21 catchments for 

a 7-day forecasting lead time 
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Figure 11: Performance on validation period 2 in RMSEut, BSutvigBSvig and Vdef for each model on the 21 catchments for 2150 
a 30-day forecasting lead time 

Mis en forme
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Figure 12: Observed and simulated hydrographs for (a) the Meuse River at St-Mihiel and (b) the Orge River at Morsang-2155 
sur-Orge for 1976 (top graph) and 1996 (bottom graph). The secondary axis shows rainfall. 
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Figure 11: Examples of forecasts issued by the five models tested and the benchmark every 20 days for the next 15 days 

for the Meuse River at St-Mihiel for 2003 2160 

  



 

87 
 

 

Figure 12: Examples of forecasts issued by the five tested models and the benchmark every 20 days for the next 15 days 

for the Orge River at Morsang-sur-Orge for 1996 
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Figure 13: Mean rank in forecasting at the 7-day lead time for the 21 catchments for the models ranked 1
st

, 2
nd

,… 5
th

 in 

simulation. 
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Figure 13: CSI difference for each model in forecasting mode when streamflow assimilation or output correction method 

is used (FAP) or not (For), versus CSI difference for each model in forecasting mode when streamflow assimilation or 

output correction method is used (FAP) and in simulation mode. 
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Figure 14: Map of useful forecasting lead time (UFL) for the 21 catchments, for validation periods 1 (left) and 2 (right). 

Symbols indicate the model which provides the best UFL and the colour scale indicates the value of this UFL. 
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Figure 15: Maps of the model ranked best in simulation for the mean of all criteria and for validation periods 1 (left) and 

2 (right), including the multi-model (fixed-weight average approach, FMM) 
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Figure 16: Maps of the model best ranked in forecasting for the mean of all criteria and for validation periods 1 (left) and 2195 
2 (right), for a d+7 forecasting lead time. 

 Mis en forme


