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Abstract

We evaluate the added value of assimilated remotely sensed soil moisture for the Eu-
ropean Flood Awareness System (EFAS) and its potential to improve the prediction of
the timing and height of the flood peak and low flows. EFAS is an operational flood
forecasting system for Europe and uses a distributed hydrological model for flood pre-5

dictions with lead times up to 10 days. For this study, satellite-derived soil moisture
from ASCAT, AMSR-E and SMOS is assimilated into the EFAS system for the Upper
Danube basin and results are compared to assimilation of discharge observations only.
To assimilate soil moisture and discharge data into EFAS, an Ensemble Kalman Filter
(EnKF) is used. Information on the spatial (cross-) correlation of the errors in the satel-10

lite products, is included to ensure optimal performance of the EnKF. For the validation,
additional discharge observations not used in the EnKF, are used as an independent
validation dataset.

Our results show that the accuracy of flood forecasts is increased when more dis-
charge observations are assimilated; the Mean Absolute Error (MAE) of the ensemble15

mean is reduced by 65 %. The additional inclusion of satellite data results in a further
increase of the performance: forecasts of base flows are better and the uncertainty in
the overall discharge is reduced, shown by a 10 % reduction in the MAE. In addition,
floods are predicted with a higher accuracy and the Continuous Ranked Probability
Score (CRPS) shows a performance increase of 5–10 % on average, compared to as-20

similation of discharge only. When soil moisture data is used, the timing errors in the
flood predictions are decreased especially for shorter lead times and imminent floods
can be forecasted with more skill. The number of false flood alerts is reduced when
more data is assimilated into the system and the best performance is achieved with the
assimilation of both discharge and satellite observations.25

The additional gain is highest when discharge observations from both upstream and
downstream areas are used in combination with the soil moisture data. These results
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show the potential of remotely sensed soil moisture observations to improve near-real
time flood forecasting in large catchments.

1 Introduction

Floods are extreme hydrological events caused by excessive water availability and may
cause large economical, societal and natural damage. One example is the summer5

2013 flood in central Europe producing historical high water levels in large parts of
the Danube and Elbe catchments, causing a total estimated economic loss of 23 bil-
lion Euro (Claims Journal, 2013). Due to their increasing impact on society, forecasting
of these extreme events has become more important to increase preparedness and
improve the response to and prevention of floods. This requires an increasing need10

to develop accurate and reliable flood forecasting systems. For transboundary river
basins, national forecasting systems are often not sufficient and transboundary fore-
casting systems are required. To fulfil this need, the European Commission developed
the European Flood Awareness System (EFAS) for flood forecasting up to a leadtime
of 10 days for the European continent (Thielen et al., 2009). Flood forecasts are made15

for multiple basins, using distributed hydrological modelling. Systems like EFAS are
highly dependent on the meteorological forcing provided as well as the pre-storm initial
conditions of the catchment (Nester et al., 2012; Alfieri et al., 2013).

To improve estimates of initial conditions data assimilation techniques have the po-
tential to correct incorrect model states with observational data to obtain the best pos-20

sible estimate of the current status of the hydrological system. Discharge data is of-
ten used in these data assimilation frameworks, because it contains the integrated
information of all other hydrological states (e.g. Vrugt et al., 2006; Clark et al., 2008;
Rakovec et al., 2012). For example, Bogner and Pappenberger (2011) applied a pos-
teriori wavelet based error correction method on the EFAS forecasts, which is now25

also used in the operational EFAS. However, it is difficult to obtain these measure-
ments in real-time in a way they can be used in EFAS. Measurements of hydrological
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states other than discharge are rarely used for estimating the model’s initial state while
these may be of considerable value. In particular, measurements of the pre-storm soil
moisture conditions could potentially improve flood forecasting systems, since initial
soil moisture conditions are expected to have a large impact on the flood peaks during
a storm event. The soil moisture content determines the amount of water which can still5

be stored in the unsaturated zone or percolate to the saturated zone and thereby influ-
ences the precipitation required to generate overland flow. However, field observations
at continental scale are not available due to the limited number of observational net-
works and their low spatial support. Remotely sensed soil moisture retrievals from the
microwave domain could potentially fill the need for soil moisture observations at the10

large spatial scales. Observations are globally available and revisit times per sensor
are between 1 and 3 days depending on latitude.

Multiple studies have used remotely sensed soil moisture to improve discharge sim-
ulations in small catchments (≤ 1000km2) and to correct for errors in pre-storm soil
moisture conditions (Pauwels et al., 2001; Scipal et al., 2008; Bolten et al., 2010;15

Brocca et al., 2010; Liu et al., 2011; Brocca et al., 2012). These studies show that
assimilation of these data improved the simulation of flood events and especially the
height of the flood peak. For large-scale catchments, Draper et al. (2011) assimilated
remotely sensed soil moisture from ASCAT over France to improve discharge simula-
tions. It was concluded that the assimilation of soil moisture mainly corrected for biases20

in precipitation or incorrect model climatology. The potential to improve flood forecasts
was not studied. The previously mentioned studies mainly study the potential gain for
flood forecasting, when only observations from a single sensor are assimilated. This
potential can be increased by making use of soil moisture retrieved by multiple sensors,
thereby increasing the quality and quantity of the observations. The value of combined25

assimilation of data from multiple sensors for operational flood forecasting at large-
scale remains however unknown. Additionally the added value of the remotely sensed
soil moisture compared to the assimilation of discharge observations has not been
extensively explored. Therefore, more research is required, especially in large-scale
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catchments using conjunctively multi-sensor remotely sensed soil moisture observa-
tions and discharge data.

The aim of this study is to determine the benefits of the assimilation of multi-sensor
soil moisture observations in operational flood forecasting systems in large scale catch-
ments. To achieve this aim, this research focuses on two main research questions:5

(i) Does the assimilation of remotely sensed soil moisture lead to increased forecast-
ing skills in terms of forecast uncertainty and forecast bias compared to assimilation of
discharge observations? (ii) Does the assimilation of remotely sensed soil moisture in-
crease the lead times at which floods can be accurately predicted? (iii) Is it possible to
reduce the number of false flood alerts with the use of remotely sensed soil moisture?10

These research questions are answered using the EFAS model setup, which enables
a proper validation of the results in the context of a real operational system. Results of
assimilating remotely sensed soil moisture are compared with assimilation of discharge
data only. Also, the impact of the number of discharge observations is investigated, to
properly validate in what situations the assimilation of remotely sensed soil moisture15

could improve flood forecasting. As a test-basin the Upper Danube catchment is se-
lected which is one of the largest catchments in Europe containing a large number
of locations with timeseries of discharge. Satellite data from three microwave sensors
(ASCAT, AMSR-E and SMOS) is used in the assimilation framework to increase the
number of observations and the potential benefits of these observations for the flood20

predictions.

2 Material and methods

2.1 Study area

The study area is the Upper Danube catchment upstream of Bratislava (catchment
size 135×103 km, Fig. 1). The border of the Upper Danube is formed by the Alps25

in the South and the catchment contains the northern part of Austria, the southern
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part of Germany, the South-eastern part of the Czech Republic and western Slovakia.
Elevations range from 150–3150 m a.s.l. In the catchment, daily discharge observations
for 23 locations are available through the Global Runoff Data Centre (GRDC) which
enable validation and assimilation (Fig. 1).

2.2 European Flood Awareness System5

The European Flood Awareness System was developed in 2003 by the European Com-
mission at the Joint Research Centre in Ispra and is being improved since1. In 2012
EFAS because an operational service aiming to provide flood forecasts up to 10 days
in advance over the European continent. At the core of the EFAS system is the hy-
drological model LISFLOOD which was originally developed by De Roo et al. (2000),10

later improved by Van Der Knijff et al. (2010) and running in the PCRaster modelling
environment (Wesseling et al., 1996; Karssenberg et al., 2010). LISFLOOD was specif-
ically developed for discharge simulations of large scale river basins. In this study, two
additional shallow layers were added to the unsaturated zone to enable a simulation
of soil moisture at the typical penetration depth of the microwave sensors, used for15

retrieving remotely sensed soil moisture. A full description of the modifications is given
by Wanders et al. (2013). The model consists of a vegetation layer, four layers to simu-
late the unsaturated zone, two linear reservoirs to represent fast and slow responding
groundwater systems and a channel network for discharge routing (Fig. 2). The me-
teorological forcing of LISFLOOD consists of daily precipitation, daily potential evap-20

otranspiration and the average daily temperature. EFAS uses meteorological forcing
from the 51 members of the European Centre for Medium-Range Weather Forecasting
Ensemble Prediction System (ECMWF-EPS). This, results in 51 hydrological forecasts
for every 12 h at midday and midnight.

In order to use the best calibrated model for the study area, the probabilistic model25

calibration set-up from Wanders et al. (2013) was used. The parameters which were

1www.efas.eu

13788

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/13783/2013/hessd-10-13783-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/13783/2013/hessd-10-13783-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/
www.efas.eu


HESSD
10, 13783–13816, 2013

Remotely sensed soil
moisture for flood

forecasting

N. Wanders et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

calibrated were related to the snow accumulation, infiltration and percolation through
the unsaturated zone, the groundwater system and routing of discharge (Fig. 2). This
resulted in calibrated parameters with distributions defined by 300 realizations of pa-
rameter sets, which could be used for hydrological simulations. The use of this param-
eter distributions allows to account for the uncertainty in the initial conditions, while the5

current EFAS uses fixed initial conditions for the hydrological forecast. The new model
set-up will allow for a better estimation of the forecast uncertainty, especially when
initial conditions influence the hydrological simulations.

2.3 Data

2.3.1 Satellite data10

Remotely sensed soil moisture data from three satellites is used, namely SMOS, AS-
CAT and AMSR-E. SMOS is the first dedicated soil moisture satellite using fully po-
larized passive microwave signals at 1.41 GHz (L-band) observed at multiple angles
(Kerr et al., 2012). The observation depth of SMOS is 5cm with a spatial resolution of
35–50km depending on the incident angle and the deviation from the satellite ground15

track. The revisit time of SMOS is within 3 days depending on the latitude. SMOS re-
trievals which are potentially contaminated with Radio Frequency Interference (RFI)
have been removed.

AMSR-E is a multi-frequency passive microwave radiometer (6.9 GHz, C-band) and
is a widely used sensor for soil moisture retrievals. The spatial resolution of AMSR-E is20

between 36 and 54 km with an observation depth of 2cm and a revisit time of 3 days.
Several algorithms estimating surface soil moisture from AMSR-E observations exist
(e.g. Njoku et al., 2003; Owe et al., 2008). One of the algorithms using exclusively
satellite observations is the Land Parameter Retrieval Model (LPRM) which was used
for this study. LPRM soil moisture products have been validated against in situ obser-25

vations (e.g. Wagner et al., 2007; De Jeu et al., 2008; Draper et al., 2009), models (e.g.
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Loew et al., 2009; Crow et al., 2010; Bisselink et al., 2011) and other satellite products
(e.g. Wagner et al., 2007; Dorigo et al., 2010).

Unlike SMOS and AMSR-E, ASCAT uses active microwave at a frequency of 5.3 GHz
(C-band) to determine the soil moisture content (Wagner et al., 1999; Naeimi et al.,
2009). ASCAT uses a change detection method (Naeimi et al., 2009) and data is5

provided relative to the soil moisture content of the wettest (field capacity) and dri-
est (wilting point) soil moisture conditions measured (Wagner et al., 1999). The spatial
resolution of ASCAT is around 25km, the observation depth is 2cm and the temporal
resolution equals a revisit time of 3 days.

All satellite soil moisture products are used on an equal area Discrete Global Grid10

product (DGG). For the SMOS and ASCAT soil moisture product a DGG is available
(Bartalis et al., 2006), while for the AMSR-E product a DGG is not available. Therefore,
the AMSR-E data was projected on the DGG of SMOS using the nearest neighbour
approach, because both satellites have roughly the same spatial resolution. The DGG
of ASCAT uses equally spaced areas of 12.5km while the other DGG uses a slightly15

lower resolution of 15km between points.
Although the passive microwave satellite missions, SMOS and AMSR-E, give abso-

lute soil moisture values in m3 m−3, all satellite data was converted using a rescaling
approach. The converted satellite values θs, new in m3 m−3 used for calibration are cal-
culated by:20

θs, new =
θs −θs,5

θs,95 −θs,5
(θFC −θWP)+θWP (1)

where θs are the observed satellite soil moisture values (–) at a DGG location, θs,95 and
θs,5 are the 95th and 5th percentiles of satellite soil moisture values at the DGG location
respectively (–), θFC and θWP are field capacity and wilting point of the modelled soil
moisture values (m3 m−3) at the DGG location. The average model values, θFC and25

θWP, are dependent on the soil texture and are averaged over the support unit of the
satellite retrieval.
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Frozen soils, snow accumulation and RFI hamper the soil moisture retrieval due
to changes in the dielectric constant when water freezes. Therefore, retrievals done
with (1) an air temperature below 4 ◦C, (2) simulated snow accumulation and (3) the
presence of RFI were not used in the calibration.

2.3.2 Discharge data5

The Upper Danube catchment contains 23 locations where daily discharge observa-
tions are available (Fig. 1). Timeseries of discharge are available from January 2000
until December 2011. Using a split sample approach the discharge of 7 stations was
used for data assimilation into the forecasting system, while the other 16 stations were
only used for validations of the forecasts. Assimilation and validation stations are se-10

lected such that they are equally distributed over the catchment and are situated both in
small rivers and the main Upper Danube river. This will allow to evaluate the impact of
the data assimilation at different catchment sizes within the Upper Danube catchment.

2.4 Data assimilation

The Ensemble Kalman Filter (EnKF) is a Monte Carlo based approach which is highly15

suitable for data assimilation in high dimensional systems (Evensen, 1994, 2003, 2009;
Burgers et al., 1998), such as the EFAS system. The EnKF is applied to update state
variables of the hydrological model. The forward model is given by:

Ψ(t+1) = f (Ψ(t),F (t),p) (2)

where f is the set of model equations, i.e. the model structure, representing the hydro-20

logical processes that lead to change in the system state over time, Ψ(t) is the state
of the model at time t, F (t) the model forcing at time t (e.g. precipitation and evapo-
ration) and p are the model parameters. The EnKF is applied on each daily timestep
using observations from remote sensing (AMSR-E, SMOS and ASCAT) and discharge
observations. The general form of the EnKF (Evensen, 2003) is given by:25
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Ψa =Ψf +PfHT (HP fHT +R)−1(Y −HΨf) (3)

where Ψa is the analysis of Ψf, the model forecast, Pf the error covariance matrix of
the model, R is the measurement error covariance, H is the measurement operator
which relates the model states Ψ to the satellite or discharge observations Y . The
observations Y can be described by:5

Y = HΨt +ε (4)

where the true model state (Ψt) is transformed to the Y , using the measurement oper-
ator (H) and random noise ε with a zero mean and an error given by the measurement
error covariance (R). The state error covariance matrix of the model prediction is di-
rectly calculated from the spread between the different ensemble members using:10

Pf = (Ψf −Ψt)(Ψf −Ψt)T (5)

where Ψ is the model state vector and the superscripts f and t represent the forecast
and true state, respectively. Since the true state is not known it is assumed that:

Pf ≈ Pf
e = (Ψf −Ψf)(Ψf −Ψf)T (6)

where Ψf represents the ensemble average and it is assumed that the ensemble of15

model simulations is sufficient to represent the true state. The EnKF is implemented in
the PCRaster modelling environment (Karssenberg et al., 2010).

For the assimilation of the satellite data with the Ensemble Kalman Filter (EnKF),
spatial information on the measurements error covariance (R, Eqs. 3 and 4) is re-
quired. The structure of R is determined from estimates of Wanders et al. (2012, 2013)20

over Spain obtained using high resolution modelling of the unsaturated zone. From this
study the relative errors of each satellite product were determined as well as the spatial
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correlation of the errors of the satellites. To avoid errors produced by downscaling of
the satellite soil moisture, the average modelled soil moisture at the satellite resolu-
tion is directly compared with the satellite soil moisture. The error covariance between
the discharge observations is set to zero while the standard error for the discharge
observations is assumed to be 0.3 times the discharge, based on expert knowledge.5

It is assumed that the covariance between the satellite observations and discharge
observations equals zero.

2.5 Assimilation and ensemble hindcasting

In this study, observed satellite and discharge data for December 2010–
November 2011 are used in a hindcasting experiment for the Upper Danube. Only10

one year was selected to test the procedure since all satellite products are available
for this time period with sufficient data quality. A data assimilation procedure is used to
create a reanalysis timeseries of all state variables which are used as starting point for
the hindcast (t0). The 300 parameter realizations from the probabilistic calibration are
used to generate the reanalysis timeseries. As meteorological forcing for the reanal-15

ysis, observed timeseries of daily precipitation, daily potential evapotranspiration and
the average daily temperature is used. Observations are interpolated between mete-
orological stations with an inverse distance interpolation. For every timestep up till t0,
observed state variables, remotely sensed soil moisture and/or discharge (depending
on the scenario), are assimilated into the model. However, parameters are not updated20

and remain constant for the complete reanalysis timeseries.
At t0, the start of the hindcast, the forward model (Eq. 2) is used for the hindcasting

of discharge and other state variables. After t0, the daily forcing from the ECMWF-
EPS is used to drive the model simulation. The hindcast is evaluated based on the
observed discharge for the hindcasting period. Like in EFAS hindcasts are done at mid-25

day and midnight based on the latest simulations of the ECMWF-EPS leading to a total
of 730 hindcasts. In the original forecasts from EFAS only one set of inital conditions is
used, thereby neglecting the uncertainty in the initial conditions. In this experiment, 300
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possible realizations of the initial conditions are available from the reanalysis. For each
hindcast the 51 members of the ECMWF-EPS are used twice with random realizations
from the 300 members of the reanalysis to create n = 102 realizations per hindcast. In
this approach different meteorological forcing and initial conditions are used for each
hindcast to have a better estimate of the forecast uncertainty. A four month simula-5

tion was performed using all 300 members in combination with all 51 meteorological
forecasts. An analysis on the probability density functions of each hindcast showed
that a total of 102 realizations showed no significant differences with the simulation of
15300 realizations. Hence, to reduce calculation times 102 realizations per hindcast
were used in all scenarios which could sufficiently explain the variation in the hind-10

cast. Calculation times for this new assimilation system are low. For a forecast with
102 members for the Upper Danube the required calculation time is 120 s on a 8-core
machine with 2.26 GHz processors and 24 GB RAM.

2.6 Scenarios

The different scenarios are given in Table 1 as well as the data used in the assimi-15

lation before the hindcasting is done. The parametrization as calibrated by Wanders
et al. (2013) was used to create reanalysis time series for each scenario. Moreover,
the calibration was based on the observations available for the reanalysis, so if both
discharge and satellite data are available these were also used for the calibration of
the hydrological model (Table 1).20

2.7 Evaluation

The evaluation of each hindcast is done based on coefficient of variation (cv), Continu-
ous Ranked Probability Score (CRPS, Hersbach, 2000), Mean Absolute Error (MAE),
Brier Score (BS, Brier, 1950) and the number of false and true positive flood alerts.
Theses score are calculated for each lead time separately to evaluate the quality of the25

hindcast for different lead times.
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To asses the spread of the ensemble of simulated discharges, the coefficient of vari-
ation is determined with:

cv =
1
T

T∑
t=1

σQmod(t)

Qmod(t)
(7)

where σQmod(t) and Qmod(t) (m3 d−1) are the standard deviation and the mean of the
ensemble of modelled discharge at time t, respectively, and T is the number of timestep5

(days) in the reanalysis period.
The CRPS (Hersbach, 2000) is used to calculated whether the uncertainty of the

forecast is correct and not over or underestimated. The CRPS is given by:

CRPS =
1
T

T∑
i=1

x=∞∫
x=−∞

(F f
i (x,t)− F o

i (x,t))2dx (8)

where F f
i (x,t) is the cumulative density function of the hindcast at time t, F o

i (x,t) is the10

cumulative density function of the observation at time t. F o
i (x) is given by a Heaviside

function, with a step from 0 to 1 probability at the observed value. The CRPS is stan-
dardized by Qobs for each validation location to enable a comparison between stations
with a different magnitude of discharge.

To calculate if the hindcasts are biased the MAE is calculated using the ensemble15

mean of the forecast. The MAE is given by:

MAE =
1
T

T∑
t=1

|Qmod(t)−Qobs(t)|

Qobs

(9)

where Qmod(t) and Qobs(t) (m3 d−1) are the average hindcasted discharge and ob-
served discharge at time t respectively and Qobs is the average discharge over the
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evaluation period. cv, CRPS and MAE are used to evaluate the performance of each
scenario and to determine the quality of each hindcasting scenario. In addition these
scores are determined per lead time separately to enable a better comparison be-
tween the different scenarios and also to determine the flood forecasting performance
of EFAS for different lead times.5

To test the accuracy of the flood alerts (both timing and height of the flood peak),
the Brier score is calculated for different flood thresholds and different lead times. The
Brier score is calculated by:

BS =
1
T

T∑
t=1

(f (t)−o(t)) (10)

where f (t) is the probability that discharge will exceed a certain threshold (calculated10

from the probability density function) and o(t) is a binary value which is 0 if this thresh-
old is not exceeded and 1 if it is exceeded. The Brier score can be calculated for
different thresholds of discharge and different lead times. In this study we focus on two
threshold levels namely the 80th and 90th percentile of the discharge (Q80, Q90). Ex-
ceedance of these arbitrary levels will not necessarily cause flood situation, however15

to allow for evaluation of hindcast these high discharge events are used. Furthermore
the number of false positives (flood forecast, no flood observed), missed (no flood
forecasted, flood observed) and correctly forecasted (flood forecasted, flood observed)
were calculated for each hindcasting scenario for the Q80 and Q90.

3 Results20

3.1 Reanalysis

To analyse the performance of the reanalysis the cv (Eq. 7) is used to determine the
uncertainty after the assimilation of the observations (Fig. 3 and Table 2). In the Q0
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scenario, the model is not calibrated and no data is assimilated into the reanalysis
to correct for incorrect model states. The uncertainty in the model simulation is large
with a cv of 0.25. Uncertainty is even increased in extreme flood events, reducing the
potential to use a model calibrated on expert knowledge without data assimilation for
flood forecasting. The assimilation of three different satellite products (Q0sat) results5

in a reduction of the cv of the discharge simulation to 0.136 compared to 0.25 for Q0
(Fig. 3). This reduction is caused by the reduction in uncertainty of the simulated soil
moisture content (not shown), due to the assimilation of the soil moisture observations.
However, soil moisture observations can not be used to calibrate groundwater and
routing parameters, since they do not contain information on groundwater and routing10

processes. This results in the fact that the discharge simulations are not necessarily
improved (also found by Wanders et al., 2013). Two scenarios are created where dis-
charge is assimilated into the model, namely Q1 and Q7. For Q1 only discharge from
the outlet has been used and for Q7, additional discharge observations (Fig. 1) up-
stream are assimilated into the model. The assimilation of additional observation data15

reduces the cv of 0.08 for Q1 to 0.04 for Q7, which is for both scenarios lower than
for Q0 (Table 2). Finally, two scenarios where both discharge and remotely sensed
soil moisture observations are assimilated into the model (Q1sat and Q7sat) are used
to create a reanalysis timeseries. In these scenarios the uncertainty is reduced com-
pared to most other scenarios. However, peak discharge for Q1sat are overestimated,20

while baseflow simulations are better compared to Q1. Improved simulations are also
observed to Q7sat compared to Q7 and the problem with overestimated peak discharge
is none existing for Q7sat (Fig. 3). It must be mentioned that additional discharge data
has a larger impact on the reduction of the uncertainty, than assimilation of remotely
sensed soil moisture. However, remotely sensed soil moisture enables a better sim-25

ulation of the base flow compared to assimilation of discharge observation only. The
reduction in uncertainty with the assimilation of remotely sensed soil moisture shows
that this the method has a high potential in sparsely gauged river basins to correctly
simulate discharges across the globe.
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3.2 Hindcasting performance

The hindcast performance of each scenario was evaluated using the CRPS (Eq. 8) and
the MAE (Eq. 9). In general the uncertainty in the hindcast is reduced when more data
is assimilated into the system leading to a better hindcast simulation (Fig. 4). When
more discharge data is assimilated, the uncertainty is more strongly reduced than with5

the assimilation of only remotely sensed soil moisture data (Figs. 3 and 4). This is also
confirmed by the CRPS score for the different scenarios (Fig. 5), where the decrease in
CRPS is strongest when more discharge data is used (Table 2). In general the CRPS
increases with increasing lead times for all scenarios with the exception of Q1sat. Due
to the larger spread for longer lead times (Fig. 4) the CRPS will increase, because10

forecasts with high uncertainty are penalized. The CRPS for Q1sat is the highest in-
dicating that this scenario has the lowest hindcasting skill of all scenarios (Fig. 5 and
Table 2). This is caused by the overestimation of most flood events, which results in
a high CRPS. When more discharge data is assimilated (Q0 compared to Q1 and Q7)
the CRPS is reduced throughout the catchment for most locations including the outlet15

near Bratislava. When a combination of discharge data and satellite data is assimilated
(Q7sat), the quality of the hindcast is highest (Fig. 4).

The MAE (Eq. 9) is calculated for all scenarios for different lead times and locations
(Fig. 6). Compared to the scenario without assimilation of observations (Q0), only the
scenarios where multiple discharge stations are assimilation (Q7 and Q7sat) show an20

increase in performance. The best performance is generated by Q7sat, which shows
a low bias compared to the observed discharge. For Q1sat the MAE is relatively low,
especially when compared to the CRPS. This is mainly caused by the accurate dis-
charge simulation in base flow periods, resulting in a low MAE.

3.3 Flood hindcasting skill25

The performance of each scenario was evaluated using the BS (Eq. 10) and the num-
ber of false positive flood alerts. Due to the high spread within the ensemble the Q0
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in general has a low forecasting skill (Table 2). This is shown by the relative high BS
(Fig. 7) and the high number of false positive forecasts (Fig. 8). Almost all flood events
are correctly captured also for long lead times, which is caused by the overestimation
of discharge in general (Fig. 4). The overestimation of discharge also causes the high
number of false positive flood forecasts, where around 90 % of the exceedances of the5

threshold are incorrect and no flooding occurs. Compared to Q0 the forecasting skill for
Q0sat is decreased, shown by an increasing BS and a higher number of false positives.
The high number of false positives is the result of an even higher over estimation of the
peak discharge in this scenario (Fig. 4), which results in false flood alerts. The number
of missed and correctly forecasted floods remains the same. The BS and the number10

of false postives for Q1 and Q7 is considerably lower than for Q0. Q7 also has a better
hindcast skill than the Q1 caused by the increased number of observations used in the
assimilation framework. The improved forecasting skill is also found in the BS for both
Q1sat and Q7sat (Fig. 7), which are for both scenarios lower than without the assimi-
lation of remotely sensed soil moisture. The number of false positive flood forecasts15

is reduced by 70 % compared to the scenarios with only discharge assimilation, while
the number of missed and correctly forecasted floods remains the same. This leads to
the conclusion that even when the simulation of discharge throughout the catchment is
used and discharge simulations are of a high quality, adding satellite data will lead to
an improvement in the forecasting skills of the hydrological model.20

4 Conclusions

In this study the added value of remotely sensed soil moisture for flood forecasting has
been studied in an operational flood forecasting system. The gain from assimilation of
soil moisture observations is compared to assimilation of only discharge and the com-
bination of discharge and soil moisture observations. The European Flood Awareness25

System (EFAS) was used for a hindcasting experiment in the Upper Danube. Hindcasts
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have been made for a period of one year and the results have been compared for six
different scenarios.

The assimilation of remotely sensed soil moisture has an impact on the simulation
of discharge as shown by other studies (e.g. Pauwels et al., 2001; Brocca et al., 2010,
2012; Draper et al., 2011). However, in this study we show that the impact is not only5

limited to small catchments with a spatial extent close to or smaller than the satellite
resolution but also works for larger catchments.

We show that the assimilation of remotely sensed soil moisture improves the flood
forecasting especially when used in combination with assimilation of discharge ob-
servations. The uncertainty in the discharge simulations are reduced and biases in10

the simulation are reduced when satellite data is assimilated. In scenarios where only
a limited number of observations is used, however, the peak discharges are generally
overestimated.

Floods are better predicted when soil moisture data is assimilated into EFAS and the
number of false alerts is reduced compared to scenarios when these data are not used.15

Although the gain of using more discharge observations remains larger, soil moisture
observations improve the quality of the flood alerts, both in terms of timing and in the
exact height of the flood peak.

In this study the hydrological model has been calibrated using the same observa-
tions as used for the assimilation into EFAS. This will ensure that the parametrization20

of the model is optimal for the correct simulation of the hydrological variables used in
the assimilation framework. Most studies only use streamflow observations for the cali-
bration of hydrological models. However, assimilation of remotely sensed soil moisture
can lead to significant difference in the parametrization of the hydrological model (e.g.
Santanello et al., 2007; Sutanudjaja et al., 2013; Wanders et al., 2013) and this will25

also impact the potential gain from the assimilation of observations of other hydrologi-
cal variables.

In this study two thresholds have been derived from the observed data and are used
to calculate potential flood in the Upper Danube catchment. However, the thresholds
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used in this study (Q80 and Q90) are arbitrary levels and do not necessarily correlate
with alert levels of the local conditions. In the current EFAS system the multiple alert
levels are based upon the model simulations from a 20 yr simulation, to identify the
5 and 20 yr return periods of floods (Roo et al., 2011). In this situation an alert will
be issued when this modelled threshold is exceeded and it is not derived from the5

local conditions. Here the threshold is defined based upon real observations, since it
is tested whether the data assimilation framework will improve both absolute levels of
the discharge simulation and the temporal correlation between simulation and obser-
vations.

An additional scenario has been studied, where only calibration of the hydrological10

model was used and no assimilation of any observation. This scenario was created
to study the added value of the assimilation compared to only calibration of the EFAS
system. It is found that the CRPS, MAE and BS are all reduced by the assimilation (not
shown). Simulations without data assimilation tend to have biases in the simulation and
a larger ensemble spread than scenarios with data assimilation, while the reduced un-15

certainty resulting from assimilation will lead to a increased reliability of flood forecasts.
These results show the added value of assimilation of observations into the EFAS sys-
tem, compared to the current set-up.

In conclusion, we show that the uncertainty in the flood forecasts is reduced when
discharge observations and satellite data are assimilated into the EFAS system. The20

addition of remotely sensed soil moisture will reduce the number of false positive flood
alerts and thereby increase the reliability of the flood awareness system. Although
the amount of the data available via satellite retrievals still remain a challenge in an
operational system, the potential benefits could lead to a significant reduction in the
false flood alerts, in particular for reducing the number of unnecessary precautions25

taken by the responsible governments and increase the confidence and willingness to
act upon these warnings.
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Table 1. Hindcasting scenarios for the EFAS system including abbreviations and assimilated
data used tot create a re-analysis timeseries from which hindcasts were initiated. The calibra-
tion indicates the data used by Wanders et al. (2013) to calibrate the hydrological model.

Hindcast Calibration
Scenario Number of Satellite data Data for calibration

discharge stations

Q0 0 stations None None, expert knowledge
Q0sat 0 stations All satellite data Satellite data
Q1 1 stations None 1 discharge observation
Q1sat 1 stations All satellite data 1 discharge station &satellite data
Q7 7 stations None 7 discharge stations
Q7sat 7 stations All satellite data 7 discharge stations &satellite data
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Table 2. Average skill scores for different hindcast scenarios for the EFAS system. Scores are
averaged over different forecasting times and for different locations with discharge observation
in the Upper Danube (Fig. 1).

Scenario cv CRPS MAE BS Q90 BS Q80

Q0 0.250 0.361 0.600 0.130 0.257
Q0sat 0.136 0.288 0.750 0.220 0.363
Q1 0.082 0.272 0.682 0.168 0.314
Q1sat 0.074 0.311 0.645 0.084 0.177
Q7 0.048 0.261 0.452 0.038 0.166
Q7sat 0.044 0.256 0.392 0.029 0.096
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Fig. 1. Digital elevation map of the Upper Danube catchment, colors indicate elevation (m),
indicated in black is the river network, square symbols indicate locations for calibration on
discharge observations, circles indicate locations for validation on discharge observations. The
large square near the outlet (right) is the location used for calibration if only one discharge
timeseries is used (Q1 and Q1sat).
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Fig. 2. LISFLOOD model set-up, with fluxes; precipitation (P ), evaporation (E ), recharge from
the unsaturated zone to the groundwater (Rch). The calibration parameters of the model are;
snowmelt coefficient (SnCoef), Xinanjiang shape parameter (bxin), saturated conductivity of
the topsoil (KSat1), saturated conductivity of the subsoil (KSat2), empirical shape parameter
preferential macro-pore flow (cpref), maximum percolation rate from upper to lower groundwater
(GWprec), reservoir constant upper groundwater (Tuz), reservoir constant lower groundwater
(Tlz), surface runoff roughness coefficient (ChanN2), channel Mannings roughness coefficient
(CalMan).
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Fig. 3. Reanalysis timeseries of discharge at the outlet of the Upper Danube catchment (Fig. 1)
for part of the hindcasting period. In grey are all model realizations, the ensemble mean is
given by the red line and the solid black line gives the observed discharge value. The different
assimilation scenarios are indicated on the left; for explanation of scenarios see Table 1. Each
column of figures gives the hindcast for a particular time, indicated by the vertical line.
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different assimilation scenarios are indicated in the top left corner of each plot.
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Fig. 5. Continuous Ranked Probability Scores (CRPS) for different forecasting times for the
European Awareness Flood System (EFAS). Each boxes contains the CRPS for 16 validation
locations for a period of 1 yr with two forecasts per day.
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Fig. 6. Mean Absolute Error (MAE) for different forecasting times for the European Awareness
Flood System (EFAS). MAE are standardized by dividing the MAE through the mean discharge.
Each boxes contains the MAE for 16 validation locations for a period of 1 yr with two forecasts
per day.
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Fig. 7. Brier Score (BS) for different forecasting times for the European Flood Awareness Sys-
tem (EFAS) in the Upper Danube (Fig. 1). Each boxes contains the BS for 16 validation loca-
tions for a period of 1 yr with two forecasts per day. The Brier scores for the 90 % threshold (top
panel) and the 80 % threshold (bottom panel) are given.
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Fig. 8. Relative changes in false positive flood alerts for the 90th percentile threshold, compared
to no assimilation scenario (Q0) for different forecasting times. A total of 1035 timesteps with
flooding were observed for the Upper Danube.
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